aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/Target/WebAssembly/WebAssemblyCFGStackify.cpp
blob: d2eb4b29e9fd6efeece26487102afd9f83ad62d6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
//===-- WebAssemblyCFGStackify.cpp - CFG Stackification -------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
///
/// \file
/// This file implements a CFG stacking pass.
///
/// This pass inserts BLOCK, LOOP, and TRY markers to mark the start of scopes,
/// since scope boundaries serve as the labels for WebAssembly's control
/// transfers.
///
/// This is sufficient to convert arbitrary CFGs into a form that works on
/// WebAssembly, provided that all loops are single-entry.
///
/// In case we use exceptions, this pass also fixes mismatches in unwind
/// destinations created during transforming CFG into wasm structured format.
///
//===----------------------------------------------------------------------===//

#include "Utils/WebAssemblyTypeUtilities.h"
#include "Utils/WebAssemblyUtilities.h"
#include "WebAssembly.h"
#include "WebAssemblyExceptionInfo.h"
#include "WebAssemblyMachineFunctionInfo.h"
#include "WebAssemblySortRegion.h"
#include "WebAssemblySubtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/WasmEHFuncInfo.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Target/TargetMachine.h"
using namespace llvm;
using WebAssembly::SortRegionInfo;

#define DEBUG_TYPE "wasm-cfg-stackify"

STATISTIC(NumCallUnwindMismatches, "Number of call unwind mismatches found");
STATISTIC(NumCatchUnwindMismatches, "Number of catch unwind mismatches found");

namespace {
class WebAssemblyCFGStackify final : public MachineFunctionPass {
  StringRef getPassName() const override { return "WebAssembly CFG Stackify"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MachineDominatorTree>();
    AU.addRequired<MachineLoopInfo>();
    AU.addRequired<WebAssemblyExceptionInfo>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  // For each block whose label represents the end of a scope, record the block
  // which holds the beginning of the scope. This will allow us to quickly skip
  // over scoped regions when walking blocks.
  SmallVector<MachineBasicBlock *, 8> ScopeTops;
  void updateScopeTops(MachineBasicBlock *Begin, MachineBasicBlock *End) {
    int EndNo = End->getNumber();
    if (!ScopeTops[EndNo] || ScopeTops[EndNo]->getNumber() > Begin->getNumber())
      ScopeTops[EndNo] = Begin;
  }

  // Placing markers.
  void placeMarkers(MachineFunction &MF);
  void placeBlockMarker(MachineBasicBlock &MBB);
  void placeLoopMarker(MachineBasicBlock &MBB);
  void placeTryMarker(MachineBasicBlock &MBB);

  // Exception handling related functions
  bool fixCallUnwindMismatches(MachineFunction &MF);
  bool fixCatchUnwindMismatches(MachineFunction &MF);
  void addTryDelegate(MachineInstr *RangeBegin, MachineInstr *RangeEnd,
                      MachineBasicBlock *DelegateDest);
  void recalculateScopeTops(MachineFunction &MF);
  void removeUnnecessaryInstrs(MachineFunction &MF);

  // Wrap-up
  using EndMarkerInfo =
      std::pair<const MachineBasicBlock *, const MachineInstr *>;
  unsigned getBranchDepth(const SmallVectorImpl<EndMarkerInfo> &Stack,
                          const MachineBasicBlock *MBB);
  unsigned getDelegateDepth(const SmallVectorImpl<EndMarkerInfo> &Stack,
                            const MachineBasicBlock *MBB);
  unsigned
  getRethrowDepth(const SmallVectorImpl<EndMarkerInfo> &Stack,
                  const SmallVectorImpl<const MachineBasicBlock *> &EHPadStack);
  void rewriteDepthImmediates(MachineFunction &MF);
  void fixEndsAtEndOfFunction(MachineFunction &MF);
  void cleanupFunctionData(MachineFunction &MF);

  // For each BLOCK|LOOP|TRY, the corresponding END_(BLOCK|LOOP|TRY) or DELEGATE
  // (in case of TRY).
  DenseMap<const MachineInstr *, MachineInstr *> BeginToEnd;
  // For each END_(BLOCK|LOOP|TRY) or DELEGATE, the corresponding
  // BLOCK|LOOP|TRY.
  DenseMap<const MachineInstr *, MachineInstr *> EndToBegin;
  // <TRY marker, EH pad> map
  DenseMap<const MachineInstr *, MachineBasicBlock *> TryToEHPad;
  // <EH pad, TRY marker> map
  DenseMap<const MachineBasicBlock *, MachineInstr *> EHPadToTry;

  // We need an appendix block to place 'end_loop' or 'end_try' marker when the
  // loop / exception bottom block is the last block in a function
  MachineBasicBlock *AppendixBB = nullptr;
  MachineBasicBlock *getAppendixBlock(MachineFunction &MF) {
    if (!AppendixBB) {
      AppendixBB = MF.CreateMachineBasicBlock();
      // Give it a fake predecessor so that AsmPrinter prints its label.
      AppendixBB->addSuccessor(AppendixBB);
      MF.push_back(AppendixBB);
    }
    return AppendixBB;
  }

  // Before running rewriteDepthImmediates function, 'delegate' has a BB as its
  // destination operand. getFakeCallerBlock() returns a fake BB that will be
  // used for the operand when 'delegate' needs to rethrow to the caller. This
  // will be rewritten as an immediate value that is the number of block depths
  // + 1 in rewriteDepthImmediates, and this fake BB will be removed at the end
  // of the pass.
  MachineBasicBlock *FakeCallerBB = nullptr;
  MachineBasicBlock *getFakeCallerBlock(MachineFunction &MF) {
    if (!FakeCallerBB)
      FakeCallerBB = MF.CreateMachineBasicBlock();
    return FakeCallerBB;
  }

  // Helper functions to register / unregister scope information created by
  // marker instructions.
  void registerScope(MachineInstr *Begin, MachineInstr *End);
  void registerTryScope(MachineInstr *Begin, MachineInstr *End,
                        MachineBasicBlock *EHPad);
  void unregisterScope(MachineInstr *Begin);

public:
  static char ID; // Pass identification, replacement for typeid
  WebAssemblyCFGStackify() : MachineFunctionPass(ID) {}
  ~WebAssemblyCFGStackify() override { releaseMemory(); }
  void releaseMemory() override;
};
} // end anonymous namespace

char WebAssemblyCFGStackify::ID = 0;
INITIALIZE_PASS(WebAssemblyCFGStackify, DEBUG_TYPE,
                "Insert BLOCK/LOOP/TRY markers for WebAssembly scopes", false,
                false)

FunctionPass *llvm::createWebAssemblyCFGStackify() {
  return new WebAssemblyCFGStackify();
}

/// Test whether Pred has any terminators explicitly branching to MBB, as
/// opposed to falling through. Note that it's possible (eg. in unoptimized
/// code) for a branch instruction to both branch to a block and fallthrough
/// to it, so we check the actual branch operands to see if there are any
/// explicit mentions.
static bool explicitlyBranchesTo(MachineBasicBlock *Pred,
                                 MachineBasicBlock *MBB) {
  for (MachineInstr &MI : Pred->terminators())
    for (MachineOperand &MO : MI.explicit_operands())
      if (MO.isMBB() && MO.getMBB() == MBB)
        return true;
  return false;
}

// Returns an iterator to the earliest position possible within the MBB,
// satisfying the restrictions given by BeforeSet and AfterSet. BeforeSet
// contains instructions that should go before the marker, and AfterSet contains
// ones that should go after the marker. In this function, AfterSet is only
// used for validation checking.
template <typename Container>
static MachineBasicBlock::iterator
getEarliestInsertPos(MachineBasicBlock *MBB, const Container &BeforeSet,
                     const Container &AfterSet) {
  auto InsertPos = MBB->end();
  while (InsertPos != MBB->begin()) {
    if (BeforeSet.count(&*std::prev(InsertPos))) {
#ifndef NDEBUG
      // Validation check
      for (auto Pos = InsertPos, E = MBB->begin(); Pos != E; --Pos)
        assert(!AfterSet.count(&*std::prev(Pos)));
#endif
      break;
    }
    --InsertPos;
  }
  return InsertPos;
}

// Returns an iterator to the latest position possible within the MBB,
// satisfying the restrictions given by BeforeSet and AfterSet. BeforeSet
// contains instructions that should go before the marker, and AfterSet contains
// ones that should go after the marker. In this function, BeforeSet is only
// used for validation checking.
template <typename Container>
static MachineBasicBlock::iterator
getLatestInsertPos(MachineBasicBlock *MBB, const Container &BeforeSet,
                   const Container &AfterSet) {
  auto InsertPos = MBB->begin();
  while (InsertPos != MBB->end()) {
    if (AfterSet.count(&*InsertPos)) {
#ifndef NDEBUG
      // Validation check
      for (auto Pos = InsertPos, E = MBB->end(); Pos != E; ++Pos)
        assert(!BeforeSet.count(&*Pos));
#endif
      break;
    }
    ++InsertPos;
  }
  return InsertPos;
}

void WebAssemblyCFGStackify::registerScope(MachineInstr *Begin,
                                           MachineInstr *End) {
  BeginToEnd[Begin] = End;
  EndToBegin[End] = Begin;
}

// When 'End' is not an 'end_try' but 'delegate, EHPad is nullptr.
void WebAssemblyCFGStackify::registerTryScope(MachineInstr *Begin,
                                              MachineInstr *End,
                                              MachineBasicBlock *EHPad) {
  registerScope(Begin, End);
  TryToEHPad[Begin] = EHPad;
  EHPadToTry[EHPad] = Begin;
}

void WebAssemblyCFGStackify::unregisterScope(MachineInstr *Begin) {
  assert(BeginToEnd.count(Begin));
  MachineInstr *End = BeginToEnd[Begin];
  assert(EndToBegin.count(End));
  BeginToEnd.erase(Begin);
  EndToBegin.erase(End);
  MachineBasicBlock *EHPad = TryToEHPad.lookup(Begin);
  if (EHPad) {
    assert(EHPadToTry.count(EHPad));
    TryToEHPad.erase(Begin);
    EHPadToTry.erase(EHPad);
  }
}

/// Insert a BLOCK marker for branches to MBB (if needed).
// TODO Consider a more generalized way of handling block (and also loop and
// try) signatures when we implement the multi-value proposal later.
void WebAssemblyCFGStackify::placeBlockMarker(MachineBasicBlock &MBB) {
  assert(!MBB.isEHPad());
  MachineFunction &MF = *MBB.getParent();
  auto &MDT = getAnalysis<MachineDominatorTree>();
  const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
  const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();

  // First compute the nearest common dominator of all forward non-fallthrough
  // predecessors so that we minimize the time that the BLOCK is on the stack,
  // which reduces overall stack height.
  MachineBasicBlock *Header = nullptr;
  bool IsBranchedTo = false;
  int MBBNumber = MBB.getNumber();
  for (MachineBasicBlock *Pred : MBB.predecessors()) {
    if (Pred->getNumber() < MBBNumber) {
      Header = Header ? MDT.findNearestCommonDominator(Header, Pred) : Pred;
      if (explicitlyBranchesTo(Pred, &MBB))
        IsBranchedTo = true;
    }
  }
  if (!Header)
    return;
  if (!IsBranchedTo)
    return;

  assert(&MBB != &MF.front() && "Header blocks shouldn't have predecessors");
  MachineBasicBlock *LayoutPred = MBB.getPrevNode();

  // If the nearest common dominator is inside a more deeply nested context,
  // walk out to the nearest scope which isn't more deeply nested.
  for (MachineFunction::iterator I(LayoutPred), E(Header); I != E; --I) {
    if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) {
      if (ScopeTop->getNumber() > Header->getNumber()) {
        // Skip over an intervening scope.
        I = std::next(ScopeTop->getIterator());
      } else {
        // We found a scope level at an appropriate depth.
        Header = ScopeTop;
        break;
      }
    }
  }

  // Decide where in Header to put the BLOCK.

  // Instructions that should go before the BLOCK.
  SmallPtrSet<const MachineInstr *, 4> BeforeSet;
  // Instructions that should go after the BLOCK.
  SmallPtrSet<const MachineInstr *, 4> AfterSet;
  for (const auto &MI : *Header) {
    // If there is a previously placed LOOP marker and the bottom block of the
    // loop is above MBB, it should be after the BLOCK, because the loop is
    // nested in this BLOCK. Otherwise it should be before the BLOCK.
    if (MI.getOpcode() == WebAssembly::LOOP) {
      auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode();
      if (MBB.getNumber() > LoopBottom->getNumber())
        AfterSet.insert(&MI);
#ifndef NDEBUG
      else
        BeforeSet.insert(&MI);
#endif
    }

    // If there is a previously placed BLOCK/TRY marker and its corresponding
    // END marker is before the current BLOCK's END marker, that should be
    // placed after this BLOCK. Otherwise it should be placed before this BLOCK
    // marker.
    if (MI.getOpcode() == WebAssembly::BLOCK ||
        MI.getOpcode() == WebAssembly::TRY) {
      if (BeginToEnd[&MI]->getParent()->getNumber() <= MBB.getNumber())
        AfterSet.insert(&MI);
#ifndef NDEBUG
      else
        BeforeSet.insert(&MI);
#endif
    }

#ifndef NDEBUG
    // All END_(BLOCK|LOOP|TRY) markers should be before the BLOCK.
    if (MI.getOpcode() == WebAssembly::END_BLOCK ||
        MI.getOpcode() == WebAssembly::END_LOOP ||
        MI.getOpcode() == WebAssembly::END_TRY)
      BeforeSet.insert(&MI);
#endif

    // Terminators should go after the BLOCK.
    if (MI.isTerminator())
      AfterSet.insert(&MI);
  }

  // Local expression tree should go after the BLOCK.
  for (auto I = Header->getFirstTerminator(), E = Header->begin(); I != E;
       --I) {
    if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition())
      continue;
    if (WebAssembly::isChild(*std::prev(I), MFI))
      AfterSet.insert(&*std::prev(I));
    else
      break;
  }

  // Add the BLOCK.
  WebAssembly::BlockType ReturnType = WebAssembly::BlockType::Void;
  auto InsertPos = getLatestInsertPos(Header, BeforeSet, AfterSet);
  MachineInstr *Begin =
      BuildMI(*Header, InsertPos, Header->findDebugLoc(InsertPos),
              TII.get(WebAssembly::BLOCK))
          .addImm(int64_t(ReturnType));

  // Decide where in Header to put the END_BLOCK.
  BeforeSet.clear();
  AfterSet.clear();
  for (auto &MI : MBB) {
#ifndef NDEBUG
    // END_BLOCK should precede existing LOOP and TRY markers.
    if (MI.getOpcode() == WebAssembly::LOOP ||
        MI.getOpcode() == WebAssembly::TRY)
      AfterSet.insert(&MI);
#endif

    // If there is a previously placed END_LOOP marker and the header of the
    // loop is above this block's header, the END_LOOP should be placed after
    // the BLOCK, because the loop contains this block. Otherwise the END_LOOP
    // should be placed before the BLOCK. The same for END_TRY.
    if (MI.getOpcode() == WebAssembly::END_LOOP ||
        MI.getOpcode() == WebAssembly::END_TRY) {
      if (EndToBegin[&MI]->getParent()->getNumber() >= Header->getNumber())
        BeforeSet.insert(&MI);
#ifndef NDEBUG
      else
        AfterSet.insert(&MI);
#endif
    }
  }

  // Mark the end of the block.
  InsertPos = getEarliestInsertPos(&MBB, BeforeSet, AfterSet);
  MachineInstr *End = BuildMI(MBB, InsertPos, MBB.findPrevDebugLoc(InsertPos),
                              TII.get(WebAssembly::END_BLOCK));
  registerScope(Begin, End);

  // Track the farthest-spanning scope that ends at this point.
  updateScopeTops(Header, &MBB);
}

/// Insert a LOOP marker for a loop starting at MBB (if it's a loop header).
void WebAssemblyCFGStackify::placeLoopMarker(MachineBasicBlock &MBB) {
  MachineFunction &MF = *MBB.getParent();
  const auto &MLI = getAnalysis<MachineLoopInfo>();
  const auto &WEI = getAnalysis<WebAssemblyExceptionInfo>();
  SortRegionInfo SRI(MLI, WEI);
  const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();

  MachineLoop *Loop = MLI.getLoopFor(&MBB);
  if (!Loop || Loop->getHeader() != &MBB)
    return;

  // The operand of a LOOP is the first block after the loop. If the loop is the
  // bottom of the function, insert a dummy block at the end.
  MachineBasicBlock *Bottom = SRI.getBottom(Loop);
  auto Iter = std::next(Bottom->getIterator());
  if (Iter == MF.end()) {
    getAppendixBlock(MF);
    Iter = std::next(Bottom->getIterator());
  }
  MachineBasicBlock *AfterLoop = &*Iter;

  // Decide where in Header to put the LOOP.
  SmallPtrSet<const MachineInstr *, 4> BeforeSet;
  SmallPtrSet<const MachineInstr *, 4> AfterSet;
  for (const auto &MI : MBB) {
    // LOOP marker should be after any existing loop that ends here. Otherwise
    // we assume the instruction belongs to the loop.
    if (MI.getOpcode() == WebAssembly::END_LOOP)
      BeforeSet.insert(&MI);
#ifndef NDEBUG
    else
      AfterSet.insert(&MI);
#endif
  }

  // Mark the beginning of the loop.
  auto InsertPos = getEarliestInsertPos(&MBB, BeforeSet, AfterSet);
  MachineInstr *Begin = BuildMI(MBB, InsertPos, MBB.findDebugLoc(InsertPos),
                                TII.get(WebAssembly::LOOP))
                            .addImm(int64_t(WebAssembly::BlockType::Void));

  // Decide where in Header to put the END_LOOP.
  BeforeSet.clear();
  AfterSet.clear();
#ifndef NDEBUG
  for (const auto &MI : MBB)
    // Existing END_LOOP markers belong to parent loops of this loop
    if (MI.getOpcode() == WebAssembly::END_LOOP)
      AfterSet.insert(&MI);
#endif

  // Mark the end of the loop (using arbitrary debug location that branched to
  // the loop end as its location).
  InsertPos = getEarliestInsertPos(AfterLoop, BeforeSet, AfterSet);
  DebugLoc EndDL = AfterLoop->pred_empty()
                       ? DebugLoc()
                       : (*AfterLoop->pred_rbegin())->findBranchDebugLoc();
  MachineInstr *End =
      BuildMI(*AfterLoop, InsertPos, EndDL, TII.get(WebAssembly::END_LOOP));
  registerScope(Begin, End);

  assert((!ScopeTops[AfterLoop->getNumber()] ||
          ScopeTops[AfterLoop->getNumber()]->getNumber() < MBB.getNumber()) &&
         "With block sorting the outermost loop for a block should be first.");
  updateScopeTops(&MBB, AfterLoop);
}

void WebAssemblyCFGStackify::placeTryMarker(MachineBasicBlock &MBB) {
  assert(MBB.isEHPad());
  MachineFunction &MF = *MBB.getParent();
  auto &MDT = getAnalysis<MachineDominatorTree>();
  const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
  const auto &MLI = getAnalysis<MachineLoopInfo>();
  const auto &WEI = getAnalysis<WebAssemblyExceptionInfo>();
  SortRegionInfo SRI(MLI, WEI);
  const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();

  // Compute the nearest common dominator of all unwind predecessors
  MachineBasicBlock *Header = nullptr;
  int MBBNumber = MBB.getNumber();
  for (auto *Pred : MBB.predecessors()) {
    if (Pred->getNumber() < MBBNumber) {
      Header = Header ? MDT.findNearestCommonDominator(Header, Pred) : Pred;
      assert(!explicitlyBranchesTo(Pred, &MBB) &&
             "Explicit branch to an EH pad!");
    }
  }
  if (!Header)
    return;

  // If this try is at the bottom of the function, insert a dummy block at the
  // end.
  WebAssemblyException *WE = WEI.getExceptionFor(&MBB);
  assert(WE);
  MachineBasicBlock *Bottom = SRI.getBottom(WE);

  auto Iter = std::next(Bottom->getIterator());
  if (Iter == MF.end()) {
    getAppendixBlock(MF);
    Iter = std::next(Bottom->getIterator());
  }
  MachineBasicBlock *Cont = &*Iter;

  assert(Cont != &MF.front());
  MachineBasicBlock *LayoutPred = Cont->getPrevNode();

  // If the nearest common dominator is inside a more deeply nested context,
  // walk out to the nearest scope which isn't more deeply nested.
  for (MachineFunction::iterator I(LayoutPred), E(Header); I != E; --I) {
    if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) {
      if (ScopeTop->getNumber() > Header->getNumber()) {
        // Skip over an intervening scope.
        I = std::next(ScopeTop->getIterator());
      } else {
        // We found a scope level at an appropriate depth.
        Header = ScopeTop;
        break;
      }
    }
  }

  // Decide where in Header to put the TRY.

  // Instructions that should go before the TRY.
  SmallPtrSet<const MachineInstr *, 4> BeforeSet;
  // Instructions that should go after the TRY.
  SmallPtrSet<const MachineInstr *, 4> AfterSet;
  for (const auto &MI : *Header) {
    // If there is a previously placed LOOP marker and the bottom block of the
    // loop is above MBB, it should be after the TRY, because the loop is nested
    // in this TRY. Otherwise it should be before the TRY.
    if (MI.getOpcode() == WebAssembly::LOOP) {
      auto *LoopBottom = BeginToEnd[&MI]->getParent()->getPrevNode();
      if (MBB.getNumber() > LoopBottom->getNumber())
        AfterSet.insert(&MI);
#ifndef NDEBUG
      else
        BeforeSet.insert(&MI);
#endif
    }

    // All previously inserted BLOCK/TRY markers should be after the TRY because
    // they are all nested trys.
    if (MI.getOpcode() == WebAssembly::BLOCK ||
        MI.getOpcode() == WebAssembly::TRY)
      AfterSet.insert(&MI);

#ifndef NDEBUG
    // All END_(BLOCK/LOOP/TRY) markers should be before the TRY.
    if (MI.getOpcode() == WebAssembly::END_BLOCK ||
        MI.getOpcode() == WebAssembly::END_LOOP ||
        MI.getOpcode() == WebAssembly::END_TRY)
      BeforeSet.insert(&MI);
#endif

    // Terminators should go after the TRY.
    if (MI.isTerminator())
      AfterSet.insert(&MI);
  }

  // If Header unwinds to MBB (= Header contains 'invoke'), the try block should
  // contain the call within it. So the call should go after the TRY. The
  // exception is when the header's terminator is a rethrow instruction, in
  // which case that instruction, not a call instruction before it, is gonna
  // throw.
  MachineInstr *ThrowingCall = nullptr;
  if (MBB.isPredecessor(Header)) {
    auto TermPos = Header->getFirstTerminator();
    if (TermPos == Header->end() ||
        TermPos->getOpcode() != WebAssembly::RETHROW) {
      for (auto &MI : reverse(*Header)) {
        if (MI.isCall()) {
          AfterSet.insert(&MI);
          ThrowingCall = &MI;
          // Possibly throwing calls are usually wrapped by EH_LABEL
          // instructions. We don't want to split them and the call.
          if (MI.getIterator() != Header->begin() &&
              std::prev(MI.getIterator())->isEHLabel()) {
            AfterSet.insert(&*std::prev(MI.getIterator()));
            ThrowingCall = &*std::prev(MI.getIterator());
          }
          break;
        }
      }
    }
  }

  // Local expression tree should go after the TRY.
  // For BLOCK placement, we start the search from the previous instruction of a
  // BB's terminator, but in TRY's case, we should start from the previous
  // instruction of a call that can throw, or a EH_LABEL that precedes the call,
  // because the return values of the call's previous instructions can be
  // stackified and consumed by the throwing call.
  auto SearchStartPt = ThrowingCall ? MachineBasicBlock::iterator(ThrowingCall)
                                    : Header->getFirstTerminator();
  for (auto I = SearchStartPt, E = Header->begin(); I != E; --I) {
    if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition())
      continue;
    if (WebAssembly::isChild(*std::prev(I), MFI))
      AfterSet.insert(&*std::prev(I));
    else
      break;
  }

  // Add the TRY.
  auto InsertPos = getLatestInsertPos(Header, BeforeSet, AfterSet);
  MachineInstr *Begin =
      BuildMI(*Header, InsertPos, Header->findDebugLoc(InsertPos),
              TII.get(WebAssembly::TRY))
          .addImm(int64_t(WebAssembly::BlockType::Void));

  // Decide where in Header to put the END_TRY.
  BeforeSet.clear();
  AfterSet.clear();
  for (const auto &MI : *Cont) {
#ifndef NDEBUG
    // END_TRY should precede existing LOOP and BLOCK markers.
    if (MI.getOpcode() == WebAssembly::LOOP ||
        MI.getOpcode() == WebAssembly::BLOCK)
      AfterSet.insert(&MI);

    // All END_TRY markers placed earlier belong to exceptions that contains
    // this one.
    if (MI.getOpcode() == WebAssembly::END_TRY)
      AfterSet.insert(&MI);
#endif

    // If there is a previously placed END_LOOP marker and its header is after
    // where TRY marker is, this loop is contained within the 'catch' part, so
    // the END_TRY marker should go after that. Otherwise, the whole try-catch
    // is contained within this loop, so the END_TRY should go before that.
    if (MI.getOpcode() == WebAssembly::END_LOOP) {
      // For a LOOP to be after TRY, LOOP's BB should be after TRY's BB; if they
      // are in the same BB, LOOP is always before TRY.
      if (EndToBegin[&MI]->getParent()->getNumber() > Header->getNumber())
        BeforeSet.insert(&MI);
#ifndef NDEBUG
      else
        AfterSet.insert(&MI);
#endif
    }

    // It is not possible for an END_BLOCK to be already in this block.
  }

  // Mark the end of the TRY.
  InsertPos = getEarliestInsertPos(Cont, BeforeSet, AfterSet);
  MachineInstr *End =
      BuildMI(*Cont, InsertPos, Bottom->findBranchDebugLoc(),
              TII.get(WebAssembly::END_TRY));
  registerTryScope(Begin, End, &MBB);

  // Track the farthest-spanning scope that ends at this point. We create two
  // mappings: (BB with 'end_try' -> BB with 'try') and (BB with 'catch' -> BB
  // with 'try'). We need to create 'catch' -> 'try' mapping here too because
  // markers should not span across 'catch'. For example, this should not
  // happen:
  //
  // try
  //   block     --|  (X)
  // catch         |
  //   end_block --|
  // end_try
  for (auto *End : {&MBB, Cont})
    updateScopeTops(Header, End);
}

void WebAssemblyCFGStackify::removeUnnecessaryInstrs(MachineFunction &MF) {
  const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();

  // When there is an unconditional branch right before a catch instruction and
  // it branches to the end of end_try marker, we don't need the branch, because
  // it there is no exception, the control flow transfers to that point anyway.
  // bb0:
  //   try
  //     ...
  //     br bb2      <- Not necessary
  // bb1 (ehpad):
  //   catch
  //     ...
  // bb2:            <- Continuation BB
  //   end
  //
  // A more involved case: When the BB where 'end' is located is an another EH
  // pad, the Cont (= continuation) BB is that EH pad's 'end' BB. For example,
  // bb0:
  //   try
  //     try
  //       ...
  //       br bb3      <- Not necessary
  // bb1 (ehpad):
  //     catch
  // bb2 (ehpad):
  //     end
  //   catch
  //     ...
  // bb3:            <- Continuation BB
  //   end
  //
  // When the EH pad at hand is bb1, its matching end_try is in bb2. But it is
  // another EH pad, so bb0's continuation BB becomes bb3. So 'br bb3' in the
  // code can be deleted. This is why we run 'while' until 'Cont' is not an EH
  // pad.
  for (auto &MBB : MF) {
    if (!MBB.isEHPad())
      continue;

    MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
    SmallVector<MachineOperand, 4> Cond;
    MachineBasicBlock *EHPadLayoutPred = MBB.getPrevNode();

    MachineBasicBlock *Cont = &MBB;
    while (Cont->isEHPad()) {
      MachineInstr *Try = EHPadToTry[Cont];
      MachineInstr *EndTry = BeginToEnd[Try];
      // We started from an EH pad, so the end marker cannot be a delegate
      assert(EndTry->getOpcode() != WebAssembly::DELEGATE);
      Cont = EndTry->getParent();
    }

    bool Analyzable = !TII.analyzeBranch(*EHPadLayoutPred, TBB, FBB, Cond);
    // This condition means either
    // 1. This BB ends with a single unconditional branch whose destinaion is
    //    Cont.
    // 2. This BB ends with a conditional branch followed by an unconditional
    //    branch, and the unconditional branch's destination is Cont.
    // In both cases, we want to remove the last (= unconditional) branch.
    if (Analyzable && ((Cond.empty() && TBB && TBB == Cont) ||
                       (!Cond.empty() && FBB && FBB == Cont))) {
      bool ErasedUncondBr = false;
      (void)ErasedUncondBr;
      for (auto I = EHPadLayoutPred->end(), E = EHPadLayoutPred->begin();
           I != E; --I) {
        auto PrevI = std::prev(I);
        if (PrevI->isTerminator()) {
          assert(PrevI->getOpcode() == WebAssembly::BR);
          PrevI->eraseFromParent();
          ErasedUncondBr = true;
          break;
        }
      }
      assert(ErasedUncondBr && "Unconditional branch not erased!");
    }
  }

  // When there are block / end_block markers that overlap with try / end_try
  // markers, and the block and try markers' return types are the same, the
  // block /end_block markers are not necessary, because try / end_try markers
  // also can serve as boundaries for branches.
  // block         <- Not necessary
  //   try
  //     ...
  //   catch
  //     ...
  //   end
  // end           <- Not necessary
  SmallVector<MachineInstr *, 32> ToDelete;
  for (auto &MBB : MF) {
    for (auto &MI : MBB) {
      if (MI.getOpcode() != WebAssembly::TRY)
        continue;
      MachineInstr *Try = &MI, *EndTry = BeginToEnd[Try];
      if (EndTry->getOpcode() == WebAssembly::DELEGATE)
        continue;

      MachineBasicBlock *TryBB = Try->getParent();
      MachineBasicBlock *Cont = EndTry->getParent();
      int64_t RetType = Try->getOperand(0).getImm();
      for (auto B = Try->getIterator(), E = std::next(EndTry->getIterator());
           B != TryBB->begin() && E != Cont->end() &&
           std::prev(B)->getOpcode() == WebAssembly::BLOCK &&
           E->getOpcode() == WebAssembly::END_BLOCK &&
           std::prev(B)->getOperand(0).getImm() == RetType;
           --B, ++E) {
        ToDelete.push_back(&*std::prev(B));
        ToDelete.push_back(&*E);
      }
    }
  }
  for (auto *MI : ToDelete) {
    if (MI->getOpcode() == WebAssembly::BLOCK)
      unregisterScope(MI);
    MI->eraseFromParent();
  }
}

// When MBB is split into MBB and Split, we should unstackify defs in MBB that
// have their uses in Split.
static void unstackifyVRegsUsedInSplitBB(MachineBasicBlock &MBB,
                                         MachineBasicBlock &Split) {
  MachineFunction &MF = *MBB.getParent();
  const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
  auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
  auto &MRI = MF.getRegInfo();

  for (auto &MI : Split) {
    for (auto &MO : MI.explicit_uses()) {
      if (!MO.isReg() || Register::isPhysicalRegister(MO.getReg()))
        continue;
      if (MachineInstr *Def = MRI.getUniqueVRegDef(MO.getReg()))
        if (Def->getParent() == &MBB)
          MFI.unstackifyVReg(MO.getReg());
    }
  }

  // In RegStackify, when a register definition is used multiple times,
  //    Reg = INST ...
  //    INST ..., Reg, ...
  //    INST ..., Reg, ...
  //    INST ..., Reg, ...
  //
  // we introduce a TEE, which has the following form:
  //    DefReg = INST ...
  //    TeeReg, Reg = TEE_... DefReg
  //    INST ..., TeeReg, ...
  //    INST ..., Reg, ...
  //    INST ..., Reg, ...
  // with DefReg and TeeReg stackified but Reg not stackified.
  //
  // But the invariant that TeeReg should be stackified can be violated while we
  // unstackify registers in the split BB above. In this case, we convert TEEs
  // into two COPYs. This COPY will be eventually eliminated in ExplicitLocals.
  //    DefReg = INST ...
  //    TeeReg = COPY DefReg
  //    Reg = COPY DefReg
  //    INST ..., TeeReg, ...
  //    INST ..., Reg, ...
  //    INST ..., Reg, ...
  for (MachineInstr &MI : llvm::make_early_inc_range(MBB)) {
    if (!WebAssembly::isTee(MI.getOpcode()))
      continue;
    Register TeeReg = MI.getOperand(0).getReg();
    Register Reg = MI.getOperand(1).getReg();
    Register DefReg = MI.getOperand(2).getReg();
    if (!MFI.isVRegStackified(TeeReg)) {
      // Now we are not using TEE anymore, so unstackify DefReg too
      MFI.unstackifyVReg(DefReg);
      unsigned CopyOpc =
          WebAssembly::getCopyOpcodeForRegClass(MRI.getRegClass(DefReg));
      BuildMI(MBB, &MI, MI.getDebugLoc(), TII.get(CopyOpc), TeeReg)
          .addReg(DefReg);
      BuildMI(MBB, &MI, MI.getDebugLoc(), TII.get(CopyOpc), Reg).addReg(DefReg);
      MI.eraseFromParent();
    }
  }
}

// Wrap the given range of instruction with try-delegate. RangeBegin and
// RangeEnd are inclusive.
void WebAssemblyCFGStackify::addTryDelegate(MachineInstr *RangeBegin,
                                            MachineInstr *RangeEnd,
                                            MachineBasicBlock *DelegateDest) {
  auto *BeginBB = RangeBegin->getParent();
  auto *EndBB = RangeEnd->getParent();
  MachineFunction &MF = *BeginBB->getParent();
  const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();
  const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();

  // Local expression tree before the first call of this range should go
  // after the nested TRY.
  SmallPtrSet<const MachineInstr *, 4> AfterSet;
  AfterSet.insert(RangeBegin);
  for (auto I = MachineBasicBlock::iterator(RangeBegin), E = BeginBB->begin();
       I != E; --I) {
    if (std::prev(I)->isDebugInstr() || std::prev(I)->isPosition())
      continue;
    if (WebAssembly::isChild(*std::prev(I), MFI))
      AfterSet.insert(&*std::prev(I));
    else
      break;
  }

  // Create the nested try instruction.
  auto TryPos = getLatestInsertPos(
      BeginBB, SmallPtrSet<const MachineInstr *, 4>(), AfterSet);
  MachineInstr *Try = BuildMI(*BeginBB, TryPos, RangeBegin->getDebugLoc(),
                              TII.get(WebAssembly::TRY))
                          .addImm(int64_t(WebAssembly::BlockType::Void));

  // Create a BB to insert the 'delegate' instruction.
  MachineBasicBlock *DelegateBB = MF.CreateMachineBasicBlock();
  // If the destination of 'delegate' is not the caller, adds the destination to
  // the BB's successors.
  if (DelegateDest != FakeCallerBB)
    DelegateBB->addSuccessor(DelegateDest);

  auto SplitPos = std::next(RangeEnd->getIterator());
  if (SplitPos == EndBB->end()) {
    // If the range's end instruction is at the end of the BB, insert the new
    // delegate BB after the current BB.
    MF.insert(std::next(EndBB->getIterator()), DelegateBB);
    EndBB->addSuccessor(DelegateBB);

  } else {
    // When the split pos is in the middle of a BB, we split the BB into two and
    // put the 'delegate' BB in between. We normally create a split BB and make
    // it a successor of the original BB (PostSplit == true), but in case the BB
    // is an EH pad and the split pos is before 'catch', we should preserve the
    // BB's property, including that it is an EH pad, in the later part of the
    // BB, where 'catch' is. In this case we set PostSplit to false.
    bool PostSplit = true;
    if (EndBB->isEHPad()) {
      for (auto I = MachineBasicBlock::iterator(SplitPos), E = EndBB->end();
           I != E; ++I) {
        if (WebAssembly::isCatch(I->getOpcode())) {
          PostSplit = false;
          break;
        }
      }
    }

    MachineBasicBlock *PreBB = nullptr, *PostBB = nullptr;
    if (PostSplit) {
      // If the range's end instruction is in the middle of the BB, we split the
      // BB into two and insert the delegate BB in between.
      // - Before:
      // bb:
      //   range_end
      //   other_insts
      //
      // - After:
      // pre_bb: (previous 'bb')
      //   range_end
      // delegate_bb: (new)
      //   delegate
      // post_bb: (new)
      //   other_insts
      PreBB = EndBB;
      PostBB = MF.CreateMachineBasicBlock();
      MF.insert(std::next(PreBB->getIterator()), PostBB);
      MF.insert(std::next(PreBB->getIterator()), DelegateBB);
      PostBB->splice(PostBB->end(), PreBB, SplitPos, PreBB->end());
      PostBB->transferSuccessors(PreBB);
    } else {
      // - Before:
      // ehpad:
      //   range_end
      //   catch
      //   ...
      //
      // - After:
      // pre_bb: (new)
      //   range_end
      // delegate_bb: (new)
      //   delegate
      // post_bb: (previous 'ehpad')
      //   catch
      //   ...
      assert(EndBB->isEHPad());
      PreBB = MF.CreateMachineBasicBlock();
      PostBB = EndBB;
      MF.insert(PostBB->getIterator(), PreBB);
      MF.insert(PostBB->getIterator(), DelegateBB);
      PreBB->splice(PreBB->end(), PostBB, PostBB->begin(), SplitPos);
      // We don't need to transfer predecessors of the EH pad to 'PreBB',
      // because an EH pad's predecessors are all through unwind edges and they
      // should still unwind to the EH pad, not PreBB.
    }
    unstackifyVRegsUsedInSplitBB(*PreBB, *PostBB);
    PreBB->addSuccessor(DelegateBB);
    PreBB->addSuccessor(PostBB);
  }

  // Add 'delegate' instruction in the delegate BB created above.
  MachineInstr *Delegate = BuildMI(DelegateBB, RangeEnd->getDebugLoc(),
                                   TII.get(WebAssembly::DELEGATE))
                               .addMBB(DelegateDest);
  registerTryScope(Try, Delegate, nullptr);
}

bool WebAssemblyCFGStackify::fixCallUnwindMismatches(MachineFunction &MF) {
  // Linearizing the control flow by placing TRY / END_TRY markers can create
  // mismatches in unwind destinations for throwing instructions, such as calls.
  //
  // We use the 'delegate' instruction to fix the unwind mismatches. 'delegate'
  // instruction delegates an exception to an outer 'catch'. It can target not
  // only 'catch' but all block-like structures including another 'delegate',
  // but with slightly different semantics than branches. When it targets a
  // 'catch', it will delegate the exception to that catch. It is being
  // discussed how to define the semantics when 'delegate''s target is a non-try
  // block: it will either be a validation failure or it will target the next
  // outer try-catch. But anyway our LLVM backend currently does not generate
  // such code. The example below illustrates where the 'delegate' instruction
  // in the middle will delegate the exception to, depending on the value of N.
  // try
  //   try
  //     block
  //       try
  //         try
  //           call @foo
  //         delegate N    ;; Where will this delegate to?
  //       catch           ;; N == 0
  //       end
  //     end               ;; N == 1 (invalid; will not be generated)
  //   delegate            ;; N == 2
  // catch                 ;; N == 3
  // end
  //                       ;; N == 4 (to caller)

  // 1. When an instruction may throw, but the EH pad it will unwind to can be
  //    different from the original CFG.
  //
  // Example: we have the following CFG:
  // bb0:
  //   call @foo    ; if it throws, unwind to bb2
  // bb1:
  //   call @bar    ; if it throws, unwind to bb3
  // bb2 (ehpad):
  //   catch
  //   ...
  // bb3 (ehpad)
  //   catch
  //   ...
  //
  // And the CFG is sorted in this order. Then after placing TRY markers, it
  // will look like: (BB markers are omitted)
  // try
  //   try
  //     call @foo
  //     call @bar   ;; if it throws, unwind to bb3
  //   catch         ;; ehpad (bb2)
  //     ...
  //   end_try
  // catch           ;; ehpad (bb3)
  //   ...
  // end_try
  //
  // Now if bar() throws, it is going to end up ip in bb2, not bb3, where it
  // is supposed to end up. We solve this problem by wrapping the mismatching
  // call with an inner try-delegate that rethrows the exception to the right
  // 'catch'.
  //
  // try
  //   try
  //     call @foo
  //     try               ;; (new)
  //       call @bar
  //     delegate 1 (bb3)  ;; (new)
  //   catch               ;; ehpad (bb2)
  //     ...
  //   end_try
  // catch                 ;; ehpad (bb3)
  //   ...
  // end_try
  //
  // ---
  // 2. The same as 1, but in this case an instruction unwinds to a caller
  //    function and not another EH pad.
  //
  // Example: we have the following CFG:
  // bb0:
  //   call @foo       ; if it throws, unwind to bb2
  // bb1:
  //   call @bar       ; if it throws, unwind to caller
  // bb2 (ehpad):
  //   catch
  //   ...
  //
  // And the CFG is sorted in this order. Then after placing TRY markers, it
  // will look like:
  // try
  //   call @foo
  //   call @bar     ;; if it throws, unwind to caller
  // catch           ;; ehpad (bb2)
  //   ...
  // end_try
  //
  // Now if bar() throws, it is going to end up ip in bb2, when it is supposed
  // throw up to the caller. We solve this problem in the same way, but in this
  // case 'delegate's immediate argument is the number of block depths + 1,
  // which means it rethrows to the caller.
  // try
  //   call @foo
  //   try                  ;; (new)
  //     call @bar
  //   delegate 1 (caller)  ;; (new)
  // catch                  ;; ehpad (bb2)
  //   ...
  // end_try
  //
  // Before rewriteDepthImmediates, delegate's argument is a BB. In case of the
  // caller, it will take a fake BB generated by getFakeCallerBlock(), which
  // will be converted to a correct immediate argument later.
  //
  // In case there are multiple calls in a BB that may throw to the caller, they
  // can be wrapped together in one nested try-delegate scope. (In 1, this
  // couldn't happen, because may-throwing instruction there had an unwind
  // destination, i.e., it was an invoke before, and there could be only one
  // invoke within a BB.)

  SmallVector<const MachineBasicBlock *, 8> EHPadStack;
  // Range of intructions to be wrapped in a new nested try/catch. A range
  // exists in a single BB and does not span multiple BBs.
  using TryRange = std::pair<MachineInstr *, MachineInstr *>;
  // In original CFG, <unwind destination BB, a vector of try ranges>
  DenseMap<MachineBasicBlock *, SmallVector<TryRange, 4>> UnwindDestToTryRanges;

  // Gather possibly throwing calls (i.e., previously invokes) whose current
  // unwind destination is not the same as the original CFG. (Case 1)

  for (auto &MBB : reverse(MF)) {
    bool SeenThrowableInstInBB = false;
    for (auto &MI : reverse(MBB)) {
      if (MI.getOpcode() == WebAssembly::TRY)
        EHPadStack.pop_back();
      else if (WebAssembly::isCatch(MI.getOpcode()))
        EHPadStack.push_back(MI.getParent());

      // In this loop we only gather calls that have an EH pad to unwind. So
      // there will be at most 1 such call (= invoke) in a BB, so after we've
      // seen one, we can skip the rest of BB. Also if MBB has no EH pad
      // successor or MI does not throw, this is not an invoke.
      if (SeenThrowableInstInBB || !MBB.hasEHPadSuccessor() ||
          !WebAssembly::mayThrow(MI))
        continue;
      SeenThrowableInstInBB = true;

      // If the EH pad on the stack top is where this instruction should unwind
      // next, we're good.
      MachineBasicBlock *UnwindDest = getFakeCallerBlock(MF);
      for (auto *Succ : MBB.successors()) {
        // Even though semantically a BB can have multiple successors in case an
        // exception is not caught by a catchpad, in our backend implementation
        // it is guaranteed that a BB can have at most one EH pad successor. For
        // details, refer to comments in findWasmUnwindDestinations function in
        // SelectionDAGBuilder.cpp.
        if (Succ->isEHPad()) {
          UnwindDest = Succ;
          break;
        }
      }
      if (EHPadStack.back() == UnwindDest)
        continue;

      // Include EH_LABELs in the range before and afer the invoke
      MachineInstr *RangeBegin = &MI, *RangeEnd = &MI;
      if (RangeBegin->getIterator() != MBB.begin() &&
          std::prev(RangeBegin->getIterator())->isEHLabel())
        RangeBegin = &*std::prev(RangeBegin->getIterator());
      if (std::next(RangeEnd->getIterator()) != MBB.end() &&
          std::next(RangeEnd->getIterator())->isEHLabel())
        RangeEnd = &*std::next(RangeEnd->getIterator());

      // If not, record the range.
      UnwindDestToTryRanges[UnwindDest].push_back(
          TryRange(RangeBegin, RangeEnd));
      LLVM_DEBUG(dbgs() << "- Call unwind mismatch: MBB = " << MBB.getName()
                        << "\nCall = " << MI
                        << "\nOriginal dest = " << UnwindDest->getName()
                        << "  Current dest = " << EHPadStack.back()->getName()
                        << "\n\n");
    }
  }

  assert(EHPadStack.empty());

  // Gather possibly throwing calls that are supposed to unwind up to the caller
  // if they throw, but currently unwind to an incorrect destination. Unlike the
  // loop above, there can be multiple calls within a BB that unwind to the
  // caller, which we should group together in a range. (Case 2)

  MachineInstr *RangeBegin = nullptr, *RangeEnd = nullptr; // inclusive

  // Record the range.
  auto RecordCallerMismatchRange = [&](const MachineBasicBlock *CurrentDest) {
    UnwindDestToTryRanges[getFakeCallerBlock(MF)].push_back(
        TryRange(RangeBegin, RangeEnd));
    LLVM_DEBUG(dbgs() << "- Call unwind mismatch: MBB = "
                      << RangeBegin->getParent()->getName()
                      << "\nRange begin = " << *RangeBegin
                      << "Range end = " << *RangeEnd
                      << "\nOriginal dest = caller  Current dest = "
                      << CurrentDest->getName() << "\n\n");
    RangeBegin = RangeEnd = nullptr; // Reset range pointers
  };

  for (auto &MBB : reverse(MF)) {
    bool SeenThrowableInstInBB = false;
    for (auto &MI : reverse(MBB)) {
      bool MayThrow = WebAssembly::mayThrow(MI);

      // If MBB has an EH pad successor and this is the last instruction that
      // may throw, this instruction unwinds to the EH pad and not to the
      // caller.
      if (MBB.hasEHPadSuccessor() && MayThrow && !SeenThrowableInstInBB)
        SeenThrowableInstInBB = true;

      // We wrap up the current range when we see a marker even if we haven't
      // finished a BB.
      else if (RangeEnd && WebAssembly::isMarker(MI.getOpcode()))
        RecordCallerMismatchRange(EHPadStack.back());

      // If EHPadStack is empty, that means it correctly unwinds to the caller
      // if it throws, so we're good. If MI does not throw, we're good too.
      else if (EHPadStack.empty() || !MayThrow) {
      }

      // We found an instruction that unwinds to the caller but currently has an
      // incorrect unwind destination. Create a new range or increment the
      // currently existing range.
      else {
        if (!RangeEnd)
          RangeBegin = RangeEnd = &MI;
        else
          RangeBegin = &MI;
      }

      // Update EHPadStack.
      if (MI.getOpcode() == WebAssembly::TRY)
        EHPadStack.pop_back();
      else if (WebAssembly::isCatch(MI.getOpcode()))
        EHPadStack.push_back(MI.getParent());
    }

    if (RangeEnd)
      RecordCallerMismatchRange(EHPadStack.back());
  }

  assert(EHPadStack.empty());

  // We don't have any unwind destination mismatches to resolve.
  if (UnwindDestToTryRanges.empty())
    return false;

  // Now we fix the mismatches by wrapping calls with inner try-delegates.
  for (auto &P : UnwindDestToTryRanges) {
    NumCallUnwindMismatches += P.second.size();
    MachineBasicBlock *UnwindDest = P.first;
    auto &TryRanges = P.second;

    for (auto Range : TryRanges) {
      MachineInstr *RangeBegin = nullptr, *RangeEnd = nullptr;
      std::tie(RangeBegin, RangeEnd) = Range;
      auto *MBB = RangeBegin->getParent();

      // If this BB has an EH pad successor, i.e., ends with an 'invoke', now we
      // are going to wrap the invoke with try-delegate, making the 'delegate'
      // BB the new successor instead, so remove the EH pad succesor here. The
      // BB may not have an EH pad successor if calls in this BB throw to the
      // caller.
      MachineBasicBlock *EHPad = nullptr;
      for (auto *Succ : MBB->successors()) {
        if (Succ->isEHPad()) {
          EHPad = Succ;
          break;
        }
      }
      if (EHPad)
        MBB->removeSuccessor(EHPad);

      addTryDelegate(RangeBegin, RangeEnd, UnwindDest);
    }
  }

  return true;
}

bool WebAssemblyCFGStackify::fixCatchUnwindMismatches(MachineFunction &MF) {
  // There is another kind of unwind destination mismatches besides call unwind
  // mismatches, which we will call "catch unwind mismatches". See this example
  // after the marker placement:
  // try
  //   try
  //     call @foo
  //   catch __cpp_exception  ;; ehpad A (next unwind dest: caller)
  //     ...
  //   end_try
  // catch_all                ;; ehpad B
  //   ...
  // end_try
  //
  // 'call @foo's unwind destination is the ehpad A. But suppose 'call @foo'
  // throws a foreign exception that is not caught by ehpad A, and its next
  // destination should be the caller. But after control flow linearization,
  // another EH pad can be placed in between (e.g. ehpad B here), making the
  // next unwind destination incorrect. In this case, the  foreign exception
  // will instead go to ehpad B and will be caught there instead. In this
  // example the correct next unwind destination is the caller, but it can be
  // another outer catch in other cases.
  //
  // There is no specific 'call' or 'throw' instruction to wrap with a
  // try-delegate, so we wrap the whole try-catch-end with a try-delegate and
  // make it rethrow to the right destination, as in the example below:
  // try
  //   try                     ;; (new)
  //     try
  //       call @foo
  //     catch __cpp_exception ;; ehpad A (next unwind dest: caller)
  //       ...
  //     end_try
  //   delegate 1 (caller)     ;; (new)
  // catch_all                 ;; ehpad B
  //   ...
  // end_try

  const auto *EHInfo = MF.getWasmEHFuncInfo();
  SmallVector<const MachineBasicBlock *, 8> EHPadStack;
  // For EH pads that have catch unwind mismatches, a map of <EH pad, its
  // correct unwind destination>.
  DenseMap<MachineBasicBlock *, MachineBasicBlock *> EHPadToUnwindDest;

  for (auto &MBB : reverse(MF)) {
    for (auto &MI : reverse(MBB)) {
      if (MI.getOpcode() == WebAssembly::TRY)
        EHPadStack.pop_back();
      else if (MI.getOpcode() == WebAssembly::DELEGATE)
        EHPadStack.push_back(&MBB);
      else if (WebAssembly::isCatch(MI.getOpcode())) {
        auto *EHPad = &MBB;

        // catch_all always catches an exception, so we don't need to do
        // anything
        if (MI.getOpcode() == WebAssembly::CATCH_ALL) {
        }

        // This can happen when the unwind dest was removed during the
        // optimization, e.g. because it was unreachable.
        else if (EHPadStack.empty() && EHInfo->hasUnwindDest(EHPad)) {
          LLVM_DEBUG(dbgs() << "EHPad (" << EHPad->getName()
                            << "'s unwind destination does not exist anymore"
                            << "\n\n");
        }

        // The EHPad's next unwind destination is the caller, but we incorrectly
        // unwind to another EH pad.
        else if (!EHPadStack.empty() && !EHInfo->hasUnwindDest(EHPad)) {
          EHPadToUnwindDest[EHPad] = getFakeCallerBlock(MF);
          LLVM_DEBUG(dbgs()
                     << "- Catch unwind mismatch:\nEHPad = " << EHPad->getName()
                     << "  Original dest = caller  Current dest = "
                     << EHPadStack.back()->getName() << "\n\n");
        }

        // The EHPad's next unwind destination is an EH pad, whereas we
        // incorrectly unwind to another EH pad.
        else if (!EHPadStack.empty() && EHInfo->hasUnwindDest(EHPad)) {
          auto *UnwindDest = EHInfo->getUnwindDest(EHPad);
          if (EHPadStack.back() != UnwindDest) {
            EHPadToUnwindDest[EHPad] = UnwindDest;
            LLVM_DEBUG(dbgs() << "- Catch unwind mismatch:\nEHPad = "
                              << EHPad->getName() << "  Original dest = "
                              << UnwindDest->getName() << "  Current dest = "
                              << EHPadStack.back()->getName() << "\n\n");
          }
        }

        EHPadStack.push_back(EHPad);
      }
    }
  }

  assert(EHPadStack.empty());
  if (EHPadToUnwindDest.empty())
    return false;
  NumCatchUnwindMismatches += EHPadToUnwindDest.size();
  SmallPtrSet<MachineBasicBlock *, 4> NewEndTryBBs;

  for (auto &P : EHPadToUnwindDest) {
    MachineBasicBlock *EHPad = P.first;
    MachineBasicBlock *UnwindDest = P.second;
    MachineInstr *Try = EHPadToTry[EHPad];
    MachineInstr *EndTry = BeginToEnd[Try];
    addTryDelegate(Try, EndTry, UnwindDest);
    NewEndTryBBs.insert(EndTry->getParent());
  }

  // Adding a try-delegate wrapping an existing try-catch-end can make existing
  // branch destination BBs invalid. For example,
  //
  // - Before:
  // bb0:
  //   block
  //     br bb3
  // bb1:
  //     try
  //       ...
  // bb2: (ehpad)
  //     catch
  // bb3:
  //     end_try
  //   end_block   ;; 'br bb3' targets here
  //
  // Suppose this try-catch-end has a catch unwind mismatch, so we need to wrap
  // this with a try-delegate. Then this becomes:
  //
  // - After:
  // bb0:
  //   block
  //     br bb3    ;; invalid destination!
  // bb1:
  //     try       ;; (new instruction)
  //       try
  //         ...
  // bb2: (ehpad)
  //       catch
  // bb3:
  //       end_try ;; 'br bb3' still incorrectly targets here!
  // delegate_bb:  ;; (new BB)
  //     delegate  ;; (new instruction)
  // split_bb:     ;; (new BB)
  //   end_block
  //
  // Now 'br bb3' incorrectly branches to an inner scope.
  //
  // As we can see in this case, when branches target a BB that has both
  // 'end_try' and 'end_block' and the BB is split to insert a 'delegate', we
  // have to remap existing branch destinations so that they target not the
  // 'end_try' BB but the new 'end_block' BB. There can be multiple 'delegate's
  // in between, so we try to find the next BB with 'end_block' instruction. In
  // this example, the 'br bb3' instruction should be remapped to 'br split_bb'.
  for (auto &MBB : MF) {
    for (auto &MI : MBB) {
      if (MI.isTerminator()) {
        for (auto &MO : MI.operands()) {
          if (MO.isMBB() && NewEndTryBBs.count(MO.getMBB())) {
            auto *BrDest = MO.getMBB();
            bool FoundEndBlock = false;
            for (; std::next(BrDest->getIterator()) != MF.end();
                 BrDest = BrDest->getNextNode()) {
              for (const auto &MI : *BrDest) {
                if (MI.getOpcode() == WebAssembly::END_BLOCK) {
                  FoundEndBlock = true;
                  break;
                }
              }
              if (FoundEndBlock)
                break;
            }
            assert(FoundEndBlock);
            MO.setMBB(BrDest);
          }
        }
      }
    }
  }

  return true;
}

void WebAssemblyCFGStackify::recalculateScopeTops(MachineFunction &MF) {
  // Renumber BBs and recalculate ScopeTop info because new BBs might have been
  // created and inserted during fixing unwind mismatches.
  MF.RenumberBlocks();
  ScopeTops.clear();
  ScopeTops.resize(MF.getNumBlockIDs());
  for (auto &MBB : reverse(MF)) {
    for (auto &MI : reverse(MBB)) {
      if (ScopeTops[MBB.getNumber()])
        break;
      switch (MI.getOpcode()) {
      case WebAssembly::END_BLOCK:
      case WebAssembly::END_LOOP:
      case WebAssembly::END_TRY:
      case WebAssembly::DELEGATE:
        updateScopeTops(EndToBegin[&MI]->getParent(), &MBB);
        break;
      case WebAssembly::CATCH:
      case WebAssembly::CATCH_ALL:
        updateScopeTops(EHPadToTry[&MBB]->getParent(), &MBB);
        break;
      }
    }
  }
}

/// In normal assembly languages, when the end of a function is unreachable,
/// because the function ends in an infinite loop or a noreturn call or similar,
/// it isn't necessary to worry about the function return type at the end of
/// the function, because it's never reached. However, in WebAssembly, blocks
/// that end at the function end need to have a return type signature that
/// matches the function signature, even though it's unreachable. This function
/// checks for such cases and fixes up the signatures.
void WebAssemblyCFGStackify::fixEndsAtEndOfFunction(MachineFunction &MF) {
  const auto &MFI = *MF.getInfo<WebAssemblyFunctionInfo>();

  if (MFI.getResults().empty())
    return;

  // MCInstLower will add the proper types to multivalue signatures based on the
  // function return type
  WebAssembly::BlockType RetType =
      MFI.getResults().size() > 1
          ? WebAssembly::BlockType::Multivalue
          : WebAssembly::BlockType(
                WebAssembly::toValType(MFI.getResults().front()));

  SmallVector<MachineBasicBlock::reverse_iterator, 4> Worklist;
  Worklist.push_back(MF.rbegin()->rbegin());

  auto Process = [&](MachineBasicBlock::reverse_iterator It) {
    auto *MBB = It->getParent();
    while (It != MBB->rend()) {
      MachineInstr &MI = *It++;
      if (MI.isPosition() || MI.isDebugInstr())
        continue;
      switch (MI.getOpcode()) {
      case WebAssembly::END_TRY: {
        // If a 'try''s return type is fixed, both its try body and catch body
        // should satisfy the return type, so we need to search 'end'
        // instructions before its corresponding 'catch' too.
        auto *EHPad = TryToEHPad.lookup(EndToBegin[&MI]);
        assert(EHPad);
        auto NextIt =
            std::next(WebAssembly::findCatch(EHPad)->getReverseIterator());
        if (NextIt != EHPad->rend())
          Worklist.push_back(NextIt);
        LLVM_FALLTHROUGH;
      }
      case WebAssembly::END_BLOCK:
      case WebAssembly::END_LOOP:
      case WebAssembly::DELEGATE:
        EndToBegin[&MI]->getOperand(0).setImm(int32_t(RetType));
        continue;
      default:
        // Something other than an `end`. We're done for this BB.
        return;
      }
    }
    // We've reached the beginning of a BB. Continue the search in the previous
    // BB.
    Worklist.push_back(MBB->getPrevNode()->rbegin());
  };

  while (!Worklist.empty())
    Process(Worklist.pop_back_val());
}

// WebAssembly functions end with an end instruction, as if the function body
// were a block.
static void appendEndToFunction(MachineFunction &MF,
                                const WebAssemblyInstrInfo &TII) {
  BuildMI(MF.back(), MF.back().end(),
          MF.back().findPrevDebugLoc(MF.back().end()),
          TII.get(WebAssembly::END_FUNCTION));
}

/// Insert LOOP/TRY/BLOCK markers at appropriate places.
void WebAssemblyCFGStackify::placeMarkers(MachineFunction &MF) {
  // We allocate one more than the number of blocks in the function to
  // accommodate for the possible fake block we may insert at the end.
  ScopeTops.resize(MF.getNumBlockIDs() + 1);
  // Place the LOOP for MBB if MBB is the header of a loop.
  for (auto &MBB : MF)
    placeLoopMarker(MBB);

  const MCAsmInfo *MCAI = MF.getTarget().getMCAsmInfo();
  for (auto &MBB : MF) {
    if (MBB.isEHPad()) {
      // Place the TRY for MBB if MBB is the EH pad of an exception.
      if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm &&
          MF.getFunction().hasPersonalityFn())
        placeTryMarker(MBB);
    } else {
      // Place the BLOCK for MBB if MBB is branched to from above.
      placeBlockMarker(MBB);
    }
  }
  // Fix mismatches in unwind destinations induced by linearizing the code.
  if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm &&
      MF.getFunction().hasPersonalityFn()) {
    bool Changed = fixCallUnwindMismatches(MF);
    Changed |= fixCatchUnwindMismatches(MF);
    if (Changed)
      recalculateScopeTops(MF);
  }
}

unsigned WebAssemblyCFGStackify::getBranchDepth(
    const SmallVectorImpl<EndMarkerInfo> &Stack, const MachineBasicBlock *MBB) {
  unsigned Depth = 0;
  for (auto X : reverse(Stack)) {
    if (X.first == MBB)
      break;
    ++Depth;
  }
  assert(Depth < Stack.size() && "Branch destination should be in scope");
  return Depth;
}

unsigned WebAssemblyCFGStackify::getDelegateDepth(
    const SmallVectorImpl<EndMarkerInfo> &Stack, const MachineBasicBlock *MBB) {
  if (MBB == FakeCallerBB)
    return Stack.size();
  // Delegate's destination is either a catch or a another delegate BB. When the
  // destination is another delegate, we can compute the argument in the same
  // way as branches, because the target delegate BB only contains the single
  // delegate instruction.
  if (!MBB->isEHPad()) // Target is a delegate BB
    return getBranchDepth(Stack, MBB);

  // When the delegate's destination is a catch BB, we need to use its
  // corresponding try's end_try BB because Stack contains each marker's end BB.
  // Also we need to check if the end marker instruction matches, because a
  // single BB can contain multiple end markers, like this:
  // bb:
  //   END_BLOCK
  //   END_TRY
  //   END_BLOCK
  //   END_TRY
  //   ...
  //
  // In case of branches getting the immediate that targets any of these is
  // fine, but delegate has to exactly target the correct try.
  unsigned Depth = 0;
  const MachineInstr *EndTry = BeginToEnd[EHPadToTry[MBB]];
  for (auto X : reverse(Stack)) {
    if (X.first == EndTry->getParent() && X.second == EndTry)
      break;
    ++Depth;
  }
  assert(Depth < Stack.size() && "Delegate destination should be in scope");
  return Depth;
}

unsigned WebAssemblyCFGStackify::getRethrowDepth(
    const SmallVectorImpl<EndMarkerInfo> &Stack,
    const SmallVectorImpl<const MachineBasicBlock *> &EHPadStack) {
  unsigned Depth = 0;
  // In our current implementation, rethrows always rethrow the exception caught
  // by the innermost enclosing catch. This means while traversing Stack in the
  // reverse direction, when we encounter END_TRY, we should check if the
  // END_TRY corresponds to the current innermost EH pad. For example:
  // try
  //   ...
  // catch         ;; (a)
  //   try
  //     rethrow 1 ;; (b)
  //   catch       ;; (c)
  //     rethrow 0 ;; (d)
  //   end         ;; (e)
  // end           ;; (f)
  //
  // When we are at 'rethrow' (d), while reversely traversing Stack the first
  // 'end' we encounter is the 'end' (e), which corresponds to the 'catch' (c).
  // And 'rethrow' (d) rethrows the exception caught by 'catch' (c), so we stop
  // there and the depth should be 0. But when we are at 'rethrow' (b), it
  // rethrows the exception caught by 'catch' (a), so when traversing Stack
  // reversely, we should skip the 'end' (e) and choose 'end' (f), which
  // corresponds to 'catch' (a).
  for (auto X : reverse(Stack)) {
    const MachineInstr *End = X.second;
    if (End->getOpcode() == WebAssembly::END_TRY) {
      auto *EHPad = TryToEHPad[EndToBegin[End]];
      if (EHPadStack.back() == EHPad)
        break;
    }
    ++Depth;
  }
  assert(Depth < Stack.size() && "Rethrow destination should be in scope");
  return Depth;
}

void WebAssemblyCFGStackify::rewriteDepthImmediates(MachineFunction &MF) {
  // Now rewrite references to basic blocks to be depth immediates.
  SmallVector<EndMarkerInfo, 8> Stack;
  SmallVector<const MachineBasicBlock *, 8> EHPadStack;
  for (auto &MBB : reverse(MF)) {
    for (MachineInstr &MI : llvm::reverse(MBB)) {
      switch (MI.getOpcode()) {
      case WebAssembly::BLOCK:
      case WebAssembly::TRY:
        assert(ScopeTops[Stack.back().first->getNumber()]->getNumber() <=
                   MBB.getNumber() &&
               "Block/try marker should be balanced");
        Stack.pop_back();
        break;

      case WebAssembly::LOOP:
        assert(Stack.back().first == &MBB && "Loop top should be balanced");
        Stack.pop_back();
        break;

      case WebAssembly::END_BLOCK:
        Stack.push_back(std::make_pair(&MBB, &MI));
        break;

      case WebAssembly::END_TRY: {
        // We handle DELEGATE in the default level, because DELEGATE has
        // immediate operands to rewrite.
        Stack.push_back(std::make_pair(&MBB, &MI));
        auto *EHPad = TryToEHPad[EndToBegin[&MI]];
        EHPadStack.push_back(EHPad);
        break;
      }

      case WebAssembly::END_LOOP:
        Stack.push_back(std::make_pair(EndToBegin[&MI]->getParent(), &MI));
        break;

      case WebAssembly::CATCH:
      case WebAssembly::CATCH_ALL:
        EHPadStack.pop_back();
        break;

      case WebAssembly::RETHROW:
        MI.getOperand(0).setImm(getRethrowDepth(Stack, EHPadStack));
        break;

      default:
        if (MI.isTerminator()) {
          // Rewrite MBB operands to be depth immediates.
          SmallVector<MachineOperand, 4> Ops(MI.operands());
          while (MI.getNumOperands() > 0)
            MI.removeOperand(MI.getNumOperands() - 1);
          for (auto MO : Ops) {
            if (MO.isMBB()) {
              if (MI.getOpcode() == WebAssembly::DELEGATE)
                MO = MachineOperand::CreateImm(
                    getDelegateDepth(Stack, MO.getMBB()));
              else
                MO = MachineOperand::CreateImm(
                    getBranchDepth(Stack, MO.getMBB()));
            }
            MI.addOperand(MF, MO);
          }
        }

        if (MI.getOpcode() == WebAssembly::DELEGATE)
          Stack.push_back(std::make_pair(&MBB, &MI));
        break;
      }
    }
  }
  assert(Stack.empty() && "Control flow should be balanced");
}

void WebAssemblyCFGStackify::cleanupFunctionData(MachineFunction &MF) {
  if (FakeCallerBB)
    MF.deleteMachineBasicBlock(FakeCallerBB);
  AppendixBB = FakeCallerBB = nullptr;
}

void WebAssemblyCFGStackify::releaseMemory() {
  ScopeTops.clear();
  BeginToEnd.clear();
  EndToBegin.clear();
  TryToEHPad.clear();
  EHPadToTry.clear();
}

bool WebAssemblyCFGStackify::runOnMachineFunction(MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** CFG Stackifying **********\n"
                       "********** Function: "
                    << MF.getName() << '\n');
  const MCAsmInfo *MCAI = MF.getTarget().getMCAsmInfo();

  releaseMemory();

  // Liveness is not tracked for VALUE_STACK physreg.
  MF.getRegInfo().invalidateLiveness();

  // Place the BLOCK/LOOP/TRY markers to indicate the beginnings of scopes.
  placeMarkers(MF);

  // Remove unnecessary instructions possibly introduced by try/end_trys.
  if (MCAI->getExceptionHandlingType() == ExceptionHandling::Wasm &&
      MF.getFunction().hasPersonalityFn())
    removeUnnecessaryInstrs(MF);

  // Convert MBB operands in terminators to relative depth immediates.
  rewriteDepthImmediates(MF);

  // Fix up block/loop/try signatures at the end of the function to conform to
  // WebAssembly's rules.
  fixEndsAtEndOfFunction(MF);

  // Add an end instruction at the end of the function body.
  const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
  if (!MF.getSubtarget<WebAssemblySubtarget>()
           .getTargetTriple()
           .isOSBinFormatELF())
    appendEndToFunction(MF, TII);

  cleanupFunctionData(MF);

  MF.getInfo<WebAssemblyFunctionInfo>()->setCFGStackified();
  return true;
}