aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Transforms/IPO/SampleProfileProbe.cpp
blob: 0a42de7224b475dacc7d27906ad4acd4078e42b7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
//===- SampleProfileProbe.cpp - Pseudo probe Instrumentation -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the SampleProfileProber transformation.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/IPO/SampleProfileProbe.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/EHUtils.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfoMetadata.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/PseudoProbe.h"
#include "llvm/ProfileData/SampleProf.h"
#include "llvm/Support/CRC.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/Instrumentation.h"
#include "llvm/Transforms/Utils/ModuleUtils.h"
#include <unordered_set>
#include <vector>

using namespace llvm;
#define DEBUG_TYPE "pseudo-probe"

STATISTIC(ArtificialDbgLine,
          "Number of probes that have an artificial debug line");

static cl::opt<bool>
    VerifyPseudoProbe("verify-pseudo-probe", cl::init(false), cl::Hidden,
                      cl::desc("Do pseudo probe verification"));

static cl::list<std::string> VerifyPseudoProbeFuncList(
    "verify-pseudo-probe-funcs", cl::Hidden,
    cl::desc("The option to specify the name of the functions to verify."));

static cl::opt<bool>
    UpdatePseudoProbe("update-pseudo-probe", cl::init(true), cl::Hidden,
                      cl::desc("Update pseudo probe distribution factor"));

static uint64_t getCallStackHash(const DILocation *DIL) {
  uint64_t Hash = 0;
  const DILocation *InlinedAt = DIL ? DIL->getInlinedAt() : nullptr;
  while (InlinedAt) {
    Hash ^= MD5Hash(std::to_string(InlinedAt->getLine()));
    Hash ^= MD5Hash(std::to_string(InlinedAt->getColumn()));
    auto Name = InlinedAt->getSubprogramLinkageName();
    Hash ^= MD5Hash(Name);
    InlinedAt = InlinedAt->getInlinedAt();
  }
  return Hash;
}

static uint64_t computeCallStackHash(const Instruction &Inst) {
  return getCallStackHash(Inst.getDebugLoc());
}

bool PseudoProbeVerifier::shouldVerifyFunction(const Function *F) {
  // Skip function declaration.
  if (F->isDeclaration())
    return false;
  // Skip function that will not be emitted into object file. The prevailing
  // defintion will be verified instead.
  if (F->hasAvailableExternallyLinkage())
    return false;
  // Do a name matching.
  static std::unordered_set<std::string> VerifyFuncNames(
      VerifyPseudoProbeFuncList.begin(), VerifyPseudoProbeFuncList.end());
  return VerifyFuncNames.empty() || VerifyFuncNames.count(F->getName().str());
}

void PseudoProbeVerifier::registerCallbacks(PassInstrumentationCallbacks &PIC) {
  if (VerifyPseudoProbe) {
    PIC.registerAfterPassCallback(
        [this](StringRef P, Any IR, const PreservedAnalyses &) {
          this->runAfterPass(P, IR);
        });
  }
}

// Callback to run after each transformation for the new pass manager.
void PseudoProbeVerifier::runAfterPass(StringRef PassID, Any IR) {
  std::string Banner =
      "\n*** Pseudo Probe Verification After " + PassID.str() + " ***\n";
  dbgs() << Banner;
  if (const auto **M = any_cast<const Module *>(&IR))
    runAfterPass(*M);
  else if (const auto **F = any_cast<const Function *>(&IR))
    runAfterPass(*F);
  else if (const auto **C = any_cast<const LazyCallGraph::SCC *>(&IR))
    runAfterPass(*C);
  else if (const auto **L = any_cast<const Loop *>(&IR))
    runAfterPass(*L);
  else
    llvm_unreachable("Unknown IR unit");
}

void PseudoProbeVerifier::runAfterPass(const Module *M) {
  for (const Function &F : *M)
    runAfterPass(&F);
}

void PseudoProbeVerifier::runAfterPass(const LazyCallGraph::SCC *C) {
  for (const LazyCallGraph::Node &N : *C)
    runAfterPass(&N.getFunction());
}

void PseudoProbeVerifier::runAfterPass(const Function *F) {
  if (!shouldVerifyFunction(F))
    return;
  ProbeFactorMap ProbeFactors;
  for (const auto &BB : *F)
    collectProbeFactors(&BB, ProbeFactors);
  verifyProbeFactors(F, ProbeFactors);
}

void PseudoProbeVerifier::runAfterPass(const Loop *L) {
  const Function *F = L->getHeader()->getParent();
  runAfterPass(F);
}

void PseudoProbeVerifier::collectProbeFactors(const BasicBlock *Block,
                                              ProbeFactorMap &ProbeFactors) {
  for (const auto &I : *Block) {
    if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
      uint64_t Hash = computeCallStackHash(I);
      ProbeFactors[{Probe->Id, Hash}] += Probe->Factor;
    }
  }
}

void PseudoProbeVerifier::verifyProbeFactors(
    const Function *F, const ProbeFactorMap &ProbeFactors) {
  bool BannerPrinted = false;
  auto &PrevProbeFactors = FunctionProbeFactors[F->getName()];
  for (const auto &I : ProbeFactors) {
    float CurProbeFactor = I.second;
    if (PrevProbeFactors.count(I.first)) {
      float PrevProbeFactor = PrevProbeFactors[I.first];
      if (std::abs(CurProbeFactor - PrevProbeFactor) >
          DistributionFactorVariance) {
        if (!BannerPrinted) {
          dbgs() << "Function " << F->getName() << ":\n";
          BannerPrinted = true;
        }
        dbgs() << "Probe " << I.first.first << "\tprevious factor "
               << format("%0.2f", PrevProbeFactor) << "\tcurrent factor "
               << format("%0.2f", CurProbeFactor) << "\n";
      }
    }

    // Update
    PrevProbeFactors[I.first] = I.second;
  }
}

SampleProfileProber::SampleProfileProber(Function &Func,
                                         const std::string &CurModuleUniqueId)
    : F(&Func), CurModuleUniqueId(CurModuleUniqueId) {
  BlockProbeIds.clear();
  CallProbeIds.clear();
  LastProbeId = (uint32_t)PseudoProbeReservedId::Last;
  computeProbeIdForBlocks();
  computeProbeIdForCallsites();
  computeCFGHash();
}

// Compute Hash value for the CFG: the lower 32 bits are CRC32 of the index
// value of each BB in the CFG. The higher 32 bits record the number of edges
// preceded by the number of indirect calls.
// This is derived from FuncPGOInstrumentation<Edge, BBInfo>::computeCFGHash().
void SampleProfileProber::computeCFGHash() {
  std::vector<uint8_t> Indexes;
  JamCRC JC;
  for (auto &BB : *F) {
    auto *TI = BB.getTerminator();
    for (unsigned I = 0, E = TI->getNumSuccessors(); I != E; ++I) {
      auto *Succ = TI->getSuccessor(I);
      auto Index = getBlockId(Succ);
      for (int J = 0; J < 4; J++)
        Indexes.push_back((uint8_t)(Index >> (J * 8)));
    }
  }

  JC.update(Indexes);

  FunctionHash = (uint64_t)CallProbeIds.size() << 48 |
                 (uint64_t)Indexes.size() << 32 | JC.getCRC();
  // Reserve bit 60-63 for other information purpose.
  FunctionHash &= 0x0FFFFFFFFFFFFFFF;
  assert(FunctionHash && "Function checksum should not be zero");
  LLVM_DEBUG(dbgs() << "\nFunction Hash Computation for " << F->getName()
                    << ":\n"
                    << " CRC = " << JC.getCRC() << ", Edges = "
                    << Indexes.size() << ", ICSites = " << CallProbeIds.size()
                    << ", Hash = " << FunctionHash << "\n");
}

void SampleProfileProber::computeProbeIdForBlocks() {
  DenseSet<BasicBlock *> KnownColdBlocks;
  computeEHOnlyBlocks(*F, KnownColdBlocks);
  // Insert pseudo probe to non-cold blocks only. This will reduce IR size as
  // well as the binary size while retaining the profile quality.
  for (auto &BB : *F) {
    ++LastProbeId;
    if (!KnownColdBlocks.contains(&BB))
      BlockProbeIds[&BB] = LastProbeId;
  }
}

void SampleProfileProber::computeProbeIdForCallsites() {
  for (auto &BB : *F) {
    for (auto &I : BB) {
      if (!isa<CallBase>(I))
        continue;
      if (isa<IntrinsicInst>(&I))
        continue;
      CallProbeIds[&I] = ++LastProbeId;
    }
  }
}

uint32_t SampleProfileProber::getBlockId(const BasicBlock *BB) const {
  auto I = BlockProbeIds.find(const_cast<BasicBlock *>(BB));
  return I == BlockProbeIds.end() ? 0 : I->second;
}

uint32_t SampleProfileProber::getCallsiteId(const Instruction *Call) const {
  auto Iter = CallProbeIds.find(const_cast<Instruction *>(Call));
  return Iter == CallProbeIds.end() ? 0 : Iter->second;
}

void SampleProfileProber::instrumentOneFunc(Function &F, TargetMachine *TM) {
  Module *M = F.getParent();
  MDBuilder MDB(F.getContext());
  // Since the GUID from probe desc and inline stack are computed seperately, we
  // need to make sure their names are consistent, so here also use the name
  // from debug info.
  StringRef FName = F.getName();
  if (auto *SP = F.getSubprogram()) {
    FName = SP->getLinkageName();
    if (FName.empty())
      FName = SP->getName();
  }
  uint64_t Guid = Function::getGUID(FName);

  // Assign an artificial debug line to a probe that doesn't come with a real
  // line. A probe not having a debug line will get an incomplete inline
  // context. This will cause samples collected on the probe to be counted
  // into the base profile instead of a context profile. The line number
  // itself is not important though.
  auto AssignDebugLoc = [&](Instruction *I) {
    assert((isa<PseudoProbeInst>(I) || isa<CallBase>(I)) &&
           "Expecting pseudo probe or call instructions");
    if (!I->getDebugLoc()) {
      if (auto *SP = F.getSubprogram()) {
        auto DIL = DILocation::get(SP->getContext(), 0, 0, SP);
        I->setDebugLoc(DIL);
        ArtificialDbgLine++;
        LLVM_DEBUG({
          dbgs() << "\nIn Function " << F.getName()
                 << " Probe gets an artificial debug line\n";
          I->dump();
        });
      }
    }
  };

  // Probe basic blocks.
  for (auto &I : BlockProbeIds) {
    BasicBlock *BB = I.first;
    uint32_t Index = I.second;
    // Insert a probe before an instruction with a valid debug line number which
    // will be assigned to the probe. The line number will be used later to
    // model the inline context when the probe is inlined into other functions.
    // Debug instructions, phi nodes and lifetime markers do not have an valid
    // line number. Real instructions generated by optimizations may not come
    // with a line number either.
    auto HasValidDbgLine = [](Instruction *J) {
      return !isa<PHINode>(J) && !isa<DbgInfoIntrinsic>(J) &&
             !J->isLifetimeStartOrEnd() && J->getDebugLoc();
    };

    Instruction *J = &*BB->getFirstInsertionPt();
    while (J != BB->getTerminator() && !HasValidDbgLine(J)) {
      J = J->getNextNode();
    }

    IRBuilder<> Builder(J);
    assert(Builder.GetInsertPoint() != BB->end() &&
           "Cannot get the probing point");
    Function *ProbeFn =
        llvm::Intrinsic::getDeclaration(M, Intrinsic::pseudoprobe);
    Value *Args[] = {Builder.getInt64(Guid), Builder.getInt64(Index),
                     Builder.getInt32(0),
                     Builder.getInt64(PseudoProbeFullDistributionFactor)};
    auto *Probe = Builder.CreateCall(ProbeFn, Args);
    AssignDebugLoc(Probe);
    // Reset the dwarf discriminator if the debug location comes with any. The
    // discriminator field may be used by FS-AFDO later in the pipeline.
    if (auto DIL = Probe->getDebugLoc()) {
      if (DIL->getDiscriminator()) {
        DIL = DIL->cloneWithDiscriminator(0);
        Probe->setDebugLoc(DIL);
      }
    }
  }

  // Probe both direct calls and indirect calls. Direct calls are probed so that
  // their probe ID can be used as an call site identifier to represent a
  // calling context.
  for (auto &I : CallProbeIds) {
    auto *Call = I.first;
    uint32_t Index = I.second;
    uint32_t Type = cast<CallBase>(Call)->getCalledFunction()
                        ? (uint32_t)PseudoProbeType::DirectCall
                        : (uint32_t)PseudoProbeType::IndirectCall;
    AssignDebugLoc(Call);
    if (auto DIL = Call->getDebugLoc()) {
      // Levarge the 32-bit discriminator field of debug data to store the ID
      // and type of a callsite probe. This gets rid of the dependency on
      // plumbing a customized metadata through the codegen pipeline.
      uint32_t V = PseudoProbeDwarfDiscriminator::packProbeData(
          Index, Type, 0,
          PseudoProbeDwarfDiscriminator::FullDistributionFactor);
      DIL = DIL->cloneWithDiscriminator(V);
      Call->setDebugLoc(DIL);
    }
  }

  // Create module-level metadata that contains function info necessary to
  // synthesize probe-based sample counts,  which are
  // - FunctionGUID
  // - FunctionHash.
  // - FunctionName
  auto Hash = getFunctionHash();
  auto *MD = MDB.createPseudoProbeDesc(Guid, Hash, FName);
  auto *NMD = M->getNamedMetadata(PseudoProbeDescMetadataName);
  assert(NMD && "llvm.pseudo_probe_desc should be pre-created");
  NMD->addOperand(MD);
}

PreservedAnalyses SampleProfileProbePass::run(Module &M,
                                              ModuleAnalysisManager &AM) {
  auto ModuleId = getUniqueModuleId(&M);
  // Create the pseudo probe desc metadata beforehand.
  // Note that modules with only data but no functions will require this to
  // be set up so that they will be known as probed later.
  M.getOrInsertNamedMetadata(PseudoProbeDescMetadataName);

  for (auto &F : M) {
    if (F.isDeclaration())
      continue;
    SampleProfileProber ProbeManager(F, ModuleId);
    ProbeManager.instrumentOneFunc(F, TM);
  }

  return PreservedAnalyses::none();
}

void PseudoProbeUpdatePass::runOnFunction(Function &F,
                                          FunctionAnalysisManager &FAM) {
  BlockFrequencyInfo &BFI = FAM.getResult<BlockFrequencyAnalysis>(F);
  auto BBProfileCount = [&BFI](BasicBlock *BB) {
    return BFI.getBlockProfileCount(BB).value_or(0);
  };

  // Collect the sum of execution weight for each probe.
  ProbeFactorMap ProbeFactors;
  for (auto &Block : F) {
    for (auto &I : Block) {
      if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
        uint64_t Hash = computeCallStackHash(I);
        ProbeFactors[{Probe->Id, Hash}] += BBProfileCount(&Block);
      }
    }
  }

  // Fix up over-counted probes.
  for (auto &Block : F) {
    for (auto &I : Block) {
      if (std::optional<PseudoProbe> Probe = extractProbe(I)) {
        uint64_t Hash = computeCallStackHash(I);
        float Sum = ProbeFactors[{Probe->Id, Hash}];
        if (Sum != 0)
          setProbeDistributionFactor(I, BBProfileCount(&Block) / Sum);
      }
    }
  }
}

PreservedAnalyses PseudoProbeUpdatePass::run(Module &M,
                                             ModuleAnalysisManager &AM) {
  if (UpdatePseudoProbe) {
    for (auto &F : M) {
      if (F.isDeclaration())
        continue;
      FunctionAnalysisManager &FAM =
          AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
      runOnFunction(F, FAM);
    }
  }
  return PreservedAnalyses::none();
}