aboutsummaryrefslogblamecommitdiff
path: root/llvm/lib/Target/X86/X86InstCombineIntrinsic.cpp
blob: ff8710634e89cbbdce8cc50bb250527824cd34f7 (plain) (tree)
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474









































































                                                                                

                                                            


























































































































                                                                               




                                                   




































                                                                                
                                                              








                                                                       
                                                












                                                                          
                                                                           




                                                          
                     










































































                                                                               



                                                 






























































































































                                                                                
                                                   






















































































































































                                                                              

                                     


































































































































                                                                               


                                     

                                                                              
              



































                                                                              
                                                    











































                                                                             
                                                    














































































































































































































































































































































































































































































































































































































































                                                                                

                                       

                                                                                
                   

































                                                                                

                                                                























                                                                              

                                       

































                                                                                

                                                                




















































































































































































                                                                               
                                                                            






                                                            
                                
























































































































































































































































                                                                               
//===-- X86InstCombineIntrinsic.cpp - X86 specific InstCombine pass -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements a TargetTransformInfo analysis pass specific to the
/// X86 target machine. It uses the target's detailed information to provide
/// more precise answers to certain TTI queries, while letting the target
/// independent and default TTI implementations handle the rest.
///
//===----------------------------------------------------------------------===//

#include "X86TargetTransformInfo.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/IntrinsicsX86.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/InstCombine/InstCombiner.h"

using namespace llvm;

#define DEBUG_TYPE "x86tti"

/// Return a constant boolean vector that has true elements in all positions
/// where the input constant data vector has an element with the sign bit set.
static Constant *getNegativeIsTrueBoolVec(Constant *V) {
  VectorType *IntTy = VectorType::getInteger(cast<VectorType>(V->getType()));
  V = ConstantExpr::getBitCast(V, IntTy);
  V = ConstantExpr::getICmp(CmpInst::ICMP_SGT, Constant::getNullValue(IntTy),
                            V);
  return V;
}

/// Convert the x86 XMM integer vector mask to a vector of bools based on
/// each element's most significant bit (the sign bit).
static Value *getBoolVecFromMask(Value *Mask) {
  // Fold Constant Mask.
  if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask))
    return getNegativeIsTrueBoolVec(ConstantMask);

  // Mask was extended from a boolean vector.
  Value *ExtMask;
  if (PatternMatch::match(
          Mask, PatternMatch::m_SExt(PatternMatch::m_Value(ExtMask))) &&
      ExtMask->getType()->isIntOrIntVectorTy(1))
    return ExtMask;

  return nullptr;
}

// TODO: If the x86 backend knew how to convert a bool vector mask back to an
// XMM register mask efficiently, we could transform all x86 masked intrinsics
// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
  Value *Ptr = II.getOperand(0);
  Value *Mask = II.getOperand(1);
  Constant *ZeroVec = Constant::getNullValue(II.getType());

  // Zero Mask - masked load instruction creates a zero vector.
  if (isa<ConstantAggregateZero>(Mask))
    return IC.replaceInstUsesWith(II, ZeroVec);

  // The mask is constant or extended from a bool vector. Convert this x86
  // intrinsic to the LLVM intrinsic to allow target-independent optimizations.
  if (Value *BoolMask = getBoolVecFromMask(Mask)) {
    // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
    // the LLVM intrinsic definition for the pointer argument.
    unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
    PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
    Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");

    // The pass-through vector for an x86 masked load is a zero vector.
    CallInst *NewMaskedLoad = IC.Builder.CreateMaskedLoad(
        II.getType(), PtrCast, Align(1), BoolMask, ZeroVec);
    return IC.replaceInstUsesWith(II, NewMaskedLoad);
  }

  return nullptr;
}

// TODO: If the x86 backend knew how to convert a bool vector mask back to an
// XMM register mask efficiently, we could transform all x86 masked intrinsics
// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
  Value *Ptr = II.getOperand(0);
  Value *Mask = II.getOperand(1);
  Value *Vec = II.getOperand(2);

  // Zero Mask - this masked store instruction does nothing.
  if (isa<ConstantAggregateZero>(Mask)) {
    IC.eraseInstFromFunction(II);
    return true;
  }

  // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
  // anything else at this level.
  if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
    return false;

  // The mask is constant or extended from a bool vector. Convert this x86
  // intrinsic to the LLVM intrinsic to allow target-independent optimizations.
  if (Value *BoolMask = getBoolVecFromMask(Mask)) {
    unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
    PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
    Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");

    IC.Builder.CreateMaskedStore(Vec, PtrCast, Align(1), BoolMask);

    // 'Replace uses' doesn't work for stores. Erase the original masked store.
    IC.eraseInstFromFunction(II);
    return true;
  }

  return false;
}

static Value *simplifyX86immShift(const IntrinsicInst &II,
                                  InstCombiner::BuilderTy &Builder) {
  bool LogicalShift = false;
  bool ShiftLeft = false;
  bool IsImm = false;

  switch (II.getIntrinsicID()) {
  default:
    llvm_unreachable("Unexpected intrinsic!");
  case Intrinsic::x86_sse2_psrai_d:
  case Intrinsic::x86_sse2_psrai_w:
  case Intrinsic::x86_avx2_psrai_d:
  case Intrinsic::x86_avx2_psrai_w:
  case Intrinsic::x86_avx512_psrai_q_128:
  case Intrinsic::x86_avx512_psrai_q_256:
  case Intrinsic::x86_avx512_psrai_d_512:
  case Intrinsic::x86_avx512_psrai_q_512:
  case Intrinsic::x86_avx512_psrai_w_512:
    IsImm = true;
    LLVM_FALLTHROUGH;
  case Intrinsic::x86_sse2_psra_d:
  case Intrinsic::x86_sse2_psra_w:
  case Intrinsic::x86_avx2_psra_d:
  case Intrinsic::x86_avx2_psra_w:
  case Intrinsic::x86_avx512_psra_q_128:
  case Intrinsic::x86_avx512_psra_q_256:
  case Intrinsic::x86_avx512_psra_d_512:
  case Intrinsic::x86_avx512_psra_q_512:
  case Intrinsic::x86_avx512_psra_w_512:
    LogicalShift = false;
    ShiftLeft = false;
    break;
  case Intrinsic::x86_sse2_psrli_d:
  case Intrinsic::x86_sse2_psrli_q:
  case Intrinsic::x86_sse2_psrli_w:
  case Intrinsic::x86_avx2_psrli_d:
  case Intrinsic::x86_avx2_psrli_q:
  case Intrinsic::x86_avx2_psrli_w:
  case Intrinsic::x86_avx512_psrli_d_512:
  case Intrinsic::x86_avx512_psrli_q_512:
  case Intrinsic::x86_avx512_psrli_w_512:
    IsImm = true;
    LLVM_FALLTHROUGH;
  case Intrinsic::x86_sse2_psrl_d:
  case Intrinsic::x86_sse2_psrl_q:
  case Intrinsic::x86_sse2_psrl_w:
  case Intrinsic::x86_avx2_psrl_d:
  case Intrinsic::x86_avx2_psrl_q:
  case Intrinsic::x86_avx2_psrl_w:
  case Intrinsic::x86_avx512_psrl_d_512:
  case Intrinsic::x86_avx512_psrl_q_512:
  case Intrinsic::x86_avx512_psrl_w_512:
    LogicalShift = true;
    ShiftLeft = false;
    break;
  case Intrinsic::x86_sse2_pslli_d:
  case Intrinsic::x86_sse2_pslli_q:
  case Intrinsic::x86_sse2_pslli_w:
  case Intrinsic::x86_avx2_pslli_d:
  case Intrinsic::x86_avx2_pslli_q:
  case Intrinsic::x86_avx2_pslli_w:
  case Intrinsic::x86_avx512_pslli_d_512:
  case Intrinsic::x86_avx512_pslli_q_512:
  case Intrinsic::x86_avx512_pslli_w_512:
    IsImm = true;
    LLVM_FALLTHROUGH;
  case Intrinsic::x86_sse2_psll_d:
  case Intrinsic::x86_sse2_psll_q:
  case Intrinsic::x86_sse2_psll_w:
  case Intrinsic::x86_avx2_psll_d:
  case Intrinsic::x86_avx2_psll_q:
  case Intrinsic::x86_avx2_psll_w:
  case Intrinsic::x86_avx512_psll_d_512:
  case Intrinsic::x86_avx512_psll_q_512:
  case Intrinsic::x86_avx512_psll_w_512:
    LogicalShift = true;
    ShiftLeft = true;
    break;
  }
  assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");

  Value *Vec = II.getArgOperand(0);
  Value *Amt = II.getArgOperand(1);
  auto *VT = cast<FixedVectorType>(Vec->getType());
  Type *SVT = VT->getElementType();
  Type *AmtVT = Amt->getType();
  unsigned VWidth = VT->getNumElements();
  unsigned BitWidth = SVT->getPrimitiveSizeInBits();

  // If the shift amount is guaranteed to be in-range we can replace it with a
  // generic shift. If its guaranteed to be out of range, logical shifts combine
  // to zero and arithmetic shifts are clamped to (BitWidth - 1).
  if (IsImm) {
    assert(AmtVT->isIntegerTy(32) && "Unexpected shift-by-immediate type");
    KnownBits KnownAmtBits =
        llvm::computeKnownBits(Amt, II.getModule()->getDataLayout());
    if (KnownAmtBits.getMaxValue().ult(BitWidth)) {
      Amt = Builder.CreateZExtOrTrunc(Amt, SVT);
      Amt = Builder.CreateVectorSplat(VWidth, Amt);
      return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
                                        : Builder.CreateLShr(Vec, Amt))
                           : Builder.CreateAShr(Vec, Amt));
    }
    if (KnownAmtBits.getMinValue().uge(BitWidth)) {
      if (LogicalShift)
        return ConstantAggregateZero::get(VT);
      Amt = ConstantInt::get(SVT, BitWidth - 1);
      return Builder.CreateAShr(Vec, Builder.CreateVectorSplat(VWidth, Amt));
    }
  } else {
    // Ensure the first element has an in-range value and the rest of the
    // elements in the bottom 64 bits are zero.
    assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 &&
           cast<VectorType>(AmtVT)->getElementType() == SVT &&
           "Unexpected shift-by-scalar type");
    unsigned NumAmtElts = cast<FixedVectorType>(AmtVT)->getNumElements();
    APInt DemandedLower = APInt::getOneBitSet(NumAmtElts, 0);
    APInt DemandedUpper = APInt::getBitsSet(NumAmtElts, 1, NumAmtElts / 2);
    KnownBits KnownLowerBits = llvm::computeKnownBits(
        Amt, DemandedLower, II.getModule()->getDataLayout());
    KnownBits KnownUpperBits = llvm::computeKnownBits(
        Amt, DemandedUpper, II.getModule()->getDataLayout());
    if (KnownLowerBits.getMaxValue().ult(BitWidth) &&
        (DemandedUpper.isZero() || KnownUpperBits.isZero())) {
      SmallVector<int, 16> ZeroSplat(VWidth, 0);
      Amt = Builder.CreateShuffleVector(Amt, ZeroSplat);
      return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
                                        : Builder.CreateLShr(Vec, Amt))
                           : Builder.CreateAShr(Vec, Amt));
    }
  }

  // Simplify if count is constant vector.
  auto *CDV = dyn_cast<ConstantDataVector>(Amt);
  if (!CDV)
    return nullptr;

  // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
  // operand to compute the shift amount.
  assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 &&
         cast<VectorType>(AmtVT)->getElementType() == SVT &&
         "Unexpected shift-by-scalar type");

  // Concatenate the sub-elements to create the 64-bit value.
  APInt Count(64, 0);
  for (unsigned i = 0, NumSubElts = 64 / BitWidth; i != NumSubElts; ++i) {
    unsigned SubEltIdx = (NumSubElts - 1) - i;
    auto *SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
    Count <<= BitWidth;
    Count |= SubElt->getValue().zextOrTrunc(64);
  }

  // If shift-by-zero then just return the original value.
  if (Count.isZero())
    return Vec;

  // Handle cases when Shift >= BitWidth.
  if (Count.uge(BitWidth)) {
    // If LogicalShift - just return zero.
    if (LogicalShift)
      return ConstantAggregateZero::get(VT);

    // If ArithmeticShift - clamp Shift to (BitWidth - 1).
    Count = APInt(64, BitWidth - 1);
  }

  // Get a constant vector of the same type as the first operand.
  auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
  auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);

  if (ShiftLeft)
    return Builder.CreateShl(Vec, ShiftVec);

  if (LogicalShift)
    return Builder.CreateLShr(Vec, ShiftVec);

  return Builder.CreateAShr(Vec, ShiftVec);
}

// Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
// Unlike the generic IR shifts, the intrinsics have defined behaviour for out
// of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
static Value *simplifyX86varShift(const IntrinsicInst &II,
                                  InstCombiner::BuilderTy &Builder) {
  bool LogicalShift = false;
  bool ShiftLeft = false;

  switch (II.getIntrinsicID()) {
  default:
    llvm_unreachable("Unexpected intrinsic!");
  case Intrinsic::x86_avx2_psrav_d:
  case Intrinsic::x86_avx2_psrav_d_256:
  case Intrinsic::x86_avx512_psrav_q_128:
  case Intrinsic::x86_avx512_psrav_q_256:
  case Intrinsic::x86_avx512_psrav_d_512:
  case Intrinsic::x86_avx512_psrav_q_512:
  case Intrinsic::x86_avx512_psrav_w_128:
  case Intrinsic::x86_avx512_psrav_w_256:
  case Intrinsic::x86_avx512_psrav_w_512:
    LogicalShift = false;
    ShiftLeft = false;
    break;
  case Intrinsic::x86_avx2_psrlv_d:
  case Intrinsic::x86_avx2_psrlv_d_256:
  case Intrinsic::x86_avx2_psrlv_q:
  case Intrinsic::x86_avx2_psrlv_q_256:
  case Intrinsic::x86_avx512_psrlv_d_512:
  case Intrinsic::x86_avx512_psrlv_q_512:
  case Intrinsic::x86_avx512_psrlv_w_128:
  case Intrinsic::x86_avx512_psrlv_w_256:
  case Intrinsic::x86_avx512_psrlv_w_512:
    LogicalShift = true;
    ShiftLeft = false;
    break;
  case Intrinsic::x86_avx2_psllv_d:
  case Intrinsic::x86_avx2_psllv_d_256:
  case Intrinsic::x86_avx2_psllv_q:
  case Intrinsic::x86_avx2_psllv_q_256:
  case Intrinsic::x86_avx512_psllv_d_512:
  case Intrinsic::x86_avx512_psllv_q_512:
  case Intrinsic::x86_avx512_psllv_w_128:
  case Intrinsic::x86_avx512_psllv_w_256:
  case Intrinsic::x86_avx512_psllv_w_512:
    LogicalShift = true;
    ShiftLeft = true;
    break;
  }
  assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");

  Value *Vec = II.getArgOperand(0);
  Value *Amt = II.getArgOperand(1);
  auto *VT = cast<FixedVectorType>(II.getType());
  Type *SVT = VT->getElementType();
  int NumElts = VT->getNumElements();
  int BitWidth = SVT->getIntegerBitWidth();

  // If the shift amount is guaranteed to be in-range we can replace it with a
  // generic shift.
  APInt UpperBits =
      APInt::getHighBitsSet(BitWidth, BitWidth - Log2_32(BitWidth));
  if (llvm::MaskedValueIsZero(Amt, UpperBits,
                              II.getModule()->getDataLayout())) {
    return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
                                      : Builder.CreateLShr(Vec, Amt))
                         : Builder.CreateAShr(Vec, Amt));
  }

  // Simplify if all shift amounts are constant/undef.
  auto *CShift = dyn_cast<Constant>(Amt);
  if (!CShift)
    return nullptr;

  // Collect each element's shift amount.
  // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
  bool AnyOutOfRange = false;
  SmallVector<int, 8> ShiftAmts;
  for (int I = 0; I < NumElts; ++I) {
    auto *CElt = CShift->getAggregateElement(I);
    if (isa_and_nonnull<UndefValue>(CElt)) {
      ShiftAmts.push_back(-1);
      continue;
    }

    auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
    if (!COp)
      return nullptr;

    // Handle out of range shifts.
    // If LogicalShift - set to BitWidth (special case).
    // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
    APInt ShiftVal = COp->getValue();
    if (ShiftVal.uge(BitWidth)) {
      AnyOutOfRange = LogicalShift;
      ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
      continue;
    }

    ShiftAmts.push_back((int)ShiftVal.getZExtValue());
  }

  // If all elements out of range or UNDEF, return vector of zeros/undefs.
  // ArithmeticShift should only hit this if they are all UNDEF.
  auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
  if (llvm::all_of(ShiftAmts, OutOfRange)) {
    SmallVector<Constant *, 8> ConstantVec;
    for (int Idx : ShiftAmts) {
      if (Idx < 0) {
        ConstantVec.push_back(UndefValue::get(SVT));
      } else {
        assert(LogicalShift && "Logical shift expected");
        ConstantVec.push_back(ConstantInt::getNullValue(SVT));
      }
    }
    return ConstantVector::get(ConstantVec);
  }

  // We can't handle only some out of range values with generic logical shifts.
  if (AnyOutOfRange)
    return nullptr;

  // Build the shift amount constant vector.
  SmallVector<Constant *, 8> ShiftVecAmts;
  for (int Idx : ShiftAmts) {
    if (Idx < 0)
      ShiftVecAmts.push_back(UndefValue::get(SVT));
    else
      ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
  }
  auto ShiftVec = ConstantVector::get(ShiftVecAmts);

  if (ShiftLeft)
    return Builder.CreateShl(Vec, ShiftVec);

  if (LogicalShift)
    return Builder.CreateLShr(Vec, ShiftVec);

  return Builder.CreateAShr(Vec, ShiftVec);
}

static Value *simplifyX86pack(IntrinsicInst &II,
                              InstCombiner::BuilderTy &Builder, bool IsSigned) {
  Value *Arg0 = II.getArgOperand(0);
  Value *Arg1 = II.getArgOperand(1);
  Type *ResTy = II.getType();

  // Fast all undef handling.
  if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
    return UndefValue::get(ResTy);

  auto *ArgTy = cast<FixedVectorType>(Arg0->getType());
  unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
  unsigned NumSrcElts = ArgTy->getNumElements();
  assert(cast<FixedVectorType>(ResTy)->getNumElements() == (2 * NumSrcElts) &&
         "Unexpected packing types");

  unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
  unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
  unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits();
  assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) &&
         "Unexpected packing types");

  // Constant folding.
  if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
    return nullptr;

  // Clamp Values - signed/unsigned both use signed clamp values, but they
  // differ on the min/max values.
  APInt MinValue, MaxValue;
  if (IsSigned) {
    // PACKSS: Truncate signed value with signed saturation.
    // Source values less than dst minint are saturated to minint.
    // Source values greater than dst maxint are saturated to maxint.
    MinValue =
        APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
    MaxValue =
        APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
  } else {
    // PACKUS: Truncate signed value with unsigned saturation.
    // Source values less than zero are saturated to zero.
    // Source values greater than dst maxuint are saturated to maxuint.
    MinValue = APInt::getZero(SrcScalarSizeInBits);
    MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits);
  }

  auto *MinC = Constant::getIntegerValue(ArgTy, MinValue);
  auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue);
  Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0);
  Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1);
  Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0);
  Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1);

  // Shuffle clamped args together at the lane level.
  SmallVector<int, 32> PackMask;
  for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
    for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
      PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane));
    for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
      PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts);
  }
  auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask);

  // Truncate to dst size.
  return Builder.CreateTrunc(Shuffle, ResTy);
}

static Value *simplifyX86movmsk(const IntrinsicInst &II,
                                InstCombiner::BuilderTy &Builder) {
  Value *Arg = II.getArgOperand(0);
  Type *ResTy = II.getType();

  // movmsk(undef) -> zero as we must ensure the upper bits are zero.
  if (isa<UndefValue>(Arg))
    return Constant::getNullValue(ResTy);

  auto *ArgTy = dyn_cast<FixedVectorType>(Arg->getType());
  // We can't easily peek through x86_mmx types.
  if (!ArgTy)
    return nullptr;

  // Expand MOVMSK to compare/bitcast/zext:
  // e.g. PMOVMSKB(v16i8 x):
  // %cmp = icmp slt <16 x i8> %x, zeroinitializer
  // %int = bitcast <16 x i1> %cmp to i16
  // %res = zext i16 %int to i32
  unsigned NumElts = ArgTy->getNumElements();
  Type *IntegerVecTy = VectorType::getInteger(ArgTy);
  Type *IntegerTy = Builder.getIntNTy(NumElts);

  Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy);
  Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy));
  Res = Builder.CreateBitCast(Res, IntegerTy);
  Res = Builder.CreateZExtOrTrunc(Res, ResTy);
  return Res;
}

static Value *simplifyX86addcarry(const IntrinsicInst &II,
                                  InstCombiner::BuilderTy &Builder) {
  Value *CarryIn = II.getArgOperand(0);
  Value *Op1 = II.getArgOperand(1);
  Value *Op2 = II.getArgOperand(2);
  Type *RetTy = II.getType();
  Type *OpTy = Op1->getType();
  assert(RetTy->getStructElementType(0)->isIntegerTy(8) &&
         RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() &&
         "Unexpected types for x86 addcarry");

  // If carry-in is zero, this is just an unsigned add with overflow.
  if (match(CarryIn, PatternMatch::m_ZeroInt())) {
    Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy,
                                          {Op1, Op2});
    // The types have to be adjusted to match the x86 call types.
    Value *UAddResult = Builder.CreateExtractValue(UAdd, 0);
    Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1),
                                       Builder.getInt8Ty());
    Value *Res = UndefValue::get(RetTy);
    Res = Builder.CreateInsertValue(Res, UAddOV, 0);
    return Builder.CreateInsertValue(Res, UAddResult, 1);
  }

  return nullptr;
}

static Value *simplifyX86insertps(const IntrinsicInst &II,
                                  InstCombiner::BuilderTy &Builder) {
  auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
  if (!CInt)
    return nullptr;

  auto *VecTy = cast<FixedVectorType>(II.getType());
  assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");

  // The immediate permute control byte looks like this:
  //    [3:0] - zero mask for each 32-bit lane
  //    [5:4] - select one 32-bit destination lane
  //    [7:6] - select one 32-bit source lane

  uint8_t Imm = CInt->getZExtValue();
  uint8_t ZMask = Imm & 0xf;
  uint8_t DestLane = (Imm >> 4) & 0x3;
  uint8_t SourceLane = (Imm >> 6) & 0x3;

  ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);

  // If all zero mask bits are set, this was just a weird way to
  // generate a zero vector.
  if (ZMask == 0xf)
    return ZeroVector;

  // Initialize by passing all of the first source bits through.
  int ShuffleMask[4] = {0, 1, 2, 3};

  // We may replace the second operand with the zero vector.
  Value *V1 = II.getArgOperand(1);

  if (ZMask) {
    // If the zero mask is being used with a single input or the zero mask
    // overrides the destination lane, this is a shuffle with the zero vector.
    if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
        (ZMask & (1 << DestLane))) {
      V1 = ZeroVector;
      // We may still move 32-bits of the first source vector from one lane
      // to another.
      ShuffleMask[DestLane] = SourceLane;
      // The zero mask may override the previous insert operation.
      for (unsigned i = 0; i < 4; ++i)
        if ((ZMask >> i) & 0x1)
          ShuffleMask[i] = i + 4;
    } else {
      // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
      return nullptr;
    }
  } else {
    // Replace the selected destination lane with the selected source lane.
    ShuffleMask[DestLane] = SourceLane + 4;
  }

  return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
}

/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
/// or conversion to a shuffle vector.
static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
                               ConstantInt *CILength, ConstantInt *CIIndex,
                               InstCombiner::BuilderTy &Builder) {
  auto LowConstantHighUndef = [&](uint64_t Val) {
    Type *IntTy64 = Type::getInt64Ty(II.getContext());
    Constant *Args[] = {ConstantInt::get(IntTy64, Val),
                        UndefValue::get(IntTy64)};
    return ConstantVector::get(Args);
  };

  // See if we're dealing with constant values.
  auto *C0 = dyn_cast<Constant>(Op0);
  auto *CI0 =
      C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
         : nullptr;

  // Attempt to constant fold.
  if (CILength && CIIndex) {
    // From AMD documentation: "The bit index and field length are each six
    // bits in length other bits of the field are ignored."
    APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
    APInt APLength = CILength->getValue().zextOrTrunc(6);

    unsigned Index = APIndex.getZExtValue();

    // From AMD documentation: "a value of zero in the field length is
    // defined as length of 64".
    unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();

    // From AMD documentation: "If the sum of the bit index + length field
    // is greater than 64, the results are undefined".
    unsigned End = Index + Length;

    // Note that both field index and field length are 8-bit quantities.
    // Since variables 'Index' and 'Length' are unsigned values
    // obtained from zero-extending field index and field length
    // respectively, their sum should never wrap around.
    if (End > 64)
      return UndefValue::get(II.getType());

    // If we are inserting whole bytes, we can convert this to a shuffle.
    // Lowering can recognize EXTRQI shuffle masks.
    if ((Length % 8) == 0 && (Index % 8) == 0) {
      // Convert bit indices to byte indices.
      Length /= 8;
      Index /= 8;

      Type *IntTy8 = Type::getInt8Ty(II.getContext());
      auto *ShufTy = FixedVectorType::get(IntTy8, 16);

      SmallVector<int, 16> ShuffleMask;
      for (int i = 0; i != (int)Length; ++i)
        ShuffleMask.push_back(i + Index);
      for (int i = Length; i != 8; ++i)
        ShuffleMask.push_back(i + 16);
      for (int i = 8; i != 16; ++i)
        ShuffleMask.push_back(-1);

      Value *SV = Builder.CreateShuffleVector(
          Builder.CreateBitCast(Op0, ShufTy),
          ConstantAggregateZero::get(ShufTy), ShuffleMask);
      return Builder.CreateBitCast(SV, II.getType());
    }

    // Constant Fold - shift Index'th bit to lowest position and mask off
    // Length bits.
    if (CI0) {
      APInt Elt = CI0->getValue();
      Elt.lshrInPlace(Index);
      Elt = Elt.zextOrTrunc(Length);
      return LowConstantHighUndef(Elt.getZExtValue());
    }

    // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
    if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
      Value *Args[] = {Op0, CILength, CIIndex};
      Module *M = II.getModule();
      Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
      return Builder.CreateCall(F, Args);
    }
  }

  // Constant Fold - extraction from zero is always {zero, undef}.
  if (CI0 && CI0->isZero())
    return LowConstantHighUndef(0);

  return nullptr;
}

/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
/// folding or conversion to a shuffle vector.
static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
                                 APInt APLength, APInt APIndex,
                                 InstCombiner::BuilderTy &Builder) {
  // From AMD documentation: "The bit index and field length are each six bits
  // in length other bits of the field are ignored."
  APIndex = APIndex.zextOrTrunc(6);
  APLength = APLength.zextOrTrunc(6);

  // Attempt to constant fold.
  unsigned Index = APIndex.getZExtValue();

  // From AMD documentation: "a value of zero in the field length is
  // defined as length of 64".
  unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();

  // From AMD documentation: "If the sum of the bit index + length field
  // is greater than 64, the results are undefined".
  unsigned End = Index + Length;

  // Note that both field index and field length are 8-bit quantities.
  // Since variables 'Index' and 'Length' are unsigned values
  // obtained from zero-extending field index and field length
  // respectively, their sum should never wrap around.
  if (End > 64)
    return UndefValue::get(II.getType());

  // If we are inserting whole bytes, we can convert this to a shuffle.
  // Lowering can recognize INSERTQI shuffle masks.
  if ((Length % 8) == 0 && (Index % 8) == 0) {
    // Convert bit indices to byte indices.
    Length /= 8;
    Index /= 8;

    Type *IntTy8 = Type::getInt8Ty(II.getContext());
    auto *ShufTy = FixedVectorType::get(IntTy8, 16);

    SmallVector<int, 16> ShuffleMask;
    for (int i = 0; i != (int)Index; ++i)
      ShuffleMask.push_back(i);
    for (int i = 0; i != (int)Length; ++i)
      ShuffleMask.push_back(i + 16);
    for (int i = Index + Length; i != 8; ++i)
      ShuffleMask.push_back(i);
    for (int i = 8; i != 16; ++i)
      ShuffleMask.push_back(-1);

    Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
                                            Builder.CreateBitCast(Op1, ShufTy),
                                            ShuffleMask);
    return Builder.CreateBitCast(SV, II.getType());
  }

  // See if we're dealing with constant values.
  auto *C0 = dyn_cast<Constant>(Op0);
  auto *C1 = dyn_cast<Constant>(Op1);
  auto *CI00 =
      C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
         : nullptr;
  auto *CI10 =
      C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
         : nullptr;

  // Constant Fold - insert bottom Length bits starting at the Index'th bit.
  if (CI00 && CI10) {
    APInt V00 = CI00->getValue();
    APInt V10 = CI10->getValue();
    APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
    V00 = V00 & ~Mask;
    V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
    APInt Val = V00 | V10;
    Type *IntTy64 = Type::getInt64Ty(II.getContext());
    Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
                        UndefValue::get(IntTy64)};
    return ConstantVector::get(Args);
  }

  // If we were an INSERTQ call, we'll save demanded elements if we convert to
  // INSERTQI.
  if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
    Type *IntTy8 = Type::getInt8Ty(II.getContext());
    Constant *CILength = ConstantInt::get(IntTy8, Length, false);
    Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);

    Value *Args[] = {Op0, Op1, CILength, CIIndex};
    Module *M = II.getModule();
    Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
    return Builder.CreateCall(F, Args);
  }

  return nullptr;
}

/// Attempt to convert pshufb* to shufflevector if the mask is constant.
static Value *simplifyX86pshufb(const IntrinsicInst &II,
                                InstCombiner::BuilderTy &Builder) {
  auto *V = dyn_cast<Constant>(II.getArgOperand(1));
  if (!V)
    return nullptr;

  auto *VecTy = cast<FixedVectorType>(II.getType());
  unsigned NumElts = VecTy->getNumElements();
  assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
         "Unexpected number of elements in shuffle mask!");

  // Construct a shuffle mask from constant integers or UNDEFs.
  int Indexes[64];

  // Each byte in the shuffle control mask forms an index to permute the
  // corresponding byte in the destination operand.
  for (unsigned I = 0; I < NumElts; ++I) {
    Constant *COp = V->getAggregateElement(I);
    if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
      return nullptr;

    if (isa<UndefValue>(COp)) {
      Indexes[I] = -1;
      continue;
    }

    int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();

    // If the most significant bit (bit[7]) of each byte of the shuffle
    // control mask is set, then zero is written in the result byte.
    // The zero vector is in the right-hand side of the resulting
    // shufflevector.

    // The value of each index for the high 128-bit lane is the least
    // significant 4 bits of the respective shuffle control byte.
    Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
    Indexes[I] = Index;
  }

  auto V1 = II.getArgOperand(0);
  auto V2 = Constant::getNullValue(VecTy);
  return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes, NumElts));
}

/// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
                                    InstCombiner::BuilderTy &Builder) {
  auto *V = dyn_cast<Constant>(II.getArgOperand(1));
  if (!V)
    return nullptr;

  auto *VecTy = cast<FixedVectorType>(II.getType());
  unsigned NumElts = VecTy->getNumElements();
  bool IsPD = VecTy->getScalarType()->isDoubleTy();
  unsigned NumLaneElts = IsPD ? 2 : 4;
  assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);

  // Construct a shuffle mask from constant integers or UNDEFs.
  int Indexes[16];

  // The intrinsics only read one or two bits, clear the rest.
  for (unsigned I = 0; I < NumElts; ++I) {
    Constant *COp = V->getAggregateElement(I);
    if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
      return nullptr;

    if (isa<UndefValue>(COp)) {
      Indexes[I] = -1;
      continue;
    }

    APInt Index = cast<ConstantInt>(COp)->getValue();
    Index = Index.zextOrTrunc(32).getLoBits(2);

    // The PD variants uses bit 1 to select per-lane element index, so
    // shift down to convert to generic shuffle mask index.
    if (IsPD)
      Index.lshrInPlace(1);

    // The _256 variants are a bit trickier since the mask bits always index
    // into the corresponding 128 half. In order to convert to a generic
    // shuffle, we have to make that explicit.
    Index += APInt(32, (I / NumLaneElts) * NumLaneElts);

    Indexes[I] = Index.getZExtValue();
  }

  auto V1 = II.getArgOperand(0);
  return Builder.CreateShuffleVector(V1, makeArrayRef(Indexes, NumElts));
}

/// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
static Value *simplifyX86vpermv(const IntrinsicInst &II,
                                InstCombiner::BuilderTy &Builder) {
  auto *V = dyn_cast<Constant>(II.getArgOperand(1));
  if (!V)
    return nullptr;

  auto *VecTy = cast<FixedVectorType>(II.getType());
  unsigned Size = VecTy->getNumElements();
  assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
         "Unexpected shuffle mask size");

  // Construct a shuffle mask from constant integers or UNDEFs.
  int Indexes[64];

  for (unsigned I = 0; I < Size; ++I) {
    Constant *COp = V->getAggregateElement(I);
    if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
      return nullptr;

    if (isa<UndefValue>(COp)) {
      Indexes[I] = -1;
      continue;
    }

    uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
    Index &= Size - 1;
    Indexes[I] = Index;
  }

  auto V1 = II.getArgOperand(0);
  return Builder.CreateShuffleVector(V1, makeArrayRef(Indexes, Size));
}

Optional<Instruction *>
X86TTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
  auto SimplifyDemandedVectorEltsLow = [&IC](Value *Op, unsigned Width,
                                             unsigned DemandedWidth) {
    APInt UndefElts(Width, 0);
    APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
    return IC.SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
  };

  Intrinsic::ID IID = II.getIntrinsicID();
  switch (IID) {
  case Intrinsic::x86_bmi_bextr_32:
  case Intrinsic::x86_bmi_bextr_64:
  case Intrinsic::x86_tbm_bextri_u32:
  case Intrinsic::x86_tbm_bextri_u64:
    // If the RHS is a constant we can try some simplifications.
    if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
      uint64_t Shift = C->getZExtValue();
      uint64_t Length = (Shift >> 8) & 0xff;
      Shift &= 0xff;
      unsigned BitWidth = II.getType()->getIntegerBitWidth();
      // If the length is 0 or the shift is out of range, replace with zero.
      if (Length == 0 || Shift >= BitWidth) {
        return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
      }
      // If the LHS is also a constant, we can completely constant fold this.
      if (auto *InC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
        uint64_t Result = InC->getZExtValue() >> Shift;
        if (Length > BitWidth)
          Length = BitWidth;
        Result &= maskTrailingOnes<uint64_t>(Length);
        return IC.replaceInstUsesWith(II,
                                      ConstantInt::get(II.getType(), Result));
      }
      // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
      // are only masking bits that a shift already cleared?
    }
    break;

  case Intrinsic::x86_bmi_bzhi_32:
  case Intrinsic::x86_bmi_bzhi_64:
    // If the RHS is a constant we can try some simplifications.
    if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
      uint64_t Index = C->getZExtValue() & 0xff;
      unsigned BitWidth = II.getType()->getIntegerBitWidth();
      if (Index >= BitWidth) {
        return IC.replaceInstUsesWith(II, II.getArgOperand(0));
      }
      if (Index == 0) {
        return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
      }
      // If the LHS is also a constant, we can completely constant fold this.
      if (auto *InC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
        uint64_t Result = InC->getZExtValue();
        Result &= maskTrailingOnes<uint64_t>(Index);
        return IC.replaceInstUsesWith(II,
                                      ConstantInt::get(II.getType(), Result));
      }
      // TODO should we convert this to an AND if the RHS is constant?
    }
    break;
  case Intrinsic::x86_bmi_pext_32:
  case Intrinsic::x86_bmi_pext_64:
    if (auto *MaskC = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
      if (MaskC->isNullValue()) {
        return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
      }
      if (MaskC->isAllOnesValue()) {
        return IC.replaceInstUsesWith(II, II.getArgOperand(0));
      }

      if (MaskC->getValue().isShiftedMask()) {
        // any single contingous sequence of 1s anywhere in the mask simply
        // describes a subset of the input bits shifted to the appropriate
        // position.  Replace with the straight forward IR.
        unsigned ShiftAmount = MaskC->getValue().countTrailingZeros();
        Value *Input = II.getArgOperand(0);
        Value *Masked = IC.Builder.CreateAnd(Input, II.getArgOperand(1));
        Value *Shifted = IC.Builder.CreateLShr(Masked,
                                               ConstantInt::get(II.getType(),
                                                                ShiftAmount));
        return IC.replaceInstUsesWith(II, Shifted);
      }


      if (auto *SrcC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
        uint64_t Src = SrcC->getZExtValue();
        uint64_t Mask = MaskC->getZExtValue();
        uint64_t Result = 0;
        uint64_t BitToSet = 1;

        while (Mask) {
          // Isolate lowest set bit.
          uint64_t BitToTest = Mask & -Mask;
          if (BitToTest & Src)
            Result |= BitToSet;

          BitToSet <<= 1;
          // Clear lowest set bit.
          Mask &= Mask - 1;
        }

        return IC.replaceInstUsesWith(II,
                                      ConstantInt::get(II.getType(), Result));
      }
    }
    break;
  case Intrinsic::x86_bmi_pdep_32:
  case Intrinsic::x86_bmi_pdep_64:
    if (auto *MaskC = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
      if (MaskC->isNullValue()) {
        return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
      }
      if (MaskC->isAllOnesValue()) {
        return IC.replaceInstUsesWith(II, II.getArgOperand(0));
      }
      if (MaskC->getValue().isShiftedMask()) {
        // any single contingous sequence of 1s anywhere in the mask simply
        // describes a subset of the input bits shifted to the appropriate
        // position.  Replace with the straight forward IR.
        unsigned ShiftAmount = MaskC->getValue().countTrailingZeros();
        Value *Input = II.getArgOperand(0);
        Value *Shifted = IC.Builder.CreateShl(Input,
                                              ConstantInt::get(II.getType(),
                                                               ShiftAmount));
        Value *Masked = IC.Builder.CreateAnd(Shifted, II.getArgOperand(1));
        return IC.replaceInstUsesWith(II, Masked);
      }

      if (auto *SrcC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
        uint64_t Src = SrcC->getZExtValue();
        uint64_t Mask = MaskC->getZExtValue();
        uint64_t Result = 0;
        uint64_t BitToTest = 1;

        while (Mask) {
          // Isolate lowest set bit.
          uint64_t BitToSet = Mask & -Mask;
          if (BitToTest & Src)
            Result |= BitToSet;

          BitToTest <<= 1;
          // Clear lowest set bit;
          Mask &= Mask - 1;
        }

        return IC.replaceInstUsesWith(II,
                                      ConstantInt::get(II.getType(), Result));
      }
    }
    break;

  case Intrinsic::x86_sse_cvtss2si:
  case Intrinsic::x86_sse_cvtss2si64:
  case Intrinsic::x86_sse_cvttss2si:
  case Intrinsic::x86_sse_cvttss2si64:
  case Intrinsic::x86_sse2_cvtsd2si:
  case Intrinsic::x86_sse2_cvtsd2si64:
  case Intrinsic::x86_sse2_cvttsd2si:
  case Intrinsic::x86_sse2_cvttsd2si64:
  case Intrinsic::x86_avx512_vcvtss2si32:
  case Intrinsic::x86_avx512_vcvtss2si64:
  case Intrinsic::x86_avx512_vcvtss2usi32:
  case Intrinsic::x86_avx512_vcvtss2usi64:
  case Intrinsic::x86_avx512_vcvtsd2si32:
  case Intrinsic::x86_avx512_vcvtsd2si64:
  case Intrinsic::x86_avx512_vcvtsd2usi32:
  case Intrinsic::x86_avx512_vcvtsd2usi64:
  case Intrinsic::x86_avx512_cvttss2si:
  case Intrinsic::x86_avx512_cvttss2si64:
  case Intrinsic::x86_avx512_cvttss2usi:
  case Intrinsic::x86_avx512_cvttss2usi64:
  case Intrinsic::x86_avx512_cvttsd2si:
  case Intrinsic::x86_avx512_cvttsd2si64:
  case Intrinsic::x86_avx512_cvttsd2usi:
  case Intrinsic::x86_avx512_cvttsd2usi64: {
    // These intrinsics only demand the 0th element of their input vectors. If
    // we can simplify the input based on that, do so now.
    Value *Arg = II.getArgOperand(0);
    unsigned VWidth = cast<FixedVectorType>(Arg->getType())->getNumElements();
    if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
      return IC.replaceOperand(II, 0, V);
    }
    break;
  }

  case Intrinsic::x86_mmx_pmovmskb:
  case Intrinsic::x86_sse_movmsk_ps:
  case Intrinsic::x86_sse2_movmsk_pd:
  case Intrinsic::x86_sse2_pmovmskb_128:
  case Intrinsic::x86_avx_movmsk_pd_256:
  case Intrinsic::x86_avx_movmsk_ps_256:
  case Intrinsic::x86_avx2_pmovmskb:
    if (Value *V = simplifyX86movmsk(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_sse_comieq_ss:
  case Intrinsic::x86_sse_comige_ss:
  case Intrinsic::x86_sse_comigt_ss:
  case Intrinsic::x86_sse_comile_ss:
  case Intrinsic::x86_sse_comilt_ss:
  case Intrinsic::x86_sse_comineq_ss:
  case Intrinsic::x86_sse_ucomieq_ss:
  case Intrinsic::x86_sse_ucomige_ss:
  case Intrinsic::x86_sse_ucomigt_ss:
  case Intrinsic::x86_sse_ucomile_ss:
  case Intrinsic::x86_sse_ucomilt_ss:
  case Intrinsic::x86_sse_ucomineq_ss:
  case Intrinsic::x86_sse2_comieq_sd:
  case Intrinsic::x86_sse2_comige_sd:
  case Intrinsic::x86_sse2_comigt_sd:
  case Intrinsic::x86_sse2_comile_sd:
  case Intrinsic::x86_sse2_comilt_sd:
  case Intrinsic::x86_sse2_comineq_sd:
  case Intrinsic::x86_sse2_ucomieq_sd:
  case Intrinsic::x86_sse2_ucomige_sd:
  case Intrinsic::x86_sse2_ucomigt_sd:
  case Intrinsic::x86_sse2_ucomile_sd:
  case Intrinsic::x86_sse2_ucomilt_sd:
  case Intrinsic::x86_sse2_ucomineq_sd:
  case Intrinsic::x86_avx512_vcomi_ss:
  case Intrinsic::x86_avx512_vcomi_sd:
  case Intrinsic::x86_avx512_mask_cmp_ss:
  case Intrinsic::x86_avx512_mask_cmp_sd: {
    // These intrinsics only demand the 0th element of their input vectors. If
    // we can simplify the input based on that, do so now.
    bool MadeChange = false;
    Value *Arg0 = II.getArgOperand(0);
    Value *Arg1 = II.getArgOperand(1);
    unsigned VWidth = cast<FixedVectorType>(Arg0->getType())->getNumElements();
    if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
      IC.replaceOperand(II, 0, V);
      MadeChange = true;
    }
    if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
      IC.replaceOperand(II, 1, V);
      MadeChange = true;
    }
    if (MadeChange) {
      return &II;
    }
    break;
  }

  case Intrinsic::x86_avx512_add_ps_512:
  case Intrinsic::x86_avx512_div_ps_512:
  case Intrinsic::x86_avx512_mul_ps_512:
  case Intrinsic::x86_avx512_sub_ps_512:
  case Intrinsic::x86_avx512_add_pd_512:
  case Intrinsic::x86_avx512_div_pd_512:
  case Intrinsic::x86_avx512_mul_pd_512:
  case Intrinsic::x86_avx512_sub_pd_512:
    // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
    // IR operations.
    if (auto *R = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
      if (R->getValue() == 4) {
        Value *Arg0 = II.getArgOperand(0);
        Value *Arg1 = II.getArgOperand(1);

        Value *V;
        switch (IID) {
        default:
          llvm_unreachable("Case stmts out of sync!");
        case Intrinsic::x86_avx512_add_ps_512:
        case Intrinsic::x86_avx512_add_pd_512:
          V = IC.Builder.CreateFAdd(Arg0, Arg1);
          break;
        case Intrinsic::x86_avx512_sub_ps_512:
        case Intrinsic::x86_avx512_sub_pd_512:
          V = IC.Builder.CreateFSub(Arg0, Arg1);
          break;
        case Intrinsic::x86_avx512_mul_ps_512:
        case Intrinsic::x86_avx512_mul_pd_512:
          V = IC.Builder.CreateFMul(Arg0, Arg1);
          break;
        case Intrinsic::x86_avx512_div_ps_512:
        case Intrinsic::x86_avx512_div_pd_512:
          V = IC.Builder.CreateFDiv(Arg0, Arg1);
          break;
        }

        return IC.replaceInstUsesWith(II, V);
      }
    }
    break;

  case Intrinsic::x86_avx512_mask_add_ss_round:
  case Intrinsic::x86_avx512_mask_div_ss_round:
  case Intrinsic::x86_avx512_mask_mul_ss_round:
  case Intrinsic::x86_avx512_mask_sub_ss_round:
  case Intrinsic::x86_avx512_mask_add_sd_round:
  case Intrinsic::x86_avx512_mask_div_sd_round:
  case Intrinsic::x86_avx512_mask_mul_sd_round:
  case Intrinsic::x86_avx512_mask_sub_sd_round:
    // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
    // IR operations.
    if (auto *R = dyn_cast<ConstantInt>(II.getArgOperand(4))) {
      if (R->getValue() == 4) {
        // Extract the element as scalars.
        Value *Arg0 = II.getArgOperand(0);
        Value *Arg1 = II.getArgOperand(1);
        Value *LHS = IC.Builder.CreateExtractElement(Arg0, (uint64_t)0);
        Value *RHS = IC.Builder.CreateExtractElement(Arg1, (uint64_t)0);

        Value *V;
        switch (IID) {
        default:
          llvm_unreachable("Case stmts out of sync!");
        case Intrinsic::x86_avx512_mask_add_ss_round:
        case Intrinsic::x86_avx512_mask_add_sd_round:
          V = IC.Builder.CreateFAdd(LHS, RHS);
          break;
        case Intrinsic::x86_avx512_mask_sub_ss_round:
        case Intrinsic::x86_avx512_mask_sub_sd_round:
          V = IC.Builder.CreateFSub(LHS, RHS);
          break;
        case Intrinsic::x86_avx512_mask_mul_ss_round:
        case Intrinsic::x86_avx512_mask_mul_sd_round:
          V = IC.Builder.CreateFMul(LHS, RHS);
          break;
        case Intrinsic::x86_avx512_mask_div_ss_round:
        case Intrinsic::x86_avx512_mask_div_sd_round:
          V = IC.Builder.CreateFDiv(LHS, RHS);
          break;
        }

        // Handle the masking aspect of the intrinsic.
        Value *Mask = II.getArgOperand(3);
        auto *C = dyn_cast<ConstantInt>(Mask);
        // We don't need a select if we know the mask bit is a 1.
        if (!C || !C->getValue()[0]) {
          // Cast the mask to an i1 vector and then extract the lowest element.
          auto *MaskTy = FixedVectorType::get(
              IC.Builder.getInt1Ty(),
              cast<IntegerType>(Mask->getType())->getBitWidth());
          Mask = IC.Builder.CreateBitCast(Mask, MaskTy);
          Mask = IC.Builder.CreateExtractElement(Mask, (uint64_t)0);
          // Extract the lowest element from the passthru operand.
          Value *Passthru =
              IC.Builder.CreateExtractElement(II.getArgOperand(2), (uint64_t)0);
          V = IC.Builder.CreateSelect(Mask, V, Passthru);
        }

        // Insert the result back into the original argument 0.
        V = IC.Builder.CreateInsertElement(Arg0, V, (uint64_t)0);

        return IC.replaceInstUsesWith(II, V);
      }
    }
    break;

  // Constant fold ashr( <A x Bi>, Ci ).
  // Constant fold lshr( <A x Bi>, Ci ).
  // Constant fold shl( <A x Bi>, Ci ).
  case Intrinsic::x86_sse2_psrai_d:
  case Intrinsic::x86_sse2_psrai_w:
  case Intrinsic::x86_avx2_psrai_d:
  case Intrinsic::x86_avx2_psrai_w:
  case Intrinsic::x86_avx512_psrai_q_128:
  case Intrinsic::x86_avx512_psrai_q_256:
  case Intrinsic::x86_avx512_psrai_d_512:
  case Intrinsic::x86_avx512_psrai_q_512:
  case Intrinsic::x86_avx512_psrai_w_512:
  case Intrinsic::x86_sse2_psrli_d:
  case Intrinsic::x86_sse2_psrli_q:
  case Intrinsic::x86_sse2_psrli_w:
  case Intrinsic::x86_avx2_psrli_d:
  case Intrinsic::x86_avx2_psrli_q:
  case Intrinsic::x86_avx2_psrli_w:
  case Intrinsic::x86_avx512_psrli_d_512:
  case Intrinsic::x86_avx512_psrli_q_512:
  case Intrinsic::x86_avx512_psrli_w_512:
  case Intrinsic::x86_sse2_pslli_d:
  case Intrinsic::x86_sse2_pslli_q:
  case Intrinsic::x86_sse2_pslli_w:
  case Intrinsic::x86_avx2_pslli_d:
  case Intrinsic::x86_avx2_pslli_q:
  case Intrinsic::x86_avx2_pslli_w:
  case Intrinsic::x86_avx512_pslli_d_512:
  case Intrinsic::x86_avx512_pslli_q_512:
  case Intrinsic::x86_avx512_pslli_w_512:
    if (Value *V = simplifyX86immShift(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_sse2_psra_d:
  case Intrinsic::x86_sse2_psra_w:
  case Intrinsic::x86_avx2_psra_d:
  case Intrinsic::x86_avx2_psra_w:
  case Intrinsic::x86_avx512_psra_q_128:
  case Intrinsic::x86_avx512_psra_q_256:
  case Intrinsic::x86_avx512_psra_d_512:
  case Intrinsic::x86_avx512_psra_q_512:
  case Intrinsic::x86_avx512_psra_w_512:
  case Intrinsic::x86_sse2_psrl_d:
  case Intrinsic::x86_sse2_psrl_q:
  case Intrinsic::x86_sse2_psrl_w:
  case Intrinsic::x86_avx2_psrl_d:
  case Intrinsic::x86_avx2_psrl_q:
  case Intrinsic::x86_avx2_psrl_w:
  case Intrinsic::x86_avx512_psrl_d_512:
  case Intrinsic::x86_avx512_psrl_q_512:
  case Intrinsic::x86_avx512_psrl_w_512:
  case Intrinsic::x86_sse2_psll_d:
  case Intrinsic::x86_sse2_psll_q:
  case Intrinsic::x86_sse2_psll_w:
  case Intrinsic::x86_avx2_psll_d:
  case Intrinsic::x86_avx2_psll_q:
  case Intrinsic::x86_avx2_psll_w:
  case Intrinsic::x86_avx512_psll_d_512:
  case Intrinsic::x86_avx512_psll_q_512:
  case Intrinsic::x86_avx512_psll_w_512: {
    if (Value *V = simplifyX86immShift(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }

    // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
    // operand to compute the shift amount.
    Value *Arg1 = II.getArgOperand(1);
    assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
           "Unexpected packed shift size");
    unsigned VWidth = cast<FixedVectorType>(Arg1->getType())->getNumElements();

    if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
      return IC.replaceOperand(II, 1, V);
    }
    break;
  }

  case Intrinsic::x86_avx2_psllv_d:
  case Intrinsic::x86_avx2_psllv_d_256:
  case Intrinsic::x86_avx2_psllv_q:
  case Intrinsic::x86_avx2_psllv_q_256:
  case Intrinsic::x86_avx512_psllv_d_512:
  case Intrinsic::x86_avx512_psllv_q_512:
  case Intrinsic::x86_avx512_psllv_w_128:
  case Intrinsic::x86_avx512_psllv_w_256:
  case Intrinsic::x86_avx512_psllv_w_512:
  case Intrinsic::x86_avx2_psrav_d:
  case Intrinsic::x86_avx2_psrav_d_256:
  case Intrinsic::x86_avx512_psrav_q_128:
  case Intrinsic::x86_avx512_psrav_q_256:
  case Intrinsic::x86_avx512_psrav_d_512:
  case Intrinsic::x86_avx512_psrav_q_512:
  case Intrinsic::x86_avx512_psrav_w_128:
  case Intrinsic::x86_avx512_psrav_w_256:
  case Intrinsic::x86_avx512_psrav_w_512:
  case Intrinsic::x86_avx2_psrlv_d:
  case Intrinsic::x86_avx2_psrlv_d_256:
  case Intrinsic::x86_avx2_psrlv_q:
  case Intrinsic::x86_avx2_psrlv_q_256:
  case Intrinsic::x86_avx512_psrlv_d_512:
  case Intrinsic::x86_avx512_psrlv_q_512:
  case Intrinsic::x86_avx512_psrlv_w_128:
  case Intrinsic::x86_avx512_psrlv_w_256:
  case Intrinsic::x86_avx512_psrlv_w_512:
    if (Value *V = simplifyX86varShift(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_sse2_packssdw_128:
  case Intrinsic::x86_sse2_packsswb_128:
  case Intrinsic::x86_avx2_packssdw:
  case Intrinsic::x86_avx2_packsswb:
  case Intrinsic::x86_avx512_packssdw_512:
  case Intrinsic::x86_avx512_packsswb_512:
    if (Value *V = simplifyX86pack(II, IC.Builder, true)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_sse2_packuswb_128:
  case Intrinsic::x86_sse41_packusdw:
  case Intrinsic::x86_avx2_packusdw:
  case Intrinsic::x86_avx2_packuswb:
  case Intrinsic::x86_avx512_packusdw_512:
  case Intrinsic::x86_avx512_packuswb_512:
    if (Value *V = simplifyX86pack(II, IC.Builder, false)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_pclmulqdq:
  case Intrinsic::x86_pclmulqdq_256:
  case Intrinsic::x86_pclmulqdq_512: {
    if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
      unsigned Imm = C->getZExtValue();

      bool MadeChange = false;
      Value *Arg0 = II.getArgOperand(0);
      Value *Arg1 = II.getArgOperand(1);
      unsigned VWidth =
          cast<FixedVectorType>(Arg0->getType())->getNumElements();

      APInt UndefElts1(VWidth, 0);
      APInt DemandedElts1 =
          APInt::getSplat(VWidth, APInt(2, (Imm & 0x01) ? 2 : 1));
      if (Value *V =
              IC.SimplifyDemandedVectorElts(Arg0, DemandedElts1, UndefElts1)) {
        IC.replaceOperand(II, 0, V);
        MadeChange = true;
      }

      APInt UndefElts2(VWidth, 0);
      APInt DemandedElts2 =
          APInt::getSplat(VWidth, APInt(2, (Imm & 0x10) ? 2 : 1));
      if (Value *V =
              IC.SimplifyDemandedVectorElts(Arg1, DemandedElts2, UndefElts2)) {
        IC.replaceOperand(II, 1, V);
        MadeChange = true;
      }

      // If either input elements are undef, the result is zero.
      if (DemandedElts1.isSubsetOf(UndefElts1) ||
          DemandedElts2.isSubsetOf(UndefElts2)) {
        return IC.replaceInstUsesWith(II,
                                      ConstantAggregateZero::get(II.getType()));
      }

      if (MadeChange) {
        return &II;
      }
    }
    break;
  }

  case Intrinsic::x86_sse41_insertps:
    if (Value *V = simplifyX86insertps(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_sse4a_extrq: {
    Value *Op0 = II.getArgOperand(0);
    Value *Op1 = II.getArgOperand(1);
    unsigned VWidth0 = cast<FixedVectorType>(Op0->getType())->getNumElements();
    unsigned VWidth1 = cast<FixedVectorType>(Op1->getType())->getNumElements();
    assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
           Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
           VWidth1 == 16 && "Unexpected operand sizes");

    // See if we're dealing with constant values.
    auto *C1 = dyn_cast<Constant>(Op1);
    auto *CILength =
        C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
           : nullptr;
    auto *CIIndex =
        C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
           : nullptr;

    // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
    if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }

    // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
    // operands and the lowest 16-bits of the second.
    bool MadeChange = false;
    if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
      IC.replaceOperand(II, 0, V);
      MadeChange = true;
    }
    if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
      IC.replaceOperand(II, 1, V);
      MadeChange = true;
    }
    if (MadeChange) {
      return &II;
    }
    break;
  }

  case Intrinsic::x86_sse4a_extrqi: {
    // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
    // bits of the lower 64-bits. The upper 64-bits are undefined.
    Value *Op0 = II.getArgOperand(0);
    unsigned VWidth = cast<FixedVectorType>(Op0->getType())->getNumElements();
    assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
           "Unexpected operand size");

    // See if we're dealing with constant values.
    auto *CILength = dyn_cast<ConstantInt>(II.getArgOperand(1));
    auto *CIIndex = dyn_cast<ConstantInt>(II.getArgOperand(2));

    // Attempt to simplify to a constant or shuffle vector.
    if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }

    // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
    // operand.
    if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
      return IC.replaceOperand(II, 0, V);
    }
    break;
  }

  case Intrinsic::x86_sse4a_insertq: {
    Value *Op0 = II.getArgOperand(0);
    Value *Op1 = II.getArgOperand(1);
    unsigned VWidth = cast<FixedVectorType>(Op0->getType())->getNumElements();
    assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
           Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
           cast<FixedVectorType>(Op1->getType())->getNumElements() == 2 &&
           "Unexpected operand size");

    // See if we're dealing with constant values.
    auto *C1 = dyn_cast<Constant>(Op1);
    auto *CI11 =
        C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
           : nullptr;

    // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
    if (CI11) {
      const APInt &V11 = CI11->getValue();
      APInt Len = V11.zextOrTrunc(6);
      APInt Idx = V11.lshr(8).zextOrTrunc(6);
      if (Value *V = simplifyX86insertq(II, Op0, Op1, Len, Idx, IC.Builder)) {
        return IC.replaceInstUsesWith(II, V);
      }
    }

    // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
    // operand.
    if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
      return IC.replaceOperand(II, 0, V);
    }
    break;
  }

  case Intrinsic::x86_sse4a_insertqi: {
    // INSERTQI: Extract lowest Length bits from lower half of second source and
    // insert over first source starting at Index bit. The upper 64-bits are
    // undefined.
    Value *Op0 = II.getArgOperand(0);
    Value *Op1 = II.getArgOperand(1);
    unsigned VWidth0 = cast<FixedVectorType>(Op0->getType())->getNumElements();
    unsigned VWidth1 = cast<FixedVectorType>(Op1->getType())->getNumElements();
    assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
           Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
           VWidth1 == 2 && "Unexpected operand sizes");

    // See if we're dealing with constant values.
    auto *CILength = dyn_cast<ConstantInt>(II.getArgOperand(2));
    auto *CIIndex = dyn_cast<ConstantInt>(II.getArgOperand(3));

    // Attempt to simplify to a constant or shuffle vector.
    if (CILength && CIIndex) {
      APInt Len = CILength->getValue().zextOrTrunc(6);
      APInt Idx = CIIndex->getValue().zextOrTrunc(6);
      if (Value *V = simplifyX86insertq(II, Op0, Op1, Len, Idx, IC.Builder)) {
        return IC.replaceInstUsesWith(II, V);
      }
    }

    // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
    // operands.
    bool MadeChange = false;
    if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
      IC.replaceOperand(II, 0, V);
      MadeChange = true;
    }
    if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
      IC.replaceOperand(II, 1, V);
      MadeChange = true;
    }
    if (MadeChange) {
      return &II;
    }
    break;
  }

  case Intrinsic::x86_sse41_pblendvb:
  case Intrinsic::x86_sse41_blendvps:
  case Intrinsic::x86_sse41_blendvpd:
  case Intrinsic::x86_avx_blendv_ps_256:
  case Intrinsic::x86_avx_blendv_pd_256:
  case Intrinsic::x86_avx2_pblendvb: {
    // fold (blend A, A, Mask) -> A
    Value *Op0 = II.getArgOperand(0);
    Value *Op1 = II.getArgOperand(1);
    Value *Mask = II.getArgOperand(2);
    if (Op0 == Op1) {
      return IC.replaceInstUsesWith(II, Op0);
    }

    // Zero Mask - select 1st argument.
    if (isa<ConstantAggregateZero>(Mask)) {
      return IC.replaceInstUsesWith(II, Op0);
    }

    // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
    if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
      Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
      return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
    }

    // Convert to a vector select if we can bypass casts and find a boolean
    // vector condition value.
    Value *BoolVec;
    Mask = InstCombiner::peekThroughBitcast(Mask);
    if (match(Mask, PatternMatch::m_SExt(PatternMatch::m_Value(BoolVec))) &&
        BoolVec->getType()->isVectorTy() &&
        BoolVec->getType()->getScalarSizeInBits() == 1) {
      assert(Mask->getType()->getPrimitiveSizeInBits() ==
                 II.getType()->getPrimitiveSizeInBits() &&
             "Not expecting mask and operands with different sizes");

      unsigned NumMaskElts =
          cast<FixedVectorType>(Mask->getType())->getNumElements();
      unsigned NumOperandElts =
          cast<FixedVectorType>(II.getType())->getNumElements();
      if (NumMaskElts == NumOperandElts) {
        return SelectInst::Create(BoolVec, Op1, Op0);
      }

      // If the mask has less elements than the operands, each mask bit maps to
      // multiple elements of the operands. Bitcast back and forth.
      if (NumMaskElts < NumOperandElts) {
        Value *CastOp0 = IC.Builder.CreateBitCast(Op0, Mask->getType());
        Value *CastOp1 = IC.Builder.CreateBitCast(Op1, Mask->getType());
        Value *Sel = IC.Builder.CreateSelect(BoolVec, CastOp1, CastOp0);
        return new BitCastInst(Sel, II.getType());
      }
    }

    break;
  }

  case Intrinsic::x86_ssse3_pshuf_b_128:
  case Intrinsic::x86_avx2_pshuf_b:
  case Intrinsic::x86_avx512_pshuf_b_512:
    if (Value *V = simplifyX86pshufb(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_avx_vpermilvar_ps:
  case Intrinsic::x86_avx_vpermilvar_ps_256:
  case Intrinsic::x86_avx512_vpermilvar_ps_512:
  case Intrinsic::x86_avx_vpermilvar_pd:
  case Intrinsic::x86_avx_vpermilvar_pd_256:
  case Intrinsic::x86_avx512_vpermilvar_pd_512:
    if (Value *V = simplifyX86vpermilvar(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_avx2_permd:
  case Intrinsic::x86_avx2_permps:
  case Intrinsic::x86_avx512_permvar_df_256:
  case Intrinsic::x86_avx512_permvar_df_512:
  case Intrinsic::x86_avx512_permvar_di_256:
  case Intrinsic::x86_avx512_permvar_di_512:
  case Intrinsic::x86_avx512_permvar_hi_128:
  case Intrinsic::x86_avx512_permvar_hi_256:
  case Intrinsic::x86_avx512_permvar_hi_512:
  case Intrinsic::x86_avx512_permvar_qi_128:
  case Intrinsic::x86_avx512_permvar_qi_256:
  case Intrinsic::x86_avx512_permvar_qi_512:
  case Intrinsic::x86_avx512_permvar_sf_512:
  case Intrinsic::x86_avx512_permvar_si_512:
    if (Value *V = simplifyX86vpermv(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  case Intrinsic::x86_avx_maskload_ps:
  case Intrinsic::x86_avx_maskload_pd:
  case Intrinsic::x86_avx_maskload_ps_256:
  case Intrinsic::x86_avx_maskload_pd_256:
  case Intrinsic::x86_avx2_maskload_d:
  case Intrinsic::x86_avx2_maskload_q:
  case Intrinsic::x86_avx2_maskload_d_256:
  case Intrinsic::x86_avx2_maskload_q_256:
    if (Instruction *I = simplifyX86MaskedLoad(II, IC)) {
      return I;
    }
    break;

  case Intrinsic::x86_sse2_maskmov_dqu:
  case Intrinsic::x86_avx_maskstore_ps:
  case Intrinsic::x86_avx_maskstore_pd:
  case Intrinsic::x86_avx_maskstore_ps_256:
  case Intrinsic::x86_avx_maskstore_pd_256:
  case Intrinsic::x86_avx2_maskstore_d:
  case Intrinsic::x86_avx2_maskstore_q:
  case Intrinsic::x86_avx2_maskstore_d_256:
  case Intrinsic::x86_avx2_maskstore_q_256:
    if (simplifyX86MaskedStore(II, IC)) {
      return nullptr;
    }
    break;

  case Intrinsic::x86_addcarry_32:
  case Intrinsic::x86_addcarry_64:
    if (Value *V = simplifyX86addcarry(II, IC.Builder)) {
      return IC.replaceInstUsesWith(II, V);
    }
    break;

  default:
    break;
  }
  return None;
}

Optional<Value *> X86TTIImpl::simplifyDemandedUseBitsIntrinsic(
    InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
    bool &KnownBitsComputed) const {
  switch (II.getIntrinsicID()) {
  default:
    break;
  case Intrinsic::x86_mmx_pmovmskb:
  case Intrinsic::x86_sse_movmsk_ps:
  case Intrinsic::x86_sse2_movmsk_pd:
  case Intrinsic::x86_sse2_pmovmskb_128:
  case Intrinsic::x86_avx_movmsk_ps_256:
  case Intrinsic::x86_avx_movmsk_pd_256:
  case Intrinsic::x86_avx2_pmovmskb: {
    // MOVMSK copies the vector elements' sign bits to the low bits
    // and zeros the high bits.
    unsigned ArgWidth;
    if (II.getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
      ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
    } else {
      auto *ArgType = cast<FixedVectorType>(II.getArgOperand(0)->getType());
      ArgWidth = ArgType->getNumElements();
    }

    // If we don't need any of low bits then return zero,
    // we know that DemandedMask is non-zero already.
    APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
    Type *VTy = II.getType();
    if (DemandedElts.isZero()) {
      return ConstantInt::getNullValue(VTy);
    }

    // We know that the upper bits are set to zero.
    Known.Zero.setBitsFrom(ArgWidth);
    KnownBitsComputed = true;
    break;
  }
  }
  return None;
}

Optional<Value *> X86TTIImpl::simplifyDemandedVectorEltsIntrinsic(
    InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
    APInt &UndefElts2, APInt &UndefElts3,
    std::function<void(Instruction *, unsigned, APInt, APInt &)>
        simplifyAndSetOp) const {
  unsigned VWidth = cast<FixedVectorType>(II.getType())->getNumElements();
  switch (II.getIntrinsicID()) {
  default:
    break;
  case Intrinsic::x86_xop_vfrcz_ss:
  case Intrinsic::x86_xop_vfrcz_sd:
    // The instructions for these intrinsics are speced to zero upper bits not
    // pass them through like other scalar intrinsics. So we shouldn't just
    // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
    // Instead we should return a zero vector.
    if (!DemandedElts[0]) {
      IC.addToWorklist(&II);
      return ConstantAggregateZero::get(II.getType());
    }

    // Only the lower element is used.
    DemandedElts = 1;
    simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);

    // Only the lower element is undefined. The high elements are zero.
    UndefElts = UndefElts[0];
    break;

  // Unary scalar-as-vector operations that work column-wise.
  case Intrinsic::x86_sse_rcp_ss:
  case Intrinsic::x86_sse_rsqrt_ss:
    simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);

    // If lowest element of a scalar op isn't used then use Arg0.
    if (!DemandedElts[0]) {
      IC.addToWorklist(&II);
      return II.getArgOperand(0);
    }
    // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
    // checks).
    break;

  // Binary scalar-as-vector operations that work column-wise. The high
  // elements come from operand 0. The low element is a function of both
  // operands.
  case Intrinsic::x86_sse_min_ss:
  case Intrinsic::x86_sse_max_ss:
  case Intrinsic::x86_sse_cmp_ss:
  case Intrinsic::x86_sse2_min_sd:
  case Intrinsic::x86_sse2_max_sd:
  case Intrinsic::x86_sse2_cmp_sd: {
    simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);

    // If lowest element of a scalar op isn't used then use Arg0.
    if (!DemandedElts[0]) {
      IC.addToWorklist(&II);
      return II.getArgOperand(0);
    }

    // Only lower element is used for operand 1.
    DemandedElts = 1;
    simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);

    // Lower element is undefined if both lower elements are undefined.
    // Consider things like undef&0.  The result is known zero, not undef.
    if (!UndefElts2[0])
      UndefElts.clearBit(0);

    break;
  }

  // Binary scalar-as-vector operations that work column-wise. The high
  // elements come from operand 0 and the low element comes from operand 1.
  case Intrinsic::x86_sse41_round_ss:
  case Intrinsic::x86_sse41_round_sd: {
    // Don't use the low element of operand 0.
    APInt DemandedElts2 = DemandedElts;
    DemandedElts2.clearBit(0);
    simplifyAndSetOp(&II, 0, DemandedElts2, UndefElts);

    // If lowest element of a scalar op isn't used then use Arg0.
    if (!DemandedElts[0]) {
      IC.addToWorklist(&II);
      return II.getArgOperand(0);
    }

    // Only lower element is used for operand 1.
    DemandedElts = 1;
    simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);

    // Take the high undef elements from operand 0 and take the lower element
    // from operand 1.
    UndefElts.clearBit(0);
    UndefElts |= UndefElts2[0];
    break;
  }

  // Three input scalar-as-vector operations that work column-wise. The high
  // elements come from operand 0 and the low element is a function of all
  // three inputs.
  case Intrinsic::x86_avx512_mask_add_ss_round:
  case Intrinsic::x86_avx512_mask_div_ss_round:
  case Intrinsic::x86_avx512_mask_mul_ss_round:
  case Intrinsic::x86_avx512_mask_sub_ss_round:
  case Intrinsic::x86_avx512_mask_max_ss_round:
  case Intrinsic::x86_avx512_mask_min_ss_round:
  case Intrinsic::x86_avx512_mask_add_sd_round:
  case Intrinsic::x86_avx512_mask_div_sd_round:
  case Intrinsic::x86_avx512_mask_mul_sd_round:
  case Intrinsic::x86_avx512_mask_sub_sd_round:
  case Intrinsic::x86_avx512_mask_max_sd_round:
  case Intrinsic::x86_avx512_mask_min_sd_round:
    simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);

    // If lowest element of a scalar op isn't used then use Arg0.
    if (!DemandedElts[0]) {
      IC.addToWorklist(&II);
      return II.getArgOperand(0);
    }

    // Only lower element is used for operand 1 and 2.
    DemandedElts = 1;
    simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
    simplifyAndSetOp(&II, 2, DemandedElts, UndefElts3);

    // Lower element is undefined if all three lower elements are undefined.
    // Consider things like undef&0.  The result is known zero, not undef.
    if (!UndefElts2[0] || !UndefElts3[0])
      UndefElts.clearBit(0);
    break;

  // TODO: Add fmaddsub support?
  case Intrinsic::x86_sse3_addsub_pd:
  case Intrinsic::x86_sse3_addsub_ps:
  case Intrinsic::x86_avx_addsub_pd_256:
  case Intrinsic::x86_avx_addsub_ps_256: {
    // If none of the even or none of the odd lanes are required, turn this
    // into a generic FP math instruction.
    APInt SubMask = APInt::getSplat(VWidth, APInt(2, 0x1));
    APInt AddMask = APInt::getSplat(VWidth, APInt(2, 0x2));
    bool IsSubOnly = DemandedElts.isSubsetOf(SubMask);
    bool IsAddOnly = DemandedElts.isSubsetOf(AddMask);
    if (IsSubOnly || IsAddOnly) {
      assert((IsSubOnly ^ IsAddOnly) && "Can't be both add-only and sub-only");
      IRBuilderBase::InsertPointGuard Guard(IC.Builder);
      IC.Builder.SetInsertPoint(&II);
      Value *Arg0 = II.getArgOperand(0), *Arg1 = II.getArgOperand(1);
      return IC.Builder.CreateBinOp(
          IsSubOnly ? Instruction::FSub : Instruction::FAdd, Arg0, Arg1);
    }

    simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
    simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
    UndefElts &= UndefElts2;
    break;
  }

  case Intrinsic::x86_sse2_packssdw_128:
  case Intrinsic::x86_sse2_packsswb_128:
  case Intrinsic::x86_sse2_packuswb_128:
  case Intrinsic::x86_sse41_packusdw:
  case Intrinsic::x86_avx2_packssdw:
  case Intrinsic::x86_avx2_packsswb:
  case Intrinsic::x86_avx2_packusdw:
  case Intrinsic::x86_avx2_packuswb:
  case Intrinsic::x86_avx512_packssdw_512:
  case Intrinsic::x86_avx512_packsswb_512:
  case Intrinsic::x86_avx512_packusdw_512:
  case Intrinsic::x86_avx512_packuswb_512: {
    auto *Ty0 = II.getArgOperand(0)->getType();
    unsigned InnerVWidth = cast<FixedVectorType>(Ty0)->getNumElements();
    assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");

    unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
    unsigned VWidthPerLane = VWidth / NumLanes;
    unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;

    // Per lane, pack the elements of the first input and then the second.
    // e.g.
    // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
    // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
    for (int OpNum = 0; OpNum != 2; ++OpNum) {
      APInt OpDemandedElts(InnerVWidth, 0);
      for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
        unsigned LaneIdx = Lane * VWidthPerLane;
        for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
          unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
          if (DemandedElts[Idx])
            OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
        }
      }

      // Demand elements from the operand.
      APInt OpUndefElts(InnerVWidth, 0);
      simplifyAndSetOp(&II, OpNum, OpDemandedElts, OpUndefElts);

      // Pack the operand's UNDEF elements, one lane at a time.
      OpUndefElts = OpUndefElts.zext(VWidth);
      for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
        APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
        LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
        LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
        UndefElts |= LaneElts;
      }
    }
    break;
  }

  // PSHUFB
  case Intrinsic::x86_ssse3_pshuf_b_128:
  case Intrinsic::x86_avx2_pshuf_b:
  case Intrinsic::x86_avx512_pshuf_b_512:
  // PERMILVAR
  case Intrinsic::x86_avx_vpermilvar_ps:
  case Intrinsic::x86_avx_vpermilvar_ps_256:
  case Intrinsic::x86_avx512_vpermilvar_ps_512:
  case Intrinsic::x86_avx_vpermilvar_pd:
  case Intrinsic::x86_avx_vpermilvar_pd_256:
  case Intrinsic::x86_avx512_vpermilvar_pd_512:
  // PERMV
  case Intrinsic::x86_avx2_permd:
  case Intrinsic::x86_avx2_permps: {
    simplifyAndSetOp(&II, 1, DemandedElts, UndefElts);
    break;
  }

  // SSE4A instructions leave the upper 64-bits of the 128-bit result
  // in an undefined state.
  case Intrinsic::x86_sse4a_extrq:
  case Intrinsic::x86_sse4a_extrqi:
  case Intrinsic::x86_sse4a_insertq:
  case Intrinsic::x86_sse4a_insertqi:
    UndefElts.setHighBits(VWidth / 2);
    break;
  }
  return None;
}