aboutsummaryrefslogtreecommitdiff
path: root/sys/vm/vm_phys.c
blob: 1793ed83259cbefdaca1c7b99c99f109893a5346 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
/*-
 * Copyright (c) 2002-2006 Rice University
 * Copyright (c) 2007 Alan L. Cox <alc@cs.rice.edu>
 * All rights reserved.
 *
 * This software was developed for the FreeBSD Project by Alan L. Cox,
 * Olivier Crameri, Peter Druschel, Sitaram Iyer, and Juan Navarro.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
 * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT
 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
 * WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_ddb.h"
#include "opt_vm.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/queue.h>
#include <sys/sbuf.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>

#include <ddb/ddb.h>

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_phys.h>
#include <vm/vm_reserv.h>

/*
 * VM_FREELIST_DEFAULT is split into VM_NDOMAIN lists, one for each
 * domain.  These extra lists are stored at the end of the regular
 * free lists starting with VM_NFREELIST.
 */
#define VM_RAW_NFREELIST	(VM_NFREELIST + VM_NDOMAIN - 1)

struct vm_freelist {
	struct pglist pl;
	int lcnt;
};

struct vm_phys_seg {
	vm_paddr_t	start;
	vm_paddr_t	end;
	vm_page_t	first_page;
	int		domain;
	struct vm_freelist (*free_queues)[VM_NFREEPOOL][VM_NFREEORDER];
};

struct mem_affinity *mem_affinity;

static struct vm_phys_seg vm_phys_segs[VM_PHYSSEG_MAX];

static int vm_phys_nsegs;

static struct vm_freelist
    vm_phys_free_queues[VM_RAW_NFREELIST][VM_NFREEPOOL][VM_NFREEORDER];
static struct vm_freelist
(*vm_phys_lookup_lists[VM_NDOMAIN][VM_RAW_NFREELIST])[VM_NFREEPOOL][VM_NFREEORDER];

static int vm_nfreelists = VM_FREELIST_DEFAULT + 1;

static int cnt_prezero;
SYSCTL_INT(_vm_stats_misc, OID_AUTO, cnt_prezero, CTLFLAG_RD,
    &cnt_prezero, 0, "The number of physical pages prezeroed at idle time");

static int sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_free, CTLTYPE_STRING | CTLFLAG_RD,
    NULL, 0, sysctl_vm_phys_free, "A", "Phys Free Info");

static int sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_segs, CTLTYPE_STRING | CTLFLAG_RD,
    NULL, 0, sysctl_vm_phys_segs, "A", "Phys Seg Info");

#if VM_NDOMAIN > 1
static int sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS);
SYSCTL_OID(_vm, OID_AUTO, phys_lookup_lists, CTLTYPE_STRING | CTLFLAG_RD,
    NULL, 0, sysctl_vm_phys_lookup_lists, "A", "Phys Lookup Lists");
#endif

static void _vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind,
    int domain);
static void vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind);
static int vm_phys_paddr_to_segind(vm_paddr_t pa);
static void vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl,
    int order);

/*
 * Outputs the state of the physical memory allocator, specifically,
 * the amount of physical memory in each free list.
 */
static int
sysctl_vm_phys_free(SYSCTL_HANDLER_ARGS)
{
	struct sbuf sbuf;
	struct vm_freelist *fl;
	int error, flind, oind, pind;

	error = sysctl_wire_old_buffer(req, 0);
	if (error != 0)
		return (error);
	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
	for (flind = 0; flind < vm_nfreelists; flind++) {
		sbuf_printf(&sbuf, "\nFREE LIST %d:\n"
		    "\n  ORDER (SIZE)  |  NUMBER"
		    "\n              ", flind);
		for (pind = 0; pind < VM_NFREEPOOL; pind++)
			sbuf_printf(&sbuf, "  |  POOL %d", pind);
		sbuf_printf(&sbuf, "\n--            ");
		for (pind = 0; pind < VM_NFREEPOOL; pind++)
			sbuf_printf(&sbuf, "-- --      ");
		sbuf_printf(&sbuf, "--\n");
		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
			sbuf_printf(&sbuf, "  %2d (%6dK)", oind,
			    1 << (PAGE_SHIFT - 10 + oind));
			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
				fl = vm_phys_free_queues[flind][pind];
				sbuf_printf(&sbuf, "  |  %6d", fl[oind].lcnt);
			}
			sbuf_printf(&sbuf, "\n");
		}
	}
	error = sbuf_finish(&sbuf);
	sbuf_delete(&sbuf);
	return (error);
}

/*
 * Outputs the set of physical memory segments.
 */
static int
sysctl_vm_phys_segs(SYSCTL_HANDLER_ARGS)
{
	struct sbuf sbuf;
	struct vm_phys_seg *seg;
	int error, segind;

	error = sysctl_wire_old_buffer(req, 0);
	if (error != 0)
		return (error);
	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
	for (segind = 0; segind < vm_phys_nsegs; segind++) {
		sbuf_printf(&sbuf, "\nSEGMENT %d:\n\n", segind);
		seg = &vm_phys_segs[segind];
		sbuf_printf(&sbuf, "start:     %#jx\n",
		    (uintmax_t)seg->start);
		sbuf_printf(&sbuf, "end:       %#jx\n",
		    (uintmax_t)seg->end);
		sbuf_printf(&sbuf, "domain:    %d\n", seg->domain);
		sbuf_printf(&sbuf, "free list: %p\n", seg->free_queues);
	}
	error = sbuf_finish(&sbuf);
	sbuf_delete(&sbuf);
	return (error);
}

#if VM_NDOMAIN > 1
/*
 * Outputs the set of free list lookup lists.
 */
static int
sysctl_vm_phys_lookup_lists(SYSCTL_HANDLER_ARGS)
{
	struct sbuf sbuf;
	int domain, error, flind, ndomains;

	error = sysctl_wire_old_buffer(req, 0);
	if (error != 0)
		return (error);
	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
	ndomains = vm_nfreelists - VM_NFREELIST + 1;
	for (domain = 0; domain < ndomains; domain++) {
		sbuf_printf(&sbuf, "\nDOMAIN %d:\n\n", domain);
		for (flind = 0; flind < vm_nfreelists; flind++)
			sbuf_printf(&sbuf, "  [%d]:\t%p\n", flind,
			    vm_phys_lookup_lists[domain][flind]);
	}
	error = sbuf_finish(&sbuf);
	sbuf_delete(&sbuf);
	return (error);
}
#endif
	
/*
 * Create a physical memory segment.
 */
static void
_vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind, int domain)
{
	struct vm_phys_seg *seg;
#ifdef VM_PHYSSEG_SPARSE
	long pages;
	int segind;

	pages = 0;
	for (segind = 0; segind < vm_phys_nsegs; segind++) {
		seg = &vm_phys_segs[segind];
		pages += atop(seg->end - seg->start);
	}
#endif
	KASSERT(vm_phys_nsegs < VM_PHYSSEG_MAX,
	    ("vm_phys_create_seg: increase VM_PHYSSEG_MAX"));
	seg = &vm_phys_segs[vm_phys_nsegs++];
	seg->start = start;
	seg->end = end;
	seg->domain = domain;
#ifdef VM_PHYSSEG_SPARSE
	seg->first_page = &vm_page_array[pages];
#else
	seg->first_page = PHYS_TO_VM_PAGE(start);
#endif
#if VM_NDOMAIN > 1
	if (flind == VM_FREELIST_DEFAULT && domain != 0) {
		flind = VM_NFREELIST + (domain - 1);
		if (flind >= vm_nfreelists)
			vm_nfreelists = flind + 1;
	}
#endif
	seg->free_queues = &vm_phys_free_queues[flind];
}

static void
vm_phys_create_seg(vm_paddr_t start, vm_paddr_t end, int flind)
{
	int i;

	if (mem_affinity == NULL) {
		_vm_phys_create_seg(start, end, flind, 0);
		return;
	}

	for (i = 0;; i++) {
		if (mem_affinity[i].end == 0)
			panic("Reached end of affinity info");
		if (mem_affinity[i].end <= start)
			continue;
		if (mem_affinity[i].start > start)
			panic("No affinity info for start %jx",
			    (uintmax_t)start);
		if (mem_affinity[i].end >= end) {
			_vm_phys_create_seg(start, end, flind,
			    mem_affinity[i].domain);
			break;
		}
		_vm_phys_create_seg(start, mem_affinity[i].end, flind,
		    mem_affinity[i].domain);
		start = mem_affinity[i].end;
	}
}

/*
 * Initialize the physical memory allocator.
 */
void
vm_phys_init(void)
{
	struct vm_freelist *fl;
	int flind, i, oind, pind;
#if VM_NDOMAIN > 1
	int ndomains, j;
#endif

	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
#ifdef	VM_FREELIST_ISADMA
		if (phys_avail[i] < 16777216) {
			if (phys_avail[i + 1] > 16777216) {
				vm_phys_create_seg(phys_avail[i], 16777216,
				    VM_FREELIST_ISADMA);
				vm_phys_create_seg(16777216, phys_avail[i + 1],
				    VM_FREELIST_DEFAULT);
			} else {
				vm_phys_create_seg(phys_avail[i],
				    phys_avail[i + 1], VM_FREELIST_ISADMA);
			}
			if (VM_FREELIST_ISADMA >= vm_nfreelists)
				vm_nfreelists = VM_FREELIST_ISADMA + 1;
		} else
#endif
#ifdef	VM_FREELIST_HIGHMEM
		if (phys_avail[i + 1] > VM_HIGHMEM_ADDRESS) {
			if (phys_avail[i] < VM_HIGHMEM_ADDRESS) {
				vm_phys_create_seg(phys_avail[i],
				    VM_HIGHMEM_ADDRESS, VM_FREELIST_DEFAULT);
				vm_phys_create_seg(VM_HIGHMEM_ADDRESS,
				    phys_avail[i + 1], VM_FREELIST_HIGHMEM);
			} else {
				vm_phys_create_seg(phys_avail[i],
				    phys_avail[i + 1], VM_FREELIST_HIGHMEM);
			}
			if (VM_FREELIST_HIGHMEM >= vm_nfreelists)
				vm_nfreelists = VM_FREELIST_HIGHMEM + 1;
		} else
#endif
		vm_phys_create_seg(phys_avail[i], phys_avail[i + 1],
		    VM_FREELIST_DEFAULT);
	}
	for (flind = 0; flind < vm_nfreelists; flind++) {
		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
			fl = vm_phys_free_queues[flind][pind];
			for (oind = 0; oind < VM_NFREEORDER; oind++)
				TAILQ_INIT(&fl[oind].pl);
		}
	}
#if VM_NDOMAIN > 1
	/*
	 * Build a free list lookup list for each domain.  All of the
	 * memory domain lists are inserted at the VM_FREELIST_DEFAULT
	 * index in a round-robin order starting with the current
	 * domain.
	 */
	ndomains = vm_nfreelists - VM_NFREELIST + 1;
	for (flind = 0; flind < VM_FREELIST_DEFAULT; flind++)
		for (i = 0; i < ndomains; i++)
			vm_phys_lookup_lists[i][flind] =
			    &vm_phys_free_queues[flind];
	for (i = 0; i < ndomains; i++)
		for (j = 0; j < ndomains; j++) {
			flind = (i + j) % ndomains;
			if (flind == 0)
				flind = VM_FREELIST_DEFAULT;
			else
				flind += VM_NFREELIST - 1;
			vm_phys_lookup_lists[i][VM_FREELIST_DEFAULT + j] =
			    &vm_phys_free_queues[flind];
		}
	for (flind = VM_FREELIST_DEFAULT + 1; flind < VM_NFREELIST;
	     flind++)
		for (i = 0; i < ndomains; i++)
			vm_phys_lookup_lists[i][flind + ndomains - 1] =
			    &vm_phys_free_queues[flind];
#else
	for (flind = 0; flind < vm_nfreelists; flind++)
		vm_phys_lookup_lists[0][flind] = &vm_phys_free_queues[flind];
#endif
}

/*
 * Split a contiguous, power of two-sized set of physical pages.
 */
static __inline void
vm_phys_split_pages(vm_page_t m, int oind, struct vm_freelist *fl, int order)
{
	vm_page_t m_buddy;

	while (oind > order) {
		oind--;
		m_buddy = &m[1 << oind];
		KASSERT(m_buddy->order == VM_NFREEORDER,
		    ("vm_phys_split_pages: page %p has unexpected order %d",
		    m_buddy, m_buddy->order));
		m_buddy->order = oind;
		TAILQ_INSERT_HEAD(&fl[oind].pl, m_buddy, pageq);
		fl[oind].lcnt++;
        }
}

/*
 * Initialize a physical page and add it to the free lists.
 */
void
vm_phys_add_page(vm_paddr_t pa)
{
	vm_page_t m;

	cnt.v_page_count++;
	m = vm_phys_paddr_to_vm_page(pa);
	m->phys_addr = pa;
	m->queue = PQ_NONE;
	m->segind = vm_phys_paddr_to_segind(pa);
	m->flags = PG_FREE;
	KASSERT(m->order == VM_NFREEORDER,
	    ("vm_phys_add_page: page %p has unexpected order %d",
	    m, m->order));
	m->pool = VM_FREEPOOL_DEFAULT;
	pmap_page_init(m);
	mtx_lock(&vm_page_queue_free_mtx);
	cnt.v_free_count++;
	vm_phys_free_pages(m, 0);
	mtx_unlock(&vm_page_queue_free_mtx);
}

/*
 * Allocate a contiguous, power of two-sized set of physical pages
 * from the free lists.
 *
 * The free page queues must be locked.
 */
vm_page_t
vm_phys_alloc_pages(int pool, int order)
{
	vm_page_t m;
	int flind;

	for (flind = 0; flind < vm_nfreelists; flind++) {
		m = vm_phys_alloc_freelist_pages(flind, pool, order);
		if (m != NULL)
			return (m);
	}
	return (NULL);
}

/*
 * Find and dequeue a free page on the given free list, with the 
 * specified pool and order
 */
vm_page_t
vm_phys_alloc_freelist_pages(int flind, int pool, int order)
{	
	struct vm_freelist *fl;
	struct vm_freelist *alt;
	int domain, oind, pind;
	vm_page_t m;

	KASSERT(flind < VM_NFREELIST,
	    ("vm_phys_alloc_freelist_pages: freelist %d is out of range", flind));
	KASSERT(pool < VM_NFREEPOOL,
	    ("vm_phys_alloc_freelist_pages: pool %d is out of range", pool));
	KASSERT(order < VM_NFREEORDER,
	    ("vm_phys_alloc_freelist_pages: order %d is out of range", order));

#if VM_NDOMAIN > 1
	domain = PCPU_GET(domain);
#else
	domain = 0;
#endif
	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
	fl = (*vm_phys_lookup_lists[domain][flind])[pool];
	for (oind = order; oind < VM_NFREEORDER; oind++) {
		m = TAILQ_FIRST(&fl[oind].pl);
		if (m != NULL) {
			TAILQ_REMOVE(&fl[oind].pl, m, pageq);
			fl[oind].lcnt--;
			m->order = VM_NFREEORDER;
			vm_phys_split_pages(m, oind, fl, order);
			return (m);
		}
	}

	/*
	 * The given pool was empty.  Find the largest
	 * contiguous, power-of-two-sized set of pages in any
	 * pool.  Transfer these pages to the given pool, and
	 * use them to satisfy the allocation.
	 */
	for (oind = VM_NFREEORDER - 1; oind >= order; oind--) {
		for (pind = 0; pind < VM_NFREEPOOL; pind++) {
			alt = (*vm_phys_lookup_lists[domain][flind])[pind];
			m = TAILQ_FIRST(&alt[oind].pl);
			if (m != NULL) {
				TAILQ_REMOVE(&alt[oind].pl, m, pageq);
				alt[oind].lcnt--;
				m->order = VM_NFREEORDER;
				vm_phys_set_pool(pool, m, oind);
				vm_phys_split_pages(m, oind, fl, order);
				return (m);
			}
		}
	}
	return (NULL);
}

/*
 * Find the vm_page corresponding to the given physical address.
 */
vm_page_t
vm_phys_paddr_to_vm_page(vm_paddr_t pa)
{
	struct vm_phys_seg *seg;
	int segind;

	for (segind = 0; segind < vm_phys_nsegs; segind++) {
		seg = &vm_phys_segs[segind];
		if (pa >= seg->start && pa < seg->end)
			return (&seg->first_page[atop(pa - seg->start)]);
	}
	return (NULL);
}

/*
 * Find the segment containing the given physical address.
 */
static int
vm_phys_paddr_to_segind(vm_paddr_t pa)
{
	struct vm_phys_seg *seg;
	int segind;

	for (segind = 0; segind < vm_phys_nsegs; segind++) {
		seg = &vm_phys_segs[segind];
		if (pa >= seg->start && pa < seg->end)
			return (segind);
	}
	panic("vm_phys_paddr_to_segind: paddr %#jx is not in any segment" ,
	    (uintmax_t)pa);
}

/*
 * Free a contiguous, power of two-sized set of physical pages.
 *
 * The free page queues must be locked.
 */
void
vm_phys_free_pages(vm_page_t m, int order)
{
	struct vm_freelist *fl;
	struct vm_phys_seg *seg;
	vm_paddr_t pa;
	vm_page_t m_buddy;

	KASSERT(m->order == VM_NFREEORDER,
	    ("vm_phys_free_pages: page %p has unexpected order %d",
	    m, m->order));
	KASSERT(m->pool < VM_NFREEPOOL,
	    ("vm_phys_free_pages: page %p has unexpected pool %d",
	    m, m->pool));
	KASSERT(order < VM_NFREEORDER,
	    ("vm_phys_free_pages: order %d is out of range", order));
	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
	seg = &vm_phys_segs[m->segind];
	if (order < VM_NFREEORDER - 1) {
		pa = VM_PAGE_TO_PHYS(m);
		do {
			pa ^= ((vm_paddr_t)1 << (PAGE_SHIFT + order));
			if (pa < seg->start || pa >= seg->end)
				break;
			m_buddy = &seg->first_page[atop(pa - seg->start)];
			if (m_buddy->order != order)
				break;
			fl = (*seg->free_queues)[m_buddy->pool];
			TAILQ_REMOVE(&fl[order].pl, m_buddy, pageq);
			fl[order].lcnt--;
			m_buddy->order = VM_NFREEORDER;
			if (m_buddy->pool != m->pool)
				vm_phys_set_pool(m->pool, m_buddy, order);
			order++;
			pa &= ~(((vm_paddr_t)1 << (PAGE_SHIFT + order)) - 1);
			m = &seg->first_page[atop(pa - seg->start)];
		} while (order < VM_NFREEORDER - 1);
	}
	m->order = order;
	fl = (*seg->free_queues)[m->pool];
	TAILQ_INSERT_TAIL(&fl[order].pl, m, pageq);
	fl[order].lcnt++;
}

/*
 * Free a contiguous, arbitrarily sized set of physical pages.
 *
 * The free page queues must be locked.
 */
void
vm_phys_free_contig(vm_page_t m, u_long npages)
{
	u_int n;
	int order;

	/*
	 * Avoid unnecessary coalescing by freeing the pages in the largest
	 * possible power-of-two-sized subsets.
	 */
	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
	for (;; npages -= n) {
		/*
		 * Unsigned "min" is used here so that "order" is assigned
		 * "VM_NFREEORDER - 1" when "m"'s physical address is zero
		 * or the low-order bits of its physical address are zero
		 * because the size of a physical address exceeds the size of
		 * a long.
		 */
		order = min(ffsl(VM_PAGE_TO_PHYS(m) >> PAGE_SHIFT) - 1,
		    VM_NFREEORDER - 1);
		n = 1 << order;
		if (npages < n)
			break;
		vm_phys_free_pages(m, order);
		m += n;
	}
	/* The residual "npages" is less than "1 << (VM_NFREEORDER - 1)". */
	for (; npages > 0; npages -= n) {
		order = flsl(npages) - 1;
		n = 1 << order;
		vm_phys_free_pages(m, order);
		m += n;
	}
}

/*
 * Set the pool for a contiguous, power of two-sized set of physical pages. 
 */
void
vm_phys_set_pool(int pool, vm_page_t m, int order)
{
	vm_page_t m_tmp;

	for (m_tmp = m; m_tmp < &m[1 << order]; m_tmp++)
		m_tmp->pool = pool;
}

/*
 * Search for the given physical page "m" in the free lists.  If the search
 * succeeds, remove "m" from the free lists and return TRUE.  Otherwise, return
 * FALSE, indicating that "m" is not in the free lists.
 *
 * The free page queues must be locked.
 */
boolean_t
vm_phys_unfree_page(vm_page_t m)
{
	struct vm_freelist *fl;
	struct vm_phys_seg *seg;
	vm_paddr_t pa, pa_half;
	vm_page_t m_set, m_tmp;
	int order;

	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);

	/*
	 * First, find the contiguous, power of two-sized set of free
	 * physical pages containing the given physical page "m" and
	 * assign it to "m_set".
	 */
	seg = &vm_phys_segs[m->segind];
	for (m_set = m, order = 0; m_set->order == VM_NFREEORDER &&
	    order < VM_NFREEORDER - 1; ) {
		order++;
		pa = m->phys_addr & (~(vm_paddr_t)0 << (PAGE_SHIFT + order));
		if (pa >= seg->start)
			m_set = &seg->first_page[atop(pa - seg->start)];
		else
			return (FALSE);
	}
	if (m_set->order < order)
		return (FALSE);
	if (m_set->order == VM_NFREEORDER)
		return (FALSE);
	KASSERT(m_set->order < VM_NFREEORDER,
	    ("vm_phys_unfree_page: page %p has unexpected order %d",
	    m_set, m_set->order));

	/*
	 * Next, remove "m_set" from the free lists.  Finally, extract
	 * "m" from "m_set" using an iterative algorithm: While "m_set"
	 * is larger than a page, shrink "m_set" by returning the half
	 * of "m_set" that does not contain "m" to the free lists.
	 */
	fl = (*seg->free_queues)[m_set->pool];
	order = m_set->order;
	TAILQ_REMOVE(&fl[order].pl, m_set, pageq);
	fl[order].lcnt--;
	m_set->order = VM_NFREEORDER;
	while (order > 0) {
		order--;
		pa_half = m_set->phys_addr ^ (1 << (PAGE_SHIFT + order));
		if (m->phys_addr < pa_half)
			m_tmp = &seg->first_page[atop(pa_half - seg->start)];
		else {
			m_tmp = m_set;
			m_set = &seg->first_page[atop(pa_half - seg->start)];
		}
		m_tmp->order = order;
		TAILQ_INSERT_HEAD(&fl[order].pl, m_tmp, pageq);
		fl[order].lcnt++;
	}
	KASSERT(m_set == m, ("vm_phys_unfree_page: fatal inconsistency"));
	return (TRUE);
}

/*
 * Try to zero one physical page.  Used by an idle priority thread.
 */
boolean_t
vm_phys_zero_pages_idle(void)
{
	static struct vm_freelist *fl = vm_phys_free_queues[0][0];
	static int flind, oind, pind;
	vm_page_t m, m_tmp;

	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
	for (;;) {
		TAILQ_FOREACH_REVERSE(m, &fl[oind].pl, pglist, pageq) {
			for (m_tmp = m; m_tmp < &m[1 << oind]; m_tmp++) {
				if ((m_tmp->flags & (PG_CACHED | PG_ZERO)) == 0) {
					vm_phys_unfree_page(m_tmp);
					cnt.v_free_count--;
					mtx_unlock(&vm_page_queue_free_mtx);
					pmap_zero_page_idle(m_tmp);
					m_tmp->flags |= PG_ZERO;
					mtx_lock(&vm_page_queue_free_mtx);
					cnt.v_free_count++;
					vm_phys_free_pages(m_tmp, 0);
					vm_page_zero_count++;
					cnt_prezero++;
					return (TRUE);
				}
			}
		}
		oind++;
		if (oind == VM_NFREEORDER) {
			oind = 0;
			pind++;
			if (pind == VM_NFREEPOOL) {
				pind = 0;
				flind++;
				if (flind == vm_nfreelists)
					flind = 0;
			}
			fl = vm_phys_free_queues[flind][pind];
		}
	}
}

/*
 * Allocate a contiguous set of physical pages of the given size
 * "npages" from the free lists.  All of the physical pages must be at
 * or above the given physical address "low" and below the given
 * physical address "high".  The given value "alignment" determines the
 * alignment of the first physical page in the set.  If the given value
 * "boundary" is non-zero, then the set of physical pages cannot cross
 * any physical address boundary that is a multiple of that value.  Both
 * "alignment" and "boundary" must be a power of two.
 */
vm_page_t
vm_phys_alloc_contig(u_long npages, vm_paddr_t low, vm_paddr_t high,
    u_long alignment, vm_paddr_t boundary)
{
	struct vm_freelist *fl;
	struct vm_phys_seg *seg;
	struct vnode *vp;
	vm_paddr_t pa, pa_last, size;
	vm_page_t deferred_vdrop_list, m, m_ret;
	u_long npages_end;
	int domain, flind, i, oind, order, pind;

#if VM_NDOMAIN > 1
	domain = PCPU_GET(domain);
#else
	domain = 0;
#endif
	size = npages << PAGE_SHIFT;
	KASSERT(size != 0,
	    ("vm_phys_alloc_contig: size must not be 0"));
	KASSERT((alignment & (alignment - 1)) == 0,
	    ("vm_phys_alloc_contig: alignment must be a power of 2"));
	KASSERT((boundary & (boundary - 1)) == 0,
	    ("vm_phys_alloc_contig: boundary must be a power of 2"));
	deferred_vdrop_list = NULL;
	/* Compute the queue that is the best fit for npages. */
	for (order = 0; (1 << order) < npages; order++);
	mtx_lock(&vm_page_queue_free_mtx);
#if VM_NRESERVLEVEL > 0
retry:
#endif
	for (flind = 0; flind < vm_nfreelists; flind++) {
		for (oind = min(order, VM_NFREEORDER - 1); oind < VM_NFREEORDER; oind++) {
			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
				fl = (*vm_phys_lookup_lists[domain][flind])
				    [pind];
				TAILQ_FOREACH(m_ret, &fl[oind].pl, pageq) {
					/*
					 * A free list may contain physical pages
					 * from one or more segments.
					 */
					seg = &vm_phys_segs[m_ret->segind];
					if (seg->start > high ||
					    low >= seg->end)
						continue;

					/*
					 * Is the size of this allocation request
					 * larger than the largest block size?
					 */
					if (order >= VM_NFREEORDER) {
						/*
						 * Determine if a sufficient number
						 * of subsequent blocks to satisfy
						 * the allocation request are free.
						 */
						pa = VM_PAGE_TO_PHYS(m_ret);
						pa_last = pa + size;
						for (;;) {
							pa += 1 << (PAGE_SHIFT + VM_NFREEORDER - 1);
							if (pa >= pa_last)
								break;
							if (pa < seg->start ||
							    pa >= seg->end)
								break;
							m = &seg->first_page[atop(pa - seg->start)];
							if (m->order != VM_NFREEORDER - 1)
								break;
						}
						/* If not, continue to the next block. */
						if (pa < pa_last)
							continue;
					}

					/*
					 * Determine if the blocks are within the given range,
					 * satisfy the given alignment, and do not cross the
					 * given boundary.
					 */
					pa = VM_PAGE_TO_PHYS(m_ret);
					if (pa >= low &&
					    pa + size <= high &&
					    (pa & (alignment - 1)) == 0 &&
					    ((pa ^ (pa + size - 1)) & ~(boundary - 1)) == 0)
						goto done;
				}
			}
		}
	}
#if VM_NRESERVLEVEL > 0
	if (vm_reserv_reclaim_contig(size, low, high, alignment, boundary))
		goto retry;
#endif
	mtx_unlock(&vm_page_queue_free_mtx);
	return (NULL);
done:
	for (m = m_ret; m < &m_ret[npages]; m = &m[1 << oind]) {
		fl = (*seg->free_queues)[m->pool];
		TAILQ_REMOVE(&fl[m->order].pl, m, pageq);
		fl[m->order].lcnt--;
		m->order = VM_NFREEORDER;
	}
	if (m_ret->pool != VM_FREEPOOL_DEFAULT)
		vm_phys_set_pool(VM_FREEPOOL_DEFAULT, m_ret, oind);
	fl = (*seg->free_queues)[m_ret->pool];
	vm_phys_split_pages(m_ret, oind, fl, order);
	for (i = 0; i < npages; i++) {
		m = &m_ret[i];
		vp = vm_page_alloc_init(m);
		if (vp != NULL) {
			/*
			 * Enqueue the vnode for deferred vdrop().
			 *
			 * Unmanaged pages don't use "pageq", so it
			 * can be safely abused to construct a short-
			 * lived queue of vnodes.
			 */
			m->pageq.tqe_prev = (void *)vp;
			m->pageq.tqe_next = deferred_vdrop_list;
			deferred_vdrop_list = m;
		}
	}
	/* Return excess pages to the free lists. */
	npages_end = roundup2(npages, 1 << imin(oind, order));
	if (npages < npages_end)
		vm_phys_free_contig(&m_ret[npages], npages_end - npages);
	mtx_unlock(&vm_page_queue_free_mtx);
	while (deferred_vdrop_list != NULL) {
		vdrop((struct vnode *)deferred_vdrop_list->pageq.tqe_prev);
		deferred_vdrop_list = deferred_vdrop_list->pageq.tqe_next;
	}
	return (m_ret);
}

#ifdef DDB
/*
 * Show the number of physical pages in each of the free lists.
 */
DB_SHOW_COMMAND(freepages, db_show_freepages)
{
	struct vm_freelist *fl;
	int flind, oind, pind;

	for (flind = 0; flind < vm_nfreelists; flind++) {
		db_printf("FREE LIST %d:\n"
		    "\n  ORDER (SIZE)  |  NUMBER"
		    "\n              ", flind);
		for (pind = 0; pind < VM_NFREEPOOL; pind++)
			db_printf("  |  POOL %d", pind);
		db_printf("\n--            ");
		for (pind = 0; pind < VM_NFREEPOOL; pind++)
			db_printf("-- --      ");
		db_printf("--\n");
		for (oind = VM_NFREEORDER - 1; oind >= 0; oind--) {
			db_printf("  %2.2d (%6.6dK)", oind,
			    1 << (PAGE_SHIFT - 10 + oind));
			for (pind = 0; pind < VM_NFREEPOOL; pind++) {
				fl = vm_phys_free_queues[flind][pind];
				db_printf("  |  %6.6d", fl[oind].lcnt);
			}
			db_printf("\n");
		}
		db_printf("\n");
	}
}
#endif