aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/RISCV/RISCVInstrInfo.cpp
blob: 327e4a7d615f7bcb5780a8c8a5a1458e2310b66c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
//===-- RISCVInstrInfo.cpp - RISCV Instruction Information ------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the RISCV implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "RISCVInstrInfo.h"
#include "RISCV.h"
#include "RISCVSubtarget.h"
#include "RISCVTargetMachine.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"

#define GET_INSTRINFO_CTOR_DTOR
#include "RISCVGenInstrInfo.inc"

using namespace llvm;

RISCVInstrInfo::RISCVInstrInfo()
    : RISCVGenInstrInfo(RISCV::ADJCALLSTACKDOWN, RISCV::ADJCALLSTACKUP) {}

unsigned RISCVInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                             int &FrameIndex) const {
  switch (MI.getOpcode()) {
  default:
    return 0;
  case RISCV::LB:
  case RISCV::LBU:
  case RISCV::LH:
  case RISCV::LHU:
  case RISCV::LW:
  case RISCV::FLW:
  case RISCV::LWU:
  case RISCV::LD:
  case RISCV::FLD:
    break;
  }

  if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
      MI.getOperand(2).getImm() == 0) {
    FrameIndex = MI.getOperand(1).getIndex();
    return MI.getOperand(0).getReg();
  }

  return 0;
}

unsigned RISCVInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                            int &FrameIndex) const {
  switch (MI.getOpcode()) {
  default:
    return 0;
  case RISCV::SB:
  case RISCV::SH:
  case RISCV::SW:
  case RISCV::FSW:
  case RISCV::SD:
  case RISCV::FSD:
    break;
  }

  if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
      MI.getOperand(1).getImm() == 0) {
    FrameIndex = MI.getOperand(0).getIndex();
    return MI.getOperand(2).getReg();
  }

  return 0;
}

void RISCVInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator MBBI,
                                 const DebugLoc &DL, unsigned DstReg,
                                 unsigned SrcReg, bool KillSrc) const {
  if (RISCV::GPRRegClass.contains(DstReg, SrcReg)) {
    BuildMI(MBB, MBBI, DL, get(RISCV::ADDI), DstReg)
        .addReg(SrcReg, getKillRegState(KillSrc))
        .addImm(0);
    return;
  }

  // FPR->FPR copies
  unsigned Opc;
  if (RISCV::FPR32RegClass.contains(DstReg, SrcReg))
    Opc = RISCV::FSGNJ_S;
  else if (RISCV::FPR64RegClass.contains(DstReg, SrcReg))
    Opc = RISCV::FSGNJ_D;
  else
    llvm_unreachable("Impossible reg-to-reg copy");

  BuildMI(MBB, MBBI, DL, get(Opc), DstReg)
      .addReg(SrcReg, getKillRegState(KillSrc))
      .addReg(SrcReg, getKillRegState(KillSrc));
}

void RISCVInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                         MachineBasicBlock::iterator I,
                                         unsigned SrcReg, bool IsKill, int FI,
                                         const TargetRegisterClass *RC,
                                         const TargetRegisterInfo *TRI) const {
  DebugLoc DL;
  if (I != MBB.end())
    DL = I->getDebugLoc();

  unsigned Opcode;

  if (RISCV::GPRRegClass.hasSubClassEq(RC))
    Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
             RISCV::SW : RISCV::SD;
  else if (RISCV::FPR32RegClass.hasSubClassEq(RC))
    Opcode = RISCV::FSW;
  else if (RISCV::FPR64RegClass.hasSubClassEq(RC))
    Opcode = RISCV::FSD;
  else
    llvm_unreachable("Can't store this register to stack slot");

  BuildMI(MBB, I, DL, get(Opcode))
      .addReg(SrcReg, getKillRegState(IsKill))
      .addFrameIndex(FI)
      .addImm(0);
}

void RISCVInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                          MachineBasicBlock::iterator I,
                                          unsigned DstReg, int FI,
                                          const TargetRegisterClass *RC,
                                          const TargetRegisterInfo *TRI) const {
  DebugLoc DL;
  if (I != MBB.end())
    DL = I->getDebugLoc();

  unsigned Opcode;

  if (RISCV::GPRRegClass.hasSubClassEq(RC))
    Opcode = TRI->getRegSizeInBits(RISCV::GPRRegClass) == 32 ?
             RISCV::LW : RISCV::LD;
  else if (RISCV::FPR32RegClass.hasSubClassEq(RC))
    Opcode = RISCV::FLW;
  else if (RISCV::FPR64RegClass.hasSubClassEq(RC))
    Opcode = RISCV::FLD;
  else
    llvm_unreachable("Can't load this register from stack slot");

  BuildMI(MBB, I, DL, get(Opcode), DstReg).addFrameIndex(FI).addImm(0);
}

void RISCVInstrInfo::movImm32(MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator MBBI,
                              const DebugLoc &DL, unsigned DstReg, uint64_t Val,
                              MachineInstr::MIFlag Flag) const {
  assert(isInt<32>(Val) && "Can only materialize 32-bit constants");

  // TODO: If the value can be materialized using only one instruction, only
  // insert a single instruction.

  uint64_t Hi20 = ((Val + 0x800) >> 12) & 0xfffff;
  uint64_t Lo12 = SignExtend64<12>(Val);
  BuildMI(MBB, MBBI, DL, get(RISCV::LUI), DstReg)
      .addImm(Hi20)
      .setMIFlag(Flag);
  BuildMI(MBB, MBBI, DL, get(RISCV::ADDI), DstReg)
      .addReg(DstReg, RegState::Kill)
      .addImm(Lo12)
      .setMIFlag(Flag);
}

// The contents of values added to Cond are not examined outside of
// RISCVInstrInfo, giving us flexibility in what to push to it. For RISCV, we
// push BranchOpcode, Reg1, Reg2.
static void parseCondBranch(MachineInstr &LastInst, MachineBasicBlock *&Target,
                            SmallVectorImpl<MachineOperand> &Cond) {
  // Block ends with fall-through condbranch.
  assert(LastInst.getDesc().isConditionalBranch() &&
         "Unknown conditional branch");
  Target = LastInst.getOperand(2).getMBB();
  Cond.push_back(MachineOperand::CreateImm(LastInst.getOpcode()));
  Cond.push_back(LastInst.getOperand(0));
  Cond.push_back(LastInst.getOperand(1));
}

static unsigned getOppositeBranchOpcode(int Opc) {
  switch (Opc) {
  default:
    llvm_unreachable("Unrecognized conditional branch");
  case RISCV::BEQ:
    return RISCV::BNE;
  case RISCV::BNE:
    return RISCV::BEQ;
  case RISCV::BLT:
    return RISCV::BGE;
  case RISCV::BGE:
    return RISCV::BLT;
  case RISCV::BLTU:
    return RISCV::BGEU;
  case RISCV::BGEU:
    return RISCV::BLTU;
  }
}

bool RISCVInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                   MachineBasicBlock *&TBB,
                                   MachineBasicBlock *&FBB,
                                   SmallVectorImpl<MachineOperand> &Cond,
                                   bool AllowModify) const {
  TBB = FBB = nullptr;
  Cond.clear();

  // If the block has no terminators, it just falls into the block after it.
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end() || !isUnpredicatedTerminator(*I))
    return false;

  // Count the number of terminators and find the first unconditional or
  // indirect branch.
  MachineBasicBlock::iterator FirstUncondOrIndirectBr = MBB.end();
  int NumTerminators = 0;
  for (auto J = I.getReverse(); J != MBB.rend() && isUnpredicatedTerminator(*J);
       J++) {
    NumTerminators++;
    if (J->getDesc().isUnconditionalBranch() ||
        J->getDesc().isIndirectBranch()) {
      FirstUncondOrIndirectBr = J.getReverse();
    }
  }

  // If AllowModify is true, we can erase any terminators after
  // FirstUncondOrIndirectBR.
  if (AllowModify && FirstUncondOrIndirectBr != MBB.end()) {
    while (std::next(FirstUncondOrIndirectBr) != MBB.end()) {
      std::next(FirstUncondOrIndirectBr)->eraseFromParent();
      NumTerminators--;
    }
    I = FirstUncondOrIndirectBr;
  }

  // We can't handle blocks that end in an indirect branch.
  if (I->getDesc().isIndirectBranch())
    return true;

  // We can't handle blocks with more than 2 terminators.
  if (NumTerminators > 2)
    return true;

  // Handle a single unconditional branch.
  if (NumTerminators == 1 && I->getDesc().isUnconditionalBranch()) {
    TBB = I->getOperand(0).getMBB();
    return false;
  }

  // Handle a single conditional branch.
  if (NumTerminators == 1 && I->getDesc().isConditionalBranch()) {
    parseCondBranch(*I, TBB, Cond);
    return false;
  }

  // Handle a conditional branch followed by an unconditional branch.
  if (NumTerminators == 2 && std::prev(I)->getDesc().isConditionalBranch() &&
      I->getDesc().isUnconditionalBranch()) {
    parseCondBranch(*std::prev(I), TBB, Cond);
    FBB = I->getOperand(0).getMBB();
    return false;
  }

  // Otherwise, we can't handle this.
  return true;
}

unsigned RISCVInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                      int *BytesRemoved) const {
  if (BytesRemoved)
    *BytesRemoved = 0;
  MachineBasicBlock::iterator I = MBB.getLastNonDebugInstr();
  if (I == MBB.end())
    return 0;

  if (!I->getDesc().isUnconditionalBranch() &&
      !I->getDesc().isConditionalBranch())
    return 0;

  // Remove the branch.
  I->eraseFromParent();
  if (BytesRemoved)
    *BytesRemoved += getInstSizeInBytes(*I);

  I = MBB.end();

  if (I == MBB.begin())
    return 1;
  --I;
  if (!I->getDesc().isConditionalBranch())
    return 1;

  // Remove the branch.
  I->eraseFromParent();
  if (BytesRemoved)
    *BytesRemoved += getInstSizeInBytes(*I);
  return 2;
}

// Inserts a branch into the end of the specific MachineBasicBlock, returning
// the number of instructions inserted.
unsigned RISCVInstrInfo::insertBranch(
    MachineBasicBlock &MBB, MachineBasicBlock *TBB, MachineBasicBlock *FBB,
    ArrayRef<MachineOperand> Cond, const DebugLoc &DL, int *BytesAdded) const {
  if (BytesAdded)
    *BytesAdded = 0;

  // Shouldn't be a fall through.
  assert(TBB && "InsertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 3 || Cond.size() == 0) &&
         "RISCV branch conditions have two components!");

  // Unconditional branch.
  if (Cond.empty()) {
    MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(TBB);
    if (BytesAdded)
      *BytesAdded += getInstSizeInBytes(MI);
    return 1;
  }

  // Either a one or two-way conditional branch.
  unsigned Opc = Cond[0].getImm();
  MachineInstr &CondMI =
      *BuildMI(&MBB, DL, get(Opc)).add(Cond[1]).add(Cond[2]).addMBB(TBB);
  if (BytesAdded)
    *BytesAdded += getInstSizeInBytes(CondMI);

  // One-way conditional branch.
  if (!FBB)
    return 1;

  // Two-way conditional branch.
  MachineInstr &MI = *BuildMI(&MBB, DL, get(RISCV::PseudoBR)).addMBB(FBB);
  if (BytesAdded)
    *BytesAdded += getInstSizeInBytes(MI);
  return 2;
}

unsigned RISCVInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
                                              MachineBasicBlock &DestBB,
                                              const DebugLoc &DL,
                                              int64_t BrOffset,
                                              RegScavenger *RS) const {
  assert(RS && "RegScavenger required for long branching");
  assert(MBB.empty() &&
         "new block should be inserted for expanding unconditional branch");
  assert(MBB.pred_size() == 1);

  MachineFunction *MF = MBB.getParent();
  MachineRegisterInfo &MRI = MF->getRegInfo();
  const auto &TM = static_cast<const RISCVTargetMachine &>(MF->getTarget());
  const auto &STI = MF->getSubtarget<RISCVSubtarget>();

  if (TM.isPositionIndependent() || STI.is64Bit())
    report_fatal_error("Unable to insert indirect branch");

  if (!isInt<32>(BrOffset))
    report_fatal_error(
        "Branch offsets outside of the signed 32-bit range not supported");

  // FIXME: A virtual register must be used initially, as the register
  // scavenger won't work with empty blocks (SIInstrInfo::insertIndirectBranch
  // uses the same workaround).
  unsigned ScratchReg = MRI.createVirtualRegister(&RISCV::GPRRegClass);
  auto II = MBB.end();

  MachineInstr &LuiMI = *BuildMI(MBB, II, DL, get(RISCV::LUI), ScratchReg)
                             .addMBB(&DestBB, RISCVII::MO_HI);
  BuildMI(MBB, II, DL, get(RISCV::PseudoBRIND))
      .addReg(ScratchReg, RegState::Kill)
      .addMBB(&DestBB, RISCVII::MO_LO);

  RS->enterBasicBlockEnd(MBB);
  unsigned Scav = RS->scavengeRegisterBackwards(
      RISCV::GPRRegClass, MachineBasicBlock::iterator(LuiMI), false, 0);
  MRI.replaceRegWith(ScratchReg, Scav);
  MRI.clearVirtRegs();
  RS->setRegUsed(Scav);
  return 8;
}

bool RISCVInstrInfo::reverseBranchCondition(
    SmallVectorImpl<MachineOperand> &Cond) const {
  assert((Cond.size() == 3) && "Invalid branch condition!");
  Cond[0].setImm(getOppositeBranchOpcode(Cond[0].getImm()));
  return false;
}

MachineBasicBlock *
RISCVInstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
  assert(MI.getDesc().isBranch() && "Unexpected opcode!");
  // The branch target is always the last operand.
  int NumOp = MI.getNumExplicitOperands();
  return MI.getOperand(NumOp - 1).getMBB();
}

bool RISCVInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
                                           int64_t BrOffset) const {
  // Ideally we could determine the supported branch offset from the
  // RISCVII::FormMask, but this can't be used for Pseudo instructions like
  // PseudoBR.
  switch (BranchOp) {
  default:
    llvm_unreachable("Unexpected opcode!");
  case RISCV::BEQ:
  case RISCV::BNE:
  case RISCV::BLT:
  case RISCV::BGE:
  case RISCV::BLTU:
  case RISCV::BGEU:
    return isIntN(13, BrOffset);
  case RISCV::JAL:
  case RISCV::PseudoBR:
    return isIntN(21, BrOffset);
  }
}

unsigned RISCVInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
  unsigned Opcode = MI.getOpcode();

  switch (Opcode) {
  default: { return get(Opcode).getSize(); }
  case TargetOpcode::EH_LABEL:
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::KILL:
  case TargetOpcode::DBG_VALUE:
    return 0;
  case RISCV::PseudoCALL:
  case RISCV::PseudoTAIL:
    return 8;
  case TargetOpcode::INLINEASM: {
    const MachineFunction &MF = *MI.getParent()->getParent();
    const auto &TM = static_cast<const RISCVTargetMachine &>(MF.getTarget());
    return getInlineAsmLength(MI.getOperand(0).getSymbolName(),
                              *TM.getMCAsmInfo());
  }
  }
}