aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/DirectX
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2022-07-03 14:10:23 +0000
committerDimitry Andric <dim@FreeBSD.org>2022-07-03 14:10:23 +0000
commit145449b1e420787bb99721a429341fa6be3adfb6 (patch)
tree1d56ae694a6de602e348dd80165cf881a36600ed /llvm/lib/Target/DirectX
parentecbca9f5fb7d7613d2b94982c4825eb0d33d6842 (diff)
downloadsrc-145449b1e420787bb99721a429341fa6be3adfb6.tar.gz
src-145449b1e420787bb99721a429341fa6be3adfb6.zip
Vendor import of llvm-project main llvmorg-15-init-15358-g53dc0f107877.vendor/llvm-project/llvmorg-15-init-15358-g53dc0f107877
Diffstat (limited to 'llvm/lib/Target/DirectX')
-rw-r--r--llvm/lib/Target/DirectX/DXIL.td144
-rw-r--r--llvm/lib/Target/DirectX/DXILConstants.h25
-rw-r--r--llvm/lib/Target/DirectX/DXILOpLowering.cpp265
-rw-r--r--llvm/lib/Target/DirectX/DXILPointerType.cpp66
-rw-r--r--llvm/lib/Target/DirectX/DXILPointerType.h52
-rw-r--r--llvm/lib/Target/DirectX/DXILPrepare.cpp184
-rw-r--r--llvm/lib/Target/DirectX/DXILStubs.td18
-rw-r--r--llvm/lib/Target/DirectX/DXILTranslateMetadata.cpp121
-rw-r--r--llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp2963
-rw-r--r--llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.h82
-rw-r--r--llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.cpp1147
-rw-r--r--llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.h308
-rw-r--r--llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.cpp100
-rw-r--r--llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.h37
-rw-r--r--llvm/lib/Target/DirectX/DirectX.h43
-rw-r--r--llvm/lib/Target/DirectX/DirectX.td54
-rw-r--r--llvm/lib/Target/DirectX/DirectXAsmPrinter.cpp57
-rw-r--r--llvm/lib/Target/DirectX/DirectXFrameLowering.h35
-rw-r--r--llvm/lib/Target/DirectX/DirectXInstrInfo.cpp20
-rw-r--r--llvm/lib/Target/DirectX/DirectXInstrInfo.h30
-rw-r--r--llvm/lib/Target/DirectX/DirectXRegisterInfo.cpp24
-rw-r--r--llvm/lib/Target/DirectX/DirectXRegisterInfo.h28
-rw-r--r--llvm/lib/Target/DirectX/DirectXSubtarget.cpp29
-rw-r--r--llvm/lib/Target/DirectX/DirectXSubtarget.h56
-rw-r--r--llvm/lib/Target/DirectX/DirectXTargetLowering.h31
-rw-r--r--llvm/lib/Target/DirectX/DirectXTargetMachine.cpp144
-rw-r--r--llvm/lib/Target/DirectX/DirectXTargetMachine.h51
-rw-r--r--llvm/lib/Target/DirectX/DirectXTargetTransformInfo.h39
-rw-r--r--llvm/lib/Target/DirectX/MCTargetDesc/DirectXContainerObjectWriter.cpp28
-rw-r--r--llvm/lib/Target/DirectX/MCTargetDesc/DirectXContainerObjectWriter.h24
-rw-r--r--llvm/lib/Target/DirectX/MCTargetDesc/DirectXMCTargetDesc.cpp152
-rw-r--r--llvm/lib/Target/DirectX/MCTargetDesc/DirectXMCTargetDesc.h29
-rw-r--r--llvm/lib/Target/DirectX/PointerTypeAnalysis.cpp119
-rw-r--r--llvm/lib/Target/DirectX/PointerTypeAnalysis.h43
-rw-r--r--llvm/lib/Target/DirectX/TargetInfo/DirectXTargetInfo.cpp30
-rw-r--r--llvm/lib/Target/DirectX/TargetInfo/DirectXTargetInfo.h18
36 files changed, 6596 insertions, 0 deletions
diff --git a/llvm/lib/Target/DirectX/DXIL.td b/llvm/lib/Target/DirectX/DXIL.td
new file mode 100644
index 000000000000..4d6e1a9d3166
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXIL.td
@@ -0,0 +1,144 @@
+//- DXIL.td - Describe DXIL operation -------------------------*- tablegen -*-//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This is a target description file for DXIL operation.
+///
+//===----------------------------------------------------------------------===//
+
+include "llvm/IR/Intrinsics.td"
+
+class dxil_class<string _name> {
+ string name = _name;
+}
+class dxil_category<string _name> {
+ string name = _name;
+}
+
+def Unary : dxil_class<"Unary">;
+def Binary : dxil_class<"Binary">;
+def FlattenedThreadIdInGroupClass : dxil_class<"FlattenedThreadIdInGroup">;
+def ThreadIdInGroupClass : dxil_class<"ThreadIdInGroup">;
+def ThreadIdClass : dxil_class<"ThreadId">;
+def GroupIdClass : dxil_class<"GroupId">;
+
+def binary_uint : dxil_category<"Binary uint">;
+def unary_float : dxil_category<"Unary float">;
+def ComputeID : dxil_category<"Compute/Mesh/Amplification shader">;
+
+
+// The parameter description for a DXIL instruction
+class dxil_param<int _pos, string type, string _name, string _doc,
+ bit _is_const = 0, string _enum_name = "",
+ int _max_value = 0> {
+ int pos = _pos; // position in parameter list
+ string llvm_type = type; // llvm type name, $o for overload, $r for resource
+ // type, $cb for legacy cbuffer, $u4 for u4 struct
+ string name = _name; // short, unique name
+ string doc = _doc; // the documentation description of this parameter
+ bit is_const =
+ _is_const; // whether this argument requires a constant value in the IR
+ string enum_name = _enum_name; // the name of the enum type if applicable
+ int max_value =
+ _max_value; // the maximum value for this parameter if applicable
+}
+
+// A representation for a DXIL instruction
+class dxil_inst<string _name> {
+ string name = _name; // short, unique name
+
+ string dxil_op = ""; // name of DXIL operation
+ int dxil_opid = 0; // ID of DXIL operation
+ dxil_class op_class; // name of the opcode class
+ dxil_category category; // classification for this instruction
+ string doc = ""; // the documentation description of this instruction
+ list<dxil_param> ops = []; // the operands that this instruction takes
+ string oload_types = ""; // overload types if applicable
+ string fn_attr = ""; // attribute shorthands: rn=does not access
+ // memory,ro=only reads from memory,
+ bit is_deriv = 0; // whether this is some kind of derivative
+ bit is_gradient = 0; // whether this requires a gradient calculation
+ bit is_feedback = 0; // whether this is a sampler feedback op
+ bit is_wave = 0; // whether this requires in-wave, cross-lane functionality
+ bit requires_uniform_inputs = 0; // whether this operation requires that all
+ // of its inputs are uniform across the wave
+ // Group dxil operation for stats.
+ // Like how many atomic/float/uint/int/... instructions used in the program.
+ list<string> stats_group = [];
+}
+
+class dxil_op<string name, int code_id, dxil_class code_class, dxil_category op_category, string _doc,
+ string _oload_types, string _fn_attr, list<dxil_param> op_params,
+ list<string> _stats_group = []> : dxil_inst<name> {
+ let dxil_op = name;
+ let dxil_opid = code_id;
+ let doc = _doc;
+ let ops = op_params;
+ let op_class = code_class;
+ let category = op_category;
+ let oload_types = _oload_types;
+ let fn_attr = _fn_attr;
+ let stats_group = _stats_group;
+}
+
+// The intrinsic which map directly to this dxil op.
+class dxil_map_intrinsic<Intrinsic llvm_intrinsic_> { Intrinsic llvm_intrinsic = llvm_intrinsic_; }
+
+def Sin : dxil_op<"Sin", 13, Unary, unary_float, "returns sine(theta) for theta in radians.",
+ "half;float;", "rn",
+ [
+ dxil_param<0, "$o", "", "operation result">,
+ dxil_param<1, "i32", "opcode", "DXIL opcode">,
+ dxil_param<2, "$o", "value", "input value">
+ ],
+ ["floats"]>,
+ dxil_map_intrinsic<int_sin>;
+
+def UMax :dxil_op< "UMax", 39, Binary, binary_uint, "unsigned integer maximum. UMax(a,b) = a > b ? a : b",
+ "i16;i32;i64;", "rn",
+ [
+ dxil_param<0, "$o", "", "operation result">,
+ dxil_param<1, "i32", "opcode", "DXIL opcode">,
+ dxil_param<2, "$o", "a", "input value">,
+ dxil_param<3, "$o", "b", "input value">
+ ],
+ ["uints"]>,
+ dxil_map_intrinsic<int_umax>;
+
+def ThreadId :dxil_op< "ThreadId", 93, ThreadIdClass, ComputeID, "reads the thread ID", "i32;", "rn",
+ [
+ dxil_param<0, "i32", "", "thread ID component">,
+ dxil_param<1, "i32", "opcode", "DXIL opcode">,
+ dxil_param<2, "i32", "component", "component to read (x,y,z)">
+ ]>,
+ dxil_map_intrinsic<int_dxil_thread_id>;
+
+def GroupId :dxil_op< "GroupId", 94, GroupIdClass, ComputeID, "reads the group ID (SV_GroupID)", "i32;", "rn",
+ [
+ dxil_param<0, "i32", "", "group ID component">,
+ dxil_param<1, "i32", "opcode", "DXIL opcode">,
+ dxil_param<2, "i32", "component", "component to read">
+ ]>,
+ dxil_map_intrinsic<int_dxil_group_id>;
+
+def ThreadIdInGroup :dxil_op< "ThreadIdInGroup", 95, ThreadIdInGroupClass, ComputeID,
+ "reads the thread ID within the group (SV_GroupThreadID)", "i32;", "rn",
+ [
+ dxil_param<0, "i32", "", "thread ID in group component">,
+ dxil_param<1, "i32", "opcode", "DXIL opcode">,
+ dxil_param<2, "i32", "component", "component to read (x,y,z)">
+ ]>,
+ dxil_map_intrinsic<int_dxil_thread_id_in_group>;
+
+def FlattenedThreadIdInGroup :dxil_op< "FlattenedThreadIdInGroup", 96, FlattenedThreadIdInGroupClass, ComputeID,
+ "provides a flattened index for a given thread within a given group (SV_GroupIndex)", "i32;", "rn",
+ [
+ dxil_param<0, "i32", "", "result">,
+ dxil_param<1, "i32", "opcode", "DXIL opcode">
+ ]>,
+ dxil_map_intrinsic<int_dxil_flattened_thread_id_in_group>;
diff --git a/llvm/lib/Target/DirectX/DXILConstants.h b/llvm/lib/Target/DirectX/DXILConstants.h
new file mode 100644
index 000000000000..e8e7b5396a46
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILConstants.h
@@ -0,0 +1,25 @@
+//===- DXILConstants.h - Essential DXIL constants -------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file This file contains essential DXIL constants.
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_DIRECTX_DXILCONSTANTS_H
+#define LLVM_LIB_TARGET_DIRECTX_DXILCONSTANTS_H
+
+namespace llvm {
+namespace DXIL {
+
+#define DXIL_OP_ENUM
+#include "DXILOperation.inc"
+#undef DXIL_OP_ENUM
+
+} // namespace DXIL
+} // namespace llvm
+
+#endif
diff --git a/llvm/lib/Target/DirectX/DXILOpLowering.cpp b/llvm/lib/Target/DirectX/DXILOpLowering.cpp
new file mode 100644
index 000000000000..11b89e4ec890
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILOpLowering.cpp
@@ -0,0 +1,265 @@
+//===- DXILOpLower.cpp - Lowering LLVM intrinsic to DIXLOp function -------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file This file contains passes and utilities to lower llvm intrinsic call
+/// to DXILOp function call.
+//===----------------------------------------------------------------------===//
+
+#include "DXILConstants.h"
+#include "DirectX.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/IntrinsicsDirectX.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/ErrorHandling.h"
+
+#define DEBUG_TYPE "dxil-op-lower"
+
+using namespace llvm;
+using namespace llvm::DXIL;
+
+constexpr StringLiteral DXILOpNamePrefix = "dx.op.";
+
+enum OverloadKind : uint16_t {
+ VOID = 1,
+ HALF = 1 << 1,
+ FLOAT = 1 << 2,
+ DOUBLE = 1 << 3,
+ I1 = 1 << 4,
+ I8 = 1 << 5,
+ I16 = 1 << 6,
+ I32 = 1 << 7,
+ I64 = 1 << 8,
+ UserDefineType = 1 << 9,
+ ObjectType = 1 << 10,
+};
+
+static const char *getOverloadTypeName(OverloadKind Kind) {
+ switch (Kind) {
+ case OverloadKind::HALF:
+ return "f16";
+ case OverloadKind::FLOAT:
+ return "f32";
+ case OverloadKind::DOUBLE:
+ return "f64";
+ case OverloadKind::I1:
+ return "i1";
+ case OverloadKind::I8:
+ return "i8";
+ case OverloadKind::I16:
+ return "i16";
+ case OverloadKind::I32:
+ return "i32";
+ case OverloadKind::I64:
+ return "i64";
+ case OverloadKind::VOID:
+ case OverloadKind::ObjectType:
+ case OverloadKind::UserDefineType:
+ break;
+ }
+ llvm_unreachable("invalid overload type for name");
+ return "void";
+}
+
+static OverloadKind getOverloadKind(Type *Ty) {
+ Type::TypeID T = Ty->getTypeID();
+ switch (T) {
+ case Type::VoidTyID:
+ return OverloadKind::VOID;
+ case Type::HalfTyID:
+ return OverloadKind::HALF;
+ case Type::FloatTyID:
+ return OverloadKind::FLOAT;
+ case Type::DoubleTyID:
+ return OverloadKind::DOUBLE;
+ case Type::IntegerTyID: {
+ IntegerType *ITy = cast<IntegerType>(Ty);
+ unsigned Bits = ITy->getBitWidth();
+ switch (Bits) {
+ case 1:
+ return OverloadKind::I1;
+ case 8:
+ return OverloadKind::I8;
+ case 16:
+ return OverloadKind::I16;
+ case 32:
+ return OverloadKind::I32;
+ case 64:
+ return OverloadKind::I64;
+ default:
+ llvm_unreachable("invalid overload type");
+ return OverloadKind::VOID;
+ }
+ }
+ case Type::PointerTyID:
+ return OverloadKind::UserDefineType;
+ case Type::StructTyID:
+ return OverloadKind::ObjectType;
+ default:
+ llvm_unreachable("invalid overload type");
+ return OverloadKind::VOID;
+ }
+}
+
+static std::string getTypeName(OverloadKind Kind, Type *Ty) {
+ if (Kind < OverloadKind::UserDefineType) {
+ return getOverloadTypeName(Kind);
+ } else if (Kind == OverloadKind::UserDefineType) {
+ StructType *ST = cast<StructType>(Ty);
+ return ST->getStructName().str();
+ } else if (Kind == OverloadKind::ObjectType) {
+ StructType *ST = cast<StructType>(Ty);
+ return ST->getStructName().str();
+ } else {
+ std::string Str;
+ raw_string_ostream OS(Str);
+ Ty->print(OS);
+ return OS.str();
+ }
+}
+
+// Static properties.
+struct OpCodeProperty {
+ DXIL::OpCode OpCode;
+ // Offset in DXILOpCodeNameTable.
+ unsigned OpCodeNameOffset;
+ DXIL::OpCodeClass OpCodeClass;
+ // Offset in DXILOpCodeClassNameTable.
+ unsigned OpCodeClassNameOffset;
+ uint16_t OverloadTys;
+ llvm::Attribute::AttrKind FuncAttr;
+};
+
+// Include getOpCodeClassName getOpCodeProperty and getOpCodeName which
+// generated by tableGen.
+#define DXIL_OP_OPERATION_TABLE
+#include "DXILOperation.inc"
+#undef DXIL_OP_OPERATION_TABLE
+
+static std::string constructOverloadName(OverloadKind Kind, Type *Ty,
+ const OpCodeProperty &Prop) {
+ if (Kind == OverloadKind::VOID) {
+ return (Twine(DXILOpNamePrefix) + getOpCodeClassName(Prop)).str();
+ }
+ return (Twine(DXILOpNamePrefix) + getOpCodeClassName(Prop) + "." +
+ getTypeName(Kind, Ty))
+ .str();
+}
+
+static FunctionCallee createDXILOpFunction(DXIL::OpCode DXILOp, Function &F,
+ Module &M) {
+ const OpCodeProperty *Prop = getOpCodeProperty(DXILOp);
+
+ // Get return type as overload type for DXILOp.
+ // Only simple mapping case here, so return type is good enough.
+ Type *OverloadTy = F.getReturnType();
+
+ OverloadKind Kind = getOverloadKind(OverloadTy);
+ // FIXME: find the issue and report error in clang instead of check it in
+ // backend.
+ if ((Prop->OverloadTys & (uint16_t)Kind) == 0) {
+ llvm_unreachable("invalid overload");
+ }
+
+ std::string FnName = constructOverloadName(Kind, OverloadTy, *Prop);
+ assert(!M.getFunction(FnName) && "Function already exists");
+
+ auto &Ctx = M.getContext();
+ Type *OpCodeTy = Type::getInt32Ty(Ctx);
+
+ SmallVector<Type *> ArgTypes;
+ // DXIL has i32 opcode as first arg.
+ ArgTypes.emplace_back(OpCodeTy);
+ FunctionType *FT = F.getFunctionType();
+ ArgTypes.append(FT->param_begin(), FT->param_end());
+ FunctionType *DXILOpFT = FunctionType::get(OverloadTy, ArgTypes, false);
+ return M.getOrInsertFunction(FnName, DXILOpFT);
+}
+
+static void lowerIntrinsic(DXIL::OpCode DXILOp, Function &F, Module &M) {
+ auto DXILOpFn = createDXILOpFunction(DXILOp, F, M);
+ IRBuilder<> B(M.getContext());
+ Value *DXILOpArg = B.getInt32(static_cast<unsigned>(DXILOp));
+ for (User *U : make_early_inc_range(F.users())) {
+ CallInst *CI = dyn_cast<CallInst>(U);
+ if (!CI)
+ continue;
+
+ SmallVector<Value *> Args;
+ Args.emplace_back(DXILOpArg);
+ Args.append(CI->arg_begin(), CI->arg_end());
+ B.SetInsertPoint(CI);
+ CallInst *DXILCI = B.CreateCall(DXILOpFn, Args);
+ LLVM_DEBUG(DXILCI->setName(getOpCodeName(DXILOp)));
+ CI->replaceAllUsesWith(DXILCI);
+ CI->eraseFromParent();
+ }
+ if (F.user_empty())
+ F.eraseFromParent();
+}
+
+static bool lowerIntrinsics(Module &M) {
+ bool Updated = false;
+
+#define DXIL_OP_INTRINSIC_MAP
+#include "DXILOperation.inc"
+#undef DXIL_OP_INTRINSIC_MAP
+
+ for (Function &F : make_early_inc_range(M.functions())) {
+ if (!F.isDeclaration())
+ continue;
+ Intrinsic::ID ID = F.getIntrinsicID();
+ if (ID == Intrinsic::not_intrinsic)
+ continue;
+ auto LowerIt = LowerMap.find(ID);
+ if (LowerIt == LowerMap.end())
+ continue;
+ lowerIntrinsic(LowerIt->second, F, M);
+ Updated = true;
+ }
+ return Updated;
+}
+
+namespace {
+/// A pass that transforms external global definitions into declarations.
+class DXILOpLowering : public PassInfoMixin<DXILOpLowering> {
+public:
+ PreservedAnalyses run(Module &M, ModuleAnalysisManager &) {
+ if (lowerIntrinsics(M))
+ return PreservedAnalyses::none();
+ return PreservedAnalyses::all();
+ }
+};
+} // namespace
+
+namespace {
+class DXILOpLoweringLegacy : public ModulePass {
+public:
+ bool runOnModule(Module &M) override { return lowerIntrinsics(M); }
+ StringRef getPassName() const override { return "DXIL Op Lowering"; }
+ DXILOpLoweringLegacy() : ModulePass(ID) {}
+
+ static char ID; // Pass identification.
+};
+char DXILOpLoweringLegacy::ID = 0;
+
+} // end anonymous namespace
+
+INITIALIZE_PASS_BEGIN(DXILOpLoweringLegacy, DEBUG_TYPE, "DXIL Op Lowering",
+ false, false)
+INITIALIZE_PASS_END(DXILOpLoweringLegacy, DEBUG_TYPE, "DXIL Op Lowering", false,
+ false)
+
+ModulePass *llvm::createDXILOpLoweringLegacyPass() {
+ return new DXILOpLoweringLegacy();
+}
diff --git a/llvm/lib/Target/DirectX/DXILPointerType.cpp b/llvm/lib/Target/DirectX/DXILPointerType.cpp
new file mode 100644
index 000000000000..1e67f1a30ec4
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILPointerType.cpp
@@ -0,0 +1,66 @@
+//===- Target/DirectX/DXILTypedPointerType.cpp - DXIL Typed Pointer Type
+//-------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#include "DXILPointerType.h"
+#include "llvm/ADT/Any.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/LLVMContext.h"
+
+using namespace llvm;
+using namespace llvm::dxil;
+
+class TypedPointerTracking {
+public:
+ TypedPointerTracking() {}
+ DenseMap<Type *, std::unique_ptr<TypedPointerType>> PointerTypes;
+ DenseMap<std::pair<Type *, unsigned>, std::unique_ptr<TypedPointerType>>
+ ASPointerTypes;
+};
+
+TypedPointerType *TypedPointerType::get(Type *EltTy, unsigned AddressSpace) {
+ assert(EltTy && "Can't get a pointer to <null> type!");
+ assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
+
+ llvm::Any &TargetData = EltTy->getContext().getTargetData();
+ if (!TargetData.hasValue())
+ TargetData = Any{std::make_shared<TypedPointerTracking>()};
+
+ assert(any_isa<std::shared_ptr<TypedPointerTracking>>(TargetData) &&
+ "Unexpected target data type");
+
+ std::shared_ptr<TypedPointerTracking> Tracking =
+ any_cast<std::shared_ptr<TypedPointerTracking>>(TargetData);
+
+ // Since AddressSpace #0 is the common case, we special case it.
+ std::unique_ptr<TypedPointerType> &Entry =
+ AddressSpace == 0
+ ? Tracking->PointerTypes[EltTy]
+ : Tracking->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
+
+ if (!Entry)
+ Entry = std::unique_ptr<TypedPointerType>(
+ new TypedPointerType(EltTy, AddressSpace));
+ return Entry.get();
+}
+
+TypedPointerType::TypedPointerType(Type *E, unsigned AddrSpace)
+ : Type(E->getContext(), DXILPointerTyID), PointeeTy(E) {
+ ContainedTys = &PointeeTy;
+ NumContainedTys = 1;
+ setSubclassData(AddrSpace);
+}
+
+bool TypedPointerType::isValidElementType(Type *ElemTy) {
+ return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
+ !ElemTy->isMetadataTy() && !ElemTy->isTokenTy() &&
+ !ElemTy->isX86_AMXTy();
+}
diff --git a/llvm/lib/Target/DirectX/DXILPointerType.h b/llvm/lib/Target/DirectX/DXILPointerType.h
new file mode 100644
index 000000000000..52cf2dbc40b0
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILPointerType.h
@@ -0,0 +1,52 @@
+//===- Target/DirectX/DXILPointerType.h - DXIL Typed Pointer Type ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_DIRECTX_DXILPOINTERTYPE_H
+#define LLVM_TARGET_DIRECTX_DXILPOINTERTYPE_H
+
+#include "llvm/IR/Type.h"
+
+namespace llvm {
+namespace dxil {
+
+// DXIL has typed pointers, this pointer type abstraction is used for tracking
+// in PointerTypeAnalysis and for the bitcode ValueEnumerator
+class TypedPointerType : public Type {
+ explicit TypedPointerType(Type *ElType, unsigned AddrSpace);
+
+ Type *PointeeTy;
+
+public:
+ TypedPointerType(const TypedPointerType &) = delete;
+ TypedPointerType &operator=(const TypedPointerType &) = delete;
+
+ /// This constructs a pointer to an object of the specified type in a numbered
+ /// address space.
+ static TypedPointerType *get(Type *ElementType, unsigned AddressSpace);
+
+ /// Return true if the specified type is valid as a element type.
+ static bool isValidElementType(Type *ElemTy);
+
+ /// Return the address space of the Pointer type.
+ unsigned getAddressSpace() const { return getSubclassData(); }
+
+ Type *getElementType() const { return PointeeTy; }
+
+ /// Implement support type inquiry through isa, cast, and dyn_cast.
+ static bool classof(const Type *T) {
+ return T->getTypeID() == DXILPointerTyID;
+ }
+};
+
+} // namespace dxil
+} // namespace llvm
+
+#endif // LLVM_TARGET_DIRECTX_DXILPOINTERTYPE_H
diff --git a/llvm/lib/Target/DirectX/DXILPrepare.cpp b/llvm/lib/Target/DirectX/DXILPrepare.cpp
new file mode 100644
index 000000000000..14d970e6b69a
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILPrepare.cpp
@@ -0,0 +1,184 @@
+//===- DXILPrepare.cpp - Prepare LLVM Module for DXIL encoding ------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file This file contains pases and utilities to convert a modern LLVM
+/// module into a module compatible with the LLVM 3.7-based DirectX Intermediate
+/// Language (DXIL).
+//===----------------------------------------------------------------------===//
+
+#include "DirectX.h"
+#include "PointerTypeAnalysis.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Module.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Compiler.h"
+
+#define DEBUG_TYPE "dxil-prepare"
+
+using namespace llvm;
+using namespace llvm::dxil;
+
+namespace {
+
+constexpr bool isValidForDXIL(Attribute::AttrKind Attr) {
+ return is_contained({Attribute::Alignment,
+ Attribute::AlwaysInline,
+ Attribute::Builtin,
+ Attribute::ByVal,
+ Attribute::InAlloca,
+ Attribute::Cold,
+ Attribute::Convergent,
+ Attribute::InlineHint,
+ Attribute::InReg,
+ Attribute::JumpTable,
+ Attribute::MinSize,
+ Attribute::Naked,
+ Attribute::Nest,
+ Attribute::NoAlias,
+ Attribute::NoBuiltin,
+ Attribute::NoCapture,
+ Attribute::NoDuplicate,
+ Attribute::NoImplicitFloat,
+ Attribute::NoInline,
+ Attribute::NonLazyBind,
+ Attribute::NonNull,
+ Attribute::Dereferenceable,
+ Attribute::DereferenceableOrNull,
+ Attribute::NoRedZone,
+ Attribute::NoReturn,
+ Attribute::NoUnwind,
+ Attribute::OptimizeForSize,
+ Attribute::OptimizeNone,
+ Attribute::ReadNone,
+ Attribute::ReadOnly,
+ Attribute::ArgMemOnly,
+ Attribute::Returned,
+ Attribute::ReturnsTwice,
+ Attribute::SExt,
+ Attribute::StackAlignment,
+ Attribute::StackProtect,
+ Attribute::StackProtectReq,
+ Attribute::StackProtectStrong,
+ Attribute::SafeStack,
+ Attribute::StructRet,
+ Attribute::SanitizeAddress,
+ Attribute::SanitizeThread,
+ Attribute::SanitizeMemory,
+ Attribute::UWTable,
+ Attribute::ZExt},
+ Attr);
+}
+
+class DXILPrepareModule : public ModulePass {
+
+ static Value *maybeGenerateBitcast(IRBuilder<> &Builder,
+ PointerTypeMap &PointerTypes,
+ Instruction &Inst, Value *Operand,
+ Type *Ty) {
+ // Omit bitcasts if the incoming value matches the instruction type.
+ auto It = PointerTypes.find(Operand);
+ if (It != PointerTypes.end())
+ if (cast<TypedPointerType>(It->second)->getElementType() == Ty)
+ return nullptr;
+ // Insert bitcasts where we are removing the instruction.
+ Builder.SetInsertPoint(&Inst);
+ // This code only gets hit in opaque-pointer mode, so the type of the
+ // pointer doesn't matter.
+ PointerType *PtrTy = cast<PointerType>(Operand->getType());
+ return Builder.Insert(
+ CastInst::Create(Instruction::BitCast, Operand,
+ Builder.getInt8PtrTy(PtrTy->getAddressSpace())));
+ }
+
+public:
+ bool runOnModule(Module &M) override {
+ PointerTypeMap PointerTypes = PointerTypeAnalysis::run(M);
+ AttributeMask AttrMask;
+ for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
+ I = Attribute::AttrKind(I + 1)) {
+ if (!isValidForDXIL(I))
+ AttrMask.addAttribute(I);
+ }
+ for (auto &F : M.functions()) {
+ F.removeFnAttrs(AttrMask);
+ F.removeRetAttrs(AttrMask);
+ for (size_t Idx = 0, End = F.arg_size(); Idx < End; ++Idx)
+ F.removeParamAttrs(Idx, AttrMask);
+
+ for (auto &BB : F) {
+ IRBuilder<> Builder(&BB);
+ for (auto &I : make_early_inc_range(BB)) {
+ if (I.getOpcode() == Instruction::FNeg) {
+ Builder.SetInsertPoint(&I);
+ Value *In = I.getOperand(0);
+ Value *Zero = ConstantFP::get(In->getType(), -0.0);
+ I.replaceAllUsesWith(Builder.CreateFSub(Zero, In));
+ I.eraseFromParent();
+ continue;
+ }
+ // Only insert bitcasts if the IR is using opaque pointers.
+ if (M.getContext().supportsTypedPointers())
+ continue;
+
+ // Emtting NoOp bitcast instructions allows the ValueEnumerator to be
+ // unmodified as it reserves instruction IDs during contruction.
+ if (auto LI = dyn_cast<LoadInst>(&I)) {
+ if (Value *NoOpBitcast = maybeGenerateBitcast(
+ Builder, PointerTypes, I, LI->getPointerOperand(),
+ LI->getType())) {
+ LI->replaceAllUsesWith(
+ Builder.CreateLoad(LI->getType(), NoOpBitcast));
+ LI->eraseFromParent();
+ }
+ continue;
+ }
+ if (auto SI = dyn_cast<StoreInst>(&I)) {
+ if (Value *NoOpBitcast = maybeGenerateBitcast(
+ Builder, PointerTypes, I, SI->getPointerOperand(),
+ SI->getValueOperand()->getType())) {
+
+ SI->replaceAllUsesWith(
+ Builder.CreateStore(SI->getValueOperand(), NoOpBitcast));
+ SI->eraseFromParent();
+ }
+ continue;
+ }
+ if (auto GEP = dyn_cast<GetElementPtrInst>(&I)) {
+ if (Value *NoOpBitcast = maybeGenerateBitcast(
+ Builder, PointerTypes, I, GEP->getPointerOperand(),
+ GEP->getResultElementType()))
+ GEP->setOperand(0, NoOpBitcast);
+ continue;
+ }
+ }
+ }
+ }
+ return true;
+ }
+
+ DXILPrepareModule() : ModulePass(ID) {}
+
+ static char ID; // Pass identification.
+};
+char DXILPrepareModule::ID = 0;
+
+} // end anonymous namespace
+
+INITIALIZE_PASS_BEGIN(DXILPrepareModule, DEBUG_TYPE, "DXIL Prepare Module",
+ false, false)
+INITIALIZE_PASS_END(DXILPrepareModule, DEBUG_TYPE, "DXIL Prepare Module", false,
+ false)
+
+ModulePass *llvm::createDXILPrepareModulePass() {
+ return new DXILPrepareModule();
+}
diff --git a/llvm/lib/Target/DirectX/DXILStubs.td b/llvm/lib/Target/DirectX/DXILStubs.td
new file mode 100644
index 000000000000..ce4327f93bc1
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILStubs.td
@@ -0,0 +1,18 @@
+// DXIL doesn't actually use registers, but this gets the boilerplate code
+// generated through tablegen.
+let Namespace = "DXIL" in {
+def DXIL : Register<"DXIL">;
+def DXILClass : RegisterClass<"DXIL", [i32], 32, (add DXIL)>;
+}
+
+class DXILInst : Instruction {
+ let Namespace = "DXIL";
+ let DecoderNamespace = "DXIL";
+
+ dag OutOperandList = (outs);
+ dag InOperandList = (ins);
+ let AsmString = "dummy";
+ let Pattern = [];
+}
+
+def DummyInst : DXILInst;
diff --git a/llvm/lib/Target/DirectX/DXILTranslateMetadata.cpp b/llvm/lib/Target/DirectX/DXILTranslateMetadata.cpp
new file mode 100644
index 000000000000..634ead98a6ae
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILTranslateMetadata.cpp
@@ -0,0 +1,121 @@
+//===- DXILTranslateMetadata.cpp - Pass to emit DXIL metadata ---*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+//===----------------------------------------------------------------------===//
+
+#include "DirectX.h"
+#include "llvm/ADT/StringSet.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/Pass.h"
+
+using namespace llvm;
+
+static uint32_t ConstMDToUint32(const MDOperand &MDO) {
+ ConstantInt *pConst = mdconst::extract<ConstantInt>(MDO);
+ return (uint32_t)pConst->getZExtValue();
+}
+
+static ConstantAsMetadata *Uint32ToConstMD(unsigned v, LLVMContext &Ctx) {
+ return ConstantAsMetadata::get(
+ Constant::getIntegerValue(IntegerType::get(Ctx, 32), APInt(32, v)));
+}
+
+constexpr StringLiteral ValVerKey = "dx.valver";
+constexpr unsigned DXILVersionNumFields = 2;
+
+static void emitDXILValidatorVersion(Module &M, VersionTuple &ValidatorVer) {
+ NamedMDNode *DXILValidatorVersionMD = M.getNamedMetadata(ValVerKey);
+
+ // Allow re-writing the validator version, since this can be changed at
+ // later points.
+ if (DXILValidatorVersionMD)
+ M.eraseNamedMetadata(DXILValidatorVersionMD);
+
+ DXILValidatorVersionMD = M.getOrInsertNamedMetadata(ValVerKey);
+
+ auto &Ctx = M.getContext();
+ Metadata *MDVals[DXILVersionNumFields];
+ MDVals[0] = Uint32ToConstMD(ValidatorVer.getMajor(), Ctx);
+ MDVals[1] = Uint32ToConstMD(ValidatorVer.getMinor().value_or(0), Ctx);
+
+ DXILValidatorVersionMD->addOperand(MDNode::get(Ctx, MDVals));
+}
+
+static VersionTuple loadDXILValidatorVersion(MDNode *ValVerMD) {
+ if (ValVerMD->getNumOperands() != DXILVersionNumFields)
+ return VersionTuple();
+
+ unsigned Major = ConstMDToUint32(ValVerMD->getOperand(0));
+ unsigned Minor = ConstMDToUint32(ValVerMD->getOperand(1));
+ return VersionTuple(Major, Minor);
+}
+
+static void cleanModuleFlags(Module &M) {
+ constexpr StringLiteral DeadKeys[] = {ValVerKey};
+ // Collect DeadKeys in ModuleFlags.
+ StringSet<> DeadKeySet;
+ for (auto &Key : DeadKeys) {
+ if (M.getModuleFlag(Key))
+ DeadKeySet.insert(Key);
+ }
+ if (DeadKeySet.empty())
+ return;
+
+ SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
+ M.getModuleFlagsMetadata(ModuleFlags);
+ NamedMDNode *MDFlags = M.getModuleFlagsMetadata();
+ MDFlags->eraseFromParent();
+ // Add ModuleFlag which not dead.
+ for (auto &Flag : ModuleFlags) {
+ StringRef Key = Flag.Key->getString();
+ if (DeadKeySet.contains(Key))
+ continue;
+ M.addModuleFlag(Flag.Behavior, Key, Flag.Val);
+ }
+}
+
+static void cleanModule(Module &M) { cleanModuleFlags(M); }
+
+namespace {
+class DXILTranslateMetadata : public ModulePass {
+public:
+ static char ID; // Pass identification, replacement for typeid
+ explicit DXILTranslateMetadata() : ModulePass(ID), ValidatorVer(1, 0) {}
+
+ StringRef getPassName() const override { return "DXIL Metadata Emit"; }
+
+ bool runOnModule(Module &M) override;
+
+private:
+ VersionTuple ValidatorVer;
+};
+
+} // namespace
+
+bool DXILTranslateMetadata::runOnModule(Module &M) {
+ if (MDNode *ValVerMD = cast_or_null<MDNode>(M.getModuleFlag(ValVerKey))) {
+ auto ValVer = loadDXILValidatorVersion(ValVerMD);
+ if (!ValVer.empty())
+ ValidatorVer = ValVer;
+ }
+ emitDXILValidatorVersion(M, ValidatorVer);
+ cleanModule(M);
+ return false;
+}
+
+char DXILTranslateMetadata::ID = 0;
+
+ModulePass *llvm::createDXILTranslateMetadataPass() {
+ return new DXILTranslateMetadata();
+}
+
+INITIALIZE_PASS(DXILTranslateMetadata, "dxil-metadata-emit",
+ "DXIL Metadata Emit", false, false)
diff --git a/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp b/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp
new file mode 100644
index 000000000000..494a71e51a89
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.cpp
@@ -0,0 +1,2963 @@
+//===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Bitcode writer implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DXILBitcodeWriter.h"
+#include "DXILValueEnumerator.h"
+#include "PointerTypeAnalysis.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/Bitcode/BitcodeCommon.h"
+#include "llvm/Bitcode/BitcodeReader.h"
+#include "llvm/Bitcode/LLVMBitCodes.h"
+#include "llvm/Bitstream/BitCodes.h"
+#include "llvm/Bitstream/BitstreamWriter.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Comdat.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DebugLoc.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalIFunc.h"
+#include "llvm/IR/GlobalObject.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/InstrTypes.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/LLVMContext.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/ModuleSummaryIndex.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/UseListOrder.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueSymbolTable.h"
+#include "llvm/Object/IRSymtab.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/SHA1.h"
+
+namespace llvm {
+namespace dxil {
+
+// Generates an enum to use as an index in the Abbrev array of Metadata record.
+enum MetadataAbbrev : unsigned {
+#define HANDLE_MDNODE_LEAF(CLASS) CLASS##AbbrevID,
+#include "llvm/IR/Metadata.def"
+ LastPlusOne
+};
+
+class DXILBitcodeWriter {
+
+ /// These are manifest constants used by the bitcode writer. They do not need
+ /// to be kept in sync with the reader, but need to be consistent within this
+ /// file.
+ enum {
+ // VALUE_SYMTAB_BLOCK abbrev id's.
+ VST_ENTRY_8_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ VST_ENTRY_7_ABBREV,
+ VST_ENTRY_6_ABBREV,
+ VST_BBENTRY_6_ABBREV,
+
+ // CONSTANTS_BLOCK abbrev id's.
+ CONSTANTS_SETTYPE_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ CONSTANTS_INTEGER_ABBREV,
+ CONSTANTS_CE_CAST_Abbrev,
+ CONSTANTS_NULL_Abbrev,
+
+ // FUNCTION_BLOCK abbrev id's.
+ FUNCTION_INST_LOAD_ABBREV = bitc::FIRST_APPLICATION_ABBREV,
+ FUNCTION_INST_BINOP_ABBREV,
+ FUNCTION_INST_BINOP_FLAGS_ABBREV,
+ FUNCTION_INST_CAST_ABBREV,
+ FUNCTION_INST_RET_VOID_ABBREV,
+ FUNCTION_INST_RET_VAL_ABBREV,
+ FUNCTION_INST_UNREACHABLE_ABBREV,
+ FUNCTION_INST_GEP_ABBREV,
+ };
+
+ // Cache some types
+ Type *I8Ty;
+ Type *I8PtrTy;
+
+ /// The stream created and owned by the client.
+ BitstreamWriter &Stream;
+
+ StringTableBuilder &StrtabBuilder;
+
+ /// The Module to write to bitcode.
+ const Module &M;
+
+ /// Enumerates ids for all values in the module.
+ ValueEnumerator VE;
+
+ /// Map that holds the correspondence between GUIDs in the summary index,
+ /// that came from indirect call profiles, and a value id generated by this
+ /// class to use in the VST and summary block records.
+ std::map<GlobalValue::GUID, unsigned> GUIDToValueIdMap;
+
+ /// Tracks the last value id recorded in the GUIDToValueMap.
+ unsigned GlobalValueId;
+
+ /// Saves the offset of the VSTOffset record that must eventually be
+ /// backpatched with the offset of the actual VST.
+ uint64_t VSTOffsetPlaceholder = 0;
+
+ /// Pointer to the buffer allocated by caller for bitcode writing.
+ const SmallVectorImpl<char> &Buffer;
+
+ /// The start bit of the identification block.
+ uint64_t BitcodeStartBit;
+
+ /// This maps values to their typed pointers
+ PointerTypeMap PointerMap;
+
+public:
+ /// Constructs a ModuleBitcodeWriter object for the given Module,
+ /// writing to the provided \p Buffer.
+ DXILBitcodeWriter(const Module &M, SmallVectorImpl<char> &Buffer,
+ StringTableBuilder &StrtabBuilder, BitstreamWriter &Stream)
+ : I8Ty(Type::getInt8Ty(M.getContext())),
+ I8PtrTy(TypedPointerType::get(I8Ty, 0)), Stream(Stream),
+ StrtabBuilder(StrtabBuilder), M(M), VE(M, I8PtrTy), Buffer(Buffer),
+ BitcodeStartBit(Stream.GetCurrentBitNo()),
+ PointerMap(PointerTypeAnalysis::run(M)) {
+ GlobalValueId = VE.getValues().size();
+ // Enumerate the typed pointers
+ for (auto El : PointerMap)
+ VE.EnumerateType(El.second);
+ }
+
+ /// Emit the current module to the bitstream.
+ void write();
+
+ static uint64_t getAttrKindEncoding(Attribute::AttrKind Kind);
+ static void writeStringRecord(BitstreamWriter &Stream, unsigned Code,
+ StringRef Str, unsigned AbbrevToUse);
+ static void writeIdentificationBlock(BitstreamWriter &Stream);
+ static void emitSignedInt64(SmallVectorImpl<uint64_t> &Vals, uint64_t V);
+ static void emitWideAPInt(SmallVectorImpl<uint64_t> &Vals, const APInt &A);
+
+ static unsigned getEncodedComdatSelectionKind(const Comdat &C);
+ static unsigned getEncodedLinkage(const GlobalValue::LinkageTypes Linkage);
+ static unsigned getEncodedLinkage(const GlobalValue &GV);
+ static unsigned getEncodedVisibility(const GlobalValue &GV);
+ static unsigned getEncodedThreadLocalMode(const GlobalValue &GV);
+ static unsigned getEncodedDLLStorageClass(const GlobalValue &GV);
+ static unsigned getEncodedCastOpcode(unsigned Opcode);
+ static unsigned getEncodedUnaryOpcode(unsigned Opcode);
+ static unsigned getEncodedBinaryOpcode(unsigned Opcode);
+ static unsigned getEncodedRMWOperation(AtomicRMWInst::BinOp Op);
+ static unsigned getEncodedOrdering(AtomicOrdering Ordering);
+ static uint64_t getOptimizationFlags(const Value *V);
+
+private:
+ void writeModuleVersion();
+ void writePerModuleGlobalValueSummary();
+
+ void writePerModuleFunctionSummaryRecord(SmallVector<uint64_t, 64> &NameVals,
+ GlobalValueSummary *Summary,
+ unsigned ValueID,
+ unsigned FSCallsAbbrev,
+ unsigned FSCallsProfileAbbrev,
+ const Function &F);
+ void writeModuleLevelReferences(const GlobalVariable &V,
+ SmallVector<uint64_t, 64> &NameVals,
+ unsigned FSModRefsAbbrev,
+ unsigned FSModVTableRefsAbbrev);
+
+ void assignValueId(GlobalValue::GUID ValGUID) {
+ GUIDToValueIdMap[ValGUID] = ++GlobalValueId;
+ }
+
+ unsigned getValueId(GlobalValue::GUID ValGUID) {
+ const auto &VMI = GUIDToValueIdMap.find(ValGUID);
+ // Expect that any GUID value had a value Id assigned by an
+ // earlier call to assignValueId.
+ assert(VMI != GUIDToValueIdMap.end() &&
+ "GUID does not have assigned value Id");
+ return VMI->second;
+ }
+
+ // Helper to get the valueId for the type of value recorded in VI.
+ unsigned getValueId(ValueInfo VI) {
+ if (!VI.haveGVs() || !VI.getValue())
+ return getValueId(VI.getGUID());
+ return VE.getValueID(VI.getValue());
+ }
+
+ std::map<GlobalValue::GUID, unsigned> &valueIds() { return GUIDToValueIdMap; }
+
+ uint64_t bitcodeStartBit() { return BitcodeStartBit; }
+
+ size_t addToStrtab(StringRef Str);
+
+ unsigned createDILocationAbbrev();
+ unsigned createGenericDINodeAbbrev();
+
+ void writeAttributeGroupTable();
+ void writeAttributeTable();
+ void writeTypeTable();
+ void writeComdats();
+ void writeValueSymbolTableForwardDecl();
+ void writeModuleInfo();
+ void writeValueAsMetadata(const ValueAsMetadata *MD,
+ SmallVectorImpl<uint64_t> &Record);
+ void writeMDTuple(const MDTuple *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDILocation(const DILocation *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned &Abbrev);
+ void writeGenericDINode(const GenericDINode *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned &Abbrev) {
+ llvm_unreachable("DXIL cannot contain GenericDI Nodes");
+ }
+ void writeDISubrange(const DISubrange *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDIGenericSubrange(const DIGenericSubrange *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DIGenericSubrange Nodes");
+ }
+ void writeDIEnumerator(const DIEnumerator *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDIBasicType(const DIBasicType *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDIStringType(const DIStringType *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DIStringType Nodes");
+ }
+ void writeDIDerivedType(const DIDerivedType *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDICompositeType(const DICompositeType *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDISubroutineType(const DISubroutineType *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDIFile(const DIFile *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDICompileUnit(const DICompileUnit *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDISubprogram(const DISubprogram *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDILexicalBlock(const DILexicalBlock *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDILexicalBlockFile(const DILexicalBlockFile *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDICommonBlock(const DICommonBlock *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DICommonBlock Nodes");
+ }
+ void writeDINamespace(const DINamespace *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDIMacro(const DIMacro *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DIMacro Nodes");
+ }
+ void writeDIMacroFile(const DIMacroFile *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DIMacroFile Nodes");
+ }
+ void writeDIArgList(const DIArgList *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DIArgList Nodes");
+ }
+ void writeDIModule(const DIModule *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDITemplateTypeParameter(const DITemplateTypeParameter *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDITemplateValueParameter(const DITemplateValueParameter *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDIGlobalVariable(const DIGlobalVariable *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ void writeDILocalVariable(const DILocalVariable *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDILabel(const DILabel *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain DILabel Nodes");
+ }
+ void writeDIExpression(const DIExpression *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDIGlobalVariableExpression(const DIGlobalVariableExpression *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL cannot contain GlobalVariableExpression Nodes");
+ }
+ void writeDIObjCProperty(const DIObjCProperty *N,
+ SmallVectorImpl<uint64_t> &Record, unsigned Abbrev);
+ void writeDIImportedEntity(const DIImportedEntity *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev);
+ unsigned createNamedMetadataAbbrev();
+ void writeNamedMetadata(SmallVectorImpl<uint64_t> &Record);
+ unsigned createMetadataStringsAbbrev();
+ void writeMetadataStrings(ArrayRef<const Metadata *> Strings,
+ SmallVectorImpl<uint64_t> &Record);
+ void writeMetadataRecords(ArrayRef<const Metadata *> MDs,
+ SmallVectorImpl<uint64_t> &Record,
+ std::vector<unsigned> *MDAbbrevs = nullptr,
+ std::vector<uint64_t> *IndexPos = nullptr);
+ void writeModuleMetadata();
+ void writeFunctionMetadata(const Function &F);
+ void writeFunctionMetadataAttachment(const Function &F);
+ void pushGlobalMetadataAttachment(SmallVectorImpl<uint64_t> &Record,
+ const GlobalObject &GO);
+ void writeModuleMetadataKinds();
+ void writeOperandBundleTags();
+ void writeSyncScopeNames();
+ void writeConstants(unsigned FirstVal, unsigned LastVal, bool isGlobal);
+ void writeModuleConstants();
+ bool pushValueAndType(const Value *V, unsigned InstID,
+ SmallVectorImpl<unsigned> &Vals);
+ void writeOperandBundles(const CallBase &CB, unsigned InstID);
+ void pushValue(const Value *V, unsigned InstID,
+ SmallVectorImpl<unsigned> &Vals);
+ void pushValueSigned(const Value *V, unsigned InstID,
+ SmallVectorImpl<uint64_t> &Vals);
+ void writeInstruction(const Instruction &I, unsigned InstID,
+ SmallVectorImpl<unsigned> &Vals);
+ void writeFunctionLevelValueSymbolTable(const ValueSymbolTable &VST);
+ void writeGlobalValueSymbolTable(
+ DenseMap<const Function *, uint64_t> &FunctionToBitcodeIndex);
+ void writeUseList(UseListOrder &&Order);
+ void writeUseListBlock(const Function *F);
+ void writeFunction(const Function &F);
+ void writeBlockInfo();
+
+ unsigned getEncodedSyncScopeID(SyncScope::ID SSID) { return unsigned(SSID); }
+
+ unsigned getEncodedAlign(MaybeAlign Alignment) { return encode(Alignment); }
+
+ unsigned getTypeID(Type *T, const Value *V = nullptr);
+ unsigned getTypeID(Type *T, const Function *F);
+};
+
+} // namespace dxil
+} // namespace llvm
+
+using namespace llvm;
+using namespace llvm::dxil;
+
+////////////////////////////////////////////////////////////////////////////////
+/// Begin dxil::BitcodeWriter Implementation
+////////////////////////////////////////////////////////////////////////////////
+
+dxil::BitcodeWriter::BitcodeWriter(SmallVectorImpl<char> &Buffer,
+ raw_fd_stream *FS)
+ : Buffer(Buffer), Stream(new BitstreamWriter(Buffer, FS, 512)) {
+ // Emit the file header.
+ Stream->Emit((unsigned)'B', 8);
+ Stream->Emit((unsigned)'C', 8);
+ Stream->Emit(0x0, 4);
+ Stream->Emit(0xC, 4);
+ Stream->Emit(0xE, 4);
+ Stream->Emit(0xD, 4);
+}
+
+dxil::BitcodeWriter::~BitcodeWriter() { assert(WroteStrtab); }
+
+/// Write the specified module to the specified output stream.
+void dxil::WriteDXILToFile(const Module &M, raw_ostream &Out) {
+ SmallVector<char, 0> Buffer;
+ Buffer.reserve(256 * 1024);
+
+ // If this is darwin or another generic macho target, reserve space for the
+ // header.
+ Triple TT(M.getTargetTriple());
+ if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
+ Buffer.insert(Buffer.begin(), BWH_HeaderSize, 0);
+
+ BitcodeWriter Writer(Buffer, dyn_cast<raw_fd_stream>(&Out));
+ Writer.writeModule(M);
+ Writer.writeSymtab();
+ Writer.writeStrtab();
+
+ // Write the generated bitstream to "Out".
+ if (!Buffer.empty())
+ Out.write((char *)&Buffer.front(), Buffer.size());
+}
+
+void BitcodeWriter::writeBlob(unsigned Block, unsigned Record, StringRef Blob) {
+ Stream->EnterSubblock(Block, 3);
+
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(Record));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Blob));
+ auto AbbrevNo = Stream->EmitAbbrev(std::move(Abbv));
+
+ Stream->EmitRecordWithBlob(AbbrevNo, ArrayRef<uint64_t>{Record}, Blob);
+
+ Stream->ExitBlock();
+}
+
+void BitcodeWriter::writeSymtab() {
+ assert(!WroteStrtab && !WroteSymtab);
+
+ // If any module has module-level inline asm, we will require a registered asm
+ // parser for the target so that we can create an accurate symbol table for
+ // the module.
+ for (Module *M : Mods) {
+ if (M->getModuleInlineAsm().empty())
+ continue;
+ }
+
+ WroteSymtab = true;
+ SmallVector<char, 0> Symtab;
+ // The irsymtab::build function may be unable to create a symbol table if the
+ // module is malformed (e.g. it contains an invalid alias). Writing a symbol
+ // table is not required for correctness, but we still want to be able to
+ // write malformed modules to bitcode files, so swallow the error.
+ if (Error E = irsymtab::build(Mods, Symtab, StrtabBuilder, Alloc)) {
+ consumeError(std::move(E));
+ return;
+ }
+
+ writeBlob(bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB,
+ {Symtab.data(), Symtab.size()});
+}
+
+void BitcodeWriter::writeStrtab() {
+ assert(!WroteStrtab);
+
+ std::vector<char> Strtab;
+ StrtabBuilder.finalizeInOrder();
+ Strtab.resize(StrtabBuilder.getSize());
+ StrtabBuilder.write((uint8_t *)Strtab.data());
+
+ writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB,
+ {Strtab.data(), Strtab.size()});
+
+ WroteStrtab = true;
+}
+
+void BitcodeWriter::copyStrtab(StringRef Strtab) {
+ writeBlob(bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB, Strtab);
+ WroteStrtab = true;
+}
+
+void BitcodeWriter::writeModule(const Module &M) {
+ assert(!WroteStrtab);
+
+ // The Mods vector is used by irsymtab::build, which requires non-const
+ // Modules in case it needs to materialize metadata. But the bitcode writer
+ // requires that the module is materialized, so we can cast to non-const here,
+ // after checking that it is in fact materialized.
+ assert(M.isMaterialized());
+ Mods.push_back(const_cast<Module *>(&M));
+
+ DXILBitcodeWriter ModuleWriter(M, Buffer, StrtabBuilder, *Stream);
+ ModuleWriter.write();
+}
+
+////////////////////////////////////////////////////////////////////////////////
+/// Begin dxil::BitcodeWriterBase Implementation
+////////////////////////////////////////////////////////////////////////////////
+
+unsigned DXILBitcodeWriter::getEncodedCastOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ llvm_unreachable("Unknown cast instruction!");
+ case Instruction::Trunc:
+ return bitc::CAST_TRUNC;
+ case Instruction::ZExt:
+ return bitc::CAST_ZEXT;
+ case Instruction::SExt:
+ return bitc::CAST_SEXT;
+ case Instruction::FPToUI:
+ return bitc::CAST_FPTOUI;
+ case Instruction::FPToSI:
+ return bitc::CAST_FPTOSI;
+ case Instruction::UIToFP:
+ return bitc::CAST_UITOFP;
+ case Instruction::SIToFP:
+ return bitc::CAST_SITOFP;
+ case Instruction::FPTrunc:
+ return bitc::CAST_FPTRUNC;
+ case Instruction::FPExt:
+ return bitc::CAST_FPEXT;
+ case Instruction::PtrToInt:
+ return bitc::CAST_PTRTOINT;
+ case Instruction::IntToPtr:
+ return bitc::CAST_INTTOPTR;
+ case Instruction::BitCast:
+ return bitc::CAST_BITCAST;
+ case Instruction::AddrSpaceCast:
+ return bitc::CAST_ADDRSPACECAST;
+ }
+}
+
+unsigned DXILBitcodeWriter::getEncodedUnaryOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ llvm_unreachable("Unknown binary instruction!");
+ case Instruction::FNeg:
+ return bitc::UNOP_FNEG;
+ }
+}
+
+unsigned DXILBitcodeWriter::getEncodedBinaryOpcode(unsigned Opcode) {
+ switch (Opcode) {
+ default:
+ llvm_unreachable("Unknown binary instruction!");
+ case Instruction::Add:
+ case Instruction::FAdd:
+ return bitc::BINOP_ADD;
+ case Instruction::Sub:
+ case Instruction::FSub:
+ return bitc::BINOP_SUB;
+ case Instruction::Mul:
+ case Instruction::FMul:
+ return bitc::BINOP_MUL;
+ case Instruction::UDiv:
+ return bitc::BINOP_UDIV;
+ case Instruction::FDiv:
+ case Instruction::SDiv:
+ return bitc::BINOP_SDIV;
+ case Instruction::URem:
+ return bitc::BINOP_UREM;
+ case Instruction::FRem:
+ case Instruction::SRem:
+ return bitc::BINOP_SREM;
+ case Instruction::Shl:
+ return bitc::BINOP_SHL;
+ case Instruction::LShr:
+ return bitc::BINOP_LSHR;
+ case Instruction::AShr:
+ return bitc::BINOP_ASHR;
+ case Instruction::And:
+ return bitc::BINOP_AND;
+ case Instruction::Or:
+ return bitc::BINOP_OR;
+ case Instruction::Xor:
+ return bitc::BINOP_XOR;
+ }
+}
+
+unsigned DXILBitcodeWriter::getTypeID(Type *T, const Value *V) {
+ if (!T->isOpaquePointerTy())
+ return VE.getTypeID(T);
+ auto It = PointerMap.find(V);
+ if (It != PointerMap.end())
+ return VE.getTypeID(It->second);
+ return VE.getTypeID(I8PtrTy);
+}
+
+unsigned DXILBitcodeWriter::getTypeID(Type *T, const Function *F) {
+ auto It = PointerMap.find(F);
+ if (It != PointerMap.end())
+ return VE.getTypeID(It->second);
+ return VE.getTypeID(T);
+}
+
+unsigned DXILBitcodeWriter::getEncodedRMWOperation(AtomicRMWInst::BinOp Op) {
+ switch (Op) {
+ default:
+ llvm_unreachable("Unknown RMW operation!");
+ case AtomicRMWInst::Xchg:
+ return bitc::RMW_XCHG;
+ case AtomicRMWInst::Add:
+ return bitc::RMW_ADD;
+ case AtomicRMWInst::Sub:
+ return bitc::RMW_SUB;
+ case AtomicRMWInst::And:
+ return bitc::RMW_AND;
+ case AtomicRMWInst::Nand:
+ return bitc::RMW_NAND;
+ case AtomicRMWInst::Or:
+ return bitc::RMW_OR;
+ case AtomicRMWInst::Xor:
+ return bitc::RMW_XOR;
+ case AtomicRMWInst::Max:
+ return bitc::RMW_MAX;
+ case AtomicRMWInst::Min:
+ return bitc::RMW_MIN;
+ case AtomicRMWInst::UMax:
+ return bitc::RMW_UMAX;
+ case AtomicRMWInst::UMin:
+ return bitc::RMW_UMIN;
+ case AtomicRMWInst::FAdd:
+ return bitc::RMW_FADD;
+ case AtomicRMWInst::FSub:
+ return bitc::RMW_FSUB;
+ }
+}
+
+unsigned DXILBitcodeWriter::getEncodedOrdering(AtomicOrdering Ordering) {
+ switch (Ordering) {
+ case AtomicOrdering::NotAtomic:
+ return bitc::ORDERING_NOTATOMIC;
+ case AtomicOrdering::Unordered:
+ return bitc::ORDERING_UNORDERED;
+ case AtomicOrdering::Monotonic:
+ return bitc::ORDERING_MONOTONIC;
+ case AtomicOrdering::Acquire:
+ return bitc::ORDERING_ACQUIRE;
+ case AtomicOrdering::Release:
+ return bitc::ORDERING_RELEASE;
+ case AtomicOrdering::AcquireRelease:
+ return bitc::ORDERING_ACQREL;
+ case AtomicOrdering::SequentiallyConsistent:
+ return bitc::ORDERING_SEQCST;
+ }
+ llvm_unreachable("Invalid ordering");
+}
+
+void DXILBitcodeWriter::writeStringRecord(BitstreamWriter &Stream,
+ unsigned Code, StringRef Str,
+ unsigned AbbrevToUse) {
+ SmallVector<unsigned, 64> Vals;
+
+ // Code: [strchar x N]
+ for (char C : Str) {
+ if (AbbrevToUse && !BitCodeAbbrevOp::isChar6(C))
+ AbbrevToUse = 0;
+ Vals.push_back(C);
+ }
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, Vals, AbbrevToUse);
+}
+
+uint64_t DXILBitcodeWriter::getAttrKindEncoding(Attribute::AttrKind Kind) {
+ switch (Kind) {
+ case Attribute::Alignment:
+ return bitc::ATTR_KIND_ALIGNMENT;
+ case Attribute::AlwaysInline:
+ return bitc::ATTR_KIND_ALWAYS_INLINE;
+ case Attribute::ArgMemOnly:
+ return bitc::ATTR_KIND_ARGMEMONLY;
+ case Attribute::Builtin:
+ return bitc::ATTR_KIND_BUILTIN;
+ case Attribute::ByVal:
+ return bitc::ATTR_KIND_BY_VAL;
+ case Attribute::Convergent:
+ return bitc::ATTR_KIND_CONVERGENT;
+ case Attribute::InAlloca:
+ return bitc::ATTR_KIND_IN_ALLOCA;
+ case Attribute::Cold:
+ return bitc::ATTR_KIND_COLD;
+ case Attribute::InlineHint:
+ return bitc::ATTR_KIND_INLINE_HINT;
+ case Attribute::InReg:
+ return bitc::ATTR_KIND_IN_REG;
+ case Attribute::JumpTable:
+ return bitc::ATTR_KIND_JUMP_TABLE;
+ case Attribute::MinSize:
+ return bitc::ATTR_KIND_MIN_SIZE;
+ case Attribute::Naked:
+ return bitc::ATTR_KIND_NAKED;
+ case Attribute::Nest:
+ return bitc::ATTR_KIND_NEST;
+ case Attribute::NoAlias:
+ return bitc::ATTR_KIND_NO_ALIAS;
+ case Attribute::NoBuiltin:
+ return bitc::ATTR_KIND_NO_BUILTIN;
+ case Attribute::NoCapture:
+ return bitc::ATTR_KIND_NO_CAPTURE;
+ case Attribute::NoDuplicate:
+ return bitc::ATTR_KIND_NO_DUPLICATE;
+ case Attribute::NoImplicitFloat:
+ return bitc::ATTR_KIND_NO_IMPLICIT_FLOAT;
+ case Attribute::NoInline:
+ return bitc::ATTR_KIND_NO_INLINE;
+ case Attribute::NonLazyBind:
+ return bitc::ATTR_KIND_NON_LAZY_BIND;
+ case Attribute::NonNull:
+ return bitc::ATTR_KIND_NON_NULL;
+ case Attribute::Dereferenceable:
+ return bitc::ATTR_KIND_DEREFERENCEABLE;
+ case Attribute::DereferenceableOrNull:
+ return bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL;
+ case Attribute::NoRedZone:
+ return bitc::ATTR_KIND_NO_RED_ZONE;
+ case Attribute::NoReturn:
+ return bitc::ATTR_KIND_NO_RETURN;
+ case Attribute::NoUnwind:
+ return bitc::ATTR_KIND_NO_UNWIND;
+ case Attribute::OptimizeForSize:
+ return bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE;
+ case Attribute::OptimizeNone:
+ return bitc::ATTR_KIND_OPTIMIZE_NONE;
+ case Attribute::ReadNone:
+ return bitc::ATTR_KIND_READ_NONE;
+ case Attribute::ReadOnly:
+ return bitc::ATTR_KIND_READ_ONLY;
+ case Attribute::Returned:
+ return bitc::ATTR_KIND_RETURNED;
+ case Attribute::ReturnsTwice:
+ return bitc::ATTR_KIND_RETURNS_TWICE;
+ case Attribute::SExt:
+ return bitc::ATTR_KIND_S_EXT;
+ case Attribute::StackAlignment:
+ return bitc::ATTR_KIND_STACK_ALIGNMENT;
+ case Attribute::StackProtect:
+ return bitc::ATTR_KIND_STACK_PROTECT;
+ case Attribute::StackProtectReq:
+ return bitc::ATTR_KIND_STACK_PROTECT_REQ;
+ case Attribute::StackProtectStrong:
+ return bitc::ATTR_KIND_STACK_PROTECT_STRONG;
+ case Attribute::SafeStack:
+ return bitc::ATTR_KIND_SAFESTACK;
+ case Attribute::StructRet:
+ return bitc::ATTR_KIND_STRUCT_RET;
+ case Attribute::SanitizeAddress:
+ return bitc::ATTR_KIND_SANITIZE_ADDRESS;
+ case Attribute::SanitizeThread:
+ return bitc::ATTR_KIND_SANITIZE_THREAD;
+ case Attribute::SanitizeMemory:
+ return bitc::ATTR_KIND_SANITIZE_MEMORY;
+ case Attribute::UWTable:
+ return bitc::ATTR_KIND_UW_TABLE;
+ case Attribute::ZExt:
+ return bitc::ATTR_KIND_Z_EXT;
+ case Attribute::EndAttrKinds:
+ llvm_unreachable("Can not encode end-attribute kinds marker.");
+ case Attribute::None:
+ llvm_unreachable("Can not encode none-attribute.");
+ case Attribute::EmptyKey:
+ case Attribute::TombstoneKey:
+ llvm_unreachable("Trying to encode EmptyKey/TombstoneKey");
+ default:
+ llvm_unreachable("Trying to encode attribute not supported by DXIL. These "
+ "should be stripped in DXILPrepare");
+ }
+
+ llvm_unreachable("Trying to encode unknown attribute");
+}
+
+void DXILBitcodeWriter::emitSignedInt64(SmallVectorImpl<uint64_t> &Vals,
+ uint64_t V) {
+ if ((int64_t)V >= 0)
+ Vals.push_back(V << 1);
+ else
+ Vals.push_back((-V << 1) | 1);
+}
+
+void DXILBitcodeWriter::emitWideAPInt(SmallVectorImpl<uint64_t> &Vals,
+ const APInt &A) {
+ // We have an arbitrary precision integer value to write whose
+ // bit width is > 64. However, in canonical unsigned integer
+ // format it is likely that the high bits are going to be zero.
+ // So, we only write the number of active words.
+ unsigned NumWords = A.getActiveWords();
+ const uint64_t *RawData = A.getRawData();
+ for (unsigned i = 0; i < NumWords; i++)
+ emitSignedInt64(Vals, RawData[i]);
+}
+
+uint64_t DXILBitcodeWriter::getOptimizationFlags(const Value *V) {
+ uint64_t Flags = 0;
+
+ if (const auto *OBO = dyn_cast<OverflowingBinaryOperator>(V)) {
+ if (OBO->hasNoSignedWrap())
+ Flags |= 1 << bitc::OBO_NO_SIGNED_WRAP;
+ if (OBO->hasNoUnsignedWrap())
+ Flags |= 1 << bitc::OBO_NO_UNSIGNED_WRAP;
+ } else if (const auto *PEO = dyn_cast<PossiblyExactOperator>(V)) {
+ if (PEO->isExact())
+ Flags |= 1 << bitc::PEO_EXACT;
+ } else if (const auto *FPMO = dyn_cast<FPMathOperator>(V)) {
+ if (FPMO->hasAllowReassoc())
+ Flags |= bitc::AllowReassoc;
+ if (FPMO->hasNoNaNs())
+ Flags |= bitc::NoNaNs;
+ if (FPMO->hasNoInfs())
+ Flags |= bitc::NoInfs;
+ if (FPMO->hasNoSignedZeros())
+ Flags |= bitc::NoSignedZeros;
+ if (FPMO->hasAllowReciprocal())
+ Flags |= bitc::AllowReciprocal;
+ if (FPMO->hasAllowContract())
+ Flags |= bitc::AllowContract;
+ if (FPMO->hasApproxFunc())
+ Flags |= bitc::ApproxFunc;
+ }
+
+ return Flags;
+}
+
+unsigned
+DXILBitcodeWriter::getEncodedLinkage(const GlobalValue::LinkageTypes Linkage) {
+ switch (Linkage) {
+ case GlobalValue::ExternalLinkage:
+ return 0;
+ case GlobalValue::WeakAnyLinkage:
+ return 16;
+ case GlobalValue::AppendingLinkage:
+ return 2;
+ case GlobalValue::InternalLinkage:
+ return 3;
+ case GlobalValue::LinkOnceAnyLinkage:
+ return 18;
+ case GlobalValue::ExternalWeakLinkage:
+ return 7;
+ case GlobalValue::CommonLinkage:
+ return 8;
+ case GlobalValue::PrivateLinkage:
+ return 9;
+ case GlobalValue::WeakODRLinkage:
+ return 17;
+ case GlobalValue::LinkOnceODRLinkage:
+ return 19;
+ case GlobalValue::AvailableExternallyLinkage:
+ return 12;
+ }
+ llvm_unreachable("Invalid linkage");
+}
+
+unsigned DXILBitcodeWriter::getEncodedLinkage(const GlobalValue &GV) {
+ return getEncodedLinkage(GV.getLinkage());
+}
+
+unsigned DXILBitcodeWriter::getEncodedVisibility(const GlobalValue &GV) {
+ switch (GV.getVisibility()) {
+ case GlobalValue::DefaultVisibility:
+ return 0;
+ case GlobalValue::HiddenVisibility:
+ return 1;
+ case GlobalValue::ProtectedVisibility:
+ return 2;
+ }
+ llvm_unreachable("Invalid visibility");
+}
+
+unsigned DXILBitcodeWriter::getEncodedDLLStorageClass(const GlobalValue &GV) {
+ switch (GV.getDLLStorageClass()) {
+ case GlobalValue::DefaultStorageClass:
+ return 0;
+ case GlobalValue::DLLImportStorageClass:
+ return 1;
+ case GlobalValue::DLLExportStorageClass:
+ return 2;
+ }
+ llvm_unreachable("Invalid DLL storage class");
+}
+
+unsigned DXILBitcodeWriter::getEncodedThreadLocalMode(const GlobalValue &GV) {
+ switch (GV.getThreadLocalMode()) {
+ case GlobalVariable::NotThreadLocal:
+ return 0;
+ case GlobalVariable::GeneralDynamicTLSModel:
+ return 1;
+ case GlobalVariable::LocalDynamicTLSModel:
+ return 2;
+ case GlobalVariable::InitialExecTLSModel:
+ return 3;
+ case GlobalVariable::LocalExecTLSModel:
+ return 4;
+ }
+ llvm_unreachable("Invalid TLS model");
+}
+
+unsigned DXILBitcodeWriter::getEncodedComdatSelectionKind(const Comdat &C) {
+ switch (C.getSelectionKind()) {
+ case Comdat::Any:
+ return bitc::COMDAT_SELECTION_KIND_ANY;
+ case Comdat::ExactMatch:
+ return bitc::COMDAT_SELECTION_KIND_EXACT_MATCH;
+ case Comdat::Largest:
+ return bitc::COMDAT_SELECTION_KIND_LARGEST;
+ case Comdat::NoDeduplicate:
+ return bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES;
+ case Comdat::SameSize:
+ return bitc::COMDAT_SELECTION_KIND_SAME_SIZE;
+ }
+ llvm_unreachable("Invalid selection kind");
+}
+
+////////////////////////////////////////////////////////////////////////////////
+/// Begin DXILBitcodeWriter Implementation
+////////////////////////////////////////////////////////////////////////////////
+
+void DXILBitcodeWriter::writeAttributeGroupTable() {
+ const std::vector<ValueEnumerator::IndexAndAttrSet> &AttrGrps =
+ VE.getAttributeGroups();
+ if (AttrGrps.empty())
+ return;
+
+ Stream.EnterSubblock(bitc::PARAMATTR_GROUP_BLOCK_ID, 3);
+
+ SmallVector<uint64_t, 64> Record;
+ for (ValueEnumerator::IndexAndAttrSet Pair : AttrGrps) {
+ unsigned AttrListIndex = Pair.first;
+ AttributeSet AS = Pair.second;
+ Record.push_back(VE.getAttributeGroupID(Pair));
+ Record.push_back(AttrListIndex);
+
+ for (Attribute Attr : AS) {
+ if (Attr.isEnumAttribute()) {
+ uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
+ assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
+ "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
+ Record.push_back(0);
+ Record.push_back(Val);
+ } else if (Attr.isIntAttribute()) {
+ uint64_t Val = getAttrKindEncoding(Attr.getKindAsEnum());
+ assert(Val <= bitc::ATTR_KIND_ARGMEMONLY &&
+ "DXIL does not support attributes above ATTR_KIND_ARGMEMONLY");
+ Record.push_back(1);
+ Record.push_back(Val);
+ Record.push_back(Attr.getValueAsInt());
+ } else {
+ StringRef Kind = Attr.getKindAsString();
+ StringRef Val = Attr.getValueAsString();
+
+ Record.push_back(Val.empty() ? 3 : 4);
+ Record.append(Kind.begin(), Kind.end());
+ Record.push_back(0);
+ if (!Val.empty()) {
+ Record.append(Val.begin(), Val.end());
+ Record.push_back(0);
+ }
+ }
+ }
+
+ Stream.EmitRecord(bitc::PARAMATTR_GRP_CODE_ENTRY, Record);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeAttributeTable() {
+ const std::vector<AttributeList> &Attrs = VE.getAttributeLists();
+ if (Attrs.empty())
+ return;
+
+ Stream.EnterSubblock(bitc::PARAMATTR_BLOCK_ID, 3);
+
+ SmallVector<uint64_t, 64> Record;
+ for (unsigned i = 0, e = Attrs.size(); i != e; ++i) {
+ AttributeList AL = Attrs[i];
+ for (unsigned i : AL.indexes()) {
+ AttributeSet AS = AL.getAttributes(i);
+ if (AS.hasAttributes())
+ Record.push_back(VE.getAttributeGroupID({i, AS}));
+ }
+
+ Stream.EmitRecord(bitc::PARAMATTR_CODE_ENTRY, Record);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+/// WriteTypeTable - Write out the type table for a module.
+void DXILBitcodeWriter::writeTypeTable() {
+ const ValueEnumerator::TypeList &TypeList = VE.getTypes();
+
+ Stream.EnterSubblock(bitc::TYPE_BLOCK_ID_NEW, 4 /*count from # abbrevs */);
+ SmallVector<uint64_t, 64> TypeVals;
+
+ uint64_t NumBits = VE.computeBitsRequiredForTypeIndicies();
+
+ // Abbrev for TYPE_CODE_POINTER.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_POINTER));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+ Abbv->Add(BitCodeAbbrevOp(0)); // Addrspace = 0
+ unsigned PtrAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Abbrev for TYPE_CODE_FUNCTION.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_FUNCTION));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // isvararg
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+ unsigned FunctionAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Abbrev for TYPE_CODE_STRUCT_ANON.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_ANON));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+ unsigned StructAnonAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Abbrev for TYPE_CODE_STRUCT_NAME.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAME));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ unsigned StructNameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Abbrev for TYPE_CODE_STRUCT_NAMED.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_STRUCT_NAMED));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // ispacked
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+ unsigned StructNamedAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Abbrev for TYPE_CODE_ARRAY.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::TYPE_CODE_ARRAY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // size
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, NumBits));
+ unsigned ArrayAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Emit an entry count so the reader can reserve space.
+ TypeVals.push_back(TypeList.size());
+ Stream.EmitRecord(bitc::TYPE_CODE_NUMENTRY, TypeVals);
+ TypeVals.clear();
+
+ // Loop over all of the types, emitting each in turn.
+ for (Type *T : TypeList) {
+ int AbbrevToUse = 0;
+ unsigned Code = 0;
+
+ switch (T->getTypeID()) {
+ case Type::BFloatTyID:
+ case Type::X86_AMXTyID:
+ case Type::TokenTyID:
+ llvm_unreachable("These should never be used!!!");
+ break;
+ case Type::VoidTyID:
+ Code = bitc::TYPE_CODE_VOID;
+ break;
+ case Type::HalfTyID:
+ Code = bitc::TYPE_CODE_HALF;
+ break;
+ case Type::FloatTyID:
+ Code = bitc::TYPE_CODE_FLOAT;
+ break;
+ case Type::DoubleTyID:
+ Code = bitc::TYPE_CODE_DOUBLE;
+ break;
+ case Type::X86_FP80TyID:
+ Code = bitc::TYPE_CODE_X86_FP80;
+ break;
+ case Type::FP128TyID:
+ Code = bitc::TYPE_CODE_FP128;
+ break;
+ case Type::PPC_FP128TyID:
+ Code = bitc::TYPE_CODE_PPC_FP128;
+ break;
+ case Type::LabelTyID:
+ Code = bitc::TYPE_CODE_LABEL;
+ break;
+ case Type::MetadataTyID:
+ Code = bitc::TYPE_CODE_METADATA;
+ break;
+ case Type::X86_MMXTyID:
+ Code = bitc::TYPE_CODE_X86_MMX;
+ break;
+ case Type::IntegerTyID:
+ // INTEGER: [width]
+ Code = bitc::TYPE_CODE_INTEGER;
+ TypeVals.push_back(cast<IntegerType>(T)->getBitWidth());
+ break;
+ case Type::DXILPointerTyID: {
+ TypedPointerType *PTy = cast<TypedPointerType>(T);
+ // POINTER: [pointee type, address space]
+ Code = bitc::TYPE_CODE_POINTER;
+ TypeVals.push_back(getTypeID(PTy->getElementType()));
+ unsigned AddressSpace = PTy->getAddressSpace();
+ TypeVals.push_back(AddressSpace);
+ if (AddressSpace == 0)
+ AbbrevToUse = PtrAbbrev;
+ break;
+ }
+ case Type::PointerTyID: {
+ PointerType *PTy = cast<PointerType>(T);
+ // POINTER: [pointee type, address space]
+ Code = bitc::TYPE_CODE_POINTER;
+ // Emitting an empty struct type for the opaque pointer's type allows
+ // this to be order-independent. Non-struct types must be emitted in
+ // bitcode before they can be referenced.
+ if (PTy->isOpaquePointerTy()) {
+ TypeVals.push_back(false);
+ Code = bitc::TYPE_CODE_OPAQUE;
+ writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME,
+ "dxilOpaquePtrReservedName", StructNameAbbrev);
+ } else {
+ TypeVals.push_back(getTypeID(PTy->getNonOpaquePointerElementType()));
+ unsigned AddressSpace = PTy->getAddressSpace();
+ TypeVals.push_back(AddressSpace);
+ if (AddressSpace == 0)
+ AbbrevToUse = PtrAbbrev;
+ }
+ break;
+ }
+ case Type::FunctionTyID: {
+ FunctionType *FT = cast<FunctionType>(T);
+ // FUNCTION: [isvararg, retty, paramty x N]
+ Code = bitc::TYPE_CODE_FUNCTION;
+ TypeVals.push_back(FT->isVarArg());
+ TypeVals.push_back(getTypeID(FT->getReturnType()));
+ for (Type *PTy : FT->params())
+ TypeVals.push_back(getTypeID(PTy));
+ AbbrevToUse = FunctionAbbrev;
+ break;
+ }
+ case Type::StructTyID: {
+ StructType *ST = cast<StructType>(T);
+ // STRUCT: [ispacked, eltty x N]
+ TypeVals.push_back(ST->isPacked());
+ // Output all of the element types.
+ for (Type *ElTy : ST->elements())
+ TypeVals.push_back(getTypeID(ElTy));
+
+ if (ST->isLiteral()) {
+ Code = bitc::TYPE_CODE_STRUCT_ANON;
+ AbbrevToUse = StructAnonAbbrev;
+ } else {
+ if (ST->isOpaque()) {
+ Code = bitc::TYPE_CODE_OPAQUE;
+ } else {
+ Code = bitc::TYPE_CODE_STRUCT_NAMED;
+ AbbrevToUse = StructNamedAbbrev;
+ }
+
+ // Emit the name if it is present.
+ if (!ST->getName().empty())
+ writeStringRecord(Stream, bitc::TYPE_CODE_STRUCT_NAME, ST->getName(),
+ StructNameAbbrev);
+ }
+ break;
+ }
+ case Type::ArrayTyID: {
+ ArrayType *AT = cast<ArrayType>(T);
+ // ARRAY: [numelts, eltty]
+ Code = bitc::TYPE_CODE_ARRAY;
+ TypeVals.push_back(AT->getNumElements());
+ TypeVals.push_back(getTypeID(AT->getElementType()));
+ AbbrevToUse = ArrayAbbrev;
+ break;
+ }
+ case Type::FixedVectorTyID:
+ case Type::ScalableVectorTyID: {
+ VectorType *VT = cast<VectorType>(T);
+ // VECTOR [numelts, eltty]
+ Code = bitc::TYPE_CODE_VECTOR;
+ TypeVals.push_back(VT->getElementCount().getKnownMinValue());
+ TypeVals.push_back(getTypeID(VT->getElementType()));
+ break;
+ }
+ }
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, TypeVals, AbbrevToUse);
+ TypeVals.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeComdats() {
+ SmallVector<uint16_t, 64> Vals;
+ for (const Comdat *C : VE.getComdats()) {
+ // COMDAT: [selection_kind, name]
+ Vals.push_back(getEncodedComdatSelectionKind(*C));
+ size_t Size = C->getName().size();
+ assert(isUInt<16>(Size));
+ Vals.push_back(Size);
+ for (char Chr : C->getName())
+ Vals.push_back((unsigned char)Chr);
+ Stream.EmitRecord(bitc::MODULE_CODE_COMDAT, Vals, /*AbbrevToUse=*/0);
+ Vals.clear();
+ }
+}
+
+void DXILBitcodeWriter::writeValueSymbolTableForwardDecl() {}
+
+/// Emit top-level description of module, including target triple, inline asm,
+/// descriptors for global variables, and function prototype info.
+/// Returns the bit offset to backpatch with the location of the real VST.
+void DXILBitcodeWriter::writeModuleInfo() {
+ // Emit various pieces of data attached to a module.
+ if (!M.getTargetTriple().empty())
+ writeStringRecord(Stream, bitc::MODULE_CODE_TRIPLE, M.getTargetTriple(),
+ 0 /*TODO*/);
+ const std::string &DL = M.getDataLayoutStr();
+ if (!DL.empty())
+ writeStringRecord(Stream, bitc::MODULE_CODE_DATALAYOUT, DL, 0 /*TODO*/);
+ if (!M.getModuleInlineAsm().empty())
+ writeStringRecord(Stream, bitc::MODULE_CODE_ASM, M.getModuleInlineAsm(),
+ 0 /*TODO*/);
+
+ // Emit information about sections and GC, computing how many there are. Also
+ // compute the maximum alignment value.
+ std::map<std::string, unsigned> SectionMap;
+ std::map<std::string, unsigned> GCMap;
+ MaybeAlign MaxAlignment;
+ unsigned MaxGlobalType = 0;
+ const auto UpdateMaxAlignment = [&MaxAlignment](const MaybeAlign A) {
+ if (A)
+ MaxAlignment = !MaxAlignment ? *A : std::max(*MaxAlignment, *A);
+ };
+ for (const GlobalVariable &GV : M.globals()) {
+ UpdateMaxAlignment(GV.getAlign());
+ MaxGlobalType = std::max(MaxGlobalType, getTypeID(GV.getValueType(), &GV));
+ if (GV.hasSection()) {
+ // Give section names unique ID's.
+ unsigned &Entry = SectionMap[std::string(GV.getSection())];
+ if (!Entry) {
+ writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME,
+ GV.getSection(), 0 /*TODO*/);
+ Entry = SectionMap.size();
+ }
+ }
+ }
+ for (const Function &F : M) {
+ UpdateMaxAlignment(F.getAlign());
+ if (F.hasSection()) {
+ // Give section names unique ID's.
+ unsigned &Entry = SectionMap[std::string(F.getSection())];
+ if (!Entry) {
+ writeStringRecord(Stream, bitc::MODULE_CODE_SECTIONNAME, F.getSection(),
+ 0 /*TODO*/);
+ Entry = SectionMap.size();
+ }
+ }
+ if (F.hasGC()) {
+ // Same for GC names.
+ unsigned &Entry = GCMap[F.getGC()];
+ if (!Entry) {
+ writeStringRecord(Stream, bitc::MODULE_CODE_GCNAME, F.getGC(),
+ 0 /*TODO*/);
+ Entry = GCMap.size();
+ }
+ }
+ }
+
+ // Emit abbrev for globals, now that we know # sections and max alignment.
+ unsigned SimpleGVarAbbrev = 0;
+ if (!M.global_empty()) {
+ // Add an abbrev for common globals with no visibility or thread
+ // localness.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::MODULE_CODE_GLOBALVAR));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(MaxGlobalType + 1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // AddrSpace << 2
+ //| explicitType << 1
+ //| constant
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Initializer.
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 5)); // Linkage.
+ if (!MaxAlignment) // Alignment.
+ Abbv->Add(BitCodeAbbrevOp(0));
+ else {
+ unsigned MaxEncAlignment = getEncodedAlign(MaxAlignment);
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(MaxEncAlignment + 1)));
+ }
+ if (SectionMap.empty()) // Section.
+ Abbv->Add(BitCodeAbbrevOp(0));
+ else
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ Log2_32_Ceil(SectionMap.size() + 1)));
+ // Don't bother emitting vis + thread local.
+ SimpleGVarAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+ }
+
+ // Emit the global variable information.
+ SmallVector<unsigned, 64> Vals;
+ for (const GlobalVariable &GV : M.globals()) {
+ unsigned AbbrevToUse = 0;
+
+ // GLOBALVAR: [type, isconst, initid,
+ // linkage, alignment, section, visibility, threadlocal,
+ // unnamed_addr, externally_initialized, dllstorageclass,
+ // comdat]
+ Vals.push_back(getTypeID(GV.getValueType(), &GV));
+ Vals.push_back(
+ GV.getType()->getAddressSpace() << 2 | 2 |
+ (GV.isConstant() ? 1 : 0)); // HLSL Change - bitwise | was used with
+ // unsigned int and bool
+ Vals.push_back(
+ GV.isDeclaration() ? 0 : (VE.getValueID(GV.getInitializer()) + 1));
+ Vals.push_back(getEncodedLinkage(GV));
+ Vals.push_back(getEncodedAlign(GV.getAlign()));
+ Vals.push_back(GV.hasSection() ? SectionMap[std::string(GV.getSection())]
+ : 0);
+ if (GV.isThreadLocal() ||
+ GV.getVisibility() != GlobalValue::DefaultVisibility ||
+ GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None ||
+ GV.isExternallyInitialized() ||
+ GV.getDLLStorageClass() != GlobalValue::DefaultStorageClass ||
+ GV.hasComdat()) {
+ Vals.push_back(getEncodedVisibility(GV));
+ Vals.push_back(getEncodedThreadLocalMode(GV));
+ Vals.push_back(GV.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
+ Vals.push_back(GV.isExternallyInitialized());
+ Vals.push_back(getEncodedDLLStorageClass(GV));
+ Vals.push_back(GV.hasComdat() ? VE.getComdatID(GV.getComdat()) : 0);
+ } else {
+ AbbrevToUse = SimpleGVarAbbrev;
+ }
+
+ Stream.EmitRecord(bitc::MODULE_CODE_GLOBALVAR, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+
+ // Emit the function proto information.
+ for (const Function &F : M) {
+ // FUNCTION: [type, callingconv, isproto, linkage, paramattrs, alignment,
+ // section, visibility, gc, unnamed_addr, prologuedata,
+ // dllstorageclass, comdat, prefixdata, personalityfn]
+ Vals.push_back(getTypeID(F.getFunctionType(), &F));
+ Vals.push_back(F.getCallingConv());
+ Vals.push_back(F.isDeclaration());
+ Vals.push_back(getEncodedLinkage(F));
+ Vals.push_back(VE.getAttributeListID(F.getAttributes()));
+ Vals.push_back(getEncodedAlign(F.getAlign()));
+ Vals.push_back(F.hasSection() ? SectionMap[std::string(F.getSection())]
+ : 0);
+ Vals.push_back(getEncodedVisibility(F));
+ Vals.push_back(F.hasGC() ? GCMap[F.getGC()] : 0);
+ Vals.push_back(F.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
+ Vals.push_back(
+ F.hasPrologueData() ? (VE.getValueID(F.getPrologueData()) + 1) : 0);
+ Vals.push_back(getEncodedDLLStorageClass(F));
+ Vals.push_back(F.hasComdat() ? VE.getComdatID(F.getComdat()) : 0);
+ Vals.push_back(F.hasPrefixData() ? (VE.getValueID(F.getPrefixData()) + 1)
+ : 0);
+ Vals.push_back(
+ F.hasPersonalityFn() ? (VE.getValueID(F.getPersonalityFn()) + 1) : 0);
+
+ unsigned AbbrevToUse = 0;
+ Stream.EmitRecord(bitc::MODULE_CODE_FUNCTION, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+
+ // Emit the alias information.
+ for (const GlobalAlias &A : M.aliases()) {
+ // ALIAS: [alias type, aliasee val#, linkage, visibility]
+ Vals.push_back(getTypeID(A.getValueType(), &A));
+ Vals.push_back(VE.getValueID(A.getAliasee()));
+ Vals.push_back(getEncodedLinkage(A));
+ Vals.push_back(getEncodedVisibility(A));
+ Vals.push_back(getEncodedDLLStorageClass(A));
+ Vals.push_back(getEncodedThreadLocalMode(A));
+ Vals.push_back(A.getUnnamedAddr() != GlobalValue::UnnamedAddr::None);
+ unsigned AbbrevToUse = 0;
+ Stream.EmitRecord(bitc::MODULE_CODE_ALIAS_OLD, Vals, AbbrevToUse);
+ Vals.clear();
+ }
+}
+
+void DXILBitcodeWriter::writeValueAsMetadata(
+ const ValueAsMetadata *MD, SmallVectorImpl<uint64_t> &Record) {
+ // Mimic an MDNode with a value as one operand.
+ Value *V = MD->getValue();
+ Type *Ty = V->getType();
+ if (Function *F = dyn_cast<Function>(V))
+ Ty = TypedPointerType::get(F->getFunctionType(), F->getAddressSpace());
+ else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
+ Ty = TypedPointerType::get(GV->getValueType(), GV->getAddressSpace());
+ Record.push_back(getTypeID(Ty));
+ Record.push_back(VE.getValueID(V));
+ Stream.EmitRecord(bitc::METADATA_VALUE, Record, 0);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeMDTuple(const MDTuple *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
+ Metadata *MD = N->getOperand(i);
+ assert(!(MD && isa<LocalAsMetadata>(MD)) &&
+ "Unexpected function-local metadata");
+ Record.push_back(VE.getMetadataOrNullID(MD));
+ }
+ Stream.EmitRecord(N->isDistinct() ? bitc::METADATA_DISTINCT_NODE
+ : bitc::METADATA_NODE,
+ Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDILocation(const DILocation *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned &Abbrev) {
+ if (!Abbrev)
+ Abbrev = createDILocationAbbrev();
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getLine());
+ Record.push_back(N->getColumn());
+ Record.push_back(VE.getMetadataID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getInlinedAt()));
+
+ Stream.EmitRecord(bitc::METADATA_LOCATION, Record, Abbrev);
+ Record.clear();
+}
+
+static uint64_t rotateSign(APInt Val) {
+ int64_t I = Val.getSExtValue();
+ uint64_t U = I;
+ return I < 0 ? ~(U << 1) : U << 1;
+}
+
+static uint64_t rotateSign(DISubrange::BoundType Val) {
+ return rotateSign(Val.get<ConstantInt *>()->getValue());
+}
+
+void DXILBitcodeWriter::writeDISubrange(const DISubrange *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(
+ N->getCount().get<ConstantInt *>()->getValue().getSExtValue());
+ Record.push_back(rotateSign(N->getLowerBound()));
+
+ Stream.EmitRecord(bitc::METADATA_SUBRANGE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIEnumerator(const DIEnumerator *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(rotateSign(N->getValue()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+
+ Stream.EmitRecord(bitc::METADATA_ENUMERATOR, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIBasicType(const DIBasicType *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getTag());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(N->getSizeInBits());
+ Record.push_back(N->getAlignInBits());
+ Record.push_back(N->getEncoding());
+
+ Stream.EmitRecord(bitc::METADATA_BASIC_TYPE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIDerivedType(const DIDerivedType *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getTag());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
+ Record.push_back(N->getSizeInBits());
+ Record.push_back(N->getAlignInBits());
+ Record.push_back(N->getOffsetInBits());
+ Record.push_back(N->getFlags());
+ Record.push_back(VE.getMetadataOrNullID(N->getExtraData()));
+
+ Stream.EmitRecord(bitc::METADATA_DERIVED_TYPE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDICompositeType(const DICompositeType *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getTag());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getBaseType()));
+ Record.push_back(N->getSizeInBits());
+ Record.push_back(N->getAlignInBits());
+ Record.push_back(N->getOffsetInBits());
+ Record.push_back(N->getFlags());
+ Record.push_back(VE.getMetadataOrNullID(N->getElements().get()));
+ Record.push_back(N->getRuntimeLang());
+ Record.push_back(VE.getMetadataOrNullID(N->getVTableHolder()));
+ Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawIdentifier()));
+
+ Stream.EmitRecord(bitc::METADATA_COMPOSITE_TYPE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDISubroutineType(const DISubroutineType *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getFlags());
+ Record.push_back(VE.getMetadataOrNullID(N->getTypeArray().get()));
+
+ Stream.EmitRecord(bitc::METADATA_SUBROUTINE_TYPE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIFile(const DIFile *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawFilename()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawDirectory()));
+
+ Stream.EmitRecord(bitc::METADATA_FILE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDICompileUnit(const DICompileUnit *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getSourceLanguage());
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawProducer()));
+ Record.push_back(N->isOptimized());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawFlags()));
+ Record.push_back(N->getRuntimeVersion());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawSplitDebugFilename()));
+ Record.push_back(N->getEmissionKind());
+ Record.push_back(VE.getMetadataOrNullID(N->getEnumTypes().get()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRetainedTypes().get()));
+ Record.push_back(/* subprograms */ 0);
+ Record.push_back(VE.getMetadataOrNullID(N->getGlobalVariables().get()));
+ Record.push_back(VE.getMetadataOrNullID(N->getImportedEntities().get()));
+ Record.push_back(N->getDWOId());
+
+ Stream.EmitRecord(bitc::METADATA_COMPILE_UNIT, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDISubprogram(const DISubprogram *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getType()));
+ Record.push_back(N->isLocalToUnit());
+ Record.push_back(N->isDefinition());
+ Record.push_back(N->getScopeLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getContainingType()));
+ Record.push_back(N->getVirtuality());
+ Record.push_back(N->getVirtualIndex());
+ Record.push_back(N->getFlags());
+ Record.push_back(N->isOptimized());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawUnit()));
+ Record.push_back(VE.getMetadataOrNullID(N->getTemplateParams().get()));
+ Record.push_back(VE.getMetadataOrNullID(N->getDeclaration()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRetainedNodes().get()));
+
+ Stream.EmitRecord(bitc::METADATA_SUBPROGRAM, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDILexicalBlock(const DILexicalBlock *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getLine());
+ Record.push_back(N->getColumn());
+
+ Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDILexicalBlockFile(
+ const DILexicalBlockFile *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getDiscriminator());
+
+ Stream.EmitRecord(bitc::METADATA_LEXICAL_BLOCK_FILE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDINamespace(const DINamespace *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(/* line number */ 0);
+
+ Stream.EmitRecord(bitc::METADATA_NAMESPACE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIModule(const DIModule *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ for (auto &I : N->operands())
+ Record.push_back(VE.getMetadataOrNullID(I));
+
+ Stream.EmitRecord(bitc::METADATA_MODULE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDITemplateTypeParameter(
+ const DITemplateTypeParameter *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getType()));
+
+ Stream.EmitRecord(bitc::METADATA_TEMPLATE_TYPE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDITemplateValueParameter(
+ const DITemplateValueParameter *N, SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getTag());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getType()));
+ Record.push_back(VE.getMetadataOrNullID(N->getValue()));
+
+ Stream.EmitRecord(bitc::METADATA_TEMPLATE_VALUE, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIGlobalVariable(const DIGlobalVariable *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawLinkageName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getType()));
+ Record.push_back(N->isLocalToUnit());
+ Record.push_back(N->isDefinition());
+ Record.push_back(/* N->getRawVariable() */ 0);
+ Record.push_back(VE.getMetadataOrNullID(N->getStaticDataMemberDeclaration()));
+
+ Stream.EmitRecord(bitc::METADATA_GLOBAL_VAR, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDILocalVariable(const DILocalVariable *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getTag());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+ Record.push_back(VE.getMetadataOrNullID(N->getFile()));
+ Record.push_back(N->getLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getType()));
+ Record.push_back(N->getArg());
+ Record.push_back(N->getFlags());
+
+ Stream.EmitRecord(bitc::METADATA_LOCAL_VAR, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIExpression(const DIExpression *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.reserve(N->getElements().size() + 1);
+
+ Record.push_back(N->isDistinct());
+ Record.append(N->elements_begin(), N->elements_end());
+
+ Stream.EmitRecord(bitc::METADATA_EXPRESSION, Record, Abbrev);
+ Record.clear();
+}
+
+void DXILBitcodeWriter::writeDIObjCProperty(const DIObjCProperty *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ llvm_unreachable("DXIL does not support objc!!!");
+}
+
+void DXILBitcodeWriter::writeDIImportedEntity(const DIImportedEntity *N,
+ SmallVectorImpl<uint64_t> &Record,
+ unsigned Abbrev) {
+ Record.push_back(N->isDistinct());
+ Record.push_back(N->getTag());
+ Record.push_back(VE.getMetadataOrNullID(N->getScope()));
+ Record.push_back(VE.getMetadataOrNullID(N->getEntity()));
+ Record.push_back(N->getLine());
+ Record.push_back(VE.getMetadataOrNullID(N->getRawName()));
+
+ Stream.EmitRecord(bitc::METADATA_IMPORTED_ENTITY, Record, Abbrev);
+ Record.clear();
+}
+
+unsigned DXILBitcodeWriter::createDILocationAbbrev() {
+ // Abbrev for METADATA_LOCATION.
+ //
+ // Assume the column is usually under 128, and always output the inlined-at
+ // location (it's never more expensive than building an array size 1).
+ std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_LOCATION));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ return Stream.EmitAbbrev(std::move(Abbv));
+}
+
+unsigned DXILBitcodeWriter::createGenericDINodeAbbrev() {
+ // Abbrev for METADATA_GENERIC_DEBUG.
+ //
+ // Assume the column is usually under 128, and always output the inlined-at
+ // location (it's never more expensive than building an array size 1).
+ std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_GENERIC_DEBUG));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ return Stream.EmitAbbrev(std::move(Abbv));
+}
+
+void DXILBitcodeWriter::writeMetadataRecords(ArrayRef<const Metadata *> MDs,
+ SmallVectorImpl<uint64_t> &Record,
+ std::vector<unsigned> *MDAbbrevs,
+ std::vector<uint64_t> *IndexPos) {
+ if (MDs.empty())
+ return;
+
+ // Initialize MDNode abbreviations.
+#define HANDLE_MDNODE_LEAF(CLASS) unsigned CLASS##Abbrev = 0;
+#include "llvm/IR/Metadata.def"
+
+ for (const Metadata *MD : MDs) {
+ if (IndexPos)
+ IndexPos->push_back(Stream.GetCurrentBitNo());
+ if (const MDNode *N = dyn_cast<MDNode>(MD)) {
+ assert(N->isResolved() && "Expected forward references to be resolved");
+
+ switch (N->getMetadataID()) {
+ default:
+ llvm_unreachable("Invalid MDNode subclass");
+#define HANDLE_MDNODE_LEAF(CLASS) \
+ case Metadata::CLASS##Kind: \
+ if (MDAbbrevs) \
+ write##CLASS(cast<CLASS>(N), Record, \
+ (*MDAbbrevs)[MetadataAbbrev::CLASS##AbbrevID]); \
+ else \
+ write##CLASS(cast<CLASS>(N), Record, CLASS##Abbrev); \
+ continue;
+#include "llvm/IR/Metadata.def"
+ }
+ }
+ writeValueAsMetadata(cast<ValueAsMetadata>(MD), Record);
+ }
+}
+
+unsigned DXILBitcodeWriter::createMetadataStringsAbbrev() {
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_STRING_OLD));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ return Stream.EmitAbbrev(std::move(Abbv));
+}
+
+void DXILBitcodeWriter::writeMetadataStrings(
+ ArrayRef<const Metadata *> Strings, SmallVectorImpl<uint64_t> &Record) {
+ for (const Metadata *MD : Strings) {
+ const MDString *MDS = cast<MDString>(MD);
+ // Code: [strchar x N]
+ Record.append(MDS->bytes_begin(), MDS->bytes_end());
+
+ // Emit the finished record.
+ Stream.EmitRecord(bitc::METADATA_STRING_OLD, Record,
+ createMetadataStringsAbbrev());
+ Record.clear();
+ }
+}
+
+void DXILBitcodeWriter::writeModuleMetadata() {
+ if (!VE.hasMDs() && M.named_metadata_empty())
+ return;
+
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 5);
+
+ // Emit all abbrevs upfront, so that the reader can jump in the middle of the
+ // block and load any metadata.
+ std::vector<unsigned> MDAbbrevs;
+
+ MDAbbrevs.resize(MetadataAbbrev::LastPlusOne);
+ MDAbbrevs[MetadataAbbrev::DILocationAbbrevID] = createDILocationAbbrev();
+ MDAbbrevs[MetadataAbbrev::GenericDINodeAbbrevID] =
+ createGenericDINodeAbbrev();
+
+ unsigned NameAbbrev = 0;
+ if (!M.named_metadata_empty()) {
+ // Abbrev for METADATA_NAME.
+ std::shared_ptr<BitCodeAbbrev> Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::METADATA_NAME));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ NameAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+ }
+
+ SmallVector<uint64_t, 64> Record;
+ writeMetadataStrings(VE.getMDStrings(), Record);
+
+ std::vector<uint64_t> IndexPos;
+ IndexPos.reserve(VE.getNonMDStrings().size());
+ writeMetadataRecords(VE.getNonMDStrings(), Record, &MDAbbrevs, &IndexPos);
+
+ // Write named metadata.
+ for (const NamedMDNode &NMD : M.named_metadata()) {
+ // Write name.
+ StringRef Str = NMD.getName();
+ Record.append(Str.bytes_begin(), Str.bytes_end());
+ Stream.EmitRecord(bitc::METADATA_NAME, Record, NameAbbrev);
+ Record.clear();
+
+ // Write named metadata operands.
+ for (const MDNode *N : NMD.operands())
+ Record.push_back(VE.getMetadataID(N));
+ Stream.EmitRecord(bitc::METADATA_NAMED_NODE, Record, 0);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeFunctionMetadata(const Function &F) {
+ if (!VE.hasMDs())
+ return;
+
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 4);
+ SmallVector<uint64_t, 64> Record;
+ writeMetadataStrings(VE.getMDStrings(), Record);
+ writeMetadataRecords(VE.getNonMDStrings(), Record);
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeFunctionMetadataAttachment(const Function &F) {
+ Stream.EnterSubblock(bitc::METADATA_ATTACHMENT_ID, 3);
+
+ SmallVector<uint64_t, 64> Record;
+
+ // Write metadata attachments
+ // METADATA_ATTACHMENT - [m x [value, [n x [id, mdnode]]]
+ SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
+ F.getAllMetadata(MDs);
+ if (!MDs.empty()) {
+ for (const auto &I : MDs) {
+ Record.push_back(I.first);
+ Record.push_back(VE.getMetadataID(I.second));
+ }
+ Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
+ Record.clear();
+ }
+
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB) {
+ MDs.clear();
+ I.getAllMetadataOtherThanDebugLoc(MDs);
+
+ // If no metadata, ignore instruction.
+ if (MDs.empty())
+ continue;
+
+ Record.push_back(VE.getInstructionID(&I));
+
+ for (unsigned i = 0, e = MDs.size(); i != e; ++i) {
+ Record.push_back(MDs[i].first);
+ Record.push_back(VE.getMetadataID(MDs[i].second));
+ }
+ Stream.EmitRecord(bitc::METADATA_ATTACHMENT, Record, 0);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeModuleMetadataKinds() {
+ SmallVector<uint64_t, 64> Record;
+
+ // Write metadata kinds
+ // METADATA_KIND - [n x [id, name]]
+ SmallVector<StringRef, 8> Names;
+ M.getMDKindNames(Names);
+
+ if (Names.empty())
+ return;
+
+ Stream.EnterSubblock(bitc::METADATA_BLOCK_ID, 3);
+
+ for (unsigned MDKindID = 0, e = Names.size(); MDKindID != e; ++MDKindID) {
+ Record.push_back(MDKindID);
+ StringRef KName = Names[MDKindID];
+ Record.append(KName.begin(), KName.end());
+
+ Stream.EmitRecord(bitc::METADATA_KIND, Record, 0);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeConstants(unsigned FirstVal, unsigned LastVal,
+ bool isGlobal) {
+ if (FirstVal == LastVal)
+ return;
+
+ Stream.EnterSubblock(bitc::CONSTANTS_BLOCK_ID, 4);
+
+ unsigned AggregateAbbrev = 0;
+ unsigned String8Abbrev = 0;
+ unsigned CString7Abbrev = 0;
+ unsigned CString6Abbrev = 0;
+ // If this is a constant pool for the module, emit module-specific abbrevs.
+ if (isGlobal) {
+ // Abbrev for CST_CODE_AGGREGATE.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_AGGREGATE));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(
+ BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, Log2_32_Ceil(LastVal + 1)));
+ AggregateAbbrev = Stream.EmitAbbrev(std::move(Abbv));
+
+ // Abbrev for CST_CODE_STRING.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_STRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ String8Abbrev = Stream.EmitAbbrev(std::move(Abbv));
+ // Abbrev for CST_CODE_CSTRING.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ CString7Abbrev = Stream.EmitAbbrev(std::move(Abbv));
+ // Abbrev for CST_CODE_CSTRING.
+ Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CSTRING));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ CString6Abbrev = Stream.EmitAbbrev(std::move(Abbv));
+ }
+
+ SmallVector<uint64_t, 64> Record;
+
+ const ValueEnumerator::ValueList &Vals = VE.getValues();
+ Type *LastTy = nullptr;
+ for (unsigned i = FirstVal; i != LastVal; ++i) {
+ const Value *V = Vals[i].first;
+ // If we need to switch types, do so now.
+ if (V->getType() != LastTy) {
+ LastTy = V->getType();
+ Record.push_back(getTypeID(LastTy));
+ Stream.EmitRecord(bitc::CST_CODE_SETTYPE, Record,
+ CONSTANTS_SETTYPE_ABBREV);
+ Record.clear();
+ }
+
+ if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
+ Record.push_back(unsigned(IA->hasSideEffects()) |
+ unsigned(IA->isAlignStack()) << 1 |
+ unsigned(IA->getDialect() & 1) << 2);
+
+ // Add the asm string.
+ const std::string &AsmStr = IA->getAsmString();
+ Record.push_back(AsmStr.size());
+ Record.append(AsmStr.begin(), AsmStr.end());
+
+ // Add the constraint string.
+ const std::string &ConstraintStr = IA->getConstraintString();
+ Record.push_back(ConstraintStr.size());
+ Record.append(ConstraintStr.begin(), ConstraintStr.end());
+ Stream.EmitRecord(bitc::CST_CODE_INLINEASM, Record);
+ Record.clear();
+ continue;
+ }
+ const Constant *C = cast<Constant>(V);
+ unsigned Code = -1U;
+ unsigned AbbrevToUse = 0;
+ if (C->isNullValue()) {
+ Code = bitc::CST_CODE_NULL;
+ } else if (isa<UndefValue>(C)) {
+ Code = bitc::CST_CODE_UNDEF;
+ } else if (const ConstantInt *IV = dyn_cast<ConstantInt>(C)) {
+ if (IV->getBitWidth() <= 64) {
+ uint64_t V = IV->getSExtValue();
+ emitSignedInt64(Record, V);
+ Code = bitc::CST_CODE_INTEGER;
+ AbbrevToUse = CONSTANTS_INTEGER_ABBREV;
+ } else { // Wide integers, > 64 bits in size.
+ // We have an arbitrary precision integer value to write whose
+ // bit width is > 64. However, in canonical unsigned integer
+ // format it is likely that the high bits are going to be zero.
+ // So, we only write the number of active words.
+ unsigned NWords = IV->getValue().getActiveWords();
+ const uint64_t *RawWords = IV->getValue().getRawData();
+ for (unsigned i = 0; i != NWords; ++i) {
+ emitSignedInt64(Record, RawWords[i]);
+ }
+ Code = bitc::CST_CODE_WIDE_INTEGER;
+ }
+ } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+ Code = bitc::CST_CODE_FLOAT;
+ Type *Ty = CFP->getType();
+ if (Ty->isHalfTy() || Ty->isFloatTy() || Ty->isDoubleTy()) {
+ Record.push_back(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
+ } else if (Ty->isX86_FP80Ty()) {
+ // api needed to prevent premature destruction
+ // bits are not in the same order as a normal i80 APInt, compensate.
+ APInt api = CFP->getValueAPF().bitcastToAPInt();
+ const uint64_t *p = api.getRawData();
+ Record.push_back((p[1] << 48) | (p[0] >> 16));
+ Record.push_back(p[0] & 0xffffLL);
+ } else if (Ty->isFP128Ty() || Ty->isPPC_FP128Ty()) {
+ APInt api = CFP->getValueAPF().bitcastToAPInt();
+ const uint64_t *p = api.getRawData();
+ Record.push_back(p[0]);
+ Record.push_back(p[1]);
+ } else {
+ assert(0 && "Unknown FP type!");
+ }
+ } else if (isa<ConstantDataSequential>(C) &&
+ cast<ConstantDataSequential>(C)->isString()) {
+ const ConstantDataSequential *Str = cast<ConstantDataSequential>(C);
+ // Emit constant strings specially.
+ unsigned NumElts = Str->getNumElements();
+ // If this is a null-terminated string, use the denser CSTRING encoding.
+ if (Str->isCString()) {
+ Code = bitc::CST_CODE_CSTRING;
+ --NumElts; // Don't encode the null, which isn't allowed by char6.
+ } else {
+ Code = bitc::CST_CODE_STRING;
+ AbbrevToUse = String8Abbrev;
+ }
+ bool isCStr7 = Code == bitc::CST_CODE_CSTRING;
+ bool isCStrChar6 = Code == bitc::CST_CODE_CSTRING;
+ for (unsigned i = 0; i != NumElts; ++i) {
+ unsigned char V = Str->getElementAsInteger(i);
+ Record.push_back(V);
+ isCStr7 &= (V & 128) == 0;
+ if (isCStrChar6)
+ isCStrChar6 = BitCodeAbbrevOp::isChar6(V);
+ }
+
+ if (isCStrChar6)
+ AbbrevToUse = CString6Abbrev;
+ else if (isCStr7)
+ AbbrevToUse = CString7Abbrev;
+ } else if (const ConstantDataSequential *CDS =
+ dyn_cast<ConstantDataSequential>(C)) {
+ Code = bitc::CST_CODE_DATA;
+ Type *EltTy = CDS->getType()->getArrayElementType();
+ if (isa<IntegerType>(EltTy)) {
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i)
+ Record.push_back(CDS->getElementAsInteger(i));
+ } else if (EltTy->isFloatTy()) {
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ union {
+ float F;
+ uint32_t I;
+ };
+ F = CDS->getElementAsFloat(i);
+ Record.push_back(I);
+ }
+ } else {
+ assert(EltTy->isDoubleTy() && "Unknown ConstantData element type");
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ union {
+ double F;
+ uint64_t I;
+ };
+ F = CDS->getElementAsDouble(i);
+ Record.push_back(I);
+ }
+ }
+ } else if (isa<ConstantArray>(C) || isa<ConstantStruct>(C) ||
+ isa<ConstantVector>(C)) {
+ Code = bitc::CST_CODE_AGGREGATE;
+ for (const Value *Op : C->operands())
+ Record.push_back(VE.getValueID(Op));
+ AbbrevToUse = AggregateAbbrev;
+ } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+ switch (CE->getOpcode()) {
+ default:
+ if (Instruction::isCast(CE->getOpcode())) {
+ Code = bitc::CST_CODE_CE_CAST;
+ Record.push_back(getEncodedCastOpcode(CE->getOpcode()));
+ Record.push_back(getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ AbbrevToUse = CONSTANTS_CE_CAST_Abbrev;
+ } else {
+ assert(CE->getNumOperands() == 2 && "Unknown constant expr!");
+ Code = bitc::CST_CODE_CE_BINOP;
+ Record.push_back(getEncodedBinaryOpcode(CE->getOpcode()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ uint64_t Flags = getOptimizationFlags(CE);
+ if (Flags != 0)
+ Record.push_back(Flags);
+ }
+ break;
+ case Instruction::GetElementPtr: {
+ Code = bitc::CST_CODE_CE_GEP;
+ const auto *GO = cast<GEPOperator>(C);
+ if (GO->isInBounds())
+ Code = bitc::CST_CODE_CE_INBOUNDS_GEP;
+ Record.push_back(getTypeID(GO->getSourceElementType()));
+ for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
+ Record.push_back(getTypeID(C->getOperand(i)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(i)));
+ }
+ break;
+ }
+ case Instruction::Select:
+ Code = bitc::CST_CODE_CE_SELECT;
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ExtractElement:
+ Code = bitc::CST_CODE_CE_EXTRACTELT;
+ Record.push_back(getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(getTypeID(C->getOperand(1)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ break;
+ case Instruction::InsertElement:
+ Code = bitc::CST_CODE_CE_INSERTELT;
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(getTypeID(C->getOperand(2)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ShuffleVector:
+ // If the return type and argument types are the same, this is a
+ // standard shufflevector instruction. If the types are different,
+ // then the shuffle is widening or truncating the input vectors, and
+ // the argument type must also be encoded.
+ if (C->getType() == C->getOperand(0)->getType()) {
+ Code = bitc::CST_CODE_CE_SHUFFLEVEC;
+ } else {
+ Code = bitc::CST_CODE_CE_SHUFVEC_EX;
+ Record.push_back(getTypeID(C->getOperand(0)->getType()));
+ }
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(VE.getValueID(C->getOperand(2)));
+ break;
+ case Instruction::ICmp:
+ case Instruction::FCmp:
+ Code = bitc::CST_CODE_CE_CMP;
+ Record.push_back(getTypeID(C->getOperand(0)->getType()));
+ Record.push_back(VE.getValueID(C->getOperand(0)));
+ Record.push_back(VE.getValueID(C->getOperand(1)));
+ Record.push_back(CE->getPredicate());
+ break;
+ }
+ } else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
+ Code = bitc::CST_CODE_BLOCKADDRESS;
+ Record.push_back(getTypeID(BA->getFunction()->getType()));
+ Record.push_back(VE.getValueID(BA->getFunction()));
+ Record.push_back(VE.getGlobalBasicBlockID(BA->getBasicBlock()));
+ } else {
+#ifndef NDEBUG
+ C->dump();
+#endif
+ llvm_unreachable("Unknown constant!");
+ }
+ Stream.EmitRecord(Code, Record, AbbrevToUse);
+ Record.clear();
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeModuleConstants() {
+ const ValueEnumerator::ValueList &Vals = VE.getValues();
+
+ // Find the first constant to emit, which is the first non-globalvalue value.
+ // We know globalvalues have been emitted by WriteModuleInfo.
+ for (unsigned i = 0, e = Vals.size(); i != e; ++i) {
+ if (!isa<GlobalValue>(Vals[i].first)) {
+ writeConstants(i, Vals.size(), true);
+ return;
+ }
+ }
+}
+
+/// pushValueAndType - The file has to encode both the value and type id for
+/// many values, because we need to know what type to create for forward
+/// references. However, most operands are not forward references, so this type
+/// field is not needed.
+///
+/// This function adds V's value ID to Vals. If the value ID is higher than the
+/// instruction ID, then it is a forward reference, and it also includes the
+/// type ID. The value ID that is written is encoded relative to the InstID.
+bool DXILBitcodeWriter::pushValueAndType(const Value *V, unsigned InstID,
+ SmallVectorImpl<unsigned> &Vals) {
+ unsigned ValID = VE.getValueID(V);
+ // Make encoding relative to the InstID.
+ Vals.push_back(InstID - ValID);
+ if (ValID >= InstID) {
+ Vals.push_back(getTypeID(V->getType(), V));
+ return true;
+ }
+ return false;
+}
+
+/// pushValue - Like pushValueAndType, but where the type of the value is
+/// omitted (perhaps it was already encoded in an earlier operand).
+void DXILBitcodeWriter::pushValue(const Value *V, unsigned InstID,
+ SmallVectorImpl<unsigned> &Vals) {
+ unsigned ValID = VE.getValueID(V);
+ Vals.push_back(InstID - ValID);
+}
+
+void DXILBitcodeWriter::pushValueSigned(const Value *V, unsigned InstID,
+ SmallVectorImpl<uint64_t> &Vals) {
+ unsigned ValID = VE.getValueID(V);
+ int64_t diff = ((int32_t)InstID - (int32_t)ValID);
+ emitSignedInt64(Vals, diff);
+}
+
+/// WriteInstruction - Emit an instruction
+void DXILBitcodeWriter::writeInstruction(const Instruction &I, unsigned InstID,
+ SmallVectorImpl<unsigned> &Vals) {
+ unsigned Code = 0;
+ unsigned AbbrevToUse = 0;
+ VE.setInstructionID(&I);
+ switch (I.getOpcode()) {
+ default:
+ if (Instruction::isCast(I.getOpcode())) {
+ Code = bitc::FUNC_CODE_INST_CAST;
+ if (!pushValueAndType(I.getOperand(0), InstID, Vals))
+ AbbrevToUse = (unsigned)FUNCTION_INST_CAST_ABBREV;
+ Vals.push_back(getTypeID(I.getType(), &I));
+ Vals.push_back(getEncodedCastOpcode(I.getOpcode()));
+ } else {
+ assert(isa<BinaryOperator>(I) && "Unknown instruction!");
+ Code = bitc::FUNC_CODE_INST_BINOP;
+ if (!pushValueAndType(I.getOperand(0), InstID, Vals))
+ AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_ABBREV;
+ pushValue(I.getOperand(1), InstID, Vals);
+ Vals.push_back(getEncodedBinaryOpcode(I.getOpcode()));
+ uint64_t Flags = getOptimizationFlags(&I);
+ if (Flags != 0) {
+ if (AbbrevToUse == (unsigned)FUNCTION_INST_BINOP_ABBREV)
+ AbbrevToUse = (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV;
+ Vals.push_back(Flags);
+ }
+ }
+ break;
+
+ case Instruction::GetElementPtr: {
+ Code = bitc::FUNC_CODE_INST_GEP;
+ AbbrevToUse = (unsigned)FUNCTION_INST_GEP_ABBREV;
+ auto &GEPInst = cast<GetElementPtrInst>(I);
+ Vals.push_back(GEPInst.isInBounds());
+ Vals.push_back(getTypeID(GEPInst.getSourceElementType()));
+ for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
+ pushValueAndType(I.getOperand(i), InstID, Vals);
+ break;
+ }
+ case Instruction::ExtractValue: {
+ Code = bitc::FUNC_CODE_INST_EXTRACTVAL;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ const ExtractValueInst *EVI = cast<ExtractValueInst>(&I);
+ Vals.append(EVI->idx_begin(), EVI->idx_end());
+ break;
+ }
+ case Instruction::InsertValue: {
+ Code = bitc::FUNC_CODE_INST_INSERTVAL;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ pushValueAndType(I.getOperand(1), InstID, Vals);
+ const InsertValueInst *IVI = cast<InsertValueInst>(&I);
+ Vals.append(IVI->idx_begin(), IVI->idx_end());
+ break;
+ }
+ case Instruction::Select:
+ Code = bitc::FUNC_CODE_INST_VSELECT;
+ pushValueAndType(I.getOperand(1), InstID, Vals);
+ pushValue(I.getOperand(2), InstID, Vals);
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ break;
+ case Instruction::ExtractElement:
+ Code = bitc::FUNC_CODE_INST_EXTRACTELT;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ pushValueAndType(I.getOperand(1), InstID, Vals);
+ break;
+ case Instruction::InsertElement:
+ Code = bitc::FUNC_CODE_INST_INSERTELT;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ pushValue(I.getOperand(1), InstID, Vals);
+ pushValueAndType(I.getOperand(2), InstID, Vals);
+ break;
+ case Instruction::ShuffleVector:
+ Code = bitc::FUNC_CODE_INST_SHUFFLEVEC;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ pushValue(I.getOperand(1), InstID, Vals);
+ pushValue(I.getOperand(2), InstID, Vals);
+ break;
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ // compare returning Int1Ty or vector of Int1Ty
+ Code = bitc::FUNC_CODE_INST_CMP2;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ pushValue(I.getOperand(1), InstID, Vals);
+ Vals.push_back(cast<CmpInst>(I).getPredicate());
+ uint64_t Flags = getOptimizationFlags(&I);
+ if (Flags != 0)
+ Vals.push_back(Flags);
+ break;
+ }
+
+ case Instruction::Ret: {
+ Code = bitc::FUNC_CODE_INST_RET;
+ unsigned NumOperands = I.getNumOperands();
+ if (NumOperands == 0)
+ AbbrevToUse = (unsigned)FUNCTION_INST_RET_VOID_ABBREV;
+ else if (NumOperands == 1) {
+ if (!pushValueAndType(I.getOperand(0), InstID, Vals))
+ AbbrevToUse = (unsigned)FUNCTION_INST_RET_VAL_ABBREV;
+ } else {
+ for (unsigned i = 0, e = NumOperands; i != e; ++i)
+ pushValueAndType(I.getOperand(i), InstID, Vals);
+ }
+ } break;
+ case Instruction::Br: {
+ Code = bitc::FUNC_CODE_INST_BR;
+ const BranchInst &II = cast<BranchInst>(I);
+ Vals.push_back(VE.getValueID(II.getSuccessor(0)));
+ if (II.isConditional()) {
+ Vals.push_back(VE.getValueID(II.getSuccessor(1)));
+ pushValue(II.getCondition(), InstID, Vals);
+ }
+ } break;
+ case Instruction::Switch: {
+ Code = bitc::FUNC_CODE_INST_SWITCH;
+ const SwitchInst &SI = cast<SwitchInst>(I);
+ Vals.push_back(getTypeID(SI.getCondition()->getType()));
+ pushValue(SI.getCondition(), InstID, Vals);
+ Vals.push_back(VE.getValueID(SI.getDefaultDest()));
+ for (auto Case : SI.cases()) {
+ Vals.push_back(VE.getValueID(Case.getCaseValue()));
+ Vals.push_back(VE.getValueID(Case.getCaseSuccessor()));
+ }
+ } break;
+ case Instruction::IndirectBr:
+ Code = bitc::FUNC_CODE_INST_INDIRECTBR;
+ Vals.push_back(getTypeID(I.getOperand(0)->getType()));
+ // Encode the address operand as relative, but not the basic blocks.
+ pushValue(I.getOperand(0), InstID, Vals);
+ for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i)
+ Vals.push_back(VE.getValueID(I.getOperand(i)));
+ break;
+
+ case Instruction::Invoke: {
+ const InvokeInst *II = cast<InvokeInst>(&I);
+ const Value *Callee = II->getCalledOperand();
+ FunctionType *FTy = II->getFunctionType();
+ Code = bitc::FUNC_CODE_INST_INVOKE;
+
+ Vals.push_back(VE.getAttributeListID(II->getAttributes()));
+ Vals.push_back(II->getCallingConv() | 1 << 13);
+ Vals.push_back(VE.getValueID(II->getNormalDest()));
+ Vals.push_back(VE.getValueID(II->getUnwindDest()));
+ Vals.push_back(getTypeID(FTy));
+ pushValueAndType(Callee, InstID, Vals);
+
+ // Emit value #'s for the fixed parameters.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
+ pushValue(I.getOperand(i), InstID, Vals); // fixed param.
+
+ // Emit type/value pairs for varargs params.
+ if (FTy->isVarArg()) {
+ for (unsigned i = FTy->getNumParams(), e = I.getNumOperands() - 3; i != e;
+ ++i)
+ pushValueAndType(I.getOperand(i), InstID, Vals); // vararg
+ }
+ break;
+ }
+ case Instruction::Resume:
+ Code = bitc::FUNC_CODE_INST_RESUME;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ break;
+ case Instruction::Unreachable:
+ Code = bitc::FUNC_CODE_INST_UNREACHABLE;
+ AbbrevToUse = (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV;
+ break;
+
+ case Instruction::PHI: {
+ const PHINode &PN = cast<PHINode>(I);
+ Code = bitc::FUNC_CODE_INST_PHI;
+ // With the newer instruction encoding, forward references could give
+ // negative valued IDs. This is most common for PHIs, so we use
+ // signed VBRs.
+ SmallVector<uint64_t, 128> Vals64;
+ Vals64.push_back(getTypeID(PN.getType()));
+ for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
+ pushValueSigned(PN.getIncomingValue(i), InstID, Vals64);
+ Vals64.push_back(VE.getValueID(PN.getIncomingBlock(i)));
+ }
+ // Emit a Vals64 vector and exit.
+ Stream.EmitRecord(Code, Vals64, AbbrevToUse);
+ Vals64.clear();
+ return;
+ }
+
+ case Instruction::LandingPad: {
+ const LandingPadInst &LP = cast<LandingPadInst>(I);
+ Code = bitc::FUNC_CODE_INST_LANDINGPAD;
+ Vals.push_back(getTypeID(LP.getType()));
+ Vals.push_back(LP.isCleanup());
+ Vals.push_back(LP.getNumClauses());
+ for (unsigned I = 0, E = LP.getNumClauses(); I != E; ++I) {
+ if (LP.isCatch(I))
+ Vals.push_back(LandingPadInst::Catch);
+ else
+ Vals.push_back(LandingPadInst::Filter);
+ pushValueAndType(LP.getClause(I), InstID, Vals);
+ }
+ break;
+ }
+
+ case Instruction::Alloca: {
+ Code = bitc::FUNC_CODE_INST_ALLOCA;
+ const AllocaInst &AI = cast<AllocaInst>(I);
+ Vals.push_back(getTypeID(AI.getAllocatedType()));
+ Vals.push_back(getTypeID(I.getOperand(0)->getType()));
+ Vals.push_back(VE.getValueID(I.getOperand(0))); // size.
+ using APV = AllocaPackedValues;
+ unsigned Record = 0;
+ unsigned EncodedAlign = getEncodedAlign(AI.getAlign());
+ Bitfield::set<APV::AlignLower>(
+ Record, EncodedAlign & ((1 << APV::AlignLower::Bits) - 1));
+ Bitfield::set<APV::AlignUpper>(Record,
+ EncodedAlign >> APV::AlignLower::Bits);
+ Bitfield::set<APV::UsedWithInAlloca>(Record, AI.isUsedWithInAlloca());
+ Vals.push_back(Record);
+ break;
+ }
+
+ case Instruction::Load:
+ if (cast<LoadInst>(I).isAtomic()) {
+ Code = bitc::FUNC_CODE_INST_LOADATOMIC;
+ pushValueAndType(I.getOperand(0), InstID, Vals);
+ } else {
+ Code = bitc::FUNC_CODE_INST_LOAD;
+ if (!pushValueAndType(I.getOperand(0), InstID, Vals)) // ptr
+ AbbrevToUse = (unsigned)FUNCTION_INST_LOAD_ABBREV;
+ }
+ Vals.push_back(getTypeID(I.getType()));
+ Vals.push_back(Log2(cast<LoadInst>(I).getAlign()) + 1);
+ Vals.push_back(cast<LoadInst>(I).isVolatile());
+ if (cast<LoadInst>(I).isAtomic()) {
+ Vals.push_back(getEncodedOrdering(cast<LoadInst>(I).getOrdering()));
+ Vals.push_back(getEncodedSyncScopeID(cast<LoadInst>(I).getSyncScopeID()));
+ }
+ break;
+ case Instruction::Store:
+ if (cast<StoreInst>(I).isAtomic())
+ Code = bitc::FUNC_CODE_INST_STOREATOMIC;
+ else
+ Code = bitc::FUNC_CODE_INST_STORE;
+ pushValueAndType(I.getOperand(1), InstID, Vals); // ptrty + ptr
+ pushValueAndType(I.getOperand(0), InstID, Vals); // valty + val
+ Vals.push_back(Log2(cast<StoreInst>(I).getAlign()) + 1);
+ Vals.push_back(cast<StoreInst>(I).isVolatile());
+ if (cast<StoreInst>(I).isAtomic()) {
+ Vals.push_back(getEncodedOrdering(cast<StoreInst>(I).getOrdering()));
+ Vals.push_back(
+ getEncodedSyncScopeID(cast<StoreInst>(I).getSyncScopeID()));
+ }
+ break;
+ case Instruction::AtomicCmpXchg:
+ Code = bitc::FUNC_CODE_INST_CMPXCHG;
+ pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
+ pushValueAndType(I.getOperand(1), InstID, Vals); // cmp.
+ pushValue(I.getOperand(2), InstID, Vals); // newval.
+ Vals.push_back(cast<AtomicCmpXchgInst>(I).isVolatile());
+ Vals.push_back(
+ getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getSuccessOrdering()));
+ Vals.push_back(
+ getEncodedSyncScopeID(cast<AtomicCmpXchgInst>(I).getSyncScopeID()));
+ Vals.push_back(
+ getEncodedOrdering(cast<AtomicCmpXchgInst>(I).getFailureOrdering()));
+ Vals.push_back(cast<AtomicCmpXchgInst>(I).isWeak());
+ break;
+ case Instruction::AtomicRMW:
+ Code = bitc::FUNC_CODE_INST_ATOMICRMW;
+ pushValueAndType(I.getOperand(0), InstID, Vals); // ptrty + ptr
+ pushValue(I.getOperand(1), InstID, Vals); // val.
+ Vals.push_back(
+ getEncodedRMWOperation(cast<AtomicRMWInst>(I).getOperation()));
+ Vals.push_back(cast<AtomicRMWInst>(I).isVolatile());
+ Vals.push_back(getEncodedOrdering(cast<AtomicRMWInst>(I).getOrdering()));
+ Vals.push_back(
+ getEncodedSyncScopeID(cast<AtomicRMWInst>(I).getSyncScopeID()));
+ break;
+ case Instruction::Fence:
+ Code = bitc::FUNC_CODE_INST_FENCE;
+ Vals.push_back(getEncodedOrdering(cast<FenceInst>(I).getOrdering()));
+ Vals.push_back(getEncodedSyncScopeID(cast<FenceInst>(I).getSyncScopeID()));
+ break;
+ case Instruction::Call: {
+ const CallInst &CI = cast<CallInst>(I);
+ FunctionType *FTy = CI.getFunctionType();
+
+ Code = bitc::FUNC_CODE_INST_CALL;
+
+ Vals.push_back(VE.getAttributeListID(CI.getAttributes()));
+ Vals.push_back((CI.getCallingConv() << 1) | unsigned(CI.isTailCall()) |
+ unsigned(CI.isMustTailCall()) << 14 | 1 << 15);
+ Vals.push_back(getTypeID(FTy, CI.getCalledFunction()));
+ pushValueAndType(CI.getCalledOperand(), InstID, Vals); // Callee
+
+ // Emit value #'s for the fixed parameters.
+ for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i) {
+ // Check for labels (can happen with asm labels).
+ if (FTy->getParamType(i)->isLabelTy())
+ Vals.push_back(VE.getValueID(CI.getArgOperand(i)));
+ else
+ pushValue(CI.getArgOperand(i), InstID, Vals); // fixed param.
+ }
+
+ // Emit type/value pairs for varargs params.
+ if (FTy->isVarArg()) {
+ for (unsigned i = FTy->getNumParams(), e = CI.arg_size(); i != e; ++i)
+ pushValueAndType(CI.getArgOperand(i), InstID, Vals); // varargs
+ }
+ break;
+ }
+ case Instruction::VAArg:
+ Code = bitc::FUNC_CODE_INST_VAARG;
+ Vals.push_back(getTypeID(I.getOperand(0)->getType())); // valistty
+ pushValue(I.getOperand(0), InstID, Vals); // valist.
+ Vals.push_back(getTypeID(I.getType())); // restype.
+ break;
+ }
+
+ Stream.EmitRecord(Code, Vals, AbbrevToUse);
+ Vals.clear();
+}
+
+// Emit names for globals/functions etc.
+void DXILBitcodeWriter::writeFunctionLevelValueSymbolTable(
+ const ValueSymbolTable &VST) {
+ if (VST.empty())
+ return;
+ Stream.EnterSubblock(bitc::VALUE_SYMTAB_BLOCK_ID, 4);
+
+ SmallVector<unsigned, 64> NameVals;
+
+ // HLSL Change
+ // Read the named values from a sorted list instead of the original list
+ // to ensure the binary is the same no matter what values ever existed.
+ SmallVector<const ValueName *, 16> SortedTable;
+
+ for (auto &VI : VST) {
+ SortedTable.push_back(VI.second->getValueName());
+ }
+ // The keys are unique, so there shouldn't be stability issues.
+ std::sort(SortedTable.begin(), SortedTable.end(),
+ [](const ValueName *A, const ValueName *B) {
+ return A->first() < B->first();
+ });
+
+ for (const ValueName *SI : SortedTable) {
+ auto &Name = *SI;
+
+ // Figure out the encoding to use for the name.
+ bool is7Bit = true;
+ bool isChar6 = true;
+ for (const char *C = Name.getKeyData(), *E = C + Name.getKeyLength();
+ C != E; ++C) {
+ if (isChar6)
+ isChar6 = BitCodeAbbrevOp::isChar6(*C);
+ if ((unsigned char)*C & 128) {
+ is7Bit = false;
+ break; // don't bother scanning the rest.
+ }
+ }
+
+ unsigned AbbrevToUse = VST_ENTRY_8_ABBREV;
+
+ // VST_ENTRY: [valueid, namechar x N]
+ // VST_BBENTRY: [bbid, namechar x N]
+ unsigned Code;
+ if (isa<BasicBlock>(SI->getValue())) {
+ Code = bitc::VST_CODE_BBENTRY;
+ if (isChar6)
+ AbbrevToUse = VST_BBENTRY_6_ABBREV;
+ } else {
+ Code = bitc::VST_CODE_ENTRY;
+ if (isChar6)
+ AbbrevToUse = VST_ENTRY_6_ABBREV;
+ else if (is7Bit)
+ AbbrevToUse = VST_ENTRY_7_ABBREV;
+ }
+
+ NameVals.push_back(VE.getValueID(SI->getValue()));
+ for (const char *P = Name.getKeyData(),
+ *E = Name.getKeyData() + Name.getKeyLength();
+ P != E; ++P)
+ NameVals.push_back((unsigned char)*P);
+
+ // Emit the finished record.
+ Stream.EmitRecord(Code, NameVals, AbbrevToUse);
+ NameVals.clear();
+ }
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeUseList(UseListOrder &&Order) {
+ assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
+ unsigned Code;
+ if (isa<BasicBlock>(Order.V))
+ Code = bitc::USELIST_CODE_BB;
+ else
+ Code = bitc::USELIST_CODE_DEFAULT;
+
+ SmallVector<uint64_t, 64> Record(Order.Shuffle.begin(), Order.Shuffle.end());
+ Record.push_back(VE.getValueID(Order.V));
+ Stream.EmitRecord(Code, Record);
+}
+
+void DXILBitcodeWriter::writeUseListBlock(const Function *F) {
+ auto hasMore = [&]() {
+ return !VE.UseListOrders.empty() && VE.UseListOrders.back().F == F;
+ };
+ if (!hasMore())
+ // Nothing to do.
+ return;
+
+ Stream.EnterSubblock(bitc::USELIST_BLOCK_ID, 3);
+ while (hasMore()) {
+ writeUseList(std::move(VE.UseListOrders.back()));
+ VE.UseListOrders.pop_back();
+ }
+ Stream.ExitBlock();
+}
+
+/// Emit a function body to the module stream.
+void DXILBitcodeWriter::writeFunction(const Function &F) {
+ Stream.EnterSubblock(bitc::FUNCTION_BLOCK_ID, 4);
+ VE.incorporateFunction(F);
+
+ SmallVector<unsigned, 64> Vals;
+
+ // Emit the number of basic blocks, so the reader can create them ahead of
+ // time.
+ Vals.push_back(VE.getBasicBlocks().size());
+ Stream.EmitRecord(bitc::FUNC_CODE_DECLAREBLOCKS, Vals);
+ Vals.clear();
+
+ // If there are function-local constants, emit them now.
+ unsigned CstStart, CstEnd;
+ VE.getFunctionConstantRange(CstStart, CstEnd);
+ writeConstants(CstStart, CstEnd, false);
+
+ // If there is function-local metadata, emit it now.
+ writeFunctionMetadata(F);
+
+ // Keep a running idea of what the instruction ID is.
+ unsigned InstID = CstEnd;
+
+ bool NeedsMetadataAttachment = F.hasMetadata();
+
+ DILocation *LastDL = nullptr;
+
+ // Finally, emit all the instructions, in order.
+ for (Function::const_iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+ for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E;
+ ++I) {
+ writeInstruction(*I, InstID, Vals);
+
+ if (!I->getType()->isVoidTy())
+ ++InstID;
+
+ // If the instruction has metadata, write a metadata attachment later.
+ NeedsMetadataAttachment |= I->hasMetadataOtherThanDebugLoc();
+
+ // If the instruction has a debug location, emit it.
+ DILocation *DL = I->getDebugLoc();
+ if (!DL)
+ continue;
+
+ if (DL == LastDL) {
+ // Just repeat the same debug loc as last time.
+ Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC_AGAIN, Vals);
+ continue;
+ }
+
+ Vals.push_back(DL->getLine());
+ Vals.push_back(DL->getColumn());
+ Vals.push_back(VE.getMetadataOrNullID(DL->getScope()));
+ Vals.push_back(VE.getMetadataOrNullID(DL->getInlinedAt()));
+ Stream.EmitRecord(bitc::FUNC_CODE_DEBUG_LOC, Vals);
+ Vals.clear();
+
+ LastDL = DL;
+ }
+
+ // Emit names for all the instructions etc.
+ if (auto *Symtab = F.getValueSymbolTable())
+ writeFunctionLevelValueSymbolTable(*Symtab);
+
+ if (NeedsMetadataAttachment)
+ writeFunctionMetadataAttachment(F);
+
+ writeUseListBlock(&F);
+ VE.purgeFunction();
+ Stream.ExitBlock();
+}
+
+// Emit blockinfo, which defines the standard abbreviations etc.
+void DXILBitcodeWriter::writeBlockInfo() {
+ // We only want to emit block info records for blocks that have multiple
+ // instances: CONSTANTS_BLOCK, FUNCTION_BLOCK and VALUE_SYMTAB_BLOCK.
+ // Other blocks can define their abbrevs inline.
+ Stream.EnterBlockInfoBlock();
+
+ { // 8-bit fixed-width VST_ENTRY/VST_BBENTRY strings.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 3));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 8));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ std::move(Abbv)) != VST_ENTRY_8_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ { // 7-bit fixed width VST_ENTRY strings.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ std::move(Abbv)) != VST_ENTRY_7_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // 6-bit char6 VST_ENTRY strings.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_ENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ std::move(Abbv)) != VST_ENTRY_6_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // 6-bit char6 VST_BBENTRY strings.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::VST_CODE_BBENTRY));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Char6));
+ if (Stream.EmitBlockInfoAbbrev(bitc::VALUE_SYMTAB_BLOCK_ID,
+ std::move(Abbv)) != VST_BBENTRY_6_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ { // SETTYPE abbrev for CONSTANTS_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_SETTYPE));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed,
+ VE.computeBitsRequiredForTypeIndicies()));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
+ CONSTANTS_SETTYPE_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ { // INTEGER abbrev for CONSTANTS_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_INTEGER));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
+ CONSTANTS_INTEGER_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ { // CE_CAST abbrev for CONSTANTS_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_CE_CAST));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // cast opc
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // typeid
+ VE.computeBitsRequiredForTypeIndicies()));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 8)); // value id
+
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
+ CONSTANTS_CE_CAST_Abbrev)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // NULL abbrev for CONSTANTS_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::CST_CODE_NULL));
+ if (Stream.EmitBlockInfoAbbrev(bitc::CONSTANTS_BLOCK_ID, std::move(Abbv)) !=
+ CONSTANTS_NULL_Abbrev)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ // FIXME: This should only use space for first class types!
+
+ { // INST_LOAD abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_LOAD));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // Ptr
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
+ VE.computeBitsRequiredForTypeIndicies()));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 4)); // Align
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1)); // volatile
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_LOAD_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // INST_BINOP abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_BINOP_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // INST_BINOP_FLAGS abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_BINOP));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // LHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // RHS
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 7)); // flags
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_BINOP_FLAGS_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // INST_CAST abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_CAST));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // OpVal
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
+ VE.computeBitsRequiredForTypeIndicies()));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 4)); // opc
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_CAST_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ { // INST_RET abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_RET_VOID_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // INST_RET abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_RET));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6)); // ValID
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_RET_VAL_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ { // INST_UNREACHABLE abbrev for FUNCTION_BLOCK.
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_UNREACHABLE));
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_UNREACHABLE_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+ {
+ auto Abbv = std::make_shared<BitCodeAbbrev>();
+ Abbv->Add(BitCodeAbbrevOp(bitc::FUNC_CODE_INST_GEP));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, 1));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Fixed, // dest ty
+ Log2_32_Ceil(VE.getTypes().size() + 1)));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::Array));
+ Abbv->Add(BitCodeAbbrevOp(BitCodeAbbrevOp::VBR, 6));
+ if (Stream.EmitBlockInfoAbbrev(bitc::FUNCTION_BLOCK_ID, std::move(Abbv)) !=
+ (unsigned)FUNCTION_INST_GEP_ABBREV)
+ assert(false && "Unexpected abbrev ordering!");
+ }
+
+ Stream.ExitBlock();
+}
+
+void DXILBitcodeWriter::writeModuleVersion() {
+ // VERSION: [version#]
+ Stream.EmitRecord(bitc::MODULE_CODE_VERSION, ArrayRef<unsigned>{1});
+}
+
+/// WriteModule - Emit the specified module to the bitstream.
+void DXILBitcodeWriter::write() {
+ // The identification block is new since llvm-3.7, but the old bitcode reader
+ // will skip it.
+ // writeIdentificationBlock(Stream);
+
+ Stream.EnterSubblock(bitc::MODULE_BLOCK_ID, 3);
+
+ // It is redundant to fully-specify this here, but nice to make it explicit
+ // so that it is clear the DXIL module version is different.
+ DXILBitcodeWriter::writeModuleVersion();
+
+ // Emit blockinfo, which defines the standard abbreviations etc.
+ writeBlockInfo();
+
+ // Emit information about attribute groups.
+ writeAttributeGroupTable();
+
+ // Emit information about parameter attributes.
+ writeAttributeTable();
+
+ // Emit information describing all of the types in the module.
+ writeTypeTable();
+
+ writeComdats();
+
+ // Emit top-level description of module, including target triple, inline asm,
+ // descriptors for global variables, and function prototype info.
+ writeModuleInfo();
+
+ // Emit constants.
+ writeModuleConstants();
+
+ // Emit metadata.
+ writeModuleMetadataKinds();
+
+ // Emit metadata.
+ writeModuleMetadata();
+
+ // Emit names for globals/functions etc.
+ // DXIL uses the same format for module-level value symbol table as for the
+ // function level table.
+ writeFunctionLevelValueSymbolTable(M.getValueSymbolTable());
+
+ // Emit module-level use-lists.
+ writeUseListBlock(nullptr);
+
+ // Emit function bodies.
+ for (const Function &F : M)
+ if (!F.isDeclaration())
+ writeFunction(F);
+
+ Stream.ExitBlock();
+}
diff --git a/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.h b/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.h
new file mode 100644
index 000000000000..289f692f0f82
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILBitcodeWriter.h
@@ -0,0 +1,82 @@
+//===- Bitcode/Writer/DXILBitcodeWriter.cpp - DXIL Bitcode Writer ---------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Bitcode writer implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/StringRef.h"
+#include "llvm/IR/ModuleSummaryIndex.h"
+#include "llvm/MC/StringTableBuilder.h"
+#include "llvm/Support/Allocator.h"
+#include "llvm/Support/MemoryBufferRef.h"
+#include <map>
+#include <memory>
+#include <string>
+#include <vector>
+
+namespace llvm {
+
+class BitstreamWriter;
+class Module;
+class raw_ostream;
+
+namespace dxil {
+
+class BitcodeWriter {
+ SmallVectorImpl<char> &Buffer;
+ std::unique_ptr<BitstreamWriter> Stream;
+
+ StringTableBuilder StrtabBuilder{StringTableBuilder::RAW};
+
+ // Owns any strings created by the irsymtab writer until we create the
+ // string table.
+ BumpPtrAllocator Alloc;
+
+ bool WroteStrtab = false, WroteSymtab = false;
+
+ void writeBlob(unsigned Block, unsigned Record, StringRef Blob);
+
+ std::vector<Module *> Mods;
+
+public:
+ /// Create a BitcodeWriter that writes to Buffer.
+ BitcodeWriter(SmallVectorImpl<char> &Buffer, raw_fd_stream *FS = nullptr);
+
+ ~BitcodeWriter();
+
+ /// Attempt to write a symbol table to the bitcode file. This must be called
+ /// at most once after all modules have been written.
+ ///
+ /// A reader does not require a symbol table to interpret a bitcode file;
+ /// the symbol table is needed only to improve link-time performance. So
+ /// this function may decide not to write a symbol table. It may so decide
+ /// if, for example, the target is unregistered or the IR is malformed.
+ void writeSymtab();
+
+ /// Write the bitcode file's string table. This must be called exactly once
+ /// after all modules and the optional symbol table have been written.
+ void writeStrtab();
+
+ /// Copy the string table for another module into this bitcode file. This
+ /// should be called after copying the module itself into the bitcode file.
+ void copyStrtab(StringRef Strtab);
+
+ /// Write the specified module to the buffer specified at construction time.
+ void writeModule(const Module &M);
+};
+
+/// Write the specified module to the specified raw output stream.
+///
+/// For streams where it matters, the given stream should be in "binary"
+/// mode.
+void WriteDXILToFile(const Module &M, raw_ostream &Out);
+
+} // namespace dxil
+
+} // namespace llvm
diff --git a/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.cpp b/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.cpp
new file mode 100644
index 000000000000..08944ee3f1fe
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.cpp
@@ -0,0 +1,1147 @@
+//===- ValueEnumerator.cpp - Number values and types for bitcode writer ---===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements the ValueEnumerator class.
+// Forked from lib/Bitcode/Writer
+//
+//===----------------------------------------------------------------------===//
+
+#include "DXILValueEnumerator.h"
+#include "DXILPointerType.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/Config/llvm-config.h"
+#include "llvm/IR/Argument.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Constant.h"
+#include "llvm/IR/DebugInfoMetadata.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/GlobalAlias.h"
+#include "llvm/IR/GlobalIFunc.h"
+#include "llvm/IR/GlobalObject.h"
+#include "llvm/IR/GlobalValue.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Instruction.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/Metadata.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/Operator.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/IR/ValueSymbolTable.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/MathExtras.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cstddef>
+#include <iterator>
+#include <tuple>
+
+using namespace llvm;
+using namespace llvm::dxil;
+
+namespace {
+
+struct OrderMap {
+ DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
+ unsigned LastGlobalConstantID = 0;
+ unsigned LastGlobalValueID = 0;
+
+ OrderMap() = default;
+
+ bool isGlobalConstant(unsigned ID) const {
+ return ID <= LastGlobalConstantID;
+ }
+
+ bool isGlobalValue(unsigned ID) const {
+ return ID <= LastGlobalValueID && !isGlobalConstant(ID);
+ }
+
+ unsigned size() const { return IDs.size(); }
+ std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
+
+ std::pair<unsigned, bool> lookup(const Value *V) const {
+ return IDs.lookup(V);
+ }
+
+ void index(const Value *V) {
+ // Explicitly sequence get-size and insert-value operations to avoid UB.
+ unsigned ID = IDs.size() + 1;
+ IDs[V].first = ID;
+ }
+};
+
+} // end anonymous namespace
+
+static void orderValue(const Value *V, OrderMap &OM) {
+ if (OM.lookup(V).first)
+ return;
+
+ if (const Constant *C = dyn_cast<Constant>(V)) {
+ if (C->getNumOperands() && !isa<GlobalValue>(C)) {
+ for (const Value *Op : C->operands())
+ if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
+ orderValue(Op, OM);
+ if (auto *CE = dyn_cast<ConstantExpr>(C))
+ if (CE->getOpcode() == Instruction::ShuffleVector)
+ orderValue(CE->getShuffleMaskForBitcode(), OM);
+ }
+ }
+
+ // Note: we cannot cache this lookup above, since inserting into the map
+ // changes the map's size, and thus affects the other IDs.
+ OM.index(V);
+}
+
+static OrderMap orderModule(const Module &M) {
+ // This needs to match the order used by ValueEnumerator::ValueEnumerator()
+ // and ValueEnumerator::incorporateFunction().
+ OrderMap OM;
+
+ // In the reader, initializers of GlobalValues are set *after* all the
+ // globals have been read. Rather than awkwardly modeling this behaviour
+ // directly in predictValueUseListOrderImpl(), just assign IDs to
+ // initializers of GlobalValues before GlobalValues themselves to model this
+ // implicitly.
+ for (const GlobalVariable &G : M.globals())
+ if (G.hasInitializer())
+ if (!isa<GlobalValue>(G.getInitializer()))
+ orderValue(G.getInitializer(), OM);
+ for (const GlobalAlias &A : M.aliases())
+ if (!isa<GlobalValue>(A.getAliasee()))
+ orderValue(A.getAliasee(), OM);
+ for (const GlobalIFunc &I : M.ifuncs())
+ if (!isa<GlobalValue>(I.getResolver()))
+ orderValue(I.getResolver(), OM);
+ for (const Function &F : M) {
+ for (const Use &U : F.operands())
+ if (!isa<GlobalValue>(U.get()))
+ orderValue(U.get(), OM);
+ }
+
+ // As constants used in metadata operands are emitted as module-level
+ // constants, we must order them before other operands. Also, we must order
+ // these before global values, as these will be read before setting the
+ // global values' initializers. The latter matters for constants which have
+ // uses towards other constants that are used as initializers.
+ auto orderConstantValue = [&OM](const Value *V) {
+ if ((isa<Constant>(V) && !isa<GlobalValue>(V)) || isa<InlineAsm>(V))
+ orderValue(V, OM);
+ };
+ for (const Function &F : M) {
+ if (F.isDeclaration())
+ continue;
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB)
+ for (const Value *V : I.operands()) {
+ if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
+ if (const auto *VAM =
+ dyn_cast<ValueAsMetadata>(MAV->getMetadata())) {
+ orderConstantValue(VAM->getValue());
+ } else if (const auto *AL =
+ dyn_cast<DIArgList>(MAV->getMetadata())) {
+ for (const auto *VAM : AL->getArgs())
+ orderConstantValue(VAM->getValue());
+ }
+ }
+ }
+ }
+ OM.LastGlobalConstantID = OM.size();
+
+ // Initializers of GlobalValues are processed in
+ // BitcodeReader::ResolveGlobalAndAliasInits(). Match the order there rather
+ // than ValueEnumerator, and match the code in predictValueUseListOrderImpl()
+ // by giving IDs in reverse order.
+ //
+ // Since GlobalValues never reference each other directly (just through
+ // initializers), their relative IDs only matter for determining order of
+ // uses in their initializers.
+ for (const Function &F : M)
+ orderValue(&F, OM);
+ for (const GlobalAlias &A : M.aliases())
+ orderValue(&A, OM);
+ for (const GlobalIFunc &I : M.ifuncs())
+ orderValue(&I, OM);
+ for (const GlobalVariable &G : M.globals())
+ orderValue(&G, OM);
+ OM.LastGlobalValueID = OM.size();
+
+ for (const Function &F : M) {
+ if (F.isDeclaration())
+ continue;
+ // Here we need to match the union of ValueEnumerator::incorporateFunction()
+ // and WriteFunction(). Basic blocks are implicitly declared before
+ // anything else (by declaring their size).
+ for (const BasicBlock &BB : F)
+ orderValue(&BB, OM);
+ for (const Argument &A : F.args())
+ orderValue(&A, OM);
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB) {
+ for (const Value *Op : I.operands())
+ if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
+ isa<InlineAsm>(*Op))
+ orderValue(Op, OM);
+ if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
+ orderValue(SVI->getShuffleMaskForBitcode(), OM);
+ }
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB)
+ orderValue(&I, OM);
+ }
+ return OM;
+}
+
+static void predictValueUseListOrderImpl(const Value *V, const Function *F,
+ unsigned ID, const OrderMap &OM,
+ UseListOrderStack &Stack) {
+ // Predict use-list order for this one.
+ using Entry = std::pair<const Use *, unsigned>;
+ SmallVector<Entry, 64> List;
+ for (const Use &U : V->uses())
+ // Check if this user will be serialized.
+ if (OM.lookup(U.getUser()).first)
+ List.push_back(std::make_pair(&U, List.size()));
+
+ if (List.size() < 2)
+ // We may have lost some users.
+ return;
+
+ bool IsGlobalValue = OM.isGlobalValue(ID);
+ llvm::sort(List, [&](const Entry &L, const Entry &R) {
+ const Use *LU = L.first;
+ const Use *RU = R.first;
+ if (LU == RU)
+ return false;
+
+ auto LID = OM.lookup(LU->getUser()).first;
+ auto RID = OM.lookup(RU->getUser()).first;
+
+ // Global values are processed in reverse order.
+ //
+ // Moreover, initializers of GlobalValues are set *after* all the globals
+ // have been read (despite having earlier IDs). Rather than awkwardly
+ // modeling this behaviour here, orderModule() has assigned IDs to
+ // initializers of GlobalValues before GlobalValues themselves.
+ if (OM.isGlobalValue(LID) && OM.isGlobalValue(RID)) {
+ if (LID == RID)
+ return LU->getOperandNo() > RU->getOperandNo();
+ return LID < RID;
+ }
+
+ // If ID is 4, then expect: 7 6 5 1 2 3.
+ if (LID < RID) {
+ if (RID <= ID)
+ if (!IsGlobalValue) // GlobalValue uses don't get reversed.
+ return true;
+ return false;
+ }
+ if (RID < LID) {
+ if (LID <= ID)
+ if (!IsGlobalValue) // GlobalValue uses don't get reversed.
+ return false;
+ return true;
+ }
+
+ // LID and RID are equal, so we have different operands of the same user.
+ // Assume operands are added in order for all instructions.
+ if (LID <= ID)
+ if (!IsGlobalValue) // GlobalValue uses don't get reversed.
+ return LU->getOperandNo() < RU->getOperandNo();
+ return LU->getOperandNo() > RU->getOperandNo();
+ });
+
+ if (llvm::is_sorted(List, [](const Entry &L, const Entry &R) {
+ return L.second < R.second;
+ }))
+ // Order is already correct.
+ return;
+
+ // Store the shuffle.
+ Stack.emplace_back(V, F, List.size());
+ assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
+ for (size_t I = 0, E = List.size(); I != E; ++I)
+ Stack.back().Shuffle[I] = List[I].second;
+}
+
+static void predictValueUseListOrder(const Value *V, const Function *F,
+ OrderMap &OM, UseListOrderStack &Stack) {
+ auto &IDPair = OM[V];
+ assert(IDPair.first && "Unmapped value");
+ if (IDPair.second)
+ // Already predicted.
+ return;
+
+ // Do the actual prediction.
+ IDPair.second = true;
+ if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
+ predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
+
+ // Recursive descent into constants.
+ if (const Constant *C = dyn_cast<Constant>(V)) {
+ if (C->getNumOperands()) { // Visit GlobalValues.
+ for (const Value *Op : C->operands())
+ if (isa<Constant>(Op)) // Visit GlobalValues.
+ predictValueUseListOrder(Op, F, OM, Stack);
+ if (auto *CE = dyn_cast<ConstantExpr>(C))
+ if (CE->getOpcode() == Instruction::ShuffleVector)
+ predictValueUseListOrder(CE->getShuffleMaskForBitcode(), F, OM,
+ Stack);
+ }
+ }
+}
+
+static UseListOrderStack predictUseListOrder(const Module &M) {
+ OrderMap OM = orderModule(M);
+
+ // Use-list orders need to be serialized after all the users have been added
+ // to a value, or else the shuffles will be incomplete. Store them per
+ // function in a stack.
+ //
+ // Aside from function order, the order of values doesn't matter much here.
+ UseListOrderStack Stack;
+
+ // We want to visit the functions backward now so we can list function-local
+ // constants in the last Function they're used in. Module-level constants
+ // have already been visited above.
+ for (const Function &F : llvm::reverse(M)) {
+ if (F.isDeclaration())
+ continue;
+ for (const BasicBlock &BB : F)
+ predictValueUseListOrder(&BB, &F, OM, Stack);
+ for (const Argument &A : F.args())
+ predictValueUseListOrder(&A, &F, OM, Stack);
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB) {
+ for (const Value *Op : I.operands())
+ if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
+ predictValueUseListOrder(Op, &F, OM, Stack);
+ if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
+ predictValueUseListOrder(SVI->getShuffleMaskForBitcode(), &F, OM,
+ Stack);
+ }
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB)
+ predictValueUseListOrder(&I, &F, OM, Stack);
+ }
+
+ // Visit globals last, since the module-level use-list block will be seen
+ // before the function bodies are processed.
+ for (const GlobalVariable &G : M.globals())
+ predictValueUseListOrder(&G, nullptr, OM, Stack);
+ for (const Function &F : M)
+ predictValueUseListOrder(&F, nullptr, OM, Stack);
+ for (const GlobalAlias &A : M.aliases())
+ predictValueUseListOrder(&A, nullptr, OM, Stack);
+ for (const GlobalIFunc &I : M.ifuncs())
+ predictValueUseListOrder(&I, nullptr, OM, Stack);
+ for (const GlobalVariable &G : M.globals())
+ if (G.hasInitializer())
+ predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
+ for (const GlobalAlias &A : M.aliases())
+ predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
+ for (const GlobalIFunc &I : M.ifuncs())
+ predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
+ for (const Function &F : M) {
+ for (const Use &U : F.operands())
+ predictValueUseListOrder(U.get(), nullptr, OM, Stack);
+ }
+
+ return Stack;
+}
+
+ValueEnumerator::ValueEnumerator(const Module &M, Type *PrefixType) {
+ EnumerateType(PrefixType);
+
+ UseListOrders = predictUseListOrder(M);
+
+ // Enumerate the global variables.
+ for (const GlobalVariable &GV : M.globals()) {
+ EnumerateValue(&GV);
+ EnumerateType(GV.getValueType());
+ }
+
+ // Enumerate the functions.
+ for (const Function &F : M) {
+ EnumerateValue(&F);
+ EnumerateType(F.getValueType());
+ EnumerateType(
+ dxil::TypedPointerType::get(F.getFunctionType(), F.getAddressSpace()));
+ EnumerateAttributes(F.getAttributes());
+ }
+
+ // Enumerate the aliases.
+ for (const GlobalAlias &GA : M.aliases()) {
+ EnumerateValue(&GA);
+ EnumerateType(GA.getValueType());
+ }
+
+ // Enumerate the ifuncs.
+ for (const GlobalIFunc &GIF : M.ifuncs()) {
+ EnumerateValue(&GIF);
+ EnumerateType(GIF.getValueType());
+ }
+
+ // Enumerate the global variable initializers and attributes.
+ for (const GlobalVariable &GV : M.globals()) {
+ if (GV.hasInitializer())
+ EnumerateValue(GV.getInitializer());
+ EnumerateType(
+ dxil::TypedPointerType::get(GV.getValueType(), GV.getAddressSpace()));
+ if (GV.hasAttributes())
+ EnumerateAttributes(GV.getAttributesAsList(AttributeList::FunctionIndex));
+ }
+
+ // Enumerate the aliasees.
+ for (const GlobalAlias &GA : M.aliases())
+ EnumerateValue(GA.getAliasee());
+
+ // Enumerate the ifunc resolvers.
+ for (const GlobalIFunc &GIF : M.ifuncs())
+ EnumerateValue(GIF.getResolver());
+
+ // Enumerate any optional Function data.
+ for (const Function &F : M)
+ for (const Use &U : F.operands())
+ EnumerateValue(U.get());
+
+ // Enumerate the metadata type.
+ //
+ // TODO: Move this to ValueEnumerator::EnumerateOperandType() once bitcode
+ // only encodes the metadata type when it's used as a value.
+ EnumerateType(Type::getMetadataTy(M.getContext()));
+
+ // Insert constants and metadata that are named at module level into the slot
+ // pool so that the module symbol table can refer to them...
+ EnumerateValueSymbolTable(M.getValueSymbolTable());
+ EnumerateNamedMetadata(M);
+
+ SmallVector<std::pair<unsigned, MDNode *>, 8> MDs;
+ for (const GlobalVariable &GV : M.globals()) {
+ MDs.clear();
+ GV.getAllMetadata(MDs);
+ for (const auto &I : MDs)
+ // FIXME: Pass GV to EnumerateMetadata and arrange for the bitcode writer
+ // to write metadata to the global variable's own metadata block
+ // (PR28134).
+ EnumerateMetadata(nullptr, I.second);
+ }
+
+ // Enumerate types used by function bodies and argument lists.
+ for (const Function &F : M) {
+ for (const Argument &A : F.args())
+ EnumerateType(A.getType());
+
+ // Enumerate metadata attached to this function.
+ MDs.clear();
+ F.getAllMetadata(MDs);
+ for (const auto &I : MDs)
+ EnumerateMetadata(F.isDeclaration() ? nullptr : &F, I.second);
+
+ for (const BasicBlock &BB : F)
+ for (const Instruction &I : BB) {
+ for (const Use &Op : I.operands()) {
+ auto *MD = dyn_cast<MetadataAsValue>(&Op);
+ if (!MD) {
+ EnumerateOperandType(Op);
+ continue;
+ }
+
+ // Local metadata is enumerated during function-incorporation, but
+ // any ConstantAsMetadata arguments in a DIArgList should be examined
+ // now.
+ if (isa<LocalAsMetadata>(MD->getMetadata()))
+ continue;
+ if (auto *AL = dyn_cast<DIArgList>(MD->getMetadata())) {
+ for (auto *VAM : AL->getArgs())
+ if (isa<ConstantAsMetadata>(VAM))
+ EnumerateMetadata(&F, VAM);
+ continue;
+ }
+
+ EnumerateMetadata(&F, MD->getMetadata());
+ }
+ if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
+ EnumerateType(SVI->getShuffleMaskForBitcode()->getType());
+ if (auto *GEP = dyn_cast<GetElementPtrInst>(&I))
+ EnumerateType(GEP->getSourceElementType());
+ if (auto *AI = dyn_cast<AllocaInst>(&I))
+ EnumerateType(AI->getAllocatedType());
+ EnumerateType(I.getType());
+ if (const auto *Call = dyn_cast<CallBase>(&I)) {
+ EnumerateAttributes(Call->getAttributes());
+ EnumerateType(Call->getFunctionType());
+ }
+
+ // Enumerate metadata attached with this instruction.
+ MDs.clear();
+ I.getAllMetadataOtherThanDebugLoc(MDs);
+ for (unsigned i = 0, e = MDs.size(); i != e; ++i)
+ EnumerateMetadata(&F, MDs[i].second);
+
+ // Don't enumerate the location directly -- it has a special record
+ // type -- but enumerate its operands.
+ if (DILocation *L = I.getDebugLoc())
+ for (const Metadata *Op : L->operands())
+ EnumerateMetadata(&F, Op);
+ }
+ }
+
+ // Organize metadata ordering.
+ organizeMetadata();
+}
+
+unsigned ValueEnumerator::getInstructionID(const Instruction *Inst) const {
+ InstructionMapType::const_iterator I = InstructionMap.find(Inst);
+ assert(I != InstructionMap.end() && "Instruction is not mapped!");
+ return I->second;
+}
+
+unsigned ValueEnumerator::getComdatID(const Comdat *C) const {
+ unsigned ComdatID = Comdats.idFor(C);
+ assert(ComdatID && "Comdat not found!");
+ return ComdatID;
+}
+
+void ValueEnumerator::setInstructionID(const Instruction *I) {
+ InstructionMap[I] = InstructionCount++;
+}
+
+unsigned ValueEnumerator::getValueID(const Value *V) const {
+ if (auto *MD = dyn_cast<MetadataAsValue>(V))
+ return getMetadataID(MD->getMetadata());
+
+ ValueMapType::const_iterator I = ValueMap.find(V);
+ assert(I != ValueMap.end() && "Value not in slotcalculator!");
+ return I->second - 1;
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+LLVM_DUMP_METHOD void ValueEnumerator::dump() const {
+ print(dbgs(), ValueMap, "Default");
+ dbgs() << '\n';
+ print(dbgs(), MetadataMap, "MetaData");
+ dbgs() << '\n';
+}
+#endif
+
+void ValueEnumerator::print(raw_ostream &OS, const ValueMapType &Map,
+ const char *Name) const {
+ OS << "Map Name: " << Name << "\n";
+ OS << "Size: " << Map.size() << "\n";
+ for (const auto &I : Map) {
+ const Value *V = I.first;
+ if (V->hasName())
+ OS << "Value: " << V->getName();
+ else
+ OS << "Value: [null]\n";
+ V->print(errs());
+ errs() << '\n';
+
+ OS << " Uses(" << V->getNumUses() << "):";
+ for (const Use &U : V->uses()) {
+ if (&U != &*V->use_begin())
+ OS << ",";
+ if (U->hasName())
+ OS << " " << U->getName();
+ else
+ OS << " [null]";
+ }
+ OS << "\n\n";
+ }
+}
+
+void ValueEnumerator::print(raw_ostream &OS, const MetadataMapType &Map,
+ const char *Name) const {
+ OS << "Map Name: " << Name << "\n";
+ OS << "Size: " << Map.size() << "\n";
+ for (const auto &I : Map) {
+ const Metadata *MD = I.first;
+ OS << "Metadata: slot = " << I.second.ID << "\n";
+ OS << "Metadata: function = " << I.second.F << "\n";
+ MD->print(OS);
+ OS << "\n";
+ }
+}
+
+/// EnumerateValueSymbolTable - Insert all of the values in the specified symbol
+/// table into the values table.
+void ValueEnumerator::EnumerateValueSymbolTable(const ValueSymbolTable &VST) {
+ for (ValueSymbolTable::const_iterator VI = VST.begin(), VE = VST.end();
+ VI != VE; ++VI)
+ EnumerateValue(VI->getValue());
+}
+
+/// Insert all of the values referenced by named metadata in the specified
+/// module.
+void ValueEnumerator::EnumerateNamedMetadata(const Module &M) {
+ for (const auto &I : M.named_metadata())
+ EnumerateNamedMDNode(&I);
+}
+
+void ValueEnumerator::EnumerateNamedMDNode(const NamedMDNode *MD) {
+ for (unsigned i = 0, e = MD->getNumOperands(); i != e; ++i)
+ EnumerateMetadata(nullptr, MD->getOperand(i));
+}
+
+unsigned ValueEnumerator::getMetadataFunctionID(const Function *F) const {
+ return F ? getValueID(F) + 1 : 0;
+}
+
+void ValueEnumerator::EnumerateMetadata(const Function *F, const Metadata *MD) {
+ EnumerateMetadata(getMetadataFunctionID(F), MD);
+}
+
+void ValueEnumerator::EnumerateFunctionLocalMetadata(
+ const Function &F, const LocalAsMetadata *Local) {
+ EnumerateFunctionLocalMetadata(getMetadataFunctionID(&F), Local);
+}
+
+void ValueEnumerator::EnumerateFunctionLocalListMetadata(
+ const Function &F, const DIArgList *ArgList) {
+ EnumerateFunctionLocalListMetadata(getMetadataFunctionID(&F), ArgList);
+}
+
+void ValueEnumerator::dropFunctionFromMetadata(
+ MetadataMapType::value_type &FirstMD) {
+ SmallVector<const MDNode *, 64> Worklist;
+ auto push = [&Worklist](MetadataMapType::value_type &MD) {
+ auto &Entry = MD.second;
+
+ // Nothing to do if this metadata isn't tagged.
+ if (!Entry.F)
+ return;
+
+ // Drop the function tag.
+ Entry.F = 0;
+
+ // If this is has an ID and is an MDNode, then its operands have entries as
+ // well. We need to drop the function from them too.
+ if (Entry.ID)
+ if (auto *N = dyn_cast<MDNode>(MD.first))
+ Worklist.push_back(N);
+ };
+ push(FirstMD);
+ while (!Worklist.empty())
+ for (const Metadata *Op : Worklist.pop_back_val()->operands()) {
+ if (!Op)
+ continue;
+ auto MD = MetadataMap.find(Op);
+ if (MD != MetadataMap.end())
+ push(*MD);
+ }
+}
+
+void ValueEnumerator::EnumerateMetadata(unsigned F, const Metadata *MD) {
+ // It's vital for reader efficiency that uniqued subgraphs are done in
+ // post-order; it's expensive when their operands have forward references.
+ // If a distinct node is referenced from a uniqued node, it'll be delayed
+ // until the uniqued subgraph has been completely traversed.
+ SmallVector<const MDNode *, 32> DelayedDistinctNodes;
+
+ // Start by enumerating MD, and then work through its transitive operands in
+ // post-order. This requires a depth-first search.
+ SmallVector<std::pair<const MDNode *, MDNode::op_iterator>, 32> Worklist;
+ if (const MDNode *N = enumerateMetadataImpl(F, MD))
+ Worklist.push_back(std::make_pair(N, N->op_begin()));
+
+ while (!Worklist.empty()) {
+ const MDNode *N = Worklist.back().first;
+
+ // Enumerate operands until we hit a new node. We need to traverse these
+ // nodes' operands before visiting the rest of N's operands.
+ MDNode::op_iterator I = std::find_if(
+ Worklist.back().second, N->op_end(),
+ [&](const Metadata *MD) { return enumerateMetadataImpl(F, MD); });
+ if (I != N->op_end()) {
+ auto *Op = cast<MDNode>(*I);
+ Worklist.back().second = ++I;
+
+ // Delay traversing Op if it's a distinct node and N is uniqued.
+ if (Op->isDistinct() && !N->isDistinct())
+ DelayedDistinctNodes.push_back(Op);
+ else
+ Worklist.push_back(std::make_pair(Op, Op->op_begin()));
+ continue;
+ }
+
+ // All the operands have been visited. Now assign an ID.
+ Worklist.pop_back();
+ MDs.push_back(N);
+ MetadataMap[N].ID = MDs.size();
+
+ // Flush out any delayed distinct nodes; these are all the distinct nodes
+ // that are leaves in last uniqued subgraph.
+ if (Worklist.empty() || Worklist.back().first->isDistinct()) {
+ for (const MDNode *N : DelayedDistinctNodes)
+ Worklist.push_back(std::make_pair(N, N->op_begin()));
+ DelayedDistinctNodes.clear();
+ }
+ }
+}
+
+const MDNode *ValueEnumerator::enumerateMetadataImpl(unsigned F,
+ const Metadata *MD) {
+ if (!MD)
+ return nullptr;
+
+ assert(
+ (isa<MDNode>(MD) || isa<MDString>(MD) || isa<ConstantAsMetadata>(MD)) &&
+ "Invalid metadata kind");
+
+ auto Insertion = MetadataMap.insert(std::make_pair(MD, MDIndex(F)));
+ MDIndex &Entry = Insertion.first->second;
+ if (!Insertion.second) {
+ // Already mapped. If F doesn't match the function tag, drop it.
+ if (Entry.hasDifferentFunction(F))
+ dropFunctionFromMetadata(*Insertion.first);
+ return nullptr;
+ }
+
+ // Don't assign IDs to metadata nodes.
+ if (auto *N = dyn_cast<MDNode>(MD))
+ return N;
+
+ // Save the metadata.
+ MDs.push_back(MD);
+ Entry.ID = MDs.size();
+
+ // Enumerate the constant, if any.
+ if (auto *C = dyn_cast<ConstantAsMetadata>(MD))
+ EnumerateValue(C->getValue());
+
+ return nullptr;
+}
+
+/// EnumerateFunctionLocalMetadata - Incorporate function-local metadata
+/// information reachable from the metadata.
+void ValueEnumerator::EnumerateFunctionLocalMetadata(
+ unsigned F, const LocalAsMetadata *Local) {
+ assert(F && "Expected a function");
+
+ // Check to see if it's already in!
+ MDIndex &Index = MetadataMap[Local];
+ if (Index.ID) {
+ assert(Index.F == F && "Expected the same function");
+ return;
+ }
+
+ MDs.push_back(Local);
+ Index.F = F;
+ Index.ID = MDs.size();
+
+ EnumerateValue(Local->getValue());
+}
+
+/// EnumerateFunctionLocalListMetadata - Incorporate function-local metadata
+/// information reachable from the metadata.
+void ValueEnumerator::EnumerateFunctionLocalListMetadata(
+ unsigned F, const DIArgList *ArgList) {
+ assert(F && "Expected a function");
+
+ // Check to see if it's already in!
+ MDIndex &Index = MetadataMap[ArgList];
+ if (Index.ID) {
+ assert(Index.F == F && "Expected the same function");
+ return;
+ }
+
+ for (ValueAsMetadata *VAM : ArgList->getArgs()) {
+ if (isa<LocalAsMetadata>(VAM)) {
+ assert(MetadataMap.count(VAM) &&
+ "LocalAsMetadata should be enumerated before DIArgList");
+ assert(MetadataMap[VAM].F == F &&
+ "Expected LocalAsMetadata in the same function");
+ } else {
+ assert(isa<ConstantAsMetadata>(VAM) &&
+ "Expected LocalAsMetadata or ConstantAsMetadata");
+ assert(ValueMap.count(VAM->getValue()) &&
+ "Constant should be enumerated beforeDIArgList");
+ EnumerateMetadata(F, VAM);
+ }
+ }
+
+ MDs.push_back(ArgList);
+ Index.F = F;
+ Index.ID = MDs.size();
+}
+
+static unsigned getMetadataTypeOrder(const Metadata *MD) {
+ // Strings are emitted in bulk and must come first.
+ if (isa<MDString>(MD))
+ return 0;
+
+ // ConstantAsMetadata doesn't reference anything. We may as well shuffle it
+ // to the front since we can detect it.
+ auto *N = dyn_cast<MDNode>(MD);
+ if (!N)
+ return 1;
+
+ // The reader is fast forward references for distinct node operands, but slow
+ // when uniqued operands are unresolved.
+ return N->isDistinct() ? 2 : 3;
+}
+
+void ValueEnumerator::organizeMetadata() {
+ assert(MetadataMap.size() == MDs.size() &&
+ "Metadata map and vector out of sync");
+
+ if (MDs.empty())
+ return;
+
+ // Copy out the index information from MetadataMap in order to choose a new
+ // order.
+ SmallVector<MDIndex, 64> Order;
+ Order.reserve(MetadataMap.size());
+ for (const Metadata *MD : MDs)
+ Order.push_back(MetadataMap.lookup(MD));
+
+ // Partition:
+ // - by function, then
+ // - by isa<MDString>
+ // and then sort by the original/current ID. Since the IDs are guaranteed to
+ // be unique, the result of std::sort will be deterministic. There's no need
+ // for std::stable_sort.
+ llvm::sort(Order, [this](MDIndex LHS, MDIndex RHS) {
+ return std::make_tuple(LHS.F, getMetadataTypeOrder(LHS.get(MDs)), LHS.ID) <
+ std::make_tuple(RHS.F, getMetadataTypeOrder(RHS.get(MDs)), RHS.ID);
+ });
+
+ // Rebuild MDs, index the metadata ranges for each function in FunctionMDs,
+ // and fix up MetadataMap.
+ std::vector<const Metadata *> OldMDs;
+ MDs.swap(OldMDs);
+ MDs.reserve(OldMDs.size());
+ for (unsigned I = 0, E = Order.size(); I != E && !Order[I].F; ++I) {
+ auto *MD = Order[I].get(OldMDs);
+ MDs.push_back(MD);
+ MetadataMap[MD].ID = I + 1;
+ if (isa<MDString>(MD))
+ ++NumMDStrings;
+ }
+
+ // Return early if there's nothing for the functions.
+ if (MDs.size() == Order.size())
+ return;
+
+ // Build the function metadata ranges.
+ MDRange R;
+ FunctionMDs.reserve(OldMDs.size());
+ unsigned PrevF = 0;
+ for (unsigned I = MDs.size(), E = Order.size(), ID = MDs.size(); I != E;
+ ++I) {
+ unsigned F = Order[I].F;
+ if (!PrevF) {
+ PrevF = F;
+ } else if (PrevF != F) {
+ R.Last = FunctionMDs.size();
+ std::swap(R, FunctionMDInfo[PrevF]);
+ R.First = FunctionMDs.size();
+
+ ID = MDs.size();
+ PrevF = F;
+ }
+
+ auto *MD = Order[I].get(OldMDs);
+ FunctionMDs.push_back(MD);
+ MetadataMap[MD].ID = ++ID;
+ if (isa<MDString>(MD))
+ ++R.NumStrings;
+ }
+ R.Last = FunctionMDs.size();
+ FunctionMDInfo[PrevF] = R;
+}
+
+void ValueEnumerator::incorporateFunctionMetadata(const Function &F) {
+ NumModuleMDs = MDs.size();
+
+ auto R = FunctionMDInfo.lookup(getValueID(&F) + 1);
+ NumMDStrings = R.NumStrings;
+ MDs.insert(MDs.end(), FunctionMDs.begin() + R.First,
+ FunctionMDs.begin() + R.Last);
+}
+
+void ValueEnumerator::EnumerateValue(const Value *V) {
+ assert(!V->getType()->isVoidTy() && "Can't insert void values!");
+ assert(!isa<MetadataAsValue>(V) && "EnumerateValue doesn't handle Metadata!");
+
+ // Check to see if it's already in!
+ unsigned &ValueID = ValueMap[V];
+ if (ValueID) {
+ // Increment use count.
+ Values[ValueID - 1].second++;
+ return;
+ }
+
+ if (auto *GO = dyn_cast<GlobalObject>(V))
+ if (const Comdat *C = GO->getComdat())
+ Comdats.insert(C);
+
+ // Enumerate the type of this value.
+ EnumerateType(V->getType());
+
+ if (const Constant *C = dyn_cast<Constant>(V)) {
+ if (isa<GlobalValue>(C)) {
+ // Initializers for globals are handled explicitly elsewhere.
+ } else if (C->getNumOperands()) {
+ // If a constant has operands, enumerate them. This makes sure that if a
+ // constant has uses (for example an array of const ints), that they are
+ // inserted also.
+
+ // We prefer to enumerate them with values before we enumerate the user
+ // itself. This makes it more likely that we can avoid forward references
+ // in the reader. We know that there can be no cycles in the constants
+ // graph that don't go through a global variable.
+ for (User::const_op_iterator I = C->op_begin(), E = C->op_end(); I != E;
+ ++I)
+ if (!isa<BasicBlock>(*I)) // Don't enumerate BB operand to BlockAddress.
+ EnumerateValue(*I);
+ if (auto *CE = dyn_cast<ConstantExpr>(C)) {
+ if (CE->getOpcode() == Instruction::ShuffleVector)
+ EnumerateValue(CE->getShuffleMaskForBitcode());
+ if (auto *GEP = dyn_cast<GEPOperator>(CE))
+ EnumerateType(GEP->getSourceElementType());
+ }
+
+ // Finally, add the value. Doing this could make the ValueID reference be
+ // dangling, don't reuse it.
+ Values.push_back(std::make_pair(V, 1U));
+ ValueMap[V] = Values.size();
+ return;
+ }
+ }
+
+ // Add the value.
+ Values.push_back(std::make_pair(V, 1U));
+ ValueID = Values.size();
+}
+
+void ValueEnumerator::EnumerateType(Type *Ty) {
+ unsigned *TypeID = &TypeMap[Ty];
+
+ // We've already seen this type.
+ if (*TypeID)
+ return;
+
+ // If it is a non-anonymous struct, mark the type as being visited so that we
+ // don't recursively visit it. This is safe because we allow forward
+ // references of these in the bitcode reader.
+ if (StructType *STy = dyn_cast<StructType>(Ty))
+ if (!STy->isLiteral())
+ *TypeID = ~0U;
+
+ // Enumerate all of the subtypes before we enumerate this type. This ensures
+ // that the type will be enumerated in an order that can be directly built.
+ for (Type *SubTy : Ty->subtypes())
+ EnumerateType(SubTy);
+
+ // Refresh the TypeID pointer in case the table rehashed.
+ TypeID = &TypeMap[Ty];
+
+ // Check to see if we got the pointer another way. This can happen when
+ // enumerating recursive types that hit the base case deeper than they start.
+ //
+ // If this is actually a struct that we are treating as forward ref'able,
+ // then emit the definition now that all of its contents are available.
+ if (*TypeID && *TypeID != ~0U)
+ return;
+
+ // Add this type now that its contents are all happily enumerated.
+ Types.push_back(Ty);
+
+ *TypeID = Types.size();
+}
+
+// Enumerate the types for the specified value. If the value is a constant,
+// walk through it, enumerating the types of the constant.
+void ValueEnumerator::EnumerateOperandType(const Value *V) {
+ EnumerateType(V->getType());
+
+ assert(!isa<MetadataAsValue>(V) && "Unexpected metadata operand");
+
+ const Constant *C = dyn_cast<Constant>(V);
+ if (!C)
+ return;
+
+ // If this constant is already enumerated, ignore it, we know its type must
+ // be enumerated.
+ if (ValueMap.count(C))
+ return;
+
+ // This constant may have operands, make sure to enumerate the types in
+ // them.
+ for (const Value *Op : C->operands()) {
+ // Don't enumerate basic blocks here, this happens as operands to
+ // blockaddress.
+ if (isa<BasicBlock>(Op))
+ continue;
+
+ EnumerateOperandType(Op);
+ }
+ if (auto *CE = dyn_cast<ConstantExpr>(C)) {
+ if (CE->getOpcode() == Instruction::ShuffleVector)
+ EnumerateOperandType(CE->getShuffleMaskForBitcode());
+ if (CE->getOpcode() == Instruction::GetElementPtr)
+ EnumerateType(cast<GEPOperator>(CE)->getSourceElementType());
+ }
+}
+
+void ValueEnumerator::EnumerateAttributes(AttributeList PAL) {
+ if (PAL.isEmpty())
+ return; // null is always 0.
+
+ // Do a lookup.
+ unsigned &Entry = AttributeListMap[PAL];
+ if (Entry == 0) {
+ // Never saw this before, add it.
+ AttributeLists.push_back(PAL);
+ Entry = AttributeLists.size();
+ }
+
+ // Do lookups for all attribute groups.
+ for (unsigned i : PAL.indexes()) {
+ AttributeSet AS = PAL.getAttributes(i);
+ if (!AS.hasAttributes())
+ continue;
+ IndexAndAttrSet Pair = {i, AS};
+ unsigned &Entry = AttributeGroupMap[Pair];
+ if (Entry == 0) {
+ AttributeGroups.push_back(Pair);
+ Entry = AttributeGroups.size();
+
+ for (Attribute Attr : AS) {
+ if (Attr.isTypeAttribute())
+ EnumerateType(Attr.getValueAsType());
+ }
+ }
+ }
+}
+
+void ValueEnumerator::incorporateFunction(const Function &F) {
+ InstructionCount = 0;
+ NumModuleValues = Values.size();
+
+ // Add global metadata to the function block. This doesn't include
+ // LocalAsMetadata.
+ incorporateFunctionMetadata(F);
+
+ // Adding function arguments to the value table.
+ for (const auto &I : F.args()) {
+ EnumerateValue(&I);
+ if (I.hasAttribute(Attribute::ByVal))
+ EnumerateType(I.getParamByValType());
+ else if (I.hasAttribute(Attribute::StructRet))
+ EnumerateType(I.getParamStructRetType());
+ else if (I.hasAttribute(Attribute::ByRef))
+ EnumerateType(I.getParamByRefType());
+ }
+ FirstFuncConstantID = Values.size();
+
+ // Add all function-level constants to the value table.
+ for (const BasicBlock &BB : F) {
+ for (const Instruction &I : BB) {
+ for (const Use &OI : I.operands()) {
+ if ((isa<Constant>(OI) && !isa<GlobalValue>(OI)) || isa<InlineAsm>(OI))
+ EnumerateValue(OI);
+ }
+ if (auto *SVI = dyn_cast<ShuffleVectorInst>(&I))
+ EnumerateValue(SVI->getShuffleMaskForBitcode());
+ }
+ BasicBlocks.push_back(&BB);
+ ValueMap[&BB] = BasicBlocks.size();
+ }
+
+ // Add the function's parameter attributes so they are available for use in
+ // the function's instruction.
+ EnumerateAttributes(F.getAttributes());
+
+ FirstInstID = Values.size();
+
+ SmallVector<LocalAsMetadata *, 8> FnLocalMDVector;
+ SmallVector<DIArgList *, 8> ArgListMDVector;
+ // Add all of the instructions.
+ for (const BasicBlock &BB : F) {
+ for (const Instruction &I : BB) {
+ for (const Use &OI : I.operands()) {
+ if (auto *MD = dyn_cast<MetadataAsValue>(&OI)) {
+ if (auto *Local = dyn_cast<LocalAsMetadata>(MD->getMetadata())) {
+ // Enumerate metadata after the instructions they might refer to.
+ FnLocalMDVector.push_back(Local);
+ } else if (auto *ArgList = dyn_cast<DIArgList>(MD->getMetadata())) {
+ ArgListMDVector.push_back(ArgList);
+ for (ValueAsMetadata *VMD : ArgList->getArgs()) {
+ if (auto *Local = dyn_cast<LocalAsMetadata>(VMD)) {
+ // Enumerate metadata after the instructions they might refer
+ // to.
+ FnLocalMDVector.push_back(Local);
+ }
+ }
+ }
+ }
+ }
+
+ if (!I.getType()->isVoidTy())
+ EnumerateValue(&I);
+ }
+ }
+
+ // Add all of the function-local metadata.
+ for (unsigned i = 0, e = FnLocalMDVector.size(); i != e; ++i) {
+ // At this point, every local values have been incorporated, we shouldn't
+ // have a metadata operand that references a value that hasn't been seen.
+ assert(ValueMap.count(FnLocalMDVector[i]->getValue()) &&
+ "Missing value for metadata operand");
+ EnumerateFunctionLocalMetadata(F, FnLocalMDVector[i]);
+ }
+ // DIArgList entries must come after function-local metadata, as it is not
+ // possible to forward-reference them.
+ for (const DIArgList *ArgList : ArgListMDVector)
+ EnumerateFunctionLocalListMetadata(F, ArgList);
+}
+
+void ValueEnumerator::purgeFunction() {
+ /// Remove purged values from the ValueMap.
+ for (unsigned i = NumModuleValues, e = Values.size(); i != e; ++i)
+ ValueMap.erase(Values[i].first);
+ for (unsigned i = NumModuleMDs, e = MDs.size(); i != e; ++i)
+ MetadataMap.erase(MDs[i]);
+ for (const BasicBlock *BB : BasicBlocks)
+ ValueMap.erase(BB);
+
+ Values.resize(NumModuleValues);
+ MDs.resize(NumModuleMDs);
+ BasicBlocks.clear();
+ NumMDStrings = 0;
+}
+
+static void IncorporateFunctionInfoGlobalBBIDs(
+ const Function *F, DenseMap<const BasicBlock *, unsigned> &IDMap) {
+ unsigned Counter = 0;
+ for (const BasicBlock &BB : *F)
+ IDMap[&BB] = ++Counter;
+}
+
+/// getGlobalBasicBlockID - This returns the function-specific ID for the
+/// specified basic block. This is relatively expensive information, so it
+/// should only be used by rare constructs such as address-of-label.
+unsigned ValueEnumerator::getGlobalBasicBlockID(const BasicBlock *BB) const {
+ unsigned &Idx = GlobalBasicBlockIDs[BB];
+ if (Idx != 0)
+ return Idx - 1;
+
+ IncorporateFunctionInfoGlobalBBIDs(BB->getParent(), GlobalBasicBlockIDs);
+ return getGlobalBasicBlockID(BB);
+}
+
+uint64_t ValueEnumerator::computeBitsRequiredForTypeIndicies() const {
+ return Log2_32_Ceil(getTypes().size() + 1);
+}
diff --git a/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.h b/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.h
new file mode 100644
index 000000000000..6cf339b7a5cd
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILValueEnumerator.h
@@ -0,0 +1,308 @@
+//===- DirectX/DXILWriter/ValueEnumerator.h - Number values -----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This class gives values and types Unique ID's.
+// Forked from lib/Bitcode/Writer
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DXILWRITER_VALUEENUMERATOR_H
+#define LLVM_DXILWRITER_VALUEENUMERATOR_H
+
+#include "llvm/ADT/ArrayRef.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/UniqueVector.h"
+#include "llvm/IR/Attributes.h"
+#include "llvm/IR/UseListOrder.h"
+#include <cassert>
+#include <cstdint>
+#include <utility>
+#include <vector>
+
+namespace llvm {
+
+class BasicBlock;
+class Comdat;
+class DIArgList;
+class Function;
+class Instruction;
+class LocalAsMetadata;
+class MDNode;
+class Metadata;
+class Module;
+class NamedMDNode;
+class raw_ostream;
+class Type;
+class Value;
+class ValueSymbolTable;
+
+namespace dxil {
+
+class ValueEnumerator {
+public:
+ using TypeList = std::vector<Type *>;
+
+ // For each value, we remember its Value* and occurrence frequency.
+ using ValueList = std::vector<std::pair<const Value *, unsigned>>;
+
+ /// Attribute groups as encoded in bitcode are almost AttributeSets, but they
+ /// include the AttributeList index, so we have to track that in our map.
+ using IndexAndAttrSet = std::pair<unsigned, AttributeSet>;
+
+ UseListOrderStack UseListOrders;
+
+private:
+ using TypeMapType = DenseMap<Type *, unsigned>;
+ TypeMapType TypeMap;
+ TypeList Types;
+
+ using ValueMapType = DenseMap<const Value *, unsigned>;
+ ValueMapType ValueMap;
+ ValueList Values;
+
+ using ComdatSetType = UniqueVector<const Comdat *>;
+ ComdatSetType Comdats;
+
+ std::vector<const Metadata *> MDs;
+ std::vector<const Metadata *> FunctionMDs;
+
+ /// Index of information about a piece of metadata.
+ struct MDIndex {
+ unsigned F = 0; ///< The ID of the function for this metadata, if any.
+ unsigned ID = 0; ///< The implicit ID of this metadata in bitcode.
+
+ MDIndex() = default;
+ explicit MDIndex(unsigned F) : F(F) {}
+
+ /// Check if this has a function tag, and it's different from NewF.
+ bool hasDifferentFunction(unsigned NewF) const { return F && F != NewF; }
+
+ /// Fetch the MD this references out of the given metadata array.
+ const Metadata *get(ArrayRef<const Metadata *> MDs) const {
+ assert(ID && "Expected non-zero ID");
+ assert(ID <= MDs.size() && "Expected valid ID");
+ return MDs[ID - 1];
+ }
+ };
+
+ using MetadataMapType = DenseMap<const Metadata *, MDIndex>;
+ MetadataMapType MetadataMap;
+
+ /// Range of metadata IDs, as a half-open range.
+ struct MDRange {
+ unsigned First = 0;
+ unsigned Last = 0;
+
+ /// Number of strings in the prefix of the metadata range.
+ unsigned NumStrings = 0;
+
+ MDRange() = default;
+ explicit MDRange(unsigned First) : First(First) {}
+ };
+ SmallDenseMap<unsigned, MDRange, 1> FunctionMDInfo;
+
+ using AttributeGroupMapType = DenseMap<IndexAndAttrSet, unsigned>;
+ AttributeGroupMapType AttributeGroupMap;
+ std::vector<IndexAndAttrSet> AttributeGroups;
+
+ using AttributeListMapType = DenseMap<AttributeList, unsigned>;
+ AttributeListMapType AttributeListMap;
+ std::vector<AttributeList> AttributeLists;
+
+ /// GlobalBasicBlockIDs - This map memoizes the basic block ID's referenced by
+ /// the "getGlobalBasicBlockID" method.
+ mutable DenseMap<const BasicBlock *, unsigned> GlobalBasicBlockIDs;
+
+ using InstructionMapType = DenseMap<const Instruction *, unsigned>;
+ InstructionMapType InstructionMap;
+ unsigned InstructionCount;
+
+ /// BasicBlocks - This contains all the basic blocks for the currently
+ /// incorporated function. Their reverse mapping is stored in ValueMap.
+ std::vector<const BasicBlock *> BasicBlocks;
+
+ /// When a function is incorporated, this is the size of the Values list
+ /// before incorporation.
+ unsigned NumModuleValues;
+
+ /// When a function is incorporated, this is the size of the Metadatas list
+ /// before incorporation.
+ unsigned NumModuleMDs = 0;
+ unsigned NumMDStrings = 0;
+
+ unsigned FirstFuncConstantID;
+ unsigned FirstInstID;
+
+public:
+ ValueEnumerator(const Module &M, Type *PrefixType);
+ ValueEnumerator(const ValueEnumerator &) = delete;
+ ValueEnumerator &operator=(const ValueEnumerator &) = delete;
+
+ void dump() const;
+ void print(raw_ostream &OS, const ValueMapType &Map, const char *Name) const;
+ void print(raw_ostream &OS, const MetadataMapType &Map,
+ const char *Name) const;
+
+ unsigned getValueID(const Value *V) const;
+
+ unsigned getMetadataID(const Metadata *MD) const {
+ auto ID = getMetadataOrNullID(MD);
+ assert(ID != 0 && "Metadata not in slotcalculator!");
+ return ID - 1;
+ }
+
+ unsigned getMetadataOrNullID(const Metadata *MD) const {
+ return MetadataMap.lookup(MD).ID;
+ }
+
+ unsigned numMDs() const { return MDs.size(); }
+
+ unsigned getTypeID(Type *T) const {
+ TypeMapType::const_iterator I = TypeMap.find(T);
+ assert(I != TypeMap.end() && "Type not in ValueEnumerator!");
+ return I->second - 1;
+ }
+
+ unsigned getInstructionID(const Instruction *I) const;
+ void setInstructionID(const Instruction *I);
+
+ unsigned getAttributeListID(AttributeList PAL) const {
+ if (PAL.isEmpty())
+ return 0; // Null maps to zero.
+ AttributeListMapType::const_iterator I = AttributeListMap.find(PAL);
+ assert(I != AttributeListMap.end() && "Attribute not in ValueEnumerator!");
+ return I->second;
+ }
+
+ unsigned getAttributeGroupID(IndexAndAttrSet Group) const {
+ if (!Group.second.hasAttributes())
+ return 0; // Null maps to zero.
+ AttributeGroupMapType::const_iterator I = AttributeGroupMap.find(Group);
+ assert(I != AttributeGroupMap.end() && "Attribute not in ValueEnumerator!");
+ return I->second;
+ }
+
+ /// getFunctionConstantRange - Return the range of values that corresponds to
+ /// function-local constants.
+ void getFunctionConstantRange(unsigned &Start, unsigned &End) const {
+ Start = FirstFuncConstantID;
+ End = FirstInstID;
+ }
+
+ const ValueList &getValues() const { return Values; }
+
+ /// Check whether the current block has any metadata to emit.
+ bool hasMDs() const { return NumModuleMDs < MDs.size(); }
+
+ /// Get the MDString metadata for this block.
+ ArrayRef<const Metadata *> getMDStrings() const {
+ return makeArrayRef(MDs).slice(NumModuleMDs, NumMDStrings);
+ }
+
+ /// Get the non-MDString metadata for this block.
+ ArrayRef<const Metadata *> getNonMDStrings() const {
+ return makeArrayRef(MDs).slice(NumModuleMDs).slice(NumMDStrings);
+ }
+
+ const TypeList &getTypes() const { return Types; }
+
+ const std::vector<const BasicBlock *> &getBasicBlocks() const {
+ return BasicBlocks;
+ }
+
+ const std::vector<AttributeList> &getAttributeLists() const {
+ return AttributeLists;
+ }
+
+ const std::vector<IndexAndAttrSet> &getAttributeGroups() const {
+ return AttributeGroups;
+ }
+
+ const ComdatSetType &getComdats() const { return Comdats; }
+ unsigned getComdatID(const Comdat *C) const;
+
+ /// getGlobalBasicBlockID - This returns the function-specific ID for the
+ /// specified basic block. This is relatively expensive information, so it
+ /// should only be used by rare constructs such as address-of-label.
+ unsigned getGlobalBasicBlockID(const BasicBlock *BB) const;
+
+ /// incorporateFunction/purgeFunction - If you'd like to deal with a function,
+ /// use these two methods to get its data into the ValueEnumerator!
+ void incorporateFunction(const Function &F);
+
+ void purgeFunction();
+ uint64_t computeBitsRequiredForTypeIndicies() const;
+
+ void EnumerateType(Type *T);
+
+private:
+
+ /// Reorder the reachable metadata.
+ ///
+ /// This is not just an optimization, but is mandatory for emitting MDString
+ /// correctly.
+ void organizeMetadata();
+
+ /// Drop the function tag from the transitive operands of the given node.
+ void dropFunctionFromMetadata(MetadataMapType::value_type &FirstMD);
+
+ /// Incorporate the function metadata.
+ ///
+ /// This should be called before enumerating LocalAsMetadata for the
+ /// function.
+ void incorporateFunctionMetadata(const Function &F);
+
+ /// Enumerate a single instance of metadata with the given function tag.
+ ///
+ /// If \c MD has already been enumerated, check that \c F matches its
+ /// function tag. If not, call \a dropFunctionFromMetadata().
+ ///
+ /// Otherwise, mark \c MD as visited. Assign it an ID, or just return it if
+ /// it's an \a MDNode.
+ const MDNode *enumerateMetadataImpl(unsigned F, const Metadata *MD);
+
+ unsigned getMetadataFunctionID(const Function *F) const;
+
+ /// Enumerate reachable metadata in (almost) post-order.
+ ///
+ /// Enumerate all the metadata reachable from MD. We want to minimize the
+ /// cost of reading bitcode records, and so the primary consideration is that
+ /// operands of uniqued nodes are resolved before the nodes are read. This
+ /// avoids re-uniquing them on the context and factors away RAUW support.
+ ///
+ /// This algorithm guarantees that subgraphs of uniqued nodes are in
+ /// post-order. Distinct subgraphs reachable only from a single uniqued node
+ /// will be in post-order.
+ ///
+ /// \note The relative order of a distinct and uniqued node is irrelevant.
+ /// \a organizeMetadata() will later partition distinct nodes ahead of
+ /// uniqued ones.
+ ///{
+ void EnumerateMetadata(const Function *F, const Metadata *MD);
+ void EnumerateMetadata(unsigned F, const Metadata *MD);
+ ///}
+
+ void EnumerateFunctionLocalMetadata(const Function &F,
+ const LocalAsMetadata *Local);
+ void EnumerateFunctionLocalMetadata(unsigned F, const LocalAsMetadata *Local);
+ void EnumerateFunctionLocalListMetadata(const Function &F,
+ const DIArgList *ArgList);
+ void EnumerateFunctionLocalListMetadata(unsigned F, const DIArgList *Arglist);
+ void EnumerateNamedMDNode(const NamedMDNode *NMD);
+ void EnumerateValue(const Value *V);
+ void EnumerateOperandType(const Value *V);
+ void EnumerateAttributes(AttributeList PAL);
+
+ void EnumerateValueSymbolTable(const ValueSymbolTable &ST);
+ void EnumerateNamedMetadata(const Module &M);
+};
+
+} // end namespace dxil
+} // end namespace llvm
+
+#endif // LLVM_DXILWRITER_VALUEENUMERATOR_H
diff --git a/llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.cpp b/llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.cpp
new file mode 100644
index 000000000000..c1f9f4aec672
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.cpp
@@ -0,0 +1,100 @@
+//===- DXILWriterPass.cpp - Bitcode writing pass --------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// DXILWriterPass implementation.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DXILWriterPass.h"
+#include "DXILBitcodeWriter.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/StringRef.h"
+#include "llvm/Analysis/ModuleSummaryAnalysis.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/PassManager.h"
+#include "llvm/InitializePasses.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Alignment.h"
+#include "llvm/Transforms/Utils/ModuleUtils.h"
+
+using namespace llvm;
+using namespace llvm::dxil;
+
+namespace {
+class WriteDXILPass : public llvm::ModulePass {
+ raw_ostream &OS; // raw_ostream to print on
+
+public:
+ static char ID; // Pass identification, replacement for typeid
+ WriteDXILPass() : ModulePass(ID), OS(dbgs()) {
+ initializeWriteDXILPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ explicit WriteDXILPass(raw_ostream &o) : ModulePass(ID), OS(o) {
+ initializeWriteDXILPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override { return "Bitcode Writer"; }
+
+ bool runOnModule(Module &M) override {
+ WriteDXILToFile(M, OS);
+ return false;
+ }
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ }
+};
+
+class EmbedDXILPass : public llvm::ModulePass {
+public:
+ static char ID; // Pass identification, replacement for typeid
+ EmbedDXILPass() : ModulePass(ID) {
+ initializeEmbedDXILPassPass(*PassRegistry::getPassRegistry());
+ }
+
+ StringRef getPassName() const override { return "DXIL Embedder"; }
+
+ bool runOnModule(Module &M) override {
+ std::string Data;
+ llvm::raw_string_ostream OS(Data);
+ WriteDXILToFile(M, OS);
+
+ Constant *ModuleConstant =
+ ConstantDataArray::get(M.getContext(), arrayRefFromStringRef(Data));
+ auto *GV = new llvm::GlobalVariable(M, ModuleConstant->getType(), true,
+ GlobalValue::PrivateLinkage,
+ ModuleConstant, "dx.dxil");
+ GV->setSection("DXIL");
+ GV->setAlignment(Align(4));
+ appendToCompilerUsed(M, {GV});
+ return true;
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.setPreservesAll();
+ }
+};
+} // namespace
+
+char WriteDXILPass::ID = 0;
+INITIALIZE_PASS_BEGIN(WriteDXILPass, "write-bitcode", "Write Bitcode", false,
+ true)
+INITIALIZE_PASS_DEPENDENCY(ModuleSummaryIndexWrapperPass)
+INITIALIZE_PASS_END(WriteDXILPass, "write-bitcode", "Write Bitcode", false,
+ true)
+
+ModulePass *llvm::createDXILWriterPass(raw_ostream &Str) {
+ return new WriteDXILPass(Str);
+}
+
+char EmbedDXILPass::ID = 0;
+INITIALIZE_PASS(EmbedDXILPass, "dxil-embed", "Embed DXIL", false, true)
+
+ModulePass *llvm::createDXILEmbedderPass() { return new EmbedDXILPass(); }
diff --git a/llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.h b/llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.h
new file mode 100644
index 000000000000..2c9c12178677
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DXILWriter/DXILWriterPass.h
@@ -0,0 +1,37 @@
+//===-- DXILWriterPass.h - Bitcode writing pass --------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+///
+/// This file provides a bitcode writing pass.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_BITCODE_DXILWriterPass_H
+#define LLVM_BITCODE_DXILWriterPass_H
+
+#include "DirectX.h"
+#include "llvm/Bitcode/BitcodeWriter.h"
+#include "llvm/IR/PassManager.h"
+
+namespace llvm {
+class Module;
+class raw_ostream;
+
+/// Create and return a pass that writes the module to the specified
+/// ostream. Note that this pass is designed for use with the legacy pass
+/// manager.
+ModulePass *createDXILWriterPass(raw_ostream &Str);
+
+/// Create and return a pass that writes the module to a global variable in the
+/// module for later emission in the MCStreamer. Note that this pass is designed
+/// for use with the legacy pass manager because it is run in CodeGen only.
+ModulePass *createDXILEmbedderPass();
+
+} // namespace llvm
+
+#endif
diff --git a/llvm/lib/Target/DirectX/DirectX.h b/llvm/lib/Target/DirectX/DirectX.h
new file mode 100644
index 000000000000..3883e4ba4621
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectX.h
@@ -0,0 +1,43 @@
+//===- DirectXTargetMachine.h - DirectX Target Implementation ---*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_LIB_TARGET_DIRECTX_DIRECTX_H
+#define LLVM_LIB_TARGET_DIRECTX_DIRECTX_H
+
+namespace llvm {
+class ModulePass;
+class PassRegistry;
+
+/// Initializer for dxil writer pass
+void initializeWriteDXILPassPass(PassRegistry &);
+
+/// Initializer for dxil embedder pass
+void initializeEmbedDXILPassPass(PassRegistry &);
+
+/// Initializer for DXIL-prepare
+void initializeDXILPrepareModulePass(PassRegistry &);
+
+/// Pass to convert modules into DXIL-compatable modules
+ModulePass *createDXILPrepareModulePass();
+
+/// Initializer for DXILOpLowering
+void initializeDXILOpLoweringLegacyPass(PassRegistry &);
+
+/// Pass to lowering LLVM intrinsic call to DXIL op function call.
+ModulePass *createDXILOpLoweringLegacyPass();
+
+/// Initializer for DXILTranslateMetadata.
+void initializeDXILTranslateMetadataPass(PassRegistry &);
+
+/// Pass to emit metadata for DXIL.
+ModulePass *createDXILTranslateMetadataPass();
+} // namespace llvm
+
+#endif // LLVM_LIB_TARGET_DIRECTX_DIRECTX_H
diff --git a/llvm/lib/Target/DirectX/DirectX.td b/llvm/lib/Target/DirectX/DirectX.td
new file mode 100644
index 000000000000..4d1d45b84a68
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectX.td
@@ -0,0 +1,54 @@
+//- DirectX.td - Describe the DirectX Target Machine ----------*- tablegen -*-//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This is a target description file for the DirectX target
+///
+//===----------------------------------------------------------------------===//
+
+//===----------------------------------------------------------------------===//
+// Target-independent interfaces which we are implementing
+//===----------------------------------------------------------------------===//
+
+include "llvm/Target/Target.td"
+include "DXILStubs.td"
+
+//===----------------------------------------------------------------------===//
+// DirectX Subtarget features.
+//===----------------------------------------------------------------------===//
+
+def DirectXInstrInfo : InstrInfo;
+
+//===----------------------------------------------------------------------===//
+// DirectX Processors supported.
+//===----------------------------------------------------------------------===//
+
+def : ProcessorModel<"generic", NoSchedModel, []>;
+
+
+//===----------------------------------------------------------------------===//
+// Target Declaration
+//===----------------------------------------------------------------------===//
+
+def DirectXAsmParser : AsmParser {
+ // The physical register names are not in the binary format or asm text
+ let ShouldEmitMatchRegisterName = 0;
+}
+
+def DirectXAsmWriter : AsmWriter {
+ string AsmWriterClassName = "InstPrinter";
+ int PassSubtarget = 0;
+ int Variant = 0;
+ bit isMCAsmWriter = 1;
+}
+
+def DirectX : Target {
+ let InstructionSet = DirectXInstrInfo;
+ let AssemblyParsers = [DirectXAsmParser];
+ let AssemblyWriters = [DirectXAsmWriter];
+}
diff --git a/llvm/lib/Target/DirectX/DirectXAsmPrinter.cpp b/llvm/lib/Target/DirectX/DirectXAsmPrinter.cpp
new file mode 100644
index 000000000000..cea3283f6756
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectXAsmPrinter.cpp
@@ -0,0 +1,57 @@
+//===-- DirectXAsmPrinter.cpp - DirectX assembly writer --------*- C++ -*--===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains AsmPrinters for the DirectX backend.
+//
+//===----------------------------------------------------------------------===//
+
+#include "TargetInfo/DirectXTargetInfo.h"
+#include "llvm/CodeGen/AsmPrinter.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Module.h"
+#include "llvm/MC/MCStreamer.h"
+#include "llvm/MC/SectionKind.h"
+#include "llvm/MC/TargetRegistry.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "asm-printer"
+
+namespace {
+
+// The DXILAsmPrinter is mostly a stub because DXIL is just LLVM bitcode which
+// gets embedded into a DXContainer file.
+class DXILAsmPrinter : public AsmPrinter {
+public:
+ explicit DXILAsmPrinter(TargetMachine &TM,
+ std::unique_ptr<MCStreamer> Streamer)
+ : AsmPrinter(TM, std::move(Streamer)) {}
+
+ StringRef getPassName() const override { return "DXIL Assembly Printer"; }
+ void emitGlobalVariable(const GlobalVariable *GV) override;
+ bool runOnMachineFunction(MachineFunction &MF) override { return false; }
+};
+} // namespace
+
+void DXILAsmPrinter::emitGlobalVariable(const GlobalVariable *GV) {
+ // If there is no initializer or the section is implicit, do nothing
+ if (!GV->hasInitializer() || GV->hasImplicitSection())
+ return;
+ // Skip the LLVM metadata
+ if (GV->getSection() == "llvm.metadata")
+ return;
+ SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
+ MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, TM);
+ OutStreamer->switchSection(TheSection);
+ emitGlobalConstant(GV->getParent()->getDataLayout(), GV->getInitializer());
+}
+
+extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeDirectXAsmPrinter() {
+ RegisterAsmPrinter<DXILAsmPrinter> X(getTheDirectXTarget());
+}
diff --git a/llvm/lib/Target/DirectX/DirectXFrameLowering.h b/llvm/lib/Target/DirectX/DirectXFrameLowering.h
new file mode 100644
index 000000000000..76a1450054be
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectXFrameLowering.h
@@ -0,0 +1,35 @@
+//===-- DirectXFrameLowering.h - Frame lowering for DirectX --*- C++ ---*--===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This class implements DirectX-specific bits of TargetFrameLowering class.
+// This is just a stub because the current DXIL backend does not actually lower
+// through the MC layer.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DIRECTX_DIRECTXFRAMELOWERING_H
+#define LLVM_DIRECTX_DIRECTXFRAMELOWERING_H
+
+#include "llvm/CodeGen/TargetFrameLowering.h"
+#include "llvm/Support/Alignment.h"
+
+namespace llvm {
+class DirectXSubtarget;
+
+class DirectXFrameLowering : public TargetFrameLowering {
+public:
+ explicit DirectXFrameLowering(const DirectXSubtarget &STI)
+ : TargetFrameLowering(TargetFrameLowering::StackGrowsDown, Align(8), 0) {}
+
+ void emitPrologue(MachineFunction &, MachineBasicBlock &) const override {}
+ void emitEpilogue(MachineFunction &, MachineBasicBlock &) const override {}
+
+ bool hasFP(const MachineFunction &) const override { return false; }
+};
+} // namespace llvm
+#endif // LLVM_DIRECTX_DIRECTXFRAMELOWERING_H
diff --git a/llvm/lib/Target/DirectX/DirectXInstrInfo.cpp b/llvm/lib/Target/DirectX/DirectXInstrInfo.cpp
new file mode 100644
index 000000000000..07b68648f16c
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectXInstrInfo.cpp
@@ -0,0 +1,20 @@
+//===-- DirectXInstrInfo.cpp - InstrInfo for DirectX -*- C++ ------------*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the DirectX specific subclass of TargetInstrInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DirectXInstrInfo.h"
+
+#define GET_INSTRINFO_CTOR_DTOR
+#include "DirectXGenInstrInfo.inc"
+
+using namespace llvm;
+
+DirectXInstrInfo::~DirectXInstrInfo() {}
diff --git a/llvm/lib/Target/DirectX/DirectXInstrInfo.h b/llvm/lib/Target/DirectX/DirectXInstrInfo.h
new file mode 100644
index 000000000000..4fe79ee547fe
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectXInstrInfo.h
@@ -0,0 +1,30 @@
+//===-- DirectXInstrInfo.h - Define InstrInfo for DirectX -------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the DirectX specific subclass of TargetInstrInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DIRECTX_DIRECTXINSTRINFO_H
+#define LLVM_DIRECTX_DIRECTXINSTRINFO_H
+
+#include "DirectXRegisterInfo.h"
+#include "llvm/CodeGen/TargetInstrInfo.h"
+
+#define GET_INSTRINFO_HEADER
+#include "DirectXGenInstrInfo.inc"
+
+namespace llvm {
+struct DirectXInstrInfo : public DirectXGenInstrInfo {
+ explicit DirectXInstrInfo() : DirectXGenInstrInfo() {}
+
+ ~DirectXInstrInfo() override;
+};
+} // namespace llvm
+
+#endif // LLVM_DIRECTX_DIRECTXINSTRINFO_H
diff --git a/llvm/lib/Target/DirectX/DirectXRegisterInfo.cpp b/llvm/lib/Target/DirectX/DirectXRegisterInfo.cpp
new file mode 100644
index 000000000000..c54b494f3730
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectXRegisterInfo.cpp
@@ -0,0 +1,24 @@
+//===-- DirectXRegisterInfo.cpp - RegisterInfo for DirectX -*- C++ ------*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the DirectX specific subclass of TargetRegisterInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DirectXRegisterInfo.h"
+#include "DirectXFrameLowering.h"
+#include "MCTargetDesc/DirectXMCTargetDesc.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+
+#define GET_REGINFO_TARGET_DESC
+#include "DirectXGenRegisterInfo.inc"
+
+using namespace llvm;
+
+DirectXRegisterInfo::~DirectXRegisterInfo() {}
diff --git a/llvm/lib/Target/DirectX/DirectXRegisterInfo.h b/llvm/lib/Target/DirectX/DirectXRegisterInfo.h
new file mode 100644
index 000000000000..023c5c3ef337
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectXRegisterInfo.h
@@ -0,0 +1,28 @@
+//===-- DirectXRegisterInfo.h - Define RegisterInfo for DirectX -*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the DirectX specific subclass of TargetRegisterInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DIRECTX_DXILREGISTERINFO_H
+#define LLVM_DIRECTX_DXILREGISTERINFO_H
+
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+
+#define GET_REGINFO_HEADER
+#include "DirectXGenRegisterInfo.inc"
+
+namespace llvm {
+struct DirectXRegisterInfo : public DirectXGenRegisterInfo {
+ DirectXRegisterInfo() : DirectXGenRegisterInfo(0) {}
+ ~DirectXRegisterInfo();
+};
+} // namespace llvm
+
+#endif // LLVM_DIRECTX_DXILREGISTERINFO_H
diff --git a/llvm/lib/Target/DirectX/DirectXSubtarget.cpp b/llvm/lib/Target/DirectX/DirectXSubtarget.cpp
new file mode 100644
index 000000000000..526b7d29fb13
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectXSubtarget.cpp
@@ -0,0 +1,29 @@
+//===-- DirectXSubtarget.cpp - DirectX Subtarget Information --------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file implements the DirectX-specific subclass of TargetSubtarget.
+///
+//===----------------------------------------------------------------------===//
+
+#include "DirectXSubtarget.h"
+#include "DirectXTargetLowering.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "directx-subtarget"
+
+#define GET_SUBTARGETINFO_CTOR
+#define GET_SUBTARGETINFO_TARGET_DESC
+#include "DirectXGenSubtargetInfo.inc"
+
+DirectXSubtarget::DirectXSubtarget(const Triple &TT, StringRef CPU,
+ StringRef FS, const DirectXTargetMachine &TM)
+ : DirectXGenSubtargetInfo(TT, CPU, CPU, FS), FL(*this), TL(TM, *this) {}
+
+void DirectXSubtarget::anchor() {}
diff --git a/llvm/lib/Target/DirectX/DirectXSubtarget.h b/llvm/lib/Target/DirectX/DirectXSubtarget.h
new file mode 100644
index 000000000000..464d05a0e1ff
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectXSubtarget.h
@@ -0,0 +1,56 @@
+//===-- DirectXSubtarget.h - Define Subtarget for DirectX -------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the DirectX specific subclass of TargetSubtargetInfo.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DIRECTX_DIRECTXSUBTARGET_H
+#define LLVM_DIRECTX_DIRECTXSUBTARGET_H
+
+#include "DirectXFrameLowering.h"
+#include "DirectXInstrInfo.h"
+#include "DirectXTargetLowering.h"
+#include "llvm/CodeGen/TargetSubtargetInfo.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/Target/TargetMachine.h"
+
+#define GET_SUBTARGETINFO_HEADER
+#include "DirectXGenSubtargetInfo.inc"
+
+namespace llvm {
+
+class DirectXTargetMachine;
+
+class DirectXSubtarget : public DirectXGenSubtargetInfo {
+ DirectXFrameLowering FL;
+ DirectXTargetLowering TL;
+ DirectXInstrInfo InstrInfo;
+
+ virtual void anchor(); // virtual anchor method
+
+public:
+ DirectXSubtarget(const Triple &TT, StringRef CPU, StringRef FS,
+ const DirectXTargetMachine &TM);
+
+ /// Parses a subtarget feature string, setting appropriate options.
+ /// \note Definition of function is auto generated by `tblgen`.
+ void ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, StringRef FS);
+
+ const DirectXTargetLowering *getTargetLowering() const override {
+ return &TL;
+ }
+
+ const DirectXFrameLowering *getFrameLowering() const override { return &FL; }
+
+ const DirectXInstrInfo *getInstrInfo() const override { return &InstrInfo; }
+};
+
+} // end namespace llvm
+
+#endif // LLVM_DIRECTX_DIRECTXSUBTARGET_H
diff --git a/llvm/lib/Target/DirectX/DirectXTargetLowering.h b/llvm/lib/Target/DirectX/DirectXTargetLowering.h
new file mode 100644
index 000000000000..dc19894ab165
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectXTargetLowering.h
@@ -0,0 +1,31 @@
+//===-- DirectXTargetLowering.h - Define DX TargetLowering -----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file declares the DirectX specific subclass of TargetLowering.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DIRECTX_DIRECTXTARGETLOWERING_H
+#define LLVM_DIRECTX_DIRECTXTARGETLOWERING_H
+
+#include "llvm/CodeGen/TargetLowering.h"
+
+namespace llvm {
+
+class DirectXSubtarget;
+class DirectXTargetMachine;
+
+class DirectXTargetLowering : public TargetLowering {
+public:
+ explicit DirectXTargetLowering(const DirectXTargetMachine &TM,
+ const DirectXSubtarget &STI);
+};
+
+} // end namespace llvm
+
+#endif // LLVM_DIRECTX_DIRECTXTARGETLOWERING_H
diff --git a/llvm/lib/Target/DirectX/DirectXTargetMachine.cpp b/llvm/lib/Target/DirectX/DirectXTargetMachine.cpp
new file mode 100644
index 000000000000..44bef80ea6fb
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectXTargetMachine.cpp
@@ -0,0 +1,144 @@
+//===- DirectXTargetMachine.cpp - DirectX Target Implementation -*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file contains DirectX target initializer.
+///
+//===----------------------------------------------------------------------===//
+
+#include "DirectXTargetMachine.h"
+#include "DXILWriter/DXILWriterPass.h"
+#include "DirectX.h"
+#include "DirectXSubtarget.h"
+#include "DirectXTargetTransformInfo.h"
+#include "TargetInfo/DirectXTargetInfo.h"
+#include "llvm/CodeGen/MachineModuleInfo.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/TargetPassConfig.h"
+#include "llvm/IR/IRPrintingPasses.h"
+#include "llvm/IR/LegacyPassManager.h"
+#include "llvm/MC/MCSectionDXContainer.h"
+#include "llvm/MC/SectionKind.h"
+#include "llvm/MC/TargetRegistry.h"
+#include "llvm/Support/CodeGen.h"
+#include "llvm/Support/Compiler.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Target/TargetLoweringObjectFile.h"
+
+using namespace llvm;
+
+extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeDirectXTarget() {
+ RegisterTargetMachine<DirectXTargetMachine> X(getTheDirectXTarget());
+ auto *PR = PassRegistry::getPassRegistry();
+ initializeDXILPrepareModulePass(*PR);
+ initializeEmbedDXILPassPass(*PR);
+ initializeDXILOpLoweringLegacyPass(*PR);
+ initializeDXILTranslateMetadataPass(*PR);
+}
+
+class DXILTargetObjectFile : public TargetLoweringObjectFile {
+public:
+ DXILTargetObjectFile() = default;
+
+ MCSection *getExplicitSectionGlobal(const GlobalObject *GO, SectionKind Kind,
+ const TargetMachine &TM) const override {
+ return getContext().getDXContainerSection(GO->getSection(), Kind);
+ }
+
+protected:
+ MCSection *SelectSectionForGlobal(const GlobalObject *GO, SectionKind Kind,
+ const TargetMachine &TM) const override {
+ llvm_unreachable("Not supported!");
+ }
+};
+
+class DirectXPassConfig : public TargetPassConfig {
+public:
+ DirectXPassConfig(DirectXTargetMachine &TM, PassManagerBase &PM)
+ : TargetPassConfig(TM, PM) {}
+
+ DirectXTargetMachine &getDirectXTargetMachine() const {
+ return getTM<DirectXTargetMachine>();
+ }
+
+ FunctionPass *createTargetRegisterAllocator(bool) override { return nullptr; }
+};
+
+DirectXTargetMachine::DirectXTargetMachine(const Target &T, const Triple &TT,
+ StringRef CPU, StringRef FS,
+ const TargetOptions &Options,
+ Optional<Reloc::Model> RM,
+ Optional<CodeModel::Model> CM,
+ CodeGenOpt::Level OL, bool JIT)
+ : LLVMTargetMachine(T,
+ "e-m:e-p:32:32-i1:32-i8:8-i16:16-i32:32-i64:64-f16:16-"
+ "f32:32-f64:64-n8:16:32:64",
+ TT, CPU, FS, Options, Reloc::Static, CodeModel::Small,
+ OL),
+ TLOF(std::make_unique<DXILTargetObjectFile>()),
+ Subtarget(std::make_unique<DirectXSubtarget>(TT, CPU, FS, *this)) {
+ initAsmInfo();
+}
+
+DirectXTargetMachine::~DirectXTargetMachine() {}
+
+bool DirectXTargetMachine::addPassesToEmitFile(
+ PassManagerBase &PM, raw_pwrite_stream &Out, raw_pwrite_stream *DwoOut,
+ CodeGenFileType FileType, bool DisableVerify,
+ MachineModuleInfoWrapperPass *MMIWP) {
+ PM.add(createDXILOpLoweringLegacyPass());
+ PM.add(createDXILPrepareModulePass());
+ PM.add(createDXILTranslateMetadataPass());
+ if (TargetPassConfig::willCompleteCodeGenPipeline()) {
+ PM.add(createDXILEmbedderPass());
+ }
+ switch (FileType) {
+ case CGFT_AssemblyFile:
+ PM.add(createPrintModulePass(Out, "", true));
+ break;
+ case CGFT_ObjectFile:
+ if (TargetPassConfig::willCompleteCodeGenPipeline()) {
+ if (!MMIWP)
+ MMIWP = new MachineModuleInfoWrapperPass(this);
+ PM.add(MMIWP);
+ if (addAsmPrinter(PM, Out, DwoOut, FileType,
+ MMIWP->getMMI().getContext()))
+ return true;
+ } else
+ PM.add(createDXILWriterPass(Out));
+ break;
+ case CGFT_Null:
+ break;
+ }
+ return false;
+}
+
+bool DirectXTargetMachine::addPassesToEmitMC(PassManagerBase &PM,
+ MCContext *&Ctx,
+ raw_pwrite_stream &Out,
+ bool DisableVerify) {
+ return true;
+}
+
+TargetPassConfig *DirectXTargetMachine::createPassConfig(PassManagerBase &PM) {
+ return new DirectXPassConfig(*this, PM);
+}
+
+const DirectXSubtarget *
+DirectXTargetMachine::getSubtargetImpl(const Function &) const {
+ return Subtarget.get();
+}
+
+TargetTransformInfo
+DirectXTargetMachine::getTargetTransformInfo(const Function &F) const {
+ return TargetTransformInfo(DirectXTTIImpl(this, F));
+}
+
+DirectXTargetLowering::DirectXTargetLowering(const DirectXTargetMachine &TM,
+ const DirectXSubtarget &STI)
+ : TargetLowering(TM) {}
diff --git a/llvm/lib/Target/DirectX/DirectXTargetMachine.h b/llvm/lib/Target/DirectX/DirectXTargetMachine.h
new file mode 100644
index 000000000000..ae41638b6acf
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectXTargetMachine.h
@@ -0,0 +1,51 @@
+//===- DirectXTargetMachine.h - DirectX Target Implementation ---*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DIRECTX_DIRECTXTARGETMACHINE_H
+#define LLVM_DIRECTX_DIRECTXTARGETMACHINE_H
+
+#include "DirectXSubtarget.h"
+#include "llvm/Target/TargetMachine.h"
+
+namespace llvm {
+class Function;
+class DirectXTargetMachine : public LLVMTargetMachine {
+ std::unique_ptr<TargetLoweringObjectFile> TLOF;
+ std::unique_ptr<DirectXSubtarget> Subtarget;
+
+public:
+ DirectXTargetMachine(const Target &T, const Triple &TT, StringRef CPU,
+ StringRef FS, const TargetOptions &Options,
+ Optional<Reloc::Model> RM, Optional<CodeModel::Model> CM,
+ CodeGenOpt::Level OL, bool JIT);
+
+ ~DirectXTargetMachine() override;
+
+ bool addPassesToEmitFile(PassManagerBase &PM, raw_pwrite_stream &Out,
+ raw_pwrite_stream *DwoOut, CodeGenFileType FileType,
+ bool DisableVerify,
+ MachineModuleInfoWrapperPass *MMIWP) override;
+
+ bool addPassesToEmitMC(PassManagerBase &PM, MCContext *&Ctx,
+ raw_pwrite_stream &Out, bool DisableVerify) override;
+
+ const DirectXSubtarget *getSubtargetImpl(const Function &) const override;
+
+ TargetPassConfig *createPassConfig(PassManagerBase &PM) override;
+
+ TargetLoweringObjectFile *getObjFileLowering() const override {
+ return TLOF.get();
+ }
+
+ TargetTransformInfo getTargetTransformInfo(const Function &F) const override;
+};
+} // namespace llvm
+
+#endif // LLVM_DIRECTX_DIRECTXTARGETMACHINE_H
diff --git a/llvm/lib/Target/DirectX/DirectXTargetTransformInfo.h b/llvm/lib/Target/DirectX/DirectXTargetTransformInfo.h
new file mode 100644
index 000000000000..90beb386fa44
--- /dev/null
+++ b/llvm/lib/Target/DirectX/DirectXTargetTransformInfo.h
@@ -0,0 +1,39 @@
+//===- DirectXTargetTransformInfo.h - DirectX TTI ---------------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DIRECTX_DIRECTXTARGETTRANSFORMINFO_H
+#define LLVM_DIRECTX_DIRECTXTARGETTRANSFORMINFO_H
+
+#include "DirectXSubtarget.h"
+#include "DirectXTargetMachine.h"
+#include "llvm/CodeGen/BasicTTIImpl.h"
+#include "llvm/IR/Function.h"
+
+namespace llvm {
+class DirectXTTIImpl : public BasicTTIImplBase<DirectXTTIImpl> {
+ using BaseT = BasicTTIImplBase<DirectXTTIImpl>;
+ using TTI = TargetTransformInfo;
+
+ friend BaseT;
+
+ const DirectXSubtarget *ST;
+ const DirectXTargetLowering *TLI;
+
+ const DirectXSubtarget *getST() const { return ST; }
+ const DirectXTargetLowering *getTLI() const { return TLI; }
+
+public:
+ explicit DirectXTTIImpl(const DirectXTargetMachine *TM, const Function &F)
+ : BaseT(TM, F.getParent()->getDataLayout()), ST(TM->getSubtargetImpl(F)),
+ TLI(ST->getTargetLowering()) {}
+};
+} // namespace llvm
+
+#endif // LLVM_DIRECTX_DIRECTXTARGETTRANSFORMINFO_H
diff --git a/llvm/lib/Target/DirectX/MCTargetDesc/DirectXContainerObjectWriter.cpp b/llvm/lib/Target/DirectX/MCTargetDesc/DirectXContainerObjectWriter.cpp
new file mode 100644
index 000000000000..78ccbc444bce
--- /dev/null
+++ b/llvm/lib/Target/DirectX/MCTargetDesc/DirectXContainerObjectWriter.cpp
@@ -0,0 +1,28 @@
+//===-- DirectXContainerObjectWriter.cpp - DX object writer ----*- C++ -*--===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains DXContainer object writers for the DirectX backend.
+//
+//===----------------------------------------------------------------------===//
+
+#include "DirectXContainerObjectWriter.h"
+#include "llvm/MC/MCDXContainerWriter.h"
+
+using namespace llvm;
+
+namespace {
+class DirectXContainerObjectWriter : public MCDXContainerTargetWriter {
+public:
+ DirectXContainerObjectWriter() : MCDXContainerTargetWriter() {}
+};
+} // namespace
+
+std::unique_ptr<MCObjectTargetWriter>
+llvm::createDXContainerTargetObjectWriter() {
+ return std::make_unique<DirectXContainerObjectWriter>();
+}
diff --git a/llvm/lib/Target/DirectX/MCTargetDesc/DirectXContainerObjectWriter.h b/llvm/lib/Target/DirectX/MCTargetDesc/DirectXContainerObjectWriter.h
new file mode 100644
index 000000000000..a6fbdc865f7d
--- /dev/null
+++ b/llvm/lib/Target/DirectX/MCTargetDesc/DirectXContainerObjectWriter.h
@@ -0,0 +1,24 @@
+//===-- DirectXContainerObjectWriter.h - DX object writer ------*- C++ -*--===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains DXContainer object writers for the DirectX backend.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DIRECTX_DIRECTXCONTAINEROBJECTWRITER_H
+#define LLVM_DIRECTX_DIRECTXCONTAINEROBJECTWRITER_H
+
+#include "llvm/MC/MCObjectWriter.h"
+
+namespace llvm {
+
+std::unique_ptr<MCObjectTargetWriter> createDXContainerTargetObjectWriter();
+
+}
+
+#endif // LLVM_DIRECTX_DIRECTXCONTAINEROBJECTWRITER_H
diff --git a/llvm/lib/Target/DirectX/MCTargetDesc/DirectXMCTargetDesc.cpp b/llvm/lib/Target/DirectX/MCTargetDesc/DirectXMCTargetDesc.cpp
new file mode 100644
index 000000000000..0c97ab62a37b
--- /dev/null
+++ b/llvm/lib/Target/DirectX/MCTargetDesc/DirectXMCTargetDesc.cpp
@@ -0,0 +1,152 @@
+//===- DirectXMCTargetDesc.cpp - DirectX Target Implementation --*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file contains DirectX target initializer.
+///
+//===----------------------------------------------------------------------===//
+
+#include "DirectXMCTargetDesc.h"
+#include "DirectXContainerObjectWriter.h"
+#include "TargetInfo/DirectXTargetInfo.h"
+#include "llvm/ADT/Triple.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCAsmBackend.h"
+#include "llvm/MC/MCAsmInfo.h"
+#include "llvm/MC/MCCodeEmitter.h"
+#include "llvm/MC/MCDXContainerWriter.h"
+#include "llvm/MC/MCInstPrinter.h"
+#include "llvm/MC/MCInstrInfo.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/MC/MCSchedule.h"
+#include "llvm/MC/MCSubtargetInfo.h"
+#include "llvm/MC/TargetRegistry.h"
+#include "llvm/Support/Compiler.h"
+#include <memory>
+
+using namespace llvm;
+
+#define GET_INSTRINFO_MC_DESC
+#define GET_INSTRINFO_MC_HELPERS
+#include "DirectXGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_MC_DESC
+#include "DirectXGenSubtargetInfo.inc"
+
+#define GET_REGINFO_MC_DESC
+#include "DirectXGenRegisterInfo.inc"
+
+namespace {
+
+// DXILInstPrinter is a null stub because DXIL instructions aren't printed.
+class DXILInstPrinter : public MCInstPrinter {
+public:
+ DXILInstPrinter(const MCAsmInfo &MAI, const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI)
+ : MCInstPrinter(MAI, MII, MRI) {}
+
+ void printInst(const MCInst *MI, uint64_t Address, StringRef Annot,
+ const MCSubtargetInfo &STI, raw_ostream &O) override {}
+
+ std::pair<const char *, uint64_t> getMnemonic(const MCInst *MI) override {
+ return std::make_pair<const char *, uint64_t>("", 0ull);
+ }
+
+private:
+};
+
+class DXILMCCodeEmitter : public MCCodeEmitter {
+public:
+ DXILMCCodeEmitter() {}
+
+ void encodeInstruction(const MCInst &MI, raw_ostream &OS,
+ SmallVectorImpl<MCFixup> &Fixups,
+ const MCSubtargetInfo &STI) const override {}
+};
+
+class DXILAsmBackend : public MCAsmBackend {
+
+public:
+ DXILAsmBackend(const MCSubtargetInfo &STI) : MCAsmBackend(support::little) {}
+ ~DXILAsmBackend() override = default;
+
+ void applyFixup(const MCAssembler &Asm, const MCFixup &Fixup,
+ const MCValue &Target, MutableArrayRef<char> Data,
+ uint64_t Value, bool IsResolved,
+ const MCSubtargetInfo *STI) const override {}
+
+ std::unique_ptr<MCObjectTargetWriter>
+ createObjectTargetWriter() const override {
+ return createDXContainerTargetObjectWriter();
+ }
+
+ unsigned getNumFixupKinds() const override { return 0; }
+
+ bool writeNopData(raw_ostream &OS, uint64_t Count,
+ const MCSubtargetInfo *STI) const override {
+ return true;
+ }
+
+ bool fixupNeedsRelaxation(const MCFixup &Fixup, uint64_t Value,
+ const MCRelaxableFragment *DF,
+ const MCAsmLayout &Layout) const override {
+ return true;
+ }
+};
+
+class DirectXMCAsmInfo : public MCAsmInfo {
+public:
+ explicit DirectXMCAsmInfo(const Triple &TT, const MCTargetOptions &Options)
+ : MCAsmInfo() {}
+};
+
+} // namespace
+
+static MCInstPrinter *createDXILMCInstPrinter(const Triple &T,
+ unsigned SyntaxVariant,
+ const MCAsmInfo &MAI,
+ const MCInstrInfo &MII,
+ const MCRegisterInfo &MRI) {
+ if (SyntaxVariant == 0)
+ return new DXILInstPrinter(MAI, MII, MRI);
+ return nullptr;
+}
+
+MCCodeEmitter *createDXILMCCodeEmitter(const MCInstrInfo &MCII,
+ MCContext &Ctx) {
+ return new DXILMCCodeEmitter();
+}
+
+MCAsmBackend *createDXILMCAsmBackend(const Target &T,
+ const MCSubtargetInfo &STI,
+ const MCRegisterInfo &MRI,
+ const MCTargetOptions &Options) {
+ return new DXILAsmBackend(STI);
+}
+
+static MCSubtargetInfo *
+createDirectXMCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) {
+ return createDirectXMCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, FS);
+}
+
+static MCRegisterInfo *createDirectXMCRegisterInfo(const Triple &Triple) {
+ return new MCRegisterInfo();
+}
+
+static MCInstrInfo *createDirectXMCInstrInfo() { return new MCInstrInfo(); }
+
+extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeDirectXTargetMC() {
+ Target &T = getTheDirectXTarget();
+ RegisterMCAsmInfo<DirectXMCAsmInfo> X(T);
+ TargetRegistry::RegisterMCInstrInfo(T, createDirectXMCInstrInfo);
+ TargetRegistry::RegisterMCInstPrinter(T, createDXILMCInstPrinter);
+ TargetRegistry::RegisterMCRegInfo(T, createDirectXMCRegisterInfo);
+ TargetRegistry::RegisterMCSubtargetInfo(T, createDirectXMCSubtargetInfo);
+ TargetRegistry::RegisterMCCodeEmitter(T, createDXILMCCodeEmitter);
+ TargetRegistry::RegisterMCAsmBackend(T, createDXILMCAsmBackend);
+}
diff --git a/llvm/lib/Target/DirectX/MCTargetDesc/DirectXMCTargetDesc.h b/llvm/lib/Target/DirectX/MCTargetDesc/DirectXMCTargetDesc.h
new file mode 100644
index 000000000000..0c3873a24417
--- /dev/null
+++ b/llvm/lib/Target/DirectX/MCTargetDesc/DirectXMCTargetDesc.h
@@ -0,0 +1,29 @@
+//===- DirectXMCTargetDesc.h - DirectX Target Interface ---------*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file contains DirectX target interface.
+///
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DIRECTX_DIRECTXMCTARGETDESC_H
+#define LLVM_DIRECTX_DIRECTXMCTARGETDESC_H
+
+// Include DirectX stub register info
+#define GET_REGINFO_ENUM
+#include "DirectXGenRegisterInfo.inc"
+
+// Include DirectX stub instruction info
+#define GET_INSTRINFO_ENUM
+#define GET_INSTRINFO_MC_HELPER_DECLS
+#include "DirectXGenInstrInfo.inc"
+
+#define GET_SUBTARGETINFO_ENUM
+#include "DirectXGenSubtargetInfo.inc"
+
+#endif // LLVM_DIRECTX_DIRECTXMCTARGETDESC_H
diff --git a/llvm/lib/Target/DirectX/PointerTypeAnalysis.cpp b/llvm/lib/Target/DirectX/PointerTypeAnalysis.cpp
new file mode 100644
index 000000000000..1d536bbd0011
--- /dev/null
+++ b/llvm/lib/Target/DirectX/PointerTypeAnalysis.cpp
@@ -0,0 +1,119 @@
+//===- Target/DirectX/PointerTypeAnalisis.cpp - PointerType analysis ------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Analysis pass to assign types to opaque pointers.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PointerTypeAnalysis.h"
+#include "llvm/IR/Instructions.h"
+
+using namespace llvm;
+using namespace llvm::dxil;
+
+namespace {
+
+// Classifies the type of the value passed in by walking the value's users to
+// find a typed instruction to materialize a type from.
+TypedPointerType *classifyPointerType(const Value *V) {
+ assert(V->getType()->isOpaquePointerTy() &&
+ "classifyPointerType called with non-opaque pointer");
+ Type *PointeeTy = nullptr;
+ if (auto *Inst = dyn_cast<GetElementPtrInst>(V)) {
+ if (!Inst->getResultElementType()->isOpaquePointerTy())
+ PointeeTy = Inst->getResultElementType();
+ } else if (auto *Inst = dyn_cast<AllocaInst>(V)) {
+ PointeeTy = Inst->getAllocatedType();
+ }
+ for (const auto *User : V->users()) {
+ Type *NewPointeeTy = nullptr;
+ if (const auto *Inst = dyn_cast<LoadInst>(User)) {
+ NewPointeeTy = Inst->getType();
+ } else if (const auto *Inst = dyn_cast<StoreInst>(User)) {
+ NewPointeeTy = Inst->getValueOperand()->getType();
+ } else if (const auto *Inst = dyn_cast<GetElementPtrInst>(User)) {
+ NewPointeeTy = Inst->getSourceElementType();
+ }
+ if (NewPointeeTy) {
+ // HLSL doesn't support pointers, so it is unlikely to get more than one
+ // or two levels of indirection in the IR. Because of this, recursion is
+ // pretty safe.
+ if (NewPointeeTy->isOpaquePointerTy())
+ return TypedPointerType::get(classifyPointerType(User),
+ V->getType()->getPointerAddressSpace());
+ if (!PointeeTy)
+ PointeeTy = NewPointeeTy;
+ else if (PointeeTy != NewPointeeTy)
+ PointeeTy = Type::getInt8Ty(V->getContext());
+ }
+ }
+ // If we were unable to determine the pointee type, set to i8
+ if (!PointeeTy)
+ PointeeTy = Type::getInt8Ty(V->getContext());
+ return TypedPointerType::get(PointeeTy,
+ V->getType()->getPointerAddressSpace());
+}
+
+// This function constructs a function type accepting typed pointers. It only
+// handles function arguments and return types, and assigns the function type to
+// the function's value in the type map.
+void classifyFunctionType(const Function &F, PointerTypeMap &Map) {
+ SmallVector<Type *, 8> NewArgs;
+ bool HasOpaqueTy = false;
+ Type *RetTy = F.getReturnType();
+ if (RetTy->isOpaquePointerTy()) {
+ RetTy = nullptr;
+ for (const auto &B : F) {
+ for (const auto &I : B) {
+ if (const auto *RetInst = dyn_cast_or_null<ReturnInst>(&I)) {
+ Type *NewRetTy = classifyPointerType(RetInst->getReturnValue());
+ if (!RetTy)
+ RetTy = NewRetTy;
+ else if (RetTy != NewRetTy)
+ RetTy = TypedPointerType::get(
+ Type::getInt8Ty(I.getContext()),
+ F.getReturnType()->getPointerAddressSpace());
+ }
+ }
+ }
+ }
+ for (auto &A : F.args()) {
+ Type *ArgTy = A.getType();
+ if (ArgTy->isOpaquePointerTy()) {
+ TypedPointerType *NewTy = classifyPointerType(&A);
+ Map[&A] = NewTy;
+ ArgTy = NewTy;
+ HasOpaqueTy = true;
+ }
+ NewArgs.push_back(ArgTy);
+ }
+ if (!HasOpaqueTy)
+ return;
+ Map[&F] = FunctionType::get(RetTy, NewArgs, false);
+}
+} // anonymous namespace
+
+PointerTypeMap PointerTypeAnalysis::run(const Module &M) {
+ PointerTypeMap Map;
+ for (auto &G : M.globals()) {
+ if (G.getType()->isOpaquePointerTy())
+ Map[&G] = classifyPointerType(&G);
+ }
+ for (auto &F : M) {
+ classifyFunctionType(F, Map);
+
+ for (const auto &B : F) {
+ for (const auto &I : B) {
+ if (I.getType()->isOpaquePointerTy())
+ Map[&I] = classifyPointerType(&I);
+ }
+ }
+ }
+
+ return Map;
+}
diff --git a/llvm/lib/Target/DirectX/PointerTypeAnalysis.h b/llvm/lib/Target/DirectX/PointerTypeAnalysis.h
new file mode 100644
index 000000000000..c4164b6bf359
--- /dev/null
+++ b/llvm/lib/Target/DirectX/PointerTypeAnalysis.h
@@ -0,0 +1,43 @@
+//===- Target/DirectX/PointerTypeAnalysis.h - PointerType analysis --------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Analysis pass to assign types to opaque pointers.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_TARGET_DIRECTX_POINTERTYPEANALYSIS_H
+#define LLVM_TARGET_DIRECTX_POINTERTYPEANALYSIS_H
+
+#include "DXILPointerType.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/IR/PassManager.h"
+
+namespace llvm {
+
+namespace dxil {
+
+// Store the underlying type and the number of pointer indirections
+using PointerTypeMap = DenseMap<const Value *, Type *>;
+
+/// An analysis to compute the \c PointerTypes for pointers in a \c Module.
+/// Since this analysis is only run during codegen and the new pass manager
+/// doesn't support codegen passes, this is wrtten as a function in a namespace.
+/// It is very simple to transform it into a proper analysis pass.
+/// This code relies on typed pointers existing as LLVM types, but could be
+/// migrated to a custom Type if PointerType loses typed support.
+namespace PointerTypeAnalysis {
+
+/// Compute the \c PointerTypeMap for the module \c M.
+PointerTypeMap run(const Module &M);
+} // namespace PointerTypeAnalysis
+
+} // namespace dxil
+
+} // namespace llvm
+
+#endif // LLVM_TARGET_DIRECTX_POINTERTYPEANALYSIS_H
diff --git a/llvm/lib/Target/DirectX/TargetInfo/DirectXTargetInfo.cpp b/llvm/lib/Target/DirectX/TargetInfo/DirectXTargetInfo.cpp
new file mode 100644
index 000000000000..54c577debc34
--- /dev/null
+++ b/llvm/lib/Target/DirectX/TargetInfo/DirectXTargetInfo.cpp
@@ -0,0 +1,30 @@
+//===- DirectXTargetInfo.cpp - DirectX Target Implementation ----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// This file contains DirectX target initializer.
+///
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/Triple.h"
+#include "llvm/MC/TargetRegistry.h"
+#include "llvm/Support/Compiler.h"
+
+namespace llvm {
+Target &getTheDirectXTarget() {
+ static Target TheDirectXTarget;
+ return TheDirectXTarget;
+}
+} // namespace llvm
+
+using namespace llvm;
+
+extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializeDirectXTargetInfo() {
+ RegisterTarget<Triple::dxil, /*HasJIT=*/false> X(
+ getTheDirectXTarget(), "dxil", "DirectX Intermediate Language", "DXIL");
+}
diff --git a/llvm/lib/Target/DirectX/TargetInfo/DirectXTargetInfo.h b/llvm/lib/Target/DirectX/TargetInfo/DirectXTargetInfo.h
new file mode 100644
index 000000000000..a860c430f81a
--- /dev/null
+++ b/llvm/lib/Target/DirectX/TargetInfo/DirectXTargetInfo.h
@@ -0,0 +1,18 @@
+//===-- DirectXTargetInfo.h - DircetX Target Implementation -----*- C++ -*-===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_DIRECTX_TARGETINFO_DIRECTXTARGETINFO_H
+#define LLVM_DIRECTX_TARGETINFO_DIRECTXTARGETINFO_H
+
+namespace llvm {
+class Target;
+
+Target &getTheDirectXTarget();
+} // namespace llvm
+
+#endif // LLVM_DIRECTX_TARGETINFO_DIRECTXTARGETINFO_H