1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
|
/*
* Most parts of this file are not covered by:
* ----------------------------------------------------------------------------
* "THE BEER-WARE LICENSE" (Revision 42):
* <phk@FreeBSD.org> wrote this file. As long as you retain this notice you
* can do whatever you want with this stuff. If we meet some day, and you think
* this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp
* ----------------------------------------------------------------------------
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/inflate.h>
#ifdef _KERNEL
#include <sys/systm.h>
#include <sys/kernel.h>
#endif
#include <sys/malloc.h>
#ifdef _KERNEL
static MALLOC_DEFINE(M_GZIP, "Gzip trees", "Gzip trees");
#endif
/* needed to make inflate() work */
#define uch u_char
#define ush u_short
#define ulg u_long
/* Stuff to make inflate() work */
#ifdef _KERNEL
#define memzero(dest,len) bzero(dest,len)
#endif
#define NOMEMCPY
#ifdef _KERNEL
#define FPRINTF printf
#else
extern void putstr (char *);
#define FPRINTF putstr
#endif
#define FLUSH(x,y) { \
int foo = (*x->gz_output)(x->gz_private,x->gz_slide,y); \
if (foo) \
return foo; \
}
static const int qflag = 0;
#ifndef _KERNEL /* want to use this file in kzip also */
extern unsigned char *kzipmalloc (int);
extern void kzipfree (void*);
#define malloc(x, y, z) kzipmalloc((x))
#define free(x, y) kzipfree((x))
#endif
/*
* This came from unzip-5.12. I have changed it the flow to pass
* a structure pointer around, thus hopefully making it re-entrant.
* Poul-Henning
*/
/* inflate.c -- put in the public domain by Mark Adler
version c14o, 23 August 1994 */
/* You can do whatever you like with this source file, though I would
prefer that if you modify it and redistribute it that you include
comments to that effect with your name and the date. Thank you.
History:
vers date who what
---- --------- -------------- ------------------------------------
a ~~ Feb 92 M. Adler used full (large, one-step) lookup table
b1 21 Mar 92 M. Adler first version with partial lookup tables
b2 21 Mar 92 M. Adler fixed bug in fixed-code blocks
b3 22 Mar 92 M. Adler sped up match copies, cleaned up some
b4 25 Mar 92 M. Adler added prototypes; removed window[] (now
is the responsibility of unzip.h--also
changed name to slide[]), so needs diffs
for unzip.c and unzip.h (this allows
compiling in the small model on MSDOS);
fixed cast of q in huft_build();
b5 26 Mar 92 M. Adler got rid of unintended macro recursion.
b6 27 Mar 92 M. Adler got rid of nextbyte() routine. fixed
bug in inflate_fixed().
c1 30 Mar 92 M. Adler removed lbits, dbits environment variables.
changed BMAX to 16 for explode. Removed
OUTB usage, and replaced it with flush()--
this was a 20% speed improvement! Added
an explode.c (to replace unimplod.c) that
uses the huft routines here. Removed
register union.
c2 4 Apr 92 M. Adler fixed bug for file sizes a multiple of 32k.
c3 10 Apr 92 M. Adler reduced memory of code tables made by
huft_build significantly (factor of two to
three).
c4 15 Apr 92 M. Adler added NOMEMCPY do kill use of memcpy().
worked around a Turbo C optimization bug.
c5 21 Apr 92 M. Adler added the GZ_WSIZE #define to allow reducing
the 32K window size for specialized
applications.
c6 31 May 92 M. Adler added some typecasts to eliminate warnings
c7 27 Jun 92 G. Roelofs added some more typecasts (444: MSC bug).
c8 5 Oct 92 J-l. Gailly added ifdef'd code to deal with PKZIP bug.
c9 9 Oct 92 M. Adler removed a memory error message (~line 416).
c10 17 Oct 92 G. Roelofs changed ULONG/UWORD/byte to ulg/ush/uch,
removed old inflate, renamed inflate_entry
to inflate, added Mark's fix to a comment.
c10.5 14 Dec 92 M. Adler fix up error messages for incomplete trees.
c11 2 Jan 93 M. Adler fixed bug in detection of incomplete
tables, and removed assumption that EOB is
the longest code (bad assumption).
c12 3 Jan 93 M. Adler make tables for fixed blocks only once.
c13 5 Jan 93 M. Adler allow all zero length codes (pkzip 2.04c
outputs one zero length code for an empty
distance tree).
c14 12 Mar 93 M. Adler made inflate.c standalone with the
introduction of inflate.h.
c14b 16 Jul 93 G. Roelofs added (unsigned) typecast to w at 470.
c14c 19 Jul 93 J. Bush changed v[N_MAX], l[288], ll[28x+3x] arrays
to static for Amiga.
c14d 13 Aug 93 J-l. Gailly de-complicatified Mark's c[*p++]++ thing.
c14e 8 Oct 93 G. Roelofs changed memset() to memzero().
c14f 22 Oct 93 G. Roelofs renamed quietflg to qflag; made Trace()
conditional; added inflate_free().
c14g 28 Oct 93 G. Roelofs changed l/(lx+1) macro to pointer (Cray bug)
c14h 7 Dec 93 C. Ghisler huft_build() optimizations.
c14i 9 Jan 94 A. Verheijen set fixed_t{d,l} to NULL after freeing;
G. Roelofs check NEXTBYTE macro for GZ_EOF.
c14j 23 Jan 94 G. Roelofs removed Ghisler "optimizations"; ifdef'd
GZ_EOF check.
c14k 27 Feb 94 G. Roelofs added some typecasts to avoid warnings.
c14l 9 Apr 94 G. Roelofs fixed split comments on preprocessor lines
to avoid bug in Encore compiler.
c14m 7 Jul 94 P. Kienitz modified to allow assembler version of
inflate_codes() (define ASM_INFLATECODES)
c14n 22 Jul 94 G. Roelofs changed fprintf to FPRINTF for DLL versions
c14o 23 Aug 94 C. Spieler added a newline to a debug statement;
G. Roelofs added another typecast to avoid MSC warning
*/
/*
Inflate deflated (PKZIP's method 8 compressed) data. The compression
method searches for as much of the current string of bytes (up to a
length of 258) in the previous 32K bytes. If it doesn't find any
matches (of at least length 3), it codes the next byte. Otherwise, it
codes the length of the matched string and its distance backwards from
the current position. There is a single Huffman code that codes both
single bytes (called "literals") and match lengths. A second Huffman
code codes the distance information, which follows a length code. Each
length or distance code actually represents a base value and a number
of "extra" (sometimes zero) bits to get to add to the base value. At
the end of each deflated block is a special end-of-block (EOB) literal/
length code. The decoding process is basically: get a literal/length
code; if EOB then done; if a literal, emit the decoded byte; if a
length then get the distance and emit the referred-to bytes from the
sliding window of previously emitted data.
There are (currently) three kinds of inflate blocks: stored, fixed, and
dynamic. The compressor outputs a chunk of data at a time and decides
which method to use on a chunk-by-chunk basis. A chunk might typically
be 32K to 64K, uncompressed. If the chunk is uncompressible, then the
"stored" method is used. In this case, the bytes are simply stored as
is, eight bits per byte, with none of the above coding. The bytes are
preceded by a count, since there is no longer an EOB code.
If the data is compressible, then either the fixed or dynamic methods
are used. In the dynamic method, the compressed data is preceded by
an encoding of the literal/length and distance Huffman codes that are
to be used to decode this block. The representation is itself Huffman
coded, and so is preceded by a description of that code. These code
descriptions take up a little space, and so for small blocks, there is
a predefined set of codes, called the fixed codes. The fixed method is
used if the block ends up smaller that way (usually for quite small
chunks); otherwise the dynamic method is used. In the latter case, the
codes are customized to the probabilities in the current block and so
can code it much better than the pre-determined fixed codes can.
The Huffman codes themselves are decoded using a mutli-level table
lookup, in order to maximize the speed of decoding plus the speed of
building the decoding tables. See the comments below that precede the
lbits and dbits tuning parameters.
*/
/*
Notes beyond the 1.93a appnote.txt:
1. Distance pointers never point before the beginning of the output
stream.
2. Distance pointers can point back across blocks, up to 32k away.
3. There is an implied maximum of 7 bits for the bit length table and
15 bits for the actual data.
4. If only one code exists, then it is encoded using one bit. (Zero
would be more efficient, but perhaps a little confusing.) If two
codes exist, they are coded using one bit each (0 and 1).
5. There is no way of sending zero distance codes--a dummy must be
sent if there are none. (History: a pre 2.0 version of PKZIP would
store blocks with no distance codes, but this was discovered to be
too harsh a criterion.) Valid only for 1.93a. 2.04c does allow
zero distance codes, which is sent as one code of zero bits in
length.
6. There are up to 286 literal/length codes. Code 256 represents the
end-of-block. Note however that the static length tree defines
288 codes just to fill out the Huffman codes. Codes 286 and 287
cannot be used though, since there is no length base or extra bits
defined for them. Similarily, there are up to 30 distance codes.
However, static trees define 32 codes (all 5 bits) to fill out the
Huffman codes, but the last two had better not show up in the data.
7. Unzip can check dynamic Huffman blocks for complete code sets.
The exception is that a single code would not be complete (see #4).
8. The five bits following the block type is really the number of
literal codes sent minus 257.
9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
(1+6+6). Therefore, to output three times the length, you output
three codes (1+1+1), whereas to output four times the same length,
you only need two codes (1+3). Hmm.
10. In the tree reconstruction algorithm, Code = Code + Increment
only if BitLength(i) is not zero. (Pretty obvious.)
11. Correction: 4 Bits: # of Bit Length codes - 4 (4 - 19)
12. Note: length code 284 can represent 227-258, but length code 285
really is 258. The last length deserves its own, short code
since it gets used a lot in very redundant files. The length
258 is special since 258 - 3 (the min match length) is 255.
13. The literal/length and distance code bit lengths are read as a
single stream of lengths. It is possible (and advantageous) for
a repeat code (16, 17, or 18) to go across the boundary between
the two sets of lengths.
*/
#define PKZIP_BUG_WORKAROUND /* PKZIP 1.93a problem--live with it */
/*
inflate.h must supply the uch slide[GZ_WSIZE] array and the NEXTBYTE,
FLUSH() and memzero macros. If the window size is not 32K, it
should also define GZ_WSIZE. If INFMOD is defined, it can include
compiled functions to support the NEXTBYTE and/or FLUSH() macros.
There are defaults for NEXTBYTE and FLUSH() below for use as
examples of what those functions need to do. Normally, you would
also want FLUSH() to compute a crc on the data. inflate.h also
needs to provide these typedefs:
typedef unsigned char uch;
typedef unsigned short ush;
typedef unsigned long ulg;
This module uses the external functions malloc() and free() (and
probably memset() or bzero() in the memzero() macro). Their
prototypes are normally found in <string.h> and <stdlib.h>.
*/
#define INFMOD /* tell inflate.h to include code to be
* compiled */
/* Huffman code lookup table entry--this entry is four bytes for machines
that have 16-bit pointers (e.g. PC's in the small or medium model).
Valid extra bits are 0..13. e == 15 is EOB (end of block), e == 16
means that v is a literal, 16 < e < 32 means that v is a pointer to
the next table, which codes e - 16 bits, and lastly e == 99 indicates
an unused code. If a code with e == 99 is looked up, this implies an
error in the data. */
struct huft {
uch e; /* number of extra bits or operation */
uch b; /* number of bits in this code or subcode */
union {
ush n; /* literal, length base, or distance
* base */
struct huft *t; /* pointer to next level of table */
} v;
};
/* Function prototypes */
static int huft_build(struct inflate *, unsigned *, unsigned, unsigned, const ush *, const ush *, struct huft **, int *);
static int huft_free(struct inflate *, struct huft *);
static int inflate_codes(struct inflate *, struct huft *, struct huft *, int, int);
static int inflate_stored(struct inflate *);
static int xinflate(struct inflate *);
static int inflate_fixed(struct inflate *);
static int inflate_dynamic(struct inflate *);
static int inflate_block(struct inflate *, int *);
/* The inflate algorithm uses a sliding 32K byte window on the uncompressed
stream to find repeated byte strings. This is implemented here as a
circular buffer. The index is updated simply by incrementing and then
and'ing with 0x7fff (32K-1). */
/* It is left to other modules to supply the 32K area. It is assumed
to be usable as if it were declared "uch slide[32768];" or as just
"uch *slide;" and then malloc'ed in the latter case. The definition
must be in unzip.h, included above. */
/* Tables for deflate from PKZIP's appnote.txt. */
/* Order of the bit length code lengths */
static const unsigned border[] = {
16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
static const ush cplens[] = { /* Copy lengths for literal codes 257..285 */
3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
/* note: see note #13 above about the 258 in this list. */
static const ush cplext[] = { /* Extra bits for literal codes 257..285 */
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99}; /* 99==invalid */
static const ush cpdist[] = { /* Copy offsets for distance codes 0..29 */
1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
8193, 12289, 16385, 24577};
static const ush cpdext[] = { /* Extra bits for distance codes */
0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
12, 12, 13, 13};
/* And'ing with mask[n] masks the lower n bits */
static const ush mask[] = {
0x0000,
0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
};
/* Macros for inflate() bit peeking and grabbing.
The usage is:
NEEDBITS(glbl,j)
x = b & mask[j];
DUMPBITS(j)
where NEEDBITS makes sure that b has at least j bits in it, and
DUMPBITS removes the bits from b. The macros use the variable k
for the number of bits in b. Normally, b and k are register
variables for speed, and are initialized at the begining of a
routine that uses these macros from a global bit buffer and count.
In order to not ask for more bits than there are in the compressed
stream, the Huffman tables are constructed to only ask for just
enough bits to make up the end-of-block code (value 256). Then no
bytes need to be "returned" to the buffer at the end of the last
block. See the huft_build() routine.
*/
/*
* The following 2 were global variables.
* They are now fields of the inflate structure.
*/
#define NEEDBITS(glbl,n) { \
while(k<(n)) { \
int c=(*glbl->gz_input)(glbl->gz_private); \
if(c==GZ_EOF) \
return 1; \
b|=((ulg)c)<<k; \
k+=8; \
} \
}
#define DUMPBITS(n) {b>>=(n);k-=(n);}
/*
Huffman code decoding is performed using a multi-level table lookup.
The fastest way to decode is to simply build a lookup table whose
size is determined by the longest code. However, the time it takes
to build this table can also be a factor if the data being decoded
is not very long. The most common codes are necessarily the
shortest codes, so those codes dominate the decoding time, and hence
the speed. The idea is you can have a shorter table that decodes the
shorter, more probable codes, and then point to subsidiary tables for
the longer codes. The time it costs to decode the longer codes is
then traded against the time it takes to make longer tables.
This results of this trade are in the variables lbits and dbits
below. lbits is the number of bits the first level table for literal/
length codes can decode in one step, and dbits is the same thing for
the distance codes. Subsequent tables are also less than or equal to
those sizes. These values may be adjusted either when all of the
codes are shorter than that, in which case the longest code length in
bits is used, or when the shortest code is *longer* than the requested
table size, in which case the length of the shortest code in bits is
used.
There are two different values for the two tables, since they code a
different number of possibilities each. The literal/length table
codes 286 possible values, or in a flat code, a little over eight
bits. The distance table codes 30 possible values, or a little less
than five bits, flat. The optimum values for speed end up being
about one bit more than those, so lbits is 8+1 and dbits is 5+1.
The optimum values may differ though from machine to machine, and
possibly even between compilers. Your mileage may vary.
*/
static const int lbits = 9; /* bits in base literal/length lookup table */
static const int dbits = 6; /* bits in base distance lookup table */
/* If BMAX needs to be larger than 16, then h and x[] should be ulg. */
#define BMAX 16 /* maximum bit length of any code (16 for
* explode) */
#define N_MAX 288 /* maximum number of codes in any set */
/* Given a list of code lengths and a maximum table size, make a set of
tables to decode that set of codes. Return zero on success, one if
the given code set is incomplete (the tables are still built in this
case), two if the input is invalid (all zero length codes or an
oversubscribed set of lengths), and three if not enough memory.
The code with value 256 is special, and the tables are constructed
so that no bits beyond that code are fetched when that code is
decoded. */
static int
huft_build(glbl, b, n, s, d, e, t, m)
struct inflate *glbl;
unsigned *b; /* code lengths in bits (all assumed <= BMAX) */
unsigned n; /* number of codes (assumed <= N_MAX) */
unsigned s; /* number of simple-valued codes (0..s-1) */
const ush *d; /* list of base values for non-simple codes */
const ush *e; /* list of extra bits for non-simple codes */
struct huft **t; /* result: starting table */
int *m; /* maximum lookup bits, returns actual */
{
unsigned a; /* counter for codes of length k */
unsigned c[BMAX + 1]; /* bit length count table */
unsigned el; /* length of EOB code (value 256) */
unsigned f; /* i repeats in table every f entries */
int g; /* maximum code length */
int h; /* table level */
register unsigned i; /* counter, current code */
register unsigned j; /* counter */
register int k; /* number of bits in current code */
int lx[BMAX + 1]; /* memory for l[-1..BMAX-1] */
int *l = lx + 1; /* stack of bits per table */
register unsigned *p; /* pointer into c[], b[], or v[] */
register struct huft *q;/* points to current table */
struct huft r; /* table entry for structure assignment */
struct huft *u[BMAX];/* table stack */
unsigned v[N_MAX]; /* values in order of bit length */
register int w; /* bits before this table == (l * h) */
unsigned x[BMAX + 1]; /* bit offsets, then code stack */
unsigned *xp; /* pointer into x */
int y; /* number of dummy codes added */
unsigned z; /* number of entries in current table */
/* Generate counts for each bit length */
el = n > 256 ? b[256] : BMAX; /* set length of EOB code, if any */
#ifdef _KERNEL
memzero((char *) c, sizeof(c));
#else
for (i = 0; i < BMAX+1; i++)
c [i] = 0;
#endif
p = b;
i = n;
do {
c[*p]++;
p++; /* assume all entries <= BMAX */
} while (--i);
if (c[0] == n) { /* null input--all zero length codes */
*t = (struct huft *) NULL;
*m = 0;
return 0;
}
/* Find minimum and maximum length, bound *m by those */
for (j = 1; j <= BMAX; j++)
if (c[j])
break;
k = j; /* minimum code length */
if ((unsigned) *m < j)
*m = j;
for (i = BMAX; i; i--)
if (c[i])
break;
g = i; /* maximum code length */
if ((unsigned) *m > i)
*m = i;
/* Adjust last length count to fill out codes, if needed */
for (y = 1 << j; j < i; j++, y <<= 1)
if ((y -= c[j]) < 0)
return 2; /* bad input: more codes than bits */
if ((y -= c[i]) < 0)
return 2;
c[i] += y;
/* Generate starting offsets into the value table for each length */
x[1] = j = 0;
p = c + 1;
xp = x + 2;
while (--i) { /* note that i == g from above */
*xp++ = (j += *p++);
}
/* Make a table of values in order of bit lengths */
p = b;
i = 0;
do {
if ((j = *p++) != 0)
v[x[j]++] = i;
} while (++i < n);
/* Generate the Huffman codes and for each, make the table entries */
x[0] = i = 0; /* first Huffman code is zero */
p = v; /* grab values in bit order */
h = -1; /* no tables yet--level -1 */
w = l[-1] = 0; /* no bits decoded yet */
u[0] = (struct huft *) NULL; /* just to keep compilers happy */
q = (struct huft *) NULL; /* ditto */
z = 0; /* ditto */
/* go through the bit lengths (k already is bits in shortest code) */
for (; k <= g; k++) {
a = c[k];
while (a--) {
/*
* here i is the Huffman code of length k bits for
* value *p
*/
/* make tables up to required level */
while (k > w + l[h]) {
w += l[h++]; /* add bits already decoded */
/*
* compute minimum size table less than or
* equal to *m bits
*/
z = (z = g - w) > (unsigned) *m ? *m : z; /* upper limit */
if ((f = 1 << (j = k - w)) > a + 1) { /* try a k-w bit table *//* t
* oo few codes for k-w
* bit table */
f -= a + 1; /* deduct codes from
* patterns left */
xp = c + k;
while (++j < z) { /* try smaller tables up
* to z bits */
if ((f <<= 1) <= *++xp)
break; /* enough codes to use
* up j bits */
f -= *xp; /* else deduct codes
* from patterns */
}
}
if ((unsigned) w + j > el && (unsigned) w < el)
j = el - w; /* make EOB code end at
* table */
z = 1 << j; /* table entries for j-bit
* table */
l[h] = j; /* set table size in stack */
/* allocate and link in new table */
if ((q = (struct huft *) malloc((z + 1) * sizeof(struct huft), M_GZIP, M_WAITOK)) ==
(struct huft *) NULL) {
if (h)
huft_free(glbl, u[0]);
return 3; /* not enough memory */
}
glbl->gz_hufts += z + 1; /* track memory usage */
*t = q + 1; /* link to list for
* huft_free() */
*(t = &(q->v.t)) = (struct huft *) NULL;
u[h] = ++q; /* table starts after link */
/* connect to last table, if there is one */
if (h) {
x[h] = i; /* save pattern for
* backing up */
r.b = (uch) l[h - 1]; /* bits to dump before
* this table */
r.e = (uch) (16 + j); /* bits in this table */
r.v.t = q; /* pointer to this table */
j = (i & ((1 << w) - 1)) >> (w - l[h - 1]);
u[h - 1][j] = r; /* connect to last table */
}
}
/* set up table entry in r */
r.b = (uch) (k - w);
if (p >= v + n)
r.e = 99; /* out of values--invalid
* code */
else if (*p < s) {
r.e = (uch) (*p < 256 ? 16 : 15); /* 256 is end-of-block
* code */
r.v.n = *p++; /* simple code is just the
* value */
} else {
r.e = (uch) e[*p - s]; /* non-simple--look up
* in lists */
r.v.n = d[*p++ - s];
}
/* fill code-like entries with r */
f = 1 << (k - w);
for (j = i >> w; j < z; j += f)
q[j] = r;
/* backwards increment the k-bit code i */
for (j = 1 << (k - 1); i & j; j >>= 1)
i ^= j;
i ^= j;
/* backup over finished tables */
while ((i & ((1 << w) - 1)) != x[h])
w -= l[--h]; /* don't need to update q */
}
}
/* return actual size of base table */
*m = l[0];
/* Return true (1) if we were given an incomplete table */
return y != 0 && g != 1;
}
static int
huft_free(glbl, t)
struct inflate *glbl;
struct huft *t; /* table to free */
/* Free the malloc'ed tables built by huft_build(), which makes a linked
list of the tables it made, with the links in a dummy first entry of
each table. */
{
register struct huft *p, *q;
/* Go through linked list, freeing from the malloced (t[-1]) address. */
p = t;
while (p != (struct huft *) NULL) {
q = (--p)->v.t;
free(p, M_GZIP);
p = q;
}
return 0;
}
/* inflate (decompress) the codes in a deflated (compressed) block.
Return an error code or zero if it all goes ok. */
static int
inflate_codes(glbl, tl, td, bl, bd)
struct inflate *glbl;
struct huft *tl, *td;/* literal/length and distance decoder tables */
int bl, bd; /* number of bits decoded by tl[] and td[] */
{
register unsigned e; /* table entry flag/number of extra bits */
unsigned n, d; /* length and index for copy */
unsigned w; /* current window position */
struct huft *t; /* pointer to table entry */
unsigned ml, md; /* masks for bl and bd bits */
register ulg b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
/* make local copies of globals */
b = glbl->gz_bb; /* initialize bit buffer */
k = glbl->gz_bk;
w = glbl->gz_wp; /* initialize window position */
/* inflate the coded data */
ml = mask[bl]; /* precompute masks for speed */
md = mask[bd];
while (1) { /* do until end of block */
NEEDBITS(glbl, (unsigned) bl)
if ((e = (t = tl + ((unsigned) b & ml))->e) > 16)
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(glbl, e)
} while ((e = (t = t->v.t + ((unsigned) b & mask[e]))->e) > 16);
DUMPBITS(t->b)
if (e == 16) { /* then it's a literal */
glbl->gz_slide[w++] = (uch) t->v.n;
if (w == GZ_WSIZE) {
FLUSH(glbl, w);
w = 0;
}
} else { /* it's an EOB or a length */
/* exit if end of block */
if (e == 15)
break;
/* get length of block to copy */
NEEDBITS(glbl, e)
n = t->v.n + ((unsigned) b & mask[e]);
DUMPBITS(e);
/* decode distance of block to copy */
NEEDBITS(glbl, (unsigned) bd)
if ((e = (t = td + ((unsigned) b & md))->e) > 16)
do {
if (e == 99)
return 1;
DUMPBITS(t->b)
e -= 16;
NEEDBITS(glbl, e)
} while ((e = (t = t->v.t + ((unsigned) b & mask[e]))->e) > 16);
DUMPBITS(t->b)
NEEDBITS(glbl, e)
d = w - t->v.n - ((unsigned) b & mask[e]);
DUMPBITS(e)
/* do the copy */
do {
n -= (e = (e = GZ_WSIZE - ((d &= GZ_WSIZE - 1) > w ? d : w)) > n ? n : e);
#ifndef NOMEMCPY
if (w - d >= e) { /* (this test assumes
* unsigned comparison) */
memcpy(glbl->gz_slide + w, glbl->gz_slide + d, e);
w += e;
d += e;
} else /* do it slow to avoid memcpy()
* overlap */
#endif /* !NOMEMCPY */
do {
glbl->gz_slide[w++] = glbl->gz_slide[d++];
} while (--e);
if (w == GZ_WSIZE) {
FLUSH(glbl, w);
w = 0;
}
} while (n);
}
}
/* restore the globals from the locals */
glbl->gz_wp = w; /* restore global window pointer */
glbl->gz_bb = b; /* restore global bit buffer */
glbl->gz_bk = k;
/* done */
return 0;
}
/* "decompress" an inflated type 0 (stored) block. */
static int
inflate_stored(glbl)
struct inflate *glbl;
{
unsigned n; /* number of bytes in block */
unsigned w; /* current window position */
register ulg b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
/* make local copies of globals */
b = glbl->gz_bb; /* initialize bit buffer */
k = glbl->gz_bk;
w = glbl->gz_wp; /* initialize window position */
/* go to byte boundary */
n = k & 7;
DUMPBITS(n);
/* get the length and its complement */
NEEDBITS(glbl, 16)
n = ((unsigned) b & 0xffff);
DUMPBITS(16)
NEEDBITS(glbl, 16)
if (n != (unsigned) ((~b) & 0xffff))
return 1; /* error in compressed data */
DUMPBITS(16)
/* read and output the compressed data */
while (n--) {
NEEDBITS(glbl, 8)
glbl->gz_slide[w++] = (uch) b;
if (w == GZ_WSIZE) {
FLUSH(glbl, w);
w = 0;
}
DUMPBITS(8)
}
/* restore the globals from the locals */
glbl->gz_wp = w; /* restore global window pointer */
glbl->gz_bb = b; /* restore global bit buffer */
glbl->gz_bk = k;
return 0;
}
/* decompress an inflated type 1 (fixed Huffman codes) block. We should
either replace this with a custom decoder, or at least precompute the
Huffman tables. */
static int
inflate_fixed(glbl)
struct inflate *glbl;
{
/* if first time, set up tables for fixed blocks */
if (glbl->gz_fixed_tl == (struct huft *) NULL) {
int i; /* temporary variable */
static unsigned l[288]; /* length list for huft_build */
/* literal table */
for (i = 0; i < 144; i++)
l[i] = 8;
for (; i < 256; i++)
l[i] = 9;
for (; i < 280; i++)
l[i] = 7;
for (; i < 288; i++) /* make a complete, but wrong code
* set */
l[i] = 8;
glbl->gz_fixed_bl = 7;
if ((i = huft_build(glbl, l, 288, 257, cplens, cplext,
&glbl->gz_fixed_tl, &glbl->gz_fixed_bl)) != 0) {
glbl->gz_fixed_tl = (struct huft *) NULL;
return i;
}
/* distance table */
for (i = 0; i < 30; i++) /* make an incomplete code
* set */
l[i] = 5;
glbl->gz_fixed_bd = 5;
if ((i = huft_build(glbl, l, 30, 0, cpdist, cpdext,
&glbl->gz_fixed_td, &glbl->gz_fixed_bd)) > 1) {
huft_free(glbl, glbl->gz_fixed_tl);
glbl->gz_fixed_tl = (struct huft *) NULL;
return i;
}
}
/* decompress until an end-of-block code */
return inflate_codes(glbl, glbl->gz_fixed_tl, glbl->gz_fixed_td, glbl->gz_fixed_bl, glbl->gz_fixed_bd) != 0;
}
/* decompress an inflated type 2 (dynamic Huffman codes) block. */
static int
inflate_dynamic(glbl)
struct inflate *glbl;
{
int i; /* temporary variables */
unsigned j;
unsigned l; /* last length */
unsigned m; /* mask for bit lengths table */
unsigned n; /* number of lengths to get */
struct huft *tl; /* literal/length code table */
struct huft *td; /* distance code table */
int bl; /* lookup bits for tl */
int bd; /* lookup bits for td */
unsigned nb; /* number of bit length codes */
unsigned nl; /* number of literal/length codes */
unsigned nd; /* number of distance codes */
#ifdef PKZIP_BUG_WORKAROUND
unsigned ll[288 + 32]; /* literal/length and distance code
* lengths */
#else
unsigned ll[286 + 30]; /* literal/length and distance code
* lengths */
#endif
register ulg b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
/* make local bit buffer */
b = glbl->gz_bb;
k = glbl->gz_bk;
/* read in table lengths */
NEEDBITS(glbl, 5)
nl = 257 + ((unsigned) b & 0x1f); /* number of
* literal/length codes */
DUMPBITS(5)
NEEDBITS(glbl, 5)
nd = 1 + ((unsigned) b & 0x1f); /* number of distance codes */
DUMPBITS(5)
NEEDBITS(glbl, 4)
nb = 4 + ((unsigned) b & 0xf); /* number of bit length codes */
DUMPBITS(4)
#ifdef PKZIP_BUG_WORKAROUND
if (nl > 288 || nd > 32)
#else
if (nl > 286 || nd > 30)
#endif
return 1; /* bad lengths */
/* read in bit-length-code lengths */
for (j = 0; j < nb; j++) {
NEEDBITS(glbl, 3)
ll[border[j]] = (unsigned) b & 7;
DUMPBITS(3)
}
for (; j < 19; j++)
ll[border[j]] = 0;
/* build decoding table for trees--single level, 7 bit lookup */
bl = 7;
if ((i = huft_build(glbl, ll, 19, 19, NULL, NULL, &tl, &bl)) != 0) {
if (i == 1)
huft_free(glbl, tl);
return i; /* incomplete code set */
}
/* read in literal and distance code lengths */
n = nl + nd;
m = mask[bl];
i = l = 0;
while ((unsigned) i < n) {
NEEDBITS(glbl, (unsigned) bl)
j = (td = tl + ((unsigned) b & m))->b;
DUMPBITS(j)
j = td->v.n;
if (j < 16) /* length of code in bits (0..15) */
ll[i++] = l = j; /* save last length in l */
else if (j == 16) { /* repeat last length 3 to 6 times */
NEEDBITS(glbl, 2)
j = 3 + ((unsigned) b & 3);
DUMPBITS(2)
if ((unsigned) i + j > n)
return 1;
while (j--)
ll[i++] = l;
} else if (j == 17) { /* 3 to 10 zero length codes */
NEEDBITS(glbl, 3)
j = 3 + ((unsigned) b & 7);
DUMPBITS(3)
if ((unsigned) i + j > n)
return 1;
while (j--)
ll[i++] = 0;
l = 0;
} else { /* j == 18: 11 to 138 zero length codes */
NEEDBITS(glbl, 7)
j = 11 + ((unsigned) b & 0x7f);
DUMPBITS(7)
if ((unsigned) i + j > n)
return 1;
while (j--)
ll[i++] = 0;
l = 0;
}
}
/* free decoding table for trees */
huft_free(glbl, tl);
/* restore the global bit buffer */
glbl->gz_bb = b;
glbl->gz_bk = k;
/* build the decoding tables for literal/length and distance codes */
bl = lbits;
i = huft_build(glbl, ll, nl, 257, cplens, cplext, &tl, &bl);
if (i != 0) {
if (i == 1 && !qflag) {
FPRINTF("(incomplete l-tree) ");
huft_free(glbl, tl);
}
return i; /* incomplete code set */
}
bd = dbits;
i = huft_build(glbl, ll + nl, nd, 0, cpdist, cpdext, &td, &bd);
if (i != 0) {
if (i == 1 && !qflag) {
FPRINTF("(incomplete d-tree) ");
#ifdef PKZIP_BUG_WORKAROUND
i = 0;
}
#else
huft_free(glbl, td);
}
huft_free(glbl, tl);
return i; /* incomplete code set */
#endif
}
/* decompress until an end-of-block code */
if (inflate_codes(glbl, tl, td, bl, bd))
return 1;
/* free the decoding tables, return */
huft_free(glbl, tl);
huft_free(glbl, td);
return 0;
}
/* decompress an inflated block */
static int
inflate_block(glbl, e)
struct inflate *glbl;
int *e; /* last block flag */
{
unsigned t; /* block type */
register ulg b; /* bit buffer */
register unsigned k; /* number of bits in bit buffer */
/* make local bit buffer */
b = glbl->gz_bb;
k = glbl->gz_bk;
/* read in last block bit */
NEEDBITS(glbl, 1)
* e = (int) b & 1;
DUMPBITS(1)
/* read in block type */
NEEDBITS(glbl, 2)
t = (unsigned) b & 3;
DUMPBITS(2)
/* restore the global bit buffer */
glbl->gz_bb = b;
glbl->gz_bk = k;
/* inflate that block type */
if (t == 2)
return inflate_dynamic(glbl);
if (t == 0)
return inflate_stored(glbl);
if (t == 1)
return inflate_fixed(glbl);
/* bad block type */
return 2;
}
/* decompress an inflated entry */
static int
xinflate(glbl)
struct inflate *glbl;
{
int e; /* last block flag */
int r; /* result code */
unsigned h; /* maximum struct huft's malloc'ed */
glbl->gz_fixed_tl = (struct huft *) NULL;
/* initialize window, bit buffer */
glbl->gz_wp = 0;
glbl->gz_bk = 0;
glbl->gz_bb = 0;
/* decompress until the last block */
h = 0;
do {
glbl->gz_hufts = 0;
if ((r = inflate_block(glbl, &e)) != 0)
return r;
if (glbl->gz_hufts > h)
h = glbl->gz_hufts;
} while (!e);
/* flush out slide */
FLUSH(glbl, glbl->gz_wp);
/* return success */
return 0;
}
/* Nobody uses this - why not? */
int
inflate(glbl)
struct inflate *glbl;
{
int i;
#ifdef _KERNEL
u_char *p = NULL;
if (!glbl->gz_slide)
p = glbl->gz_slide = malloc(GZ_WSIZE, M_GZIP, M_WAITOK);
#endif
if (!glbl->gz_slide)
#ifdef _KERNEL
return(ENOMEM);
#else
return 3; /* kzip expects 3 */
#endif
i = xinflate(glbl);
if (glbl->gz_fixed_td != (struct huft *) NULL) {
huft_free(glbl, glbl->gz_fixed_td);
glbl->gz_fixed_td = (struct huft *) NULL;
}
if (glbl->gz_fixed_tl != (struct huft *) NULL) {
huft_free(glbl, glbl->gz_fixed_tl);
glbl->gz_fixed_tl = (struct huft *) NULL;
}
#ifdef _KERNEL
if (p == glbl->gz_slide) {
free(glbl->gz_slide, M_GZIP);
glbl->gz_slide = NULL;
}
#endif
return i;
}
/* ----------------------- END INFLATE.C */
|