aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/X86/X86InstCombineIntrinsic.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2021-02-16 20:13:02 +0000
committerDimitry Andric <dim@FreeBSD.org>2021-02-16 20:13:02 +0000
commitb60736ec1405bb0a8dd40989f67ef4c93da068ab (patch)
tree5c43fbb7c9fc45f0f87e0e6795a86267dbd12f9d /llvm/lib/Target/X86/X86InstCombineIntrinsic.cpp
parentcfca06d7963fa0909f90483b42a6d7d194d01e08 (diff)
downloadsrc-b60736ec1405bb0a8dd40989f67ef4c93da068ab.tar.gz
src-b60736ec1405bb0a8dd40989f67ef4c93da068ab.zip
Vendor import of llvm-project main 8e464dd76bef, the last commit beforevendor/llvm-project/llvmorg-12-init-17869-g8e464dd76bef
the upstream release/12.x branch was created.
Diffstat (limited to 'llvm/lib/Target/X86/X86InstCombineIntrinsic.cpp')
-rw-r--r--llvm/lib/Target/X86/X86InstCombineIntrinsic.cpp2017
1 files changed, 2017 insertions, 0 deletions
diff --git a/llvm/lib/Target/X86/X86InstCombineIntrinsic.cpp b/llvm/lib/Target/X86/X86InstCombineIntrinsic.cpp
new file mode 100644
index 000000000000..c4150ed52854
--- /dev/null
+++ b/llvm/lib/Target/X86/X86InstCombineIntrinsic.cpp
@@ -0,0 +1,2017 @@
+//===-- X86InstCombineIntrinsic.cpp - X86 specific InstCombine pass -------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+/// \file
+/// This file implements a TargetTransformInfo analysis pass specific to the
+/// X86 target machine. It uses the target's detailed information to provide
+/// more precise answers to certain TTI queries, while letting the target
+/// independent and default TTI implementations handle the rest.
+///
+//===----------------------------------------------------------------------===//
+
+#include "X86TargetTransformInfo.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/IR/IntrinsicsX86.h"
+#include "llvm/Support/KnownBits.h"
+#include "llvm/Transforms/InstCombine/InstCombiner.h"
+
+using namespace llvm;
+
+#define DEBUG_TYPE "x86tti"
+
+/// Return a constant boolean vector that has true elements in all positions
+/// where the input constant data vector has an element with the sign bit set.
+static Constant *getNegativeIsTrueBoolVec(Constant *V) {
+ VectorType *IntTy = VectorType::getInteger(cast<VectorType>(V->getType()));
+ V = ConstantExpr::getBitCast(V, IntTy);
+ V = ConstantExpr::getICmp(CmpInst::ICMP_SGT, Constant::getNullValue(IntTy),
+ V);
+ return V;
+}
+
+/// Convert the x86 XMM integer vector mask to a vector of bools based on
+/// each element's most significant bit (the sign bit).
+static Value *getBoolVecFromMask(Value *Mask) {
+ // Fold Constant Mask.
+ if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask))
+ return getNegativeIsTrueBoolVec(ConstantMask);
+
+ // Mask was extended from a boolean vector.
+ Value *ExtMask;
+ if (PatternMatch::match(
+ Mask, PatternMatch::m_SExt(PatternMatch::m_Value(ExtMask))) &&
+ ExtMask->getType()->isIntOrIntVectorTy(1))
+ return ExtMask;
+
+ return nullptr;
+}
+
+// TODO: If the x86 backend knew how to convert a bool vector mask back to an
+// XMM register mask efficiently, we could transform all x86 masked intrinsics
+// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
+static Instruction *simplifyX86MaskedLoad(IntrinsicInst &II, InstCombiner &IC) {
+ Value *Ptr = II.getOperand(0);
+ Value *Mask = II.getOperand(1);
+ Constant *ZeroVec = Constant::getNullValue(II.getType());
+
+ // Zero Mask - masked load instruction creates a zero vector.
+ if (isa<ConstantAggregateZero>(Mask))
+ return IC.replaceInstUsesWith(II, ZeroVec);
+
+ // The mask is constant or extended from a bool vector. Convert this x86
+ // intrinsic to the LLVM intrinsic to allow target-independent optimizations.
+ if (Value *BoolMask = getBoolVecFromMask(Mask)) {
+ // First, cast the x86 intrinsic scalar pointer to a vector pointer to match
+ // the LLVM intrinsic definition for the pointer argument.
+ unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
+ PointerType *VecPtrTy = PointerType::get(II.getType(), AddrSpace);
+ Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
+
+ // The pass-through vector for an x86 masked load is a zero vector.
+ CallInst *NewMaskedLoad =
+ IC.Builder.CreateMaskedLoad(PtrCast, Align(1), BoolMask, ZeroVec);
+ return IC.replaceInstUsesWith(II, NewMaskedLoad);
+ }
+
+ return nullptr;
+}
+
+// TODO: If the x86 backend knew how to convert a bool vector mask back to an
+// XMM register mask efficiently, we could transform all x86 masked intrinsics
+// to LLVM masked intrinsics and remove the x86 masked intrinsic defs.
+static bool simplifyX86MaskedStore(IntrinsicInst &II, InstCombiner &IC) {
+ Value *Ptr = II.getOperand(0);
+ Value *Mask = II.getOperand(1);
+ Value *Vec = II.getOperand(2);
+
+ // Zero Mask - this masked store instruction does nothing.
+ if (isa<ConstantAggregateZero>(Mask)) {
+ IC.eraseInstFromFunction(II);
+ return true;
+ }
+
+ // The SSE2 version is too weird (eg, unaligned but non-temporal) to do
+ // anything else at this level.
+ if (II.getIntrinsicID() == Intrinsic::x86_sse2_maskmov_dqu)
+ return false;
+
+ // The mask is constant or extended from a bool vector. Convert this x86
+ // intrinsic to the LLVM intrinsic to allow target-independent optimizations.
+ if (Value *BoolMask = getBoolVecFromMask(Mask)) {
+ unsigned AddrSpace = cast<PointerType>(Ptr->getType())->getAddressSpace();
+ PointerType *VecPtrTy = PointerType::get(Vec->getType(), AddrSpace);
+ Value *PtrCast = IC.Builder.CreateBitCast(Ptr, VecPtrTy, "castvec");
+
+ IC.Builder.CreateMaskedStore(Vec, PtrCast, Align(1), BoolMask);
+
+ // 'Replace uses' doesn't work for stores. Erase the original masked store.
+ IC.eraseInstFromFunction(II);
+ return true;
+ }
+
+ return false;
+}
+
+static Value *simplifyX86immShift(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ bool LogicalShift = false;
+ bool ShiftLeft = false;
+ bool IsImm = false;
+
+ switch (II.getIntrinsicID()) {
+ default:
+ llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::x86_sse2_psrai_d:
+ case Intrinsic::x86_sse2_psrai_w:
+ case Intrinsic::x86_avx2_psrai_d:
+ case Intrinsic::x86_avx2_psrai_w:
+ case Intrinsic::x86_avx512_psrai_q_128:
+ case Intrinsic::x86_avx512_psrai_q_256:
+ case Intrinsic::x86_avx512_psrai_d_512:
+ case Intrinsic::x86_avx512_psrai_q_512:
+ case Intrinsic::x86_avx512_psrai_w_512:
+ IsImm = true;
+ LLVM_FALLTHROUGH;
+ case Intrinsic::x86_sse2_psra_d:
+ case Intrinsic::x86_sse2_psra_w:
+ case Intrinsic::x86_avx2_psra_d:
+ case Intrinsic::x86_avx2_psra_w:
+ case Intrinsic::x86_avx512_psra_q_128:
+ case Intrinsic::x86_avx512_psra_q_256:
+ case Intrinsic::x86_avx512_psra_d_512:
+ case Intrinsic::x86_avx512_psra_q_512:
+ case Intrinsic::x86_avx512_psra_w_512:
+ LogicalShift = false;
+ ShiftLeft = false;
+ break;
+ case Intrinsic::x86_sse2_psrli_d:
+ case Intrinsic::x86_sse2_psrli_q:
+ case Intrinsic::x86_sse2_psrli_w:
+ case Intrinsic::x86_avx2_psrli_d:
+ case Intrinsic::x86_avx2_psrli_q:
+ case Intrinsic::x86_avx2_psrli_w:
+ case Intrinsic::x86_avx512_psrli_d_512:
+ case Intrinsic::x86_avx512_psrli_q_512:
+ case Intrinsic::x86_avx512_psrli_w_512:
+ IsImm = true;
+ LLVM_FALLTHROUGH;
+ case Intrinsic::x86_sse2_psrl_d:
+ case Intrinsic::x86_sse2_psrl_q:
+ case Intrinsic::x86_sse2_psrl_w:
+ case Intrinsic::x86_avx2_psrl_d:
+ case Intrinsic::x86_avx2_psrl_q:
+ case Intrinsic::x86_avx2_psrl_w:
+ case Intrinsic::x86_avx512_psrl_d_512:
+ case Intrinsic::x86_avx512_psrl_q_512:
+ case Intrinsic::x86_avx512_psrl_w_512:
+ LogicalShift = true;
+ ShiftLeft = false;
+ break;
+ case Intrinsic::x86_sse2_pslli_d:
+ case Intrinsic::x86_sse2_pslli_q:
+ case Intrinsic::x86_sse2_pslli_w:
+ case Intrinsic::x86_avx2_pslli_d:
+ case Intrinsic::x86_avx2_pslli_q:
+ case Intrinsic::x86_avx2_pslli_w:
+ case Intrinsic::x86_avx512_pslli_d_512:
+ case Intrinsic::x86_avx512_pslli_q_512:
+ case Intrinsic::x86_avx512_pslli_w_512:
+ IsImm = true;
+ LLVM_FALLTHROUGH;
+ case Intrinsic::x86_sse2_psll_d:
+ case Intrinsic::x86_sse2_psll_q:
+ case Intrinsic::x86_sse2_psll_w:
+ case Intrinsic::x86_avx2_psll_d:
+ case Intrinsic::x86_avx2_psll_q:
+ case Intrinsic::x86_avx2_psll_w:
+ case Intrinsic::x86_avx512_psll_d_512:
+ case Intrinsic::x86_avx512_psll_q_512:
+ case Intrinsic::x86_avx512_psll_w_512:
+ LogicalShift = true;
+ ShiftLeft = true;
+ break;
+ }
+ assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
+
+ auto Vec = II.getArgOperand(0);
+ auto Amt = II.getArgOperand(1);
+ auto VT = cast<FixedVectorType>(Vec->getType());
+ auto SVT = VT->getElementType();
+ auto AmtVT = Amt->getType();
+ unsigned VWidth = VT->getNumElements();
+ unsigned BitWidth = SVT->getPrimitiveSizeInBits();
+
+ // If the shift amount is guaranteed to be in-range we can replace it with a
+ // generic shift. If its guaranteed to be out of range, logical shifts combine
+ // to zero and arithmetic shifts are clamped to (BitWidth - 1).
+ if (IsImm) {
+ assert(AmtVT->isIntegerTy(32) && "Unexpected shift-by-immediate type");
+ KnownBits KnownAmtBits =
+ llvm::computeKnownBits(Amt, II.getModule()->getDataLayout());
+ if (KnownAmtBits.getMaxValue().ult(BitWidth)) {
+ Amt = Builder.CreateZExtOrTrunc(Amt, SVT);
+ Amt = Builder.CreateVectorSplat(VWidth, Amt);
+ return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
+ : Builder.CreateLShr(Vec, Amt))
+ : Builder.CreateAShr(Vec, Amt));
+ }
+ if (KnownAmtBits.getMinValue().uge(BitWidth)) {
+ if (LogicalShift)
+ return ConstantAggregateZero::get(VT);
+ Amt = ConstantInt::get(SVT, BitWidth - 1);
+ return Builder.CreateAShr(Vec, Builder.CreateVectorSplat(VWidth, Amt));
+ }
+ } else {
+ // Ensure the first element has an in-range value and the rest of the
+ // elements in the bottom 64 bits are zero.
+ assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 &&
+ cast<VectorType>(AmtVT)->getElementType() == SVT &&
+ "Unexpected shift-by-scalar type");
+ unsigned NumAmtElts = cast<FixedVectorType>(AmtVT)->getNumElements();
+ APInt DemandedLower = APInt::getOneBitSet(NumAmtElts, 0);
+ APInt DemandedUpper = APInt::getBitsSet(NumAmtElts, 1, NumAmtElts / 2);
+ KnownBits KnownLowerBits = llvm::computeKnownBits(
+ Amt, DemandedLower, II.getModule()->getDataLayout());
+ KnownBits KnownUpperBits = llvm::computeKnownBits(
+ Amt, DemandedUpper, II.getModule()->getDataLayout());
+ if (KnownLowerBits.getMaxValue().ult(BitWidth) &&
+ (DemandedUpper.isNullValue() || KnownUpperBits.isZero())) {
+ SmallVector<int, 16> ZeroSplat(VWidth, 0);
+ Amt = Builder.CreateShuffleVector(Amt, ZeroSplat);
+ return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
+ : Builder.CreateLShr(Vec, Amt))
+ : Builder.CreateAShr(Vec, Amt));
+ }
+ }
+
+ // Simplify if count is constant vector.
+ auto CDV = dyn_cast<ConstantDataVector>(Amt);
+ if (!CDV)
+ return nullptr;
+
+ // SSE2/AVX2 uses all the first 64-bits of the 128-bit vector
+ // operand to compute the shift amount.
+ assert(AmtVT->isVectorTy() && AmtVT->getPrimitiveSizeInBits() == 128 &&
+ cast<VectorType>(AmtVT)->getElementType() == SVT &&
+ "Unexpected shift-by-scalar type");
+
+ // Concatenate the sub-elements to create the 64-bit value.
+ APInt Count(64, 0);
+ for (unsigned i = 0, NumSubElts = 64 / BitWidth; i != NumSubElts; ++i) {
+ unsigned SubEltIdx = (NumSubElts - 1) - i;
+ auto SubElt = cast<ConstantInt>(CDV->getElementAsConstant(SubEltIdx));
+ Count <<= BitWidth;
+ Count |= SubElt->getValue().zextOrTrunc(64);
+ }
+
+ // If shift-by-zero then just return the original value.
+ if (Count.isNullValue())
+ return Vec;
+
+ // Handle cases when Shift >= BitWidth.
+ if (Count.uge(BitWidth)) {
+ // If LogicalShift - just return zero.
+ if (LogicalShift)
+ return ConstantAggregateZero::get(VT);
+
+ // If ArithmeticShift - clamp Shift to (BitWidth - 1).
+ Count = APInt(64, BitWidth - 1);
+ }
+
+ // Get a constant vector of the same type as the first operand.
+ auto ShiftAmt = ConstantInt::get(SVT, Count.zextOrTrunc(BitWidth));
+ auto ShiftVec = Builder.CreateVectorSplat(VWidth, ShiftAmt);
+
+ if (ShiftLeft)
+ return Builder.CreateShl(Vec, ShiftVec);
+
+ if (LogicalShift)
+ return Builder.CreateLShr(Vec, ShiftVec);
+
+ return Builder.CreateAShr(Vec, ShiftVec);
+}
+
+// Attempt to simplify AVX2 per-element shift intrinsics to a generic IR shift.
+// Unlike the generic IR shifts, the intrinsics have defined behaviour for out
+// of range shift amounts (logical - set to zero, arithmetic - splat sign bit).
+static Value *simplifyX86varShift(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ bool LogicalShift = false;
+ bool ShiftLeft = false;
+
+ switch (II.getIntrinsicID()) {
+ default:
+ llvm_unreachable("Unexpected intrinsic!");
+ case Intrinsic::x86_avx2_psrav_d:
+ case Intrinsic::x86_avx2_psrav_d_256:
+ case Intrinsic::x86_avx512_psrav_q_128:
+ case Intrinsic::x86_avx512_psrav_q_256:
+ case Intrinsic::x86_avx512_psrav_d_512:
+ case Intrinsic::x86_avx512_psrav_q_512:
+ case Intrinsic::x86_avx512_psrav_w_128:
+ case Intrinsic::x86_avx512_psrav_w_256:
+ case Intrinsic::x86_avx512_psrav_w_512:
+ LogicalShift = false;
+ ShiftLeft = false;
+ break;
+ case Intrinsic::x86_avx2_psrlv_d:
+ case Intrinsic::x86_avx2_psrlv_d_256:
+ case Intrinsic::x86_avx2_psrlv_q:
+ case Intrinsic::x86_avx2_psrlv_q_256:
+ case Intrinsic::x86_avx512_psrlv_d_512:
+ case Intrinsic::x86_avx512_psrlv_q_512:
+ case Intrinsic::x86_avx512_psrlv_w_128:
+ case Intrinsic::x86_avx512_psrlv_w_256:
+ case Intrinsic::x86_avx512_psrlv_w_512:
+ LogicalShift = true;
+ ShiftLeft = false;
+ break;
+ case Intrinsic::x86_avx2_psllv_d:
+ case Intrinsic::x86_avx2_psllv_d_256:
+ case Intrinsic::x86_avx2_psllv_q:
+ case Intrinsic::x86_avx2_psllv_q_256:
+ case Intrinsic::x86_avx512_psllv_d_512:
+ case Intrinsic::x86_avx512_psllv_q_512:
+ case Intrinsic::x86_avx512_psllv_w_128:
+ case Intrinsic::x86_avx512_psllv_w_256:
+ case Intrinsic::x86_avx512_psllv_w_512:
+ LogicalShift = true;
+ ShiftLeft = true;
+ break;
+ }
+ assert((LogicalShift || !ShiftLeft) && "Only logical shifts can shift left");
+
+ auto Vec = II.getArgOperand(0);
+ auto Amt = II.getArgOperand(1);
+ auto VT = cast<FixedVectorType>(II.getType());
+ auto SVT = VT->getElementType();
+ int NumElts = VT->getNumElements();
+ int BitWidth = SVT->getIntegerBitWidth();
+
+ // If the shift amount is guaranteed to be in-range we can replace it with a
+ // generic shift.
+ APInt UpperBits =
+ APInt::getHighBitsSet(BitWidth, BitWidth - Log2_32(BitWidth));
+ if (llvm::MaskedValueIsZero(Amt, UpperBits,
+ II.getModule()->getDataLayout())) {
+ return (LogicalShift ? (ShiftLeft ? Builder.CreateShl(Vec, Amt)
+ : Builder.CreateLShr(Vec, Amt))
+ : Builder.CreateAShr(Vec, Amt));
+ }
+
+ // Simplify if all shift amounts are constant/undef.
+ auto *CShift = dyn_cast<Constant>(Amt);
+ if (!CShift)
+ return nullptr;
+
+ // Collect each element's shift amount.
+ // We also collect special cases: UNDEF = -1, OUT-OF-RANGE = BitWidth.
+ bool AnyOutOfRange = false;
+ SmallVector<int, 8> ShiftAmts;
+ for (int I = 0; I < NumElts; ++I) {
+ auto *CElt = CShift->getAggregateElement(I);
+ if (isa_and_nonnull<UndefValue>(CElt)) {
+ ShiftAmts.push_back(-1);
+ continue;
+ }
+
+ auto *COp = dyn_cast_or_null<ConstantInt>(CElt);
+ if (!COp)
+ return nullptr;
+
+ // Handle out of range shifts.
+ // If LogicalShift - set to BitWidth (special case).
+ // If ArithmeticShift - set to (BitWidth - 1) (sign splat).
+ APInt ShiftVal = COp->getValue();
+ if (ShiftVal.uge(BitWidth)) {
+ AnyOutOfRange = LogicalShift;
+ ShiftAmts.push_back(LogicalShift ? BitWidth : BitWidth - 1);
+ continue;
+ }
+
+ ShiftAmts.push_back((int)ShiftVal.getZExtValue());
+ }
+
+ // If all elements out of range or UNDEF, return vector of zeros/undefs.
+ // ArithmeticShift should only hit this if they are all UNDEF.
+ auto OutOfRange = [&](int Idx) { return (Idx < 0) || (BitWidth <= Idx); };
+ if (llvm::all_of(ShiftAmts, OutOfRange)) {
+ SmallVector<Constant *, 8> ConstantVec;
+ for (int Idx : ShiftAmts) {
+ if (Idx < 0) {
+ ConstantVec.push_back(UndefValue::get(SVT));
+ } else {
+ assert(LogicalShift && "Logical shift expected");
+ ConstantVec.push_back(ConstantInt::getNullValue(SVT));
+ }
+ }
+ return ConstantVector::get(ConstantVec);
+ }
+
+ // We can't handle only some out of range values with generic logical shifts.
+ if (AnyOutOfRange)
+ return nullptr;
+
+ // Build the shift amount constant vector.
+ SmallVector<Constant *, 8> ShiftVecAmts;
+ for (int Idx : ShiftAmts) {
+ if (Idx < 0)
+ ShiftVecAmts.push_back(UndefValue::get(SVT));
+ else
+ ShiftVecAmts.push_back(ConstantInt::get(SVT, Idx));
+ }
+ auto ShiftVec = ConstantVector::get(ShiftVecAmts);
+
+ if (ShiftLeft)
+ return Builder.CreateShl(Vec, ShiftVec);
+
+ if (LogicalShift)
+ return Builder.CreateLShr(Vec, ShiftVec);
+
+ return Builder.CreateAShr(Vec, ShiftVec);
+}
+
+static Value *simplifyX86pack(IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder, bool IsSigned) {
+ Value *Arg0 = II.getArgOperand(0);
+ Value *Arg1 = II.getArgOperand(1);
+ Type *ResTy = II.getType();
+
+ // Fast all undef handling.
+ if (isa<UndefValue>(Arg0) && isa<UndefValue>(Arg1))
+ return UndefValue::get(ResTy);
+
+ auto *ArgTy = cast<FixedVectorType>(Arg0->getType());
+ unsigned NumLanes = ResTy->getPrimitiveSizeInBits() / 128;
+ unsigned NumSrcElts = ArgTy->getNumElements();
+ assert(cast<FixedVectorType>(ResTy)->getNumElements() == (2 * NumSrcElts) &&
+ "Unexpected packing types");
+
+ unsigned NumSrcEltsPerLane = NumSrcElts / NumLanes;
+ unsigned DstScalarSizeInBits = ResTy->getScalarSizeInBits();
+ unsigned SrcScalarSizeInBits = ArgTy->getScalarSizeInBits();
+ assert(SrcScalarSizeInBits == (2 * DstScalarSizeInBits) &&
+ "Unexpected packing types");
+
+ // Constant folding.
+ if (!isa<Constant>(Arg0) || !isa<Constant>(Arg1))
+ return nullptr;
+
+ // Clamp Values - signed/unsigned both use signed clamp values, but they
+ // differ on the min/max values.
+ APInt MinValue, MaxValue;
+ if (IsSigned) {
+ // PACKSS: Truncate signed value with signed saturation.
+ // Source values less than dst minint are saturated to minint.
+ // Source values greater than dst maxint are saturated to maxint.
+ MinValue =
+ APInt::getSignedMinValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
+ MaxValue =
+ APInt::getSignedMaxValue(DstScalarSizeInBits).sext(SrcScalarSizeInBits);
+ } else {
+ // PACKUS: Truncate signed value with unsigned saturation.
+ // Source values less than zero are saturated to zero.
+ // Source values greater than dst maxuint are saturated to maxuint.
+ MinValue = APInt::getNullValue(SrcScalarSizeInBits);
+ MaxValue = APInt::getLowBitsSet(SrcScalarSizeInBits, DstScalarSizeInBits);
+ }
+
+ auto *MinC = Constant::getIntegerValue(ArgTy, MinValue);
+ auto *MaxC = Constant::getIntegerValue(ArgTy, MaxValue);
+ Arg0 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg0, MinC), MinC, Arg0);
+ Arg1 = Builder.CreateSelect(Builder.CreateICmpSLT(Arg1, MinC), MinC, Arg1);
+ Arg0 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg0, MaxC), MaxC, Arg0);
+ Arg1 = Builder.CreateSelect(Builder.CreateICmpSGT(Arg1, MaxC), MaxC, Arg1);
+
+ // Shuffle clamped args together at the lane level.
+ SmallVector<int, 32> PackMask;
+ for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
+ for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
+ PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane));
+ for (unsigned Elt = 0; Elt != NumSrcEltsPerLane; ++Elt)
+ PackMask.push_back(Elt + (Lane * NumSrcEltsPerLane) + NumSrcElts);
+ }
+ auto *Shuffle = Builder.CreateShuffleVector(Arg0, Arg1, PackMask);
+
+ // Truncate to dst size.
+ return Builder.CreateTrunc(Shuffle, ResTy);
+}
+
+static Value *simplifyX86movmsk(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ Value *Arg = II.getArgOperand(0);
+ Type *ResTy = II.getType();
+
+ // movmsk(undef) -> zero as we must ensure the upper bits are zero.
+ if (isa<UndefValue>(Arg))
+ return Constant::getNullValue(ResTy);
+
+ auto *ArgTy = dyn_cast<FixedVectorType>(Arg->getType());
+ // We can't easily peek through x86_mmx types.
+ if (!ArgTy)
+ return nullptr;
+
+ // Expand MOVMSK to compare/bitcast/zext:
+ // e.g. PMOVMSKB(v16i8 x):
+ // %cmp = icmp slt <16 x i8> %x, zeroinitializer
+ // %int = bitcast <16 x i1> %cmp to i16
+ // %res = zext i16 %int to i32
+ unsigned NumElts = ArgTy->getNumElements();
+ Type *IntegerVecTy = VectorType::getInteger(ArgTy);
+ Type *IntegerTy = Builder.getIntNTy(NumElts);
+
+ Value *Res = Builder.CreateBitCast(Arg, IntegerVecTy);
+ Res = Builder.CreateICmpSLT(Res, Constant::getNullValue(IntegerVecTy));
+ Res = Builder.CreateBitCast(Res, IntegerTy);
+ Res = Builder.CreateZExtOrTrunc(Res, ResTy);
+ return Res;
+}
+
+static Value *simplifyX86addcarry(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ Value *CarryIn = II.getArgOperand(0);
+ Value *Op1 = II.getArgOperand(1);
+ Value *Op2 = II.getArgOperand(2);
+ Type *RetTy = II.getType();
+ Type *OpTy = Op1->getType();
+ assert(RetTy->getStructElementType(0)->isIntegerTy(8) &&
+ RetTy->getStructElementType(1) == OpTy && OpTy == Op2->getType() &&
+ "Unexpected types for x86 addcarry");
+
+ // If carry-in is zero, this is just an unsigned add with overflow.
+ if (match(CarryIn, PatternMatch::m_ZeroInt())) {
+ Value *UAdd = Builder.CreateIntrinsic(Intrinsic::uadd_with_overflow, OpTy,
+ {Op1, Op2});
+ // The types have to be adjusted to match the x86 call types.
+ Value *UAddResult = Builder.CreateExtractValue(UAdd, 0);
+ Value *UAddOV = Builder.CreateZExt(Builder.CreateExtractValue(UAdd, 1),
+ Builder.getInt8Ty());
+ Value *Res = UndefValue::get(RetTy);
+ Res = Builder.CreateInsertValue(Res, UAddOV, 0);
+ return Builder.CreateInsertValue(Res, UAddResult, 1);
+ }
+
+ return nullptr;
+}
+
+static Value *simplifyX86insertps(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ auto *CInt = dyn_cast<ConstantInt>(II.getArgOperand(2));
+ if (!CInt)
+ return nullptr;
+
+ auto *VecTy = cast<FixedVectorType>(II.getType());
+ assert(VecTy->getNumElements() == 4 && "insertps with wrong vector type");
+
+ // The immediate permute control byte looks like this:
+ // [3:0] - zero mask for each 32-bit lane
+ // [5:4] - select one 32-bit destination lane
+ // [7:6] - select one 32-bit source lane
+
+ uint8_t Imm = CInt->getZExtValue();
+ uint8_t ZMask = Imm & 0xf;
+ uint8_t DestLane = (Imm >> 4) & 0x3;
+ uint8_t SourceLane = (Imm >> 6) & 0x3;
+
+ ConstantAggregateZero *ZeroVector = ConstantAggregateZero::get(VecTy);
+
+ // If all zero mask bits are set, this was just a weird way to
+ // generate a zero vector.
+ if (ZMask == 0xf)
+ return ZeroVector;
+
+ // Initialize by passing all of the first source bits through.
+ int ShuffleMask[4] = {0, 1, 2, 3};
+
+ // We may replace the second operand with the zero vector.
+ Value *V1 = II.getArgOperand(1);
+
+ if (ZMask) {
+ // If the zero mask is being used with a single input or the zero mask
+ // overrides the destination lane, this is a shuffle with the zero vector.
+ if ((II.getArgOperand(0) == II.getArgOperand(1)) ||
+ (ZMask & (1 << DestLane))) {
+ V1 = ZeroVector;
+ // We may still move 32-bits of the first source vector from one lane
+ // to another.
+ ShuffleMask[DestLane] = SourceLane;
+ // The zero mask may override the previous insert operation.
+ for (unsigned i = 0; i < 4; ++i)
+ if ((ZMask >> i) & 0x1)
+ ShuffleMask[i] = i + 4;
+ } else {
+ // TODO: Model this case as 2 shuffles or a 'logical and' plus shuffle?
+ return nullptr;
+ }
+ } else {
+ // Replace the selected destination lane with the selected source lane.
+ ShuffleMask[DestLane] = SourceLane + 4;
+ }
+
+ return Builder.CreateShuffleVector(II.getArgOperand(0), V1, ShuffleMask);
+}
+
+/// Attempt to simplify SSE4A EXTRQ/EXTRQI instructions using constant folding
+/// or conversion to a shuffle vector.
+static Value *simplifyX86extrq(IntrinsicInst &II, Value *Op0,
+ ConstantInt *CILength, ConstantInt *CIIndex,
+ InstCombiner::BuilderTy &Builder) {
+ auto LowConstantHighUndef = [&](uint64_t Val) {
+ Type *IntTy64 = Type::getInt64Ty(II.getContext());
+ Constant *Args[] = {ConstantInt::get(IntTy64, Val),
+ UndefValue::get(IntTy64)};
+ return ConstantVector::get(Args);
+ };
+
+ // See if we're dealing with constant values.
+ Constant *C0 = dyn_cast<Constant>(Op0);
+ ConstantInt *CI0 =
+ C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
+ : nullptr;
+
+ // Attempt to constant fold.
+ if (CILength && CIIndex) {
+ // From AMD documentation: "The bit index and field length are each six
+ // bits in length other bits of the field are ignored."
+ APInt APIndex = CIIndex->getValue().zextOrTrunc(6);
+ APInt APLength = CILength->getValue().zextOrTrunc(6);
+
+ unsigned Index = APIndex.getZExtValue();
+
+ // From AMD documentation: "a value of zero in the field length is
+ // defined as length of 64".
+ unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
+
+ // From AMD documentation: "If the sum of the bit index + length field
+ // is greater than 64, the results are undefined".
+ unsigned End = Index + Length;
+
+ // Note that both field index and field length are 8-bit quantities.
+ // Since variables 'Index' and 'Length' are unsigned values
+ // obtained from zero-extending field index and field length
+ // respectively, their sum should never wrap around.
+ if (End > 64)
+ return UndefValue::get(II.getType());
+
+ // If we are inserting whole bytes, we can convert this to a shuffle.
+ // Lowering can recognize EXTRQI shuffle masks.
+ if ((Length % 8) == 0 && (Index % 8) == 0) {
+ // Convert bit indices to byte indices.
+ Length /= 8;
+ Index /= 8;
+
+ Type *IntTy8 = Type::getInt8Ty(II.getContext());
+ auto *ShufTy = FixedVectorType::get(IntTy8, 16);
+
+ SmallVector<int, 16> ShuffleMask;
+ for (int i = 0; i != (int)Length; ++i)
+ ShuffleMask.push_back(i + Index);
+ for (int i = Length; i != 8; ++i)
+ ShuffleMask.push_back(i + 16);
+ for (int i = 8; i != 16; ++i)
+ ShuffleMask.push_back(-1);
+
+ Value *SV = Builder.CreateShuffleVector(
+ Builder.CreateBitCast(Op0, ShufTy),
+ ConstantAggregateZero::get(ShufTy), ShuffleMask);
+ return Builder.CreateBitCast(SV, II.getType());
+ }
+
+ // Constant Fold - shift Index'th bit to lowest position and mask off
+ // Length bits.
+ if (CI0) {
+ APInt Elt = CI0->getValue();
+ Elt.lshrInPlace(Index);
+ Elt = Elt.zextOrTrunc(Length);
+ return LowConstantHighUndef(Elt.getZExtValue());
+ }
+
+ // If we were an EXTRQ call, we'll save registers if we convert to EXTRQI.
+ if (II.getIntrinsicID() == Intrinsic::x86_sse4a_extrq) {
+ Value *Args[] = {Op0, CILength, CIIndex};
+ Module *M = II.getModule();
+ Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_extrqi);
+ return Builder.CreateCall(F, Args);
+ }
+ }
+
+ // Constant Fold - extraction from zero is always {zero, undef}.
+ if (CI0 && CI0->isZero())
+ return LowConstantHighUndef(0);
+
+ return nullptr;
+}
+
+/// Attempt to simplify SSE4A INSERTQ/INSERTQI instructions using constant
+/// folding or conversion to a shuffle vector.
+static Value *simplifyX86insertq(IntrinsicInst &II, Value *Op0, Value *Op1,
+ APInt APLength, APInt APIndex,
+ InstCombiner::BuilderTy &Builder) {
+ // From AMD documentation: "The bit index and field length are each six bits
+ // in length other bits of the field are ignored."
+ APIndex = APIndex.zextOrTrunc(6);
+ APLength = APLength.zextOrTrunc(6);
+
+ // Attempt to constant fold.
+ unsigned Index = APIndex.getZExtValue();
+
+ // From AMD documentation: "a value of zero in the field length is
+ // defined as length of 64".
+ unsigned Length = APLength == 0 ? 64 : APLength.getZExtValue();
+
+ // From AMD documentation: "If the sum of the bit index + length field
+ // is greater than 64, the results are undefined".
+ unsigned End = Index + Length;
+
+ // Note that both field index and field length are 8-bit quantities.
+ // Since variables 'Index' and 'Length' are unsigned values
+ // obtained from zero-extending field index and field length
+ // respectively, their sum should never wrap around.
+ if (End > 64)
+ return UndefValue::get(II.getType());
+
+ // If we are inserting whole bytes, we can convert this to a shuffle.
+ // Lowering can recognize INSERTQI shuffle masks.
+ if ((Length % 8) == 0 && (Index % 8) == 0) {
+ // Convert bit indices to byte indices.
+ Length /= 8;
+ Index /= 8;
+
+ Type *IntTy8 = Type::getInt8Ty(II.getContext());
+ auto *ShufTy = FixedVectorType::get(IntTy8, 16);
+
+ SmallVector<int, 16> ShuffleMask;
+ for (int i = 0; i != (int)Index; ++i)
+ ShuffleMask.push_back(i);
+ for (int i = 0; i != (int)Length; ++i)
+ ShuffleMask.push_back(i + 16);
+ for (int i = Index + Length; i != 8; ++i)
+ ShuffleMask.push_back(i);
+ for (int i = 8; i != 16; ++i)
+ ShuffleMask.push_back(-1);
+
+ Value *SV = Builder.CreateShuffleVector(Builder.CreateBitCast(Op0, ShufTy),
+ Builder.CreateBitCast(Op1, ShufTy),
+ ShuffleMask);
+ return Builder.CreateBitCast(SV, II.getType());
+ }
+
+ // See if we're dealing with constant values.
+ Constant *C0 = dyn_cast<Constant>(Op0);
+ Constant *C1 = dyn_cast<Constant>(Op1);
+ ConstantInt *CI00 =
+ C0 ? dyn_cast_or_null<ConstantInt>(C0->getAggregateElement((unsigned)0))
+ : nullptr;
+ ConstantInt *CI10 =
+ C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
+ : nullptr;
+
+ // Constant Fold - insert bottom Length bits starting at the Index'th bit.
+ if (CI00 && CI10) {
+ APInt V00 = CI00->getValue();
+ APInt V10 = CI10->getValue();
+ APInt Mask = APInt::getLowBitsSet(64, Length).shl(Index);
+ V00 = V00 & ~Mask;
+ V10 = V10.zextOrTrunc(Length).zextOrTrunc(64).shl(Index);
+ APInt Val = V00 | V10;
+ Type *IntTy64 = Type::getInt64Ty(II.getContext());
+ Constant *Args[] = {ConstantInt::get(IntTy64, Val.getZExtValue()),
+ UndefValue::get(IntTy64)};
+ return ConstantVector::get(Args);
+ }
+
+ // If we were an INSERTQ call, we'll save demanded elements if we convert to
+ // INSERTQI.
+ if (II.getIntrinsicID() == Intrinsic::x86_sse4a_insertq) {
+ Type *IntTy8 = Type::getInt8Ty(II.getContext());
+ Constant *CILength = ConstantInt::get(IntTy8, Length, false);
+ Constant *CIIndex = ConstantInt::get(IntTy8, Index, false);
+
+ Value *Args[] = {Op0, Op1, CILength, CIIndex};
+ Module *M = II.getModule();
+ Function *F = Intrinsic::getDeclaration(M, Intrinsic::x86_sse4a_insertqi);
+ return Builder.CreateCall(F, Args);
+ }
+
+ return nullptr;
+}
+
+/// Attempt to convert pshufb* to shufflevector if the mask is constant.
+static Value *simplifyX86pshufb(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
+ if (!V)
+ return nullptr;
+
+ auto *VecTy = cast<FixedVectorType>(II.getType());
+ unsigned NumElts = VecTy->getNumElements();
+ assert((NumElts == 16 || NumElts == 32 || NumElts == 64) &&
+ "Unexpected number of elements in shuffle mask!");
+
+ // Construct a shuffle mask from constant integers or UNDEFs.
+ int Indexes[64];
+
+ // Each byte in the shuffle control mask forms an index to permute the
+ // corresponding byte in the destination operand.
+ for (unsigned I = 0; I < NumElts; ++I) {
+ Constant *COp = V->getAggregateElement(I);
+ if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
+ return nullptr;
+
+ if (isa<UndefValue>(COp)) {
+ Indexes[I] = -1;
+ continue;
+ }
+
+ int8_t Index = cast<ConstantInt>(COp)->getValue().getZExtValue();
+
+ // If the most significant bit (bit[7]) of each byte of the shuffle
+ // control mask is set, then zero is written in the result byte.
+ // The zero vector is in the right-hand side of the resulting
+ // shufflevector.
+
+ // The value of each index for the high 128-bit lane is the least
+ // significant 4 bits of the respective shuffle control byte.
+ Index = ((Index < 0) ? NumElts : Index & 0x0F) + (I & 0xF0);
+ Indexes[I] = Index;
+ }
+
+ auto V1 = II.getArgOperand(0);
+ auto V2 = Constant::getNullValue(VecTy);
+ return Builder.CreateShuffleVector(V1, V2, makeArrayRef(Indexes, NumElts));
+}
+
+/// Attempt to convert vpermilvar* to shufflevector if the mask is constant.
+static Value *simplifyX86vpermilvar(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ Constant *V = dyn_cast<Constant>(II.getArgOperand(1));
+ if (!V)
+ return nullptr;
+
+ auto *VecTy = cast<FixedVectorType>(II.getType());
+ unsigned NumElts = VecTy->getNumElements();
+ bool IsPD = VecTy->getScalarType()->isDoubleTy();
+ unsigned NumLaneElts = IsPD ? 2 : 4;
+ assert(NumElts == 16 || NumElts == 8 || NumElts == 4 || NumElts == 2);
+
+ // Construct a shuffle mask from constant integers or UNDEFs.
+ int Indexes[16];
+
+ // The intrinsics only read one or two bits, clear the rest.
+ for (unsigned I = 0; I < NumElts; ++I) {
+ Constant *COp = V->getAggregateElement(I);
+ if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
+ return nullptr;
+
+ if (isa<UndefValue>(COp)) {
+ Indexes[I] = -1;
+ continue;
+ }
+
+ APInt Index = cast<ConstantInt>(COp)->getValue();
+ Index = Index.zextOrTrunc(32).getLoBits(2);
+
+ // The PD variants uses bit 1 to select per-lane element index, so
+ // shift down to convert to generic shuffle mask index.
+ if (IsPD)
+ Index.lshrInPlace(1);
+
+ // The _256 variants are a bit trickier since the mask bits always index
+ // into the corresponding 128 half. In order to convert to a generic
+ // shuffle, we have to make that explicit.
+ Index += APInt(32, (I / NumLaneElts) * NumLaneElts);
+
+ Indexes[I] = Index.getZExtValue();
+ }
+
+ auto V1 = II.getArgOperand(0);
+ return Builder.CreateShuffleVector(V1, makeArrayRef(Indexes, NumElts));
+}
+
+/// Attempt to convert vpermd/vpermps to shufflevector if the mask is constant.
+static Value *simplifyX86vpermv(const IntrinsicInst &II,
+ InstCombiner::BuilderTy &Builder) {
+ auto *V = dyn_cast<Constant>(II.getArgOperand(1));
+ if (!V)
+ return nullptr;
+
+ auto *VecTy = cast<FixedVectorType>(II.getType());
+ unsigned Size = VecTy->getNumElements();
+ assert((Size == 4 || Size == 8 || Size == 16 || Size == 32 || Size == 64) &&
+ "Unexpected shuffle mask size");
+
+ // Construct a shuffle mask from constant integers or UNDEFs.
+ int Indexes[64];
+
+ for (unsigned I = 0; I < Size; ++I) {
+ Constant *COp = V->getAggregateElement(I);
+ if (!COp || (!isa<UndefValue>(COp) && !isa<ConstantInt>(COp)))
+ return nullptr;
+
+ if (isa<UndefValue>(COp)) {
+ Indexes[I] = -1;
+ continue;
+ }
+
+ uint32_t Index = cast<ConstantInt>(COp)->getZExtValue();
+ Index &= Size - 1;
+ Indexes[I] = Index;
+ }
+
+ auto V1 = II.getArgOperand(0);
+ return Builder.CreateShuffleVector(V1, makeArrayRef(Indexes, Size));
+}
+
+Optional<Instruction *>
+X86TTIImpl::instCombineIntrinsic(InstCombiner &IC, IntrinsicInst &II) const {
+ auto SimplifyDemandedVectorEltsLow = [&IC](Value *Op, unsigned Width,
+ unsigned DemandedWidth) {
+ APInt UndefElts(Width, 0);
+ APInt DemandedElts = APInt::getLowBitsSet(Width, DemandedWidth);
+ return IC.SimplifyDemandedVectorElts(Op, DemandedElts, UndefElts);
+ };
+
+ Intrinsic::ID IID = II.getIntrinsicID();
+ switch (IID) {
+ case Intrinsic::x86_bmi_bextr_32:
+ case Intrinsic::x86_bmi_bextr_64:
+ case Intrinsic::x86_tbm_bextri_u32:
+ case Intrinsic::x86_tbm_bextri_u64:
+ // If the RHS is a constant we can try some simplifications.
+ if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
+ uint64_t Shift = C->getZExtValue();
+ uint64_t Length = (Shift >> 8) & 0xff;
+ Shift &= 0xff;
+ unsigned BitWidth = II.getType()->getIntegerBitWidth();
+ // If the length is 0 or the shift is out of range, replace with zero.
+ if (Length == 0 || Shift >= BitWidth) {
+ return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
+ }
+ // If the LHS is also a constant, we can completely constant fold this.
+ if (auto *InC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
+ uint64_t Result = InC->getZExtValue() >> Shift;
+ if (Length > BitWidth)
+ Length = BitWidth;
+ Result &= maskTrailingOnes<uint64_t>(Length);
+ return IC.replaceInstUsesWith(II,
+ ConstantInt::get(II.getType(), Result));
+ }
+ // TODO should we turn this into 'and' if shift is 0? Or 'shl' if we
+ // are only masking bits that a shift already cleared?
+ }
+ break;
+
+ case Intrinsic::x86_bmi_bzhi_32:
+ case Intrinsic::x86_bmi_bzhi_64:
+ // If the RHS is a constant we can try some simplifications.
+ if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
+ uint64_t Index = C->getZExtValue() & 0xff;
+ unsigned BitWidth = II.getType()->getIntegerBitWidth();
+ if (Index >= BitWidth) {
+ return IC.replaceInstUsesWith(II, II.getArgOperand(0));
+ }
+ if (Index == 0) {
+ return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
+ }
+ // If the LHS is also a constant, we can completely constant fold this.
+ if (auto *InC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
+ uint64_t Result = InC->getZExtValue();
+ Result &= maskTrailingOnes<uint64_t>(Index);
+ return IC.replaceInstUsesWith(II,
+ ConstantInt::get(II.getType(), Result));
+ }
+ // TODO should we convert this to an AND if the RHS is constant?
+ }
+ break;
+ case Intrinsic::x86_bmi_pext_32:
+ case Intrinsic::x86_bmi_pext_64:
+ if (auto *MaskC = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
+ if (MaskC->isNullValue()) {
+ return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
+ }
+ if (MaskC->isAllOnesValue()) {
+ return IC.replaceInstUsesWith(II, II.getArgOperand(0));
+ }
+
+ if (MaskC->getValue().isShiftedMask()) {
+ // any single contingous sequence of 1s anywhere in the mask simply
+ // describes a subset of the input bits shifted to the appropriate
+ // position. Replace with the straight forward IR.
+ unsigned ShiftAmount = MaskC->getValue().countTrailingZeros();
+ Value *Input = II.getArgOperand(0);
+ Value *Masked = IC.Builder.CreateAnd(Input, II.getArgOperand(1));
+ Value *Shifted = IC.Builder.CreateLShr(Masked,
+ ConstantInt::get(II.getType(),
+ ShiftAmount));
+ return IC.replaceInstUsesWith(II, Shifted);
+ }
+
+
+ if (auto *SrcC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
+ uint64_t Src = SrcC->getZExtValue();
+ uint64_t Mask = MaskC->getZExtValue();
+ uint64_t Result = 0;
+ uint64_t BitToSet = 1;
+
+ while (Mask) {
+ // Isolate lowest set bit.
+ uint64_t BitToTest = Mask & -Mask;
+ if (BitToTest & Src)
+ Result |= BitToSet;
+
+ BitToSet <<= 1;
+ // Clear lowest set bit.
+ Mask &= Mask - 1;
+ }
+
+ return IC.replaceInstUsesWith(II,
+ ConstantInt::get(II.getType(), Result));
+ }
+ }
+ break;
+ case Intrinsic::x86_bmi_pdep_32:
+ case Intrinsic::x86_bmi_pdep_64:
+ if (auto *MaskC = dyn_cast<ConstantInt>(II.getArgOperand(1))) {
+ if (MaskC->isNullValue()) {
+ return IC.replaceInstUsesWith(II, ConstantInt::get(II.getType(), 0));
+ }
+ if (MaskC->isAllOnesValue()) {
+ return IC.replaceInstUsesWith(II, II.getArgOperand(0));
+ }
+ if (MaskC->getValue().isShiftedMask()) {
+ // any single contingous sequence of 1s anywhere in the mask simply
+ // describes a subset of the input bits shifted to the appropriate
+ // position. Replace with the straight forward IR.
+ unsigned ShiftAmount = MaskC->getValue().countTrailingZeros();
+ Value *Input = II.getArgOperand(0);
+ Value *Shifted = IC.Builder.CreateShl(Input,
+ ConstantInt::get(II.getType(),
+ ShiftAmount));
+ Value *Masked = IC.Builder.CreateAnd(Shifted, II.getArgOperand(1));
+ return IC.replaceInstUsesWith(II, Masked);
+ }
+
+ if (auto *SrcC = dyn_cast<ConstantInt>(II.getArgOperand(0))) {
+ uint64_t Src = SrcC->getZExtValue();
+ uint64_t Mask = MaskC->getZExtValue();
+ uint64_t Result = 0;
+ uint64_t BitToTest = 1;
+
+ while (Mask) {
+ // Isolate lowest set bit.
+ uint64_t BitToSet = Mask & -Mask;
+ if (BitToTest & Src)
+ Result |= BitToSet;
+
+ BitToTest <<= 1;
+ // Clear lowest set bit;
+ Mask &= Mask - 1;
+ }
+
+ return IC.replaceInstUsesWith(II,
+ ConstantInt::get(II.getType(), Result));
+ }
+ }
+ break;
+
+ case Intrinsic::x86_sse_cvtss2si:
+ case Intrinsic::x86_sse_cvtss2si64:
+ case Intrinsic::x86_sse_cvttss2si:
+ case Intrinsic::x86_sse_cvttss2si64:
+ case Intrinsic::x86_sse2_cvtsd2si:
+ case Intrinsic::x86_sse2_cvtsd2si64:
+ case Intrinsic::x86_sse2_cvttsd2si:
+ case Intrinsic::x86_sse2_cvttsd2si64:
+ case Intrinsic::x86_avx512_vcvtss2si32:
+ case Intrinsic::x86_avx512_vcvtss2si64:
+ case Intrinsic::x86_avx512_vcvtss2usi32:
+ case Intrinsic::x86_avx512_vcvtss2usi64:
+ case Intrinsic::x86_avx512_vcvtsd2si32:
+ case Intrinsic::x86_avx512_vcvtsd2si64:
+ case Intrinsic::x86_avx512_vcvtsd2usi32:
+ case Intrinsic::x86_avx512_vcvtsd2usi64:
+ case Intrinsic::x86_avx512_cvttss2si:
+ case Intrinsic::x86_avx512_cvttss2si64:
+ case Intrinsic::x86_avx512_cvttss2usi:
+ case Intrinsic::x86_avx512_cvttss2usi64:
+ case Intrinsic::x86_avx512_cvttsd2si:
+ case Intrinsic::x86_avx512_cvttsd2si64:
+ case Intrinsic::x86_avx512_cvttsd2usi:
+ case Intrinsic::x86_avx512_cvttsd2usi64: {
+ // These intrinsics only demand the 0th element of their input vectors. If
+ // we can simplify the input based on that, do so now.
+ Value *Arg = II.getArgOperand(0);
+ unsigned VWidth = cast<FixedVectorType>(Arg->getType())->getNumElements();
+ if (Value *V = SimplifyDemandedVectorEltsLow(Arg, VWidth, 1)) {
+ return IC.replaceOperand(II, 0, V);
+ }
+ break;
+ }
+
+ case Intrinsic::x86_mmx_pmovmskb:
+ case Intrinsic::x86_sse_movmsk_ps:
+ case Intrinsic::x86_sse2_movmsk_pd:
+ case Intrinsic::x86_sse2_pmovmskb_128:
+ case Intrinsic::x86_avx_movmsk_pd_256:
+ case Intrinsic::x86_avx_movmsk_ps_256:
+ case Intrinsic::x86_avx2_pmovmskb:
+ if (Value *V = simplifyX86movmsk(II, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+ break;
+
+ case Intrinsic::x86_sse_comieq_ss:
+ case Intrinsic::x86_sse_comige_ss:
+ case Intrinsic::x86_sse_comigt_ss:
+ case Intrinsic::x86_sse_comile_ss:
+ case Intrinsic::x86_sse_comilt_ss:
+ case Intrinsic::x86_sse_comineq_ss:
+ case Intrinsic::x86_sse_ucomieq_ss:
+ case Intrinsic::x86_sse_ucomige_ss:
+ case Intrinsic::x86_sse_ucomigt_ss:
+ case Intrinsic::x86_sse_ucomile_ss:
+ case Intrinsic::x86_sse_ucomilt_ss:
+ case Intrinsic::x86_sse_ucomineq_ss:
+ case Intrinsic::x86_sse2_comieq_sd:
+ case Intrinsic::x86_sse2_comige_sd:
+ case Intrinsic::x86_sse2_comigt_sd:
+ case Intrinsic::x86_sse2_comile_sd:
+ case Intrinsic::x86_sse2_comilt_sd:
+ case Intrinsic::x86_sse2_comineq_sd:
+ case Intrinsic::x86_sse2_ucomieq_sd:
+ case Intrinsic::x86_sse2_ucomige_sd:
+ case Intrinsic::x86_sse2_ucomigt_sd:
+ case Intrinsic::x86_sse2_ucomile_sd:
+ case Intrinsic::x86_sse2_ucomilt_sd:
+ case Intrinsic::x86_sse2_ucomineq_sd:
+ case Intrinsic::x86_avx512_vcomi_ss:
+ case Intrinsic::x86_avx512_vcomi_sd:
+ case Intrinsic::x86_avx512_mask_cmp_ss:
+ case Intrinsic::x86_avx512_mask_cmp_sd: {
+ // These intrinsics only demand the 0th element of their input vectors. If
+ // we can simplify the input based on that, do so now.
+ bool MadeChange = false;
+ Value *Arg0 = II.getArgOperand(0);
+ Value *Arg1 = II.getArgOperand(1);
+ unsigned VWidth = cast<FixedVectorType>(Arg0->getType())->getNumElements();
+ if (Value *V = SimplifyDemandedVectorEltsLow(Arg0, VWidth, 1)) {
+ IC.replaceOperand(II, 0, V);
+ MadeChange = true;
+ }
+ if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, 1)) {
+ IC.replaceOperand(II, 1, V);
+ MadeChange = true;
+ }
+ if (MadeChange) {
+ return &II;
+ }
+ break;
+ }
+
+ case Intrinsic::x86_avx512_add_ps_512:
+ case Intrinsic::x86_avx512_div_ps_512:
+ case Intrinsic::x86_avx512_mul_ps_512:
+ case Intrinsic::x86_avx512_sub_ps_512:
+ case Intrinsic::x86_avx512_add_pd_512:
+ case Intrinsic::x86_avx512_div_pd_512:
+ case Intrinsic::x86_avx512_mul_pd_512:
+ case Intrinsic::x86_avx512_sub_pd_512:
+ // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
+ // IR operations.
+ if (auto *R = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
+ if (R->getValue() == 4) {
+ Value *Arg0 = II.getArgOperand(0);
+ Value *Arg1 = II.getArgOperand(1);
+
+ Value *V;
+ switch (IID) {
+ default:
+ llvm_unreachable("Case stmts out of sync!");
+ case Intrinsic::x86_avx512_add_ps_512:
+ case Intrinsic::x86_avx512_add_pd_512:
+ V = IC.Builder.CreateFAdd(Arg0, Arg1);
+ break;
+ case Intrinsic::x86_avx512_sub_ps_512:
+ case Intrinsic::x86_avx512_sub_pd_512:
+ V = IC.Builder.CreateFSub(Arg0, Arg1);
+ break;
+ case Intrinsic::x86_avx512_mul_ps_512:
+ case Intrinsic::x86_avx512_mul_pd_512:
+ V = IC.Builder.CreateFMul(Arg0, Arg1);
+ break;
+ case Intrinsic::x86_avx512_div_ps_512:
+ case Intrinsic::x86_avx512_div_pd_512:
+ V = IC.Builder.CreateFDiv(Arg0, Arg1);
+ break;
+ }
+
+ return IC.replaceInstUsesWith(II, V);
+ }
+ }
+ break;
+
+ case Intrinsic::x86_avx512_mask_add_ss_round:
+ case Intrinsic::x86_avx512_mask_div_ss_round:
+ case Intrinsic::x86_avx512_mask_mul_ss_round:
+ case Intrinsic::x86_avx512_mask_sub_ss_round:
+ case Intrinsic::x86_avx512_mask_add_sd_round:
+ case Intrinsic::x86_avx512_mask_div_sd_round:
+ case Intrinsic::x86_avx512_mask_mul_sd_round:
+ case Intrinsic::x86_avx512_mask_sub_sd_round:
+ // If the rounding mode is CUR_DIRECTION(4) we can turn these into regular
+ // IR operations.
+ if (auto *R = dyn_cast<ConstantInt>(II.getArgOperand(4))) {
+ if (R->getValue() == 4) {
+ // Extract the element as scalars.
+ Value *Arg0 = II.getArgOperand(0);
+ Value *Arg1 = II.getArgOperand(1);
+ Value *LHS = IC.Builder.CreateExtractElement(Arg0, (uint64_t)0);
+ Value *RHS = IC.Builder.CreateExtractElement(Arg1, (uint64_t)0);
+
+ Value *V;
+ switch (IID) {
+ default:
+ llvm_unreachable("Case stmts out of sync!");
+ case Intrinsic::x86_avx512_mask_add_ss_round:
+ case Intrinsic::x86_avx512_mask_add_sd_round:
+ V = IC.Builder.CreateFAdd(LHS, RHS);
+ break;
+ case Intrinsic::x86_avx512_mask_sub_ss_round:
+ case Intrinsic::x86_avx512_mask_sub_sd_round:
+ V = IC.Builder.CreateFSub(LHS, RHS);
+ break;
+ case Intrinsic::x86_avx512_mask_mul_ss_round:
+ case Intrinsic::x86_avx512_mask_mul_sd_round:
+ V = IC.Builder.CreateFMul(LHS, RHS);
+ break;
+ case Intrinsic::x86_avx512_mask_div_ss_round:
+ case Intrinsic::x86_avx512_mask_div_sd_round:
+ V = IC.Builder.CreateFDiv(LHS, RHS);
+ break;
+ }
+
+ // Handle the masking aspect of the intrinsic.
+ Value *Mask = II.getArgOperand(3);
+ auto *C = dyn_cast<ConstantInt>(Mask);
+ // We don't need a select if we know the mask bit is a 1.
+ if (!C || !C->getValue()[0]) {
+ // Cast the mask to an i1 vector and then extract the lowest element.
+ auto *MaskTy = FixedVectorType::get(
+ IC.Builder.getInt1Ty(),
+ cast<IntegerType>(Mask->getType())->getBitWidth());
+ Mask = IC.Builder.CreateBitCast(Mask, MaskTy);
+ Mask = IC.Builder.CreateExtractElement(Mask, (uint64_t)0);
+ // Extract the lowest element from the passthru operand.
+ Value *Passthru =
+ IC.Builder.CreateExtractElement(II.getArgOperand(2), (uint64_t)0);
+ V = IC.Builder.CreateSelect(Mask, V, Passthru);
+ }
+
+ // Insert the result back into the original argument 0.
+ V = IC.Builder.CreateInsertElement(Arg0, V, (uint64_t)0);
+
+ return IC.replaceInstUsesWith(II, V);
+ }
+ }
+ break;
+
+ // Constant fold ashr( <A x Bi>, Ci ).
+ // Constant fold lshr( <A x Bi>, Ci ).
+ // Constant fold shl( <A x Bi>, Ci ).
+ case Intrinsic::x86_sse2_psrai_d:
+ case Intrinsic::x86_sse2_psrai_w:
+ case Intrinsic::x86_avx2_psrai_d:
+ case Intrinsic::x86_avx2_psrai_w:
+ case Intrinsic::x86_avx512_psrai_q_128:
+ case Intrinsic::x86_avx512_psrai_q_256:
+ case Intrinsic::x86_avx512_psrai_d_512:
+ case Intrinsic::x86_avx512_psrai_q_512:
+ case Intrinsic::x86_avx512_psrai_w_512:
+ case Intrinsic::x86_sse2_psrli_d:
+ case Intrinsic::x86_sse2_psrli_q:
+ case Intrinsic::x86_sse2_psrli_w:
+ case Intrinsic::x86_avx2_psrli_d:
+ case Intrinsic::x86_avx2_psrli_q:
+ case Intrinsic::x86_avx2_psrli_w:
+ case Intrinsic::x86_avx512_psrli_d_512:
+ case Intrinsic::x86_avx512_psrli_q_512:
+ case Intrinsic::x86_avx512_psrli_w_512:
+ case Intrinsic::x86_sse2_pslli_d:
+ case Intrinsic::x86_sse2_pslli_q:
+ case Intrinsic::x86_sse2_pslli_w:
+ case Intrinsic::x86_avx2_pslli_d:
+ case Intrinsic::x86_avx2_pslli_q:
+ case Intrinsic::x86_avx2_pslli_w:
+ case Intrinsic::x86_avx512_pslli_d_512:
+ case Intrinsic::x86_avx512_pslli_q_512:
+ case Intrinsic::x86_avx512_pslli_w_512:
+ if (Value *V = simplifyX86immShift(II, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+ break;
+
+ case Intrinsic::x86_sse2_psra_d:
+ case Intrinsic::x86_sse2_psra_w:
+ case Intrinsic::x86_avx2_psra_d:
+ case Intrinsic::x86_avx2_psra_w:
+ case Intrinsic::x86_avx512_psra_q_128:
+ case Intrinsic::x86_avx512_psra_q_256:
+ case Intrinsic::x86_avx512_psra_d_512:
+ case Intrinsic::x86_avx512_psra_q_512:
+ case Intrinsic::x86_avx512_psra_w_512:
+ case Intrinsic::x86_sse2_psrl_d:
+ case Intrinsic::x86_sse2_psrl_q:
+ case Intrinsic::x86_sse2_psrl_w:
+ case Intrinsic::x86_avx2_psrl_d:
+ case Intrinsic::x86_avx2_psrl_q:
+ case Intrinsic::x86_avx2_psrl_w:
+ case Intrinsic::x86_avx512_psrl_d_512:
+ case Intrinsic::x86_avx512_psrl_q_512:
+ case Intrinsic::x86_avx512_psrl_w_512:
+ case Intrinsic::x86_sse2_psll_d:
+ case Intrinsic::x86_sse2_psll_q:
+ case Intrinsic::x86_sse2_psll_w:
+ case Intrinsic::x86_avx2_psll_d:
+ case Intrinsic::x86_avx2_psll_q:
+ case Intrinsic::x86_avx2_psll_w:
+ case Intrinsic::x86_avx512_psll_d_512:
+ case Intrinsic::x86_avx512_psll_q_512:
+ case Intrinsic::x86_avx512_psll_w_512: {
+ if (Value *V = simplifyX86immShift(II, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+
+ // SSE2/AVX2 uses only the first 64-bits of the 128-bit vector
+ // operand to compute the shift amount.
+ Value *Arg1 = II.getArgOperand(1);
+ assert(Arg1->getType()->getPrimitiveSizeInBits() == 128 &&
+ "Unexpected packed shift size");
+ unsigned VWidth = cast<FixedVectorType>(Arg1->getType())->getNumElements();
+
+ if (Value *V = SimplifyDemandedVectorEltsLow(Arg1, VWidth, VWidth / 2)) {
+ return IC.replaceOperand(II, 1, V);
+ }
+ break;
+ }
+
+ case Intrinsic::x86_avx2_psllv_d:
+ case Intrinsic::x86_avx2_psllv_d_256:
+ case Intrinsic::x86_avx2_psllv_q:
+ case Intrinsic::x86_avx2_psllv_q_256:
+ case Intrinsic::x86_avx512_psllv_d_512:
+ case Intrinsic::x86_avx512_psllv_q_512:
+ case Intrinsic::x86_avx512_psllv_w_128:
+ case Intrinsic::x86_avx512_psllv_w_256:
+ case Intrinsic::x86_avx512_psllv_w_512:
+ case Intrinsic::x86_avx2_psrav_d:
+ case Intrinsic::x86_avx2_psrav_d_256:
+ case Intrinsic::x86_avx512_psrav_q_128:
+ case Intrinsic::x86_avx512_psrav_q_256:
+ case Intrinsic::x86_avx512_psrav_d_512:
+ case Intrinsic::x86_avx512_psrav_q_512:
+ case Intrinsic::x86_avx512_psrav_w_128:
+ case Intrinsic::x86_avx512_psrav_w_256:
+ case Intrinsic::x86_avx512_psrav_w_512:
+ case Intrinsic::x86_avx2_psrlv_d:
+ case Intrinsic::x86_avx2_psrlv_d_256:
+ case Intrinsic::x86_avx2_psrlv_q:
+ case Intrinsic::x86_avx2_psrlv_q_256:
+ case Intrinsic::x86_avx512_psrlv_d_512:
+ case Intrinsic::x86_avx512_psrlv_q_512:
+ case Intrinsic::x86_avx512_psrlv_w_128:
+ case Intrinsic::x86_avx512_psrlv_w_256:
+ case Intrinsic::x86_avx512_psrlv_w_512:
+ if (Value *V = simplifyX86varShift(II, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+ break;
+
+ case Intrinsic::x86_sse2_packssdw_128:
+ case Intrinsic::x86_sse2_packsswb_128:
+ case Intrinsic::x86_avx2_packssdw:
+ case Intrinsic::x86_avx2_packsswb:
+ case Intrinsic::x86_avx512_packssdw_512:
+ case Intrinsic::x86_avx512_packsswb_512:
+ if (Value *V = simplifyX86pack(II, IC.Builder, true)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+ break;
+
+ case Intrinsic::x86_sse2_packuswb_128:
+ case Intrinsic::x86_sse41_packusdw:
+ case Intrinsic::x86_avx2_packusdw:
+ case Intrinsic::x86_avx2_packuswb:
+ case Intrinsic::x86_avx512_packusdw_512:
+ case Intrinsic::x86_avx512_packuswb_512:
+ if (Value *V = simplifyX86pack(II, IC.Builder, false)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+ break;
+
+ case Intrinsic::x86_pclmulqdq:
+ case Intrinsic::x86_pclmulqdq_256:
+ case Intrinsic::x86_pclmulqdq_512: {
+ if (auto *C = dyn_cast<ConstantInt>(II.getArgOperand(2))) {
+ unsigned Imm = C->getZExtValue();
+
+ bool MadeChange = false;
+ Value *Arg0 = II.getArgOperand(0);
+ Value *Arg1 = II.getArgOperand(1);
+ unsigned VWidth =
+ cast<FixedVectorType>(Arg0->getType())->getNumElements();
+
+ APInt UndefElts1(VWidth, 0);
+ APInt DemandedElts1 =
+ APInt::getSplat(VWidth, APInt(2, (Imm & 0x01) ? 2 : 1));
+ if (Value *V =
+ IC.SimplifyDemandedVectorElts(Arg0, DemandedElts1, UndefElts1)) {
+ IC.replaceOperand(II, 0, V);
+ MadeChange = true;
+ }
+
+ APInt UndefElts2(VWidth, 0);
+ APInt DemandedElts2 =
+ APInt::getSplat(VWidth, APInt(2, (Imm & 0x10) ? 2 : 1));
+ if (Value *V =
+ IC.SimplifyDemandedVectorElts(Arg1, DemandedElts2, UndefElts2)) {
+ IC.replaceOperand(II, 1, V);
+ MadeChange = true;
+ }
+
+ // If either input elements are undef, the result is zero.
+ if (DemandedElts1.isSubsetOf(UndefElts1) ||
+ DemandedElts2.isSubsetOf(UndefElts2)) {
+ return IC.replaceInstUsesWith(II,
+ ConstantAggregateZero::get(II.getType()));
+ }
+
+ if (MadeChange) {
+ return &II;
+ }
+ }
+ break;
+ }
+
+ case Intrinsic::x86_sse41_insertps:
+ if (Value *V = simplifyX86insertps(II, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+ break;
+
+ case Intrinsic::x86_sse4a_extrq: {
+ Value *Op0 = II.getArgOperand(0);
+ Value *Op1 = II.getArgOperand(1);
+ unsigned VWidth0 = cast<FixedVectorType>(Op0->getType())->getNumElements();
+ unsigned VWidth1 = cast<FixedVectorType>(Op1->getType())->getNumElements();
+ assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
+ Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
+ VWidth1 == 16 && "Unexpected operand sizes");
+
+ // See if we're dealing with constant values.
+ Constant *C1 = dyn_cast<Constant>(Op1);
+ ConstantInt *CILength =
+ C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)0))
+ : nullptr;
+ ConstantInt *CIIndex =
+ C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
+ : nullptr;
+
+ // Attempt to simplify to a constant, shuffle vector or EXTRQI call.
+ if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+
+ // EXTRQ only uses the lowest 64-bits of the first 128-bit vector
+ // operands and the lowest 16-bits of the second.
+ bool MadeChange = false;
+ if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
+ IC.replaceOperand(II, 0, V);
+ MadeChange = true;
+ }
+ if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 2)) {
+ IC.replaceOperand(II, 1, V);
+ MadeChange = true;
+ }
+ if (MadeChange) {
+ return &II;
+ }
+ break;
+ }
+
+ case Intrinsic::x86_sse4a_extrqi: {
+ // EXTRQI: Extract Length bits starting from Index. Zero pad the remaining
+ // bits of the lower 64-bits. The upper 64-bits are undefined.
+ Value *Op0 = II.getArgOperand(0);
+ unsigned VWidth = cast<FixedVectorType>(Op0->getType())->getNumElements();
+ assert(Op0->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
+ "Unexpected operand size");
+
+ // See if we're dealing with constant values.
+ ConstantInt *CILength = dyn_cast<ConstantInt>(II.getArgOperand(1));
+ ConstantInt *CIIndex = dyn_cast<ConstantInt>(II.getArgOperand(2));
+
+ // Attempt to simplify to a constant or shuffle vector.
+ if (Value *V = simplifyX86extrq(II, Op0, CILength, CIIndex, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+
+ // EXTRQI only uses the lowest 64-bits of the first 128-bit vector
+ // operand.
+ if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
+ return IC.replaceOperand(II, 0, V);
+ }
+ break;
+ }
+
+ case Intrinsic::x86_sse4a_insertq: {
+ Value *Op0 = II.getArgOperand(0);
+ Value *Op1 = II.getArgOperand(1);
+ unsigned VWidth = cast<FixedVectorType>(Op0->getType())->getNumElements();
+ assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
+ Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth == 2 &&
+ cast<FixedVectorType>(Op1->getType())->getNumElements() == 2 &&
+ "Unexpected operand size");
+
+ // See if we're dealing with constant values.
+ Constant *C1 = dyn_cast<Constant>(Op1);
+ ConstantInt *CI11 =
+ C1 ? dyn_cast_or_null<ConstantInt>(C1->getAggregateElement((unsigned)1))
+ : nullptr;
+
+ // Attempt to simplify to a constant, shuffle vector or INSERTQI call.
+ if (CI11) {
+ const APInt &V11 = CI11->getValue();
+ APInt Len = V11.zextOrTrunc(6);
+ APInt Idx = V11.lshr(8).zextOrTrunc(6);
+ if (Value *V = simplifyX86insertq(II, Op0, Op1, Len, Idx, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+ }
+
+ // INSERTQ only uses the lowest 64-bits of the first 128-bit vector
+ // operand.
+ if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth, 1)) {
+ return IC.replaceOperand(II, 0, V);
+ }
+ break;
+ }
+
+ case Intrinsic::x86_sse4a_insertqi: {
+ // INSERTQI: Extract lowest Length bits from lower half of second source and
+ // insert over first source starting at Index bit. The upper 64-bits are
+ // undefined.
+ Value *Op0 = II.getArgOperand(0);
+ Value *Op1 = II.getArgOperand(1);
+ unsigned VWidth0 = cast<FixedVectorType>(Op0->getType())->getNumElements();
+ unsigned VWidth1 = cast<FixedVectorType>(Op1->getType())->getNumElements();
+ assert(Op0->getType()->getPrimitiveSizeInBits() == 128 &&
+ Op1->getType()->getPrimitiveSizeInBits() == 128 && VWidth0 == 2 &&
+ VWidth1 == 2 && "Unexpected operand sizes");
+
+ // See if we're dealing with constant values.
+ ConstantInt *CILength = dyn_cast<ConstantInt>(II.getArgOperand(2));
+ ConstantInt *CIIndex = dyn_cast<ConstantInt>(II.getArgOperand(3));
+
+ // Attempt to simplify to a constant or shuffle vector.
+ if (CILength && CIIndex) {
+ APInt Len = CILength->getValue().zextOrTrunc(6);
+ APInt Idx = CIIndex->getValue().zextOrTrunc(6);
+ if (Value *V = simplifyX86insertq(II, Op0, Op1, Len, Idx, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+ }
+
+ // INSERTQI only uses the lowest 64-bits of the first two 128-bit vector
+ // operands.
+ bool MadeChange = false;
+ if (Value *V = SimplifyDemandedVectorEltsLow(Op0, VWidth0, 1)) {
+ IC.replaceOperand(II, 0, V);
+ MadeChange = true;
+ }
+ if (Value *V = SimplifyDemandedVectorEltsLow(Op1, VWidth1, 1)) {
+ IC.replaceOperand(II, 1, V);
+ MadeChange = true;
+ }
+ if (MadeChange) {
+ return &II;
+ }
+ break;
+ }
+
+ case Intrinsic::x86_sse41_pblendvb:
+ case Intrinsic::x86_sse41_blendvps:
+ case Intrinsic::x86_sse41_blendvpd:
+ case Intrinsic::x86_avx_blendv_ps_256:
+ case Intrinsic::x86_avx_blendv_pd_256:
+ case Intrinsic::x86_avx2_pblendvb: {
+ // fold (blend A, A, Mask) -> A
+ Value *Op0 = II.getArgOperand(0);
+ Value *Op1 = II.getArgOperand(1);
+ Value *Mask = II.getArgOperand(2);
+ if (Op0 == Op1) {
+ return IC.replaceInstUsesWith(II, Op0);
+ }
+
+ // Zero Mask - select 1st argument.
+ if (isa<ConstantAggregateZero>(Mask)) {
+ return IC.replaceInstUsesWith(II, Op0);
+ }
+
+ // Constant Mask - select 1st/2nd argument lane based on top bit of mask.
+ if (auto *ConstantMask = dyn_cast<ConstantDataVector>(Mask)) {
+ Constant *NewSelector = getNegativeIsTrueBoolVec(ConstantMask);
+ return SelectInst::Create(NewSelector, Op1, Op0, "blendv");
+ }
+
+ // Convert to a vector select if we can bypass casts and find a boolean
+ // vector condition value.
+ Value *BoolVec;
+ Mask = InstCombiner::peekThroughBitcast(Mask);
+ if (match(Mask, PatternMatch::m_SExt(PatternMatch::m_Value(BoolVec))) &&
+ BoolVec->getType()->isVectorTy() &&
+ BoolVec->getType()->getScalarSizeInBits() == 1) {
+ assert(Mask->getType()->getPrimitiveSizeInBits() ==
+ II.getType()->getPrimitiveSizeInBits() &&
+ "Not expecting mask and operands with different sizes");
+
+ unsigned NumMaskElts =
+ cast<FixedVectorType>(Mask->getType())->getNumElements();
+ unsigned NumOperandElts =
+ cast<FixedVectorType>(II.getType())->getNumElements();
+ if (NumMaskElts == NumOperandElts) {
+ return SelectInst::Create(BoolVec, Op1, Op0);
+ }
+
+ // If the mask has less elements than the operands, each mask bit maps to
+ // multiple elements of the operands. Bitcast back and forth.
+ if (NumMaskElts < NumOperandElts) {
+ Value *CastOp0 = IC.Builder.CreateBitCast(Op0, Mask->getType());
+ Value *CastOp1 = IC.Builder.CreateBitCast(Op1, Mask->getType());
+ Value *Sel = IC.Builder.CreateSelect(BoolVec, CastOp1, CastOp0);
+ return new BitCastInst(Sel, II.getType());
+ }
+ }
+
+ break;
+ }
+
+ case Intrinsic::x86_ssse3_pshuf_b_128:
+ case Intrinsic::x86_avx2_pshuf_b:
+ case Intrinsic::x86_avx512_pshuf_b_512:
+ if (Value *V = simplifyX86pshufb(II, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+ break;
+
+ case Intrinsic::x86_avx_vpermilvar_ps:
+ case Intrinsic::x86_avx_vpermilvar_ps_256:
+ case Intrinsic::x86_avx512_vpermilvar_ps_512:
+ case Intrinsic::x86_avx_vpermilvar_pd:
+ case Intrinsic::x86_avx_vpermilvar_pd_256:
+ case Intrinsic::x86_avx512_vpermilvar_pd_512:
+ if (Value *V = simplifyX86vpermilvar(II, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+ break;
+
+ case Intrinsic::x86_avx2_permd:
+ case Intrinsic::x86_avx2_permps:
+ case Intrinsic::x86_avx512_permvar_df_256:
+ case Intrinsic::x86_avx512_permvar_df_512:
+ case Intrinsic::x86_avx512_permvar_di_256:
+ case Intrinsic::x86_avx512_permvar_di_512:
+ case Intrinsic::x86_avx512_permvar_hi_128:
+ case Intrinsic::x86_avx512_permvar_hi_256:
+ case Intrinsic::x86_avx512_permvar_hi_512:
+ case Intrinsic::x86_avx512_permvar_qi_128:
+ case Intrinsic::x86_avx512_permvar_qi_256:
+ case Intrinsic::x86_avx512_permvar_qi_512:
+ case Intrinsic::x86_avx512_permvar_sf_512:
+ case Intrinsic::x86_avx512_permvar_si_512:
+ if (Value *V = simplifyX86vpermv(II, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+ break;
+
+ case Intrinsic::x86_avx_maskload_ps:
+ case Intrinsic::x86_avx_maskload_pd:
+ case Intrinsic::x86_avx_maskload_ps_256:
+ case Intrinsic::x86_avx_maskload_pd_256:
+ case Intrinsic::x86_avx2_maskload_d:
+ case Intrinsic::x86_avx2_maskload_q:
+ case Intrinsic::x86_avx2_maskload_d_256:
+ case Intrinsic::x86_avx2_maskload_q_256:
+ if (Instruction *I = simplifyX86MaskedLoad(II, IC)) {
+ return I;
+ }
+ break;
+
+ case Intrinsic::x86_sse2_maskmov_dqu:
+ case Intrinsic::x86_avx_maskstore_ps:
+ case Intrinsic::x86_avx_maskstore_pd:
+ case Intrinsic::x86_avx_maskstore_ps_256:
+ case Intrinsic::x86_avx_maskstore_pd_256:
+ case Intrinsic::x86_avx2_maskstore_d:
+ case Intrinsic::x86_avx2_maskstore_q:
+ case Intrinsic::x86_avx2_maskstore_d_256:
+ case Intrinsic::x86_avx2_maskstore_q_256:
+ if (simplifyX86MaskedStore(II, IC)) {
+ return nullptr;
+ }
+ break;
+
+ case Intrinsic::x86_addcarry_32:
+ case Intrinsic::x86_addcarry_64:
+ if (Value *V = simplifyX86addcarry(II, IC.Builder)) {
+ return IC.replaceInstUsesWith(II, V);
+ }
+ break;
+
+ default:
+ break;
+ }
+ return None;
+}
+
+Optional<Value *> X86TTIImpl::simplifyDemandedUseBitsIntrinsic(
+ InstCombiner &IC, IntrinsicInst &II, APInt DemandedMask, KnownBits &Known,
+ bool &KnownBitsComputed) const {
+ switch (II.getIntrinsicID()) {
+ default:
+ break;
+ case Intrinsic::x86_mmx_pmovmskb:
+ case Intrinsic::x86_sse_movmsk_ps:
+ case Intrinsic::x86_sse2_movmsk_pd:
+ case Intrinsic::x86_sse2_pmovmskb_128:
+ case Intrinsic::x86_avx_movmsk_ps_256:
+ case Intrinsic::x86_avx_movmsk_pd_256:
+ case Intrinsic::x86_avx2_pmovmskb: {
+ // MOVMSK copies the vector elements' sign bits to the low bits
+ // and zeros the high bits.
+ unsigned ArgWidth;
+ if (II.getIntrinsicID() == Intrinsic::x86_mmx_pmovmskb) {
+ ArgWidth = 8; // Arg is x86_mmx, but treated as <8 x i8>.
+ } else {
+ auto Arg = II.getArgOperand(0);
+ auto ArgType = cast<FixedVectorType>(Arg->getType());
+ ArgWidth = ArgType->getNumElements();
+ }
+
+ // If we don't need any of low bits then return zero,
+ // we know that DemandedMask is non-zero already.
+ APInt DemandedElts = DemandedMask.zextOrTrunc(ArgWidth);
+ Type *VTy = II.getType();
+ if (DemandedElts.isNullValue()) {
+ return ConstantInt::getNullValue(VTy);
+ }
+
+ // We know that the upper bits are set to zero.
+ Known.Zero.setBitsFrom(ArgWidth);
+ KnownBitsComputed = true;
+ break;
+ }
+ }
+ return None;
+}
+
+Optional<Value *> X86TTIImpl::simplifyDemandedVectorEltsIntrinsic(
+ InstCombiner &IC, IntrinsicInst &II, APInt DemandedElts, APInt &UndefElts,
+ APInt &UndefElts2, APInt &UndefElts3,
+ std::function<void(Instruction *, unsigned, APInt, APInt &)>
+ simplifyAndSetOp) const {
+ unsigned VWidth = cast<FixedVectorType>(II.getType())->getNumElements();
+ switch (II.getIntrinsicID()) {
+ default:
+ break;
+ case Intrinsic::x86_xop_vfrcz_ss:
+ case Intrinsic::x86_xop_vfrcz_sd:
+ // The instructions for these intrinsics are speced to zero upper bits not
+ // pass them through like other scalar intrinsics. So we shouldn't just
+ // use Arg0 if DemandedElts[0] is clear like we do for other intrinsics.
+ // Instead we should return a zero vector.
+ if (!DemandedElts[0]) {
+ IC.addToWorklist(&II);
+ return ConstantAggregateZero::get(II.getType());
+ }
+
+ // Only the lower element is used.
+ DemandedElts = 1;
+ simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
+
+ // Only the lower element is undefined. The high elements are zero.
+ UndefElts = UndefElts[0];
+ break;
+
+ // Unary scalar-as-vector operations that work column-wise.
+ case Intrinsic::x86_sse_rcp_ss:
+ case Intrinsic::x86_sse_rsqrt_ss:
+ simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
+
+ // If lowest element of a scalar op isn't used then use Arg0.
+ if (!DemandedElts[0]) {
+ IC.addToWorklist(&II);
+ return II.getArgOperand(0);
+ }
+ // TODO: If only low elt lower SQRT to FSQRT (with rounding/exceptions
+ // checks).
+ break;
+
+ // Binary scalar-as-vector operations that work column-wise. The high
+ // elements come from operand 0. The low element is a function of both
+ // operands.
+ case Intrinsic::x86_sse_min_ss:
+ case Intrinsic::x86_sse_max_ss:
+ case Intrinsic::x86_sse_cmp_ss:
+ case Intrinsic::x86_sse2_min_sd:
+ case Intrinsic::x86_sse2_max_sd:
+ case Intrinsic::x86_sse2_cmp_sd: {
+ simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
+
+ // If lowest element of a scalar op isn't used then use Arg0.
+ if (!DemandedElts[0]) {
+ IC.addToWorklist(&II);
+ return II.getArgOperand(0);
+ }
+
+ // Only lower element is used for operand 1.
+ DemandedElts = 1;
+ simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
+
+ // Lower element is undefined if both lower elements are undefined.
+ // Consider things like undef&0. The result is known zero, not undef.
+ if (!UndefElts2[0])
+ UndefElts.clearBit(0);
+
+ break;
+ }
+
+ // Binary scalar-as-vector operations that work column-wise. The high
+ // elements come from operand 0 and the low element comes from operand 1.
+ case Intrinsic::x86_sse41_round_ss:
+ case Intrinsic::x86_sse41_round_sd: {
+ // Don't use the low element of operand 0.
+ APInt DemandedElts2 = DemandedElts;
+ DemandedElts2.clearBit(0);
+ simplifyAndSetOp(&II, 0, DemandedElts2, UndefElts);
+
+ // If lowest element of a scalar op isn't used then use Arg0.
+ if (!DemandedElts[0]) {
+ IC.addToWorklist(&II);
+ return II.getArgOperand(0);
+ }
+
+ // Only lower element is used for operand 1.
+ DemandedElts = 1;
+ simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
+
+ // Take the high undef elements from operand 0 and take the lower element
+ // from operand 1.
+ UndefElts.clearBit(0);
+ UndefElts |= UndefElts2[0];
+ break;
+ }
+
+ // Three input scalar-as-vector operations that work column-wise. The high
+ // elements come from operand 0 and the low element is a function of all
+ // three inputs.
+ case Intrinsic::x86_avx512_mask_add_ss_round:
+ case Intrinsic::x86_avx512_mask_div_ss_round:
+ case Intrinsic::x86_avx512_mask_mul_ss_round:
+ case Intrinsic::x86_avx512_mask_sub_ss_round:
+ case Intrinsic::x86_avx512_mask_max_ss_round:
+ case Intrinsic::x86_avx512_mask_min_ss_round:
+ case Intrinsic::x86_avx512_mask_add_sd_round:
+ case Intrinsic::x86_avx512_mask_div_sd_round:
+ case Intrinsic::x86_avx512_mask_mul_sd_round:
+ case Intrinsic::x86_avx512_mask_sub_sd_round:
+ case Intrinsic::x86_avx512_mask_max_sd_round:
+ case Intrinsic::x86_avx512_mask_min_sd_round:
+ simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
+
+ // If lowest element of a scalar op isn't used then use Arg0.
+ if (!DemandedElts[0]) {
+ IC.addToWorklist(&II);
+ return II.getArgOperand(0);
+ }
+
+ // Only lower element is used for operand 1 and 2.
+ DemandedElts = 1;
+ simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
+ simplifyAndSetOp(&II, 2, DemandedElts, UndefElts3);
+
+ // Lower element is undefined if all three lower elements are undefined.
+ // Consider things like undef&0. The result is known zero, not undef.
+ if (!UndefElts2[0] || !UndefElts3[0])
+ UndefElts.clearBit(0);
+ break;
+
+ // TODO: Add fmaddsub support?
+ case Intrinsic::x86_sse3_addsub_pd:
+ case Intrinsic::x86_sse3_addsub_ps:
+ case Intrinsic::x86_avx_addsub_pd_256:
+ case Intrinsic::x86_avx_addsub_ps_256: {
+ // If none of the even or none of the odd lanes are required, turn this
+ // into a generic FP math instruction.
+ APInt SubMask = APInt::getSplat(VWidth, APInt(2, 0x1));
+ APInt AddMask = APInt::getSplat(VWidth, APInt(2, 0x2));
+ bool IsSubOnly = DemandedElts.isSubsetOf(SubMask);
+ bool IsAddOnly = DemandedElts.isSubsetOf(AddMask);
+ if (IsSubOnly || IsAddOnly) {
+ assert((IsSubOnly ^ IsAddOnly) && "Can't be both add-only and sub-only");
+ IRBuilderBase::InsertPointGuard Guard(IC.Builder);
+ IC.Builder.SetInsertPoint(&II);
+ Value *Arg0 = II.getArgOperand(0), *Arg1 = II.getArgOperand(1);
+ return IC.Builder.CreateBinOp(
+ IsSubOnly ? Instruction::FSub : Instruction::FAdd, Arg0, Arg1);
+ }
+
+ simplifyAndSetOp(&II, 0, DemandedElts, UndefElts);
+ simplifyAndSetOp(&II, 1, DemandedElts, UndefElts2);
+ UndefElts &= UndefElts2;
+ break;
+ }
+
+ case Intrinsic::x86_sse2_packssdw_128:
+ case Intrinsic::x86_sse2_packsswb_128:
+ case Intrinsic::x86_sse2_packuswb_128:
+ case Intrinsic::x86_sse41_packusdw:
+ case Intrinsic::x86_avx2_packssdw:
+ case Intrinsic::x86_avx2_packsswb:
+ case Intrinsic::x86_avx2_packusdw:
+ case Intrinsic::x86_avx2_packuswb:
+ case Intrinsic::x86_avx512_packssdw_512:
+ case Intrinsic::x86_avx512_packsswb_512:
+ case Intrinsic::x86_avx512_packusdw_512:
+ case Intrinsic::x86_avx512_packuswb_512: {
+ auto *Ty0 = II.getArgOperand(0)->getType();
+ unsigned InnerVWidth = cast<FixedVectorType>(Ty0)->getNumElements();
+ assert(VWidth == (InnerVWidth * 2) && "Unexpected input size");
+
+ unsigned NumLanes = Ty0->getPrimitiveSizeInBits() / 128;
+ unsigned VWidthPerLane = VWidth / NumLanes;
+ unsigned InnerVWidthPerLane = InnerVWidth / NumLanes;
+
+ // Per lane, pack the elements of the first input and then the second.
+ // e.g.
+ // v8i16 PACK(v4i32 X, v4i32 Y) - (X[0..3],Y[0..3])
+ // v32i8 PACK(v16i16 X, v16i16 Y) - (X[0..7],Y[0..7]),(X[8..15],Y[8..15])
+ for (int OpNum = 0; OpNum != 2; ++OpNum) {
+ APInt OpDemandedElts(InnerVWidth, 0);
+ for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
+ unsigned LaneIdx = Lane * VWidthPerLane;
+ for (unsigned Elt = 0; Elt != InnerVWidthPerLane; ++Elt) {
+ unsigned Idx = LaneIdx + Elt + InnerVWidthPerLane * OpNum;
+ if (DemandedElts[Idx])
+ OpDemandedElts.setBit((Lane * InnerVWidthPerLane) + Elt);
+ }
+ }
+
+ // Demand elements from the operand.
+ APInt OpUndefElts(InnerVWidth, 0);
+ simplifyAndSetOp(&II, OpNum, OpDemandedElts, OpUndefElts);
+
+ // Pack the operand's UNDEF elements, one lane at a time.
+ OpUndefElts = OpUndefElts.zext(VWidth);
+ for (unsigned Lane = 0; Lane != NumLanes; ++Lane) {
+ APInt LaneElts = OpUndefElts.lshr(InnerVWidthPerLane * Lane);
+ LaneElts = LaneElts.getLoBits(InnerVWidthPerLane);
+ LaneElts <<= InnerVWidthPerLane * (2 * Lane + OpNum);
+ UndefElts |= LaneElts;
+ }
+ }
+ break;
+ }
+
+ // PSHUFB
+ case Intrinsic::x86_ssse3_pshuf_b_128:
+ case Intrinsic::x86_avx2_pshuf_b:
+ case Intrinsic::x86_avx512_pshuf_b_512:
+ // PERMILVAR
+ case Intrinsic::x86_avx_vpermilvar_ps:
+ case Intrinsic::x86_avx_vpermilvar_ps_256:
+ case Intrinsic::x86_avx512_vpermilvar_ps_512:
+ case Intrinsic::x86_avx_vpermilvar_pd:
+ case Intrinsic::x86_avx_vpermilvar_pd_256:
+ case Intrinsic::x86_avx512_vpermilvar_pd_512:
+ // PERMV
+ case Intrinsic::x86_avx2_permd:
+ case Intrinsic::x86_avx2_permps: {
+ simplifyAndSetOp(&II, 1, DemandedElts, UndefElts);
+ break;
+ }
+
+ // SSE4A instructions leave the upper 64-bits of the 128-bit result
+ // in an undefined state.
+ case Intrinsic::x86_sse4a_extrq:
+ case Intrinsic::x86_sse4a_extrqi:
+ case Intrinsic::x86_sse4a_insertq:
+ case Intrinsic::x86_sse4a_insertqi:
+ UndefElts.setHighBits(VWidth / 2);
+ break;
+ }
+ return None;
+}