aboutsummaryrefslogtreecommitdiff
path: root/lib/Target/BPF/BTFDebug.cpp
blob: 96efea4ba8ee7f1d2a3cb594f5f0dccac7ff8c6e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
//===- BTFDebug.cpp - BTF Generator ---------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains support for writing BTF debug info.
//
//===----------------------------------------------------------------------===//

#include "BTFDebug.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/AsmPrinter.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCObjectFileInfo.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include <fstream>
#include <sstream>

using namespace llvm;

static const char *BTFKindStr[] = {
#define HANDLE_BTF_KIND(ID, NAME) "BTF_KIND_" #NAME,
#include "BTF.def"
};

/// Emit a BTF common type.
void BTFTypeBase::emitType(MCStreamer &OS) {
  OS.AddComment(std::string(BTFKindStr[Kind]) + "(id = " + std::to_string(Id) +
                ")");
  OS.EmitIntValue(BTFType.NameOff, 4);
  OS.AddComment("0x" + Twine::utohexstr(BTFType.Info));
  OS.EmitIntValue(BTFType.Info, 4);
  OS.EmitIntValue(BTFType.Size, 4);
}

BTFTypeDerived::BTFTypeDerived(const DIDerivedType *DTy, unsigned Tag)
    : DTy(DTy) {
  switch (Tag) {
  case dwarf::DW_TAG_pointer_type:
    Kind = BTF::BTF_KIND_PTR;
    break;
  case dwarf::DW_TAG_const_type:
    Kind = BTF::BTF_KIND_CONST;
    break;
  case dwarf::DW_TAG_volatile_type:
    Kind = BTF::BTF_KIND_VOLATILE;
    break;
  case dwarf::DW_TAG_typedef:
    Kind = BTF::BTF_KIND_TYPEDEF;
    break;
  case dwarf::DW_TAG_restrict_type:
    Kind = BTF::BTF_KIND_RESTRICT;
    break;
  default:
    llvm_unreachable("Unknown DIDerivedType Tag");
  }
  BTFType.Info = Kind << 24;
}

void BTFTypeDerived::completeType(BTFDebug &BDebug) {
  BTFType.NameOff = BDebug.addString(DTy->getName());

  // The base type for PTR/CONST/VOLATILE could be void.
  const DIType *ResolvedType = DTy->getBaseType().resolve();
  if (!ResolvedType) {
    assert((Kind == BTF::BTF_KIND_PTR || Kind == BTF::BTF_KIND_CONST ||
            Kind == BTF::BTF_KIND_VOLATILE) &&
           "Invalid null basetype");
    BTFType.Type = 0;
  } else {
    BTFType.Type = BDebug.getTypeId(ResolvedType);
  }
}

void BTFTypeDerived::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }

/// Represent a struct/union forward declaration.
BTFTypeFwd::BTFTypeFwd(StringRef Name, bool IsUnion) : Name(Name) {
  Kind = BTF::BTF_KIND_FWD;
  BTFType.Info = IsUnion << 31 | Kind << 24;
  BTFType.Type = 0;
}

void BTFTypeFwd::completeType(BTFDebug &BDebug) {
  BTFType.NameOff = BDebug.addString(Name);
}

void BTFTypeFwd::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }

BTFTypeInt::BTFTypeInt(uint32_t Encoding, uint32_t SizeInBits,
                       uint32_t OffsetInBits, StringRef TypeName)
    : Name(TypeName) {
  // Translate IR int encoding to BTF int encoding.
  uint8_t BTFEncoding;
  switch (Encoding) {
  case dwarf::DW_ATE_boolean:
    BTFEncoding = BTF::INT_BOOL;
    break;
  case dwarf::DW_ATE_signed:
  case dwarf::DW_ATE_signed_char:
    BTFEncoding = BTF::INT_SIGNED;
    break;
  case dwarf::DW_ATE_unsigned:
  case dwarf::DW_ATE_unsigned_char:
    BTFEncoding = 0;
    break;
  default:
    llvm_unreachable("Unknown BTFTypeInt Encoding");
  }

  Kind = BTF::BTF_KIND_INT;
  BTFType.Info = Kind << 24;
  BTFType.Size = roundupToBytes(SizeInBits);
  IntVal = (BTFEncoding << 24) | OffsetInBits << 16 | SizeInBits;
}

void BTFTypeInt::completeType(BTFDebug &BDebug) {
  BTFType.NameOff = BDebug.addString(Name);
}

void BTFTypeInt::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  OS.AddComment("0x" + Twine::utohexstr(IntVal));
  OS.EmitIntValue(IntVal, 4);
}

BTFTypeEnum::BTFTypeEnum(const DICompositeType *ETy, uint32_t VLen) : ETy(ETy) {
  Kind = BTF::BTF_KIND_ENUM;
  BTFType.Info = Kind << 24 | VLen;
  BTFType.Size = roundupToBytes(ETy->getSizeInBits());
}

void BTFTypeEnum::completeType(BTFDebug &BDebug) {
  BTFType.NameOff = BDebug.addString(ETy->getName());

  DINodeArray Elements = ETy->getElements();
  for (const auto Element : Elements) {
    const auto *Enum = cast<DIEnumerator>(Element);

    struct BTF::BTFEnum BTFEnum;
    BTFEnum.NameOff = BDebug.addString(Enum->getName());
    // BTF enum value is 32bit, enforce it.
    BTFEnum.Val = static_cast<uint32_t>(Enum->getValue());
    EnumValues.push_back(BTFEnum);
  }
}

void BTFTypeEnum::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  for (const auto &Enum : EnumValues) {
    OS.EmitIntValue(Enum.NameOff, 4);
    OS.EmitIntValue(Enum.Val, 4);
  }
}

BTFTypeArray::BTFTypeArray(const DICompositeType *ATy) : ATy(ATy) {
  Kind = BTF::BTF_KIND_ARRAY;
  BTFType.Info = Kind << 24;
}

/// Represent a BTF array. BTF does not record array dimensions,
/// so conceptually a BTF array is a one-dimensional array.
void BTFTypeArray::completeType(BTFDebug &BDebug) {
  BTFType.NameOff = BDebug.addString(ATy->getName());
  BTFType.Size = 0;

  auto *BaseType = ATy->getBaseType().resolve();
  ArrayInfo.ElemType = BDebug.getTypeId(BaseType);

  // The IR does not really have a type for the index.
  // A special type for array index should have been
  // created during initial type traversal. Just
  // retrieve that type id.
  ArrayInfo.IndexType = BDebug.getArrayIndexTypeId();

  // Get the number of array elements.
  // If the array size is 0, set the number of elements as 0.
  // Otherwise, recursively traverse the base types to
  // find the element size. The number of elements is
  // the totoal array size in bits divided by
  // element size in bits.
  uint64_t ArraySizeInBits = ATy->getSizeInBits();
  if (!ArraySizeInBits) {
    ArrayInfo.Nelems = 0;
  } else {
    uint32_t BaseTypeSize = BaseType->getSizeInBits();
    while (!BaseTypeSize) {
      const auto *DDTy = cast<DIDerivedType>(BaseType);
      BaseType = DDTy->getBaseType().resolve();
      assert(BaseType);
      BaseTypeSize = BaseType->getSizeInBits();
    }
    ArrayInfo.Nelems = ATy->getSizeInBits() / BaseTypeSize;
  }
}

void BTFTypeArray::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  OS.EmitIntValue(ArrayInfo.ElemType, 4);
  OS.EmitIntValue(ArrayInfo.IndexType, 4);
  OS.EmitIntValue(ArrayInfo.Nelems, 4);
}

/// Represent either a struct or a union.
BTFTypeStruct::BTFTypeStruct(const DICompositeType *STy, bool IsStruct,
                             bool HasBitField, uint32_t Vlen)
    : STy(STy), HasBitField(HasBitField) {
  Kind = IsStruct ? BTF::BTF_KIND_STRUCT : BTF::BTF_KIND_UNION;
  BTFType.Size = roundupToBytes(STy->getSizeInBits());
  BTFType.Info = (HasBitField << 31) | (Kind << 24) | Vlen;
}

void BTFTypeStruct::completeType(BTFDebug &BDebug) {
  BTFType.NameOff = BDebug.addString(STy->getName());

  // Add struct/union members.
  const DINodeArray Elements = STy->getElements();
  for (const auto *Element : Elements) {
    struct BTF::BTFMember BTFMember;
    const auto *DDTy = cast<DIDerivedType>(Element);

    BTFMember.NameOff = BDebug.addString(DDTy->getName());
    if (HasBitField) {
      uint8_t BitFieldSize = DDTy->isBitField() ? DDTy->getSizeInBits() : 0;
      BTFMember.Offset = BitFieldSize << 24 | DDTy->getOffsetInBits();
    } else {
      BTFMember.Offset = DDTy->getOffsetInBits();
    }
    BTFMember.Type = BDebug.getTypeId(DDTy->getBaseType().resolve());
    Members.push_back(BTFMember);
  }
}

void BTFTypeStruct::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  for (const auto &Member : Members) {
    OS.EmitIntValue(Member.NameOff, 4);
    OS.EmitIntValue(Member.Type, 4);
    OS.AddComment("0x" + Twine::utohexstr(Member.Offset));
    OS.EmitIntValue(Member.Offset, 4);
  }
}

/// The Func kind represents both subprogram and pointee of function
/// pointers. If the FuncName is empty, it represents a pointee of function
/// pointer. Otherwise, it represents a subprogram. The func arg names
/// are empty for pointee of function pointer case, and are valid names
/// for subprogram.
BTFTypeFuncProto::BTFTypeFuncProto(
    const DISubroutineType *STy, uint32_t VLen,
    const std::unordered_map<uint32_t, StringRef> &FuncArgNames)
    : STy(STy), FuncArgNames(FuncArgNames) {
  Kind = BTF::BTF_KIND_FUNC_PROTO;
  BTFType.Info = (Kind << 24) | VLen;
}

void BTFTypeFuncProto::completeType(BTFDebug &BDebug) {
  DITypeRefArray Elements = STy->getTypeArray();
  auto RetType = Elements[0].resolve();
  BTFType.Type = RetType ? BDebug.getTypeId(RetType) : 0;
  BTFType.NameOff = 0;

  // For null parameter which is typically the last one
  // to represent the vararg, encode the NameOff/Type to be 0.
  for (unsigned I = 1, N = Elements.size(); I < N; ++I) {
    struct BTF::BTFParam Param;
    auto Element = Elements[I].resolve();
    if (Element) {
      Param.NameOff = BDebug.addString(FuncArgNames[I]);
      Param.Type = BDebug.getTypeId(Element);
    } else {
      Param.NameOff = 0;
      Param.Type = 0;
    }
    Parameters.push_back(Param);
  }
}

void BTFTypeFuncProto::emitType(MCStreamer &OS) {
  BTFTypeBase::emitType(OS);
  for (const auto &Param : Parameters) {
    OS.EmitIntValue(Param.NameOff, 4);
    OS.EmitIntValue(Param.Type, 4);
  }
}

BTFTypeFunc::BTFTypeFunc(StringRef FuncName, uint32_t ProtoTypeId)
    : Name(FuncName) {
  Kind = BTF::BTF_KIND_FUNC;
  BTFType.Info = Kind << 24;
  BTFType.Type = ProtoTypeId;
}

void BTFTypeFunc::completeType(BTFDebug &BDebug) {
  BTFType.NameOff = BDebug.addString(Name);
}

void BTFTypeFunc::emitType(MCStreamer &OS) { BTFTypeBase::emitType(OS); }

uint32_t BTFStringTable::addString(StringRef S) {
  // Check whether the string already exists.
  for (auto &OffsetM : OffsetToIdMap) {
    if (Table[OffsetM.second] == S)
      return OffsetM.first;
  }
  // Not find, add to the string table.
  uint32_t Offset = Size;
  OffsetToIdMap[Offset] = Table.size();
  Table.push_back(S);
  Size += S.size() + 1;
  return Offset;
}

BTFDebug::BTFDebug(AsmPrinter *AP)
    : DebugHandlerBase(AP), OS(*Asm->OutStreamer), SkipInstruction(false),
      LineInfoGenerated(false), SecNameOff(0), ArrayIndexTypeId(0) {
  addString("\0");
}

void BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry,
                       const DIType *Ty) {
  TypeEntry->setId(TypeEntries.size() + 1);
  DIToIdMap[Ty] = TypeEntry->getId();
  TypeEntries.push_back(std::move(TypeEntry));
}

uint32_t BTFDebug::addType(std::unique_ptr<BTFTypeBase> TypeEntry) {
  TypeEntry->setId(TypeEntries.size() + 1);
  uint32_t Id = TypeEntry->getId();
  TypeEntries.push_back(std::move(TypeEntry));
  return Id;
}

void BTFDebug::visitBasicType(const DIBasicType *BTy) {
  // Only int types are supported in BTF.
  uint32_t Encoding = BTy->getEncoding();
  if (Encoding != dwarf::DW_ATE_boolean && Encoding != dwarf::DW_ATE_signed &&
      Encoding != dwarf::DW_ATE_signed_char &&
      Encoding != dwarf::DW_ATE_unsigned &&
      Encoding != dwarf::DW_ATE_unsigned_char)
    return;

  // Create a BTF type instance for this DIBasicType and put it into
  // DIToIdMap for cross-type reference check.
  auto TypeEntry = llvm::make_unique<BTFTypeInt>(
      Encoding, BTy->getSizeInBits(), BTy->getOffsetInBits(), BTy->getName());
  addType(std::move(TypeEntry), BTy);
}

/// Handle subprogram or subroutine types.
void BTFDebug::visitSubroutineType(
    const DISubroutineType *STy, bool ForSubprog,
    const std::unordered_map<uint32_t, StringRef> &FuncArgNames,
    uint32_t &TypeId) {
  DITypeRefArray Elements = STy->getTypeArray();
  uint32_t VLen = Elements.size() - 1;
  if (VLen > BTF::MAX_VLEN)
    return;

  // Subprogram has a valid non-zero-length name, and the pointee of
  // a function pointer has an empty name. The subprogram type will
  // not be added to DIToIdMap as it should not be referenced by
  // any other types.
  auto TypeEntry = llvm::make_unique<BTFTypeFuncProto>(STy, VLen, FuncArgNames);
  if (ForSubprog)
    TypeId = addType(std::move(TypeEntry)); // For subprogram
  else
    addType(std::move(TypeEntry), STy); // For func ptr

  // Visit return type and func arg types.
  for (const auto Element : Elements) {
    visitTypeEntry(Element.resolve());
  }
}

/// Handle structure/union types.
void BTFDebug::visitStructType(const DICompositeType *CTy, bool IsStruct) {
  const DINodeArray Elements = CTy->getElements();
  uint32_t VLen = Elements.size();
  if (VLen > BTF::MAX_VLEN)
    return;

  // Check whether we have any bitfield members or not
  bool HasBitField = false;
  for (const auto *Element : Elements) {
    auto E = cast<DIDerivedType>(Element);
    if (E->isBitField()) {
      HasBitField = true;
      break;
    }
  }

  auto TypeEntry =
      llvm::make_unique<BTFTypeStruct>(CTy, IsStruct, HasBitField, VLen);
  addType(std::move(TypeEntry), CTy);

  // Visit all struct members.
  for (const auto *Element : Elements)
    visitTypeEntry(cast<DIDerivedType>(Element));
}

void BTFDebug::visitArrayType(const DICompositeType *CTy) {
  auto TypeEntry = llvm::make_unique<BTFTypeArray>(CTy);
  addType(std::move(TypeEntry), CTy);

  // The IR does not have a type for array index while BTF wants one.
  // So create an array index type if there is none.
  if (!ArrayIndexTypeId) {
    auto TypeEntry = llvm::make_unique<BTFTypeInt>(dwarf::DW_ATE_unsigned, 32,
                                                   0, "__ARRAY_SIZE_TYPE__");
    ArrayIndexTypeId = addType(std::move(TypeEntry));
  }

  // Visit array element type.
  visitTypeEntry(CTy->getBaseType().resolve());
}

void BTFDebug::visitEnumType(const DICompositeType *CTy) {
  DINodeArray Elements = CTy->getElements();
  uint32_t VLen = Elements.size();
  if (VLen > BTF::MAX_VLEN)
    return;

  auto TypeEntry = llvm::make_unique<BTFTypeEnum>(CTy, VLen);
  addType(std::move(TypeEntry), CTy);
  // No need to visit base type as BTF does not encode it.
}

/// Handle structure/union forward declarations.
void BTFDebug::visitFwdDeclType(const DICompositeType *CTy, bool IsUnion) {
  auto TypeEntry = llvm::make_unique<BTFTypeFwd>(CTy->getName(), IsUnion);
  addType(std::move(TypeEntry), CTy);
}

/// Handle structure, union, array and enumeration types.
void BTFDebug::visitCompositeType(const DICompositeType *CTy) {
  auto Tag = CTy->getTag();
  if (Tag == dwarf::DW_TAG_structure_type || Tag == dwarf::DW_TAG_union_type) {
    // Handle forward declaration differently as it does not have members.
    if (CTy->isForwardDecl())
      visitFwdDeclType(CTy, Tag == dwarf::DW_TAG_union_type);
    else
      visitStructType(CTy, Tag == dwarf::DW_TAG_structure_type);
  } else if (Tag == dwarf::DW_TAG_array_type)
    visitArrayType(CTy);
  else if (Tag == dwarf::DW_TAG_enumeration_type)
    visitEnumType(CTy);
}

/// Handle pointer, typedef, const, volatile, restrict and member types.
void BTFDebug::visitDerivedType(const DIDerivedType *DTy) {
  unsigned Tag = DTy->getTag();

  if (Tag == dwarf::DW_TAG_pointer_type || Tag == dwarf::DW_TAG_typedef ||
      Tag == dwarf::DW_TAG_const_type || Tag == dwarf::DW_TAG_volatile_type ||
      Tag == dwarf::DW_TAG_restrict_type) {
    auto TypeEntry = llvm::make_unique<BTFTypeDerived>(DTy, Tag);
    addType(std::move(TypeEntry), DTy);
  } else if (Tag != dwarf::DW_TAG_member) {
    return;
  }

  // Visit base type of pointer, typedef, const, volatile, restrict or
  // struct/union member.
  visitTypeEntry(DTy->getBaseType().resolve());
}

void BTFDebug::visitTypeEntry(const DIType *Ty) {
  if (!Ty || DIToIdMap.find(Ty) != DIToIdMap.end())
    return;

  uint32_t TypeId;
  if (const auto *BTy = dyn_cast<DIBasicType>(Ty))
    visitBasicType(BTy);
  else if (const auto *STy = dyn_cast<DISubroutineType>(Ty))
    visitSubroutineType(STy, false, std::unordered_map<uint32_t, StringRef>(),
                        TypeId);
  else if (const auto *CTy = dyn_cast<DICompositeType>(Ty))
    visitCompositeType(CTy);
  else if (const auto *DTy = dyn_cast<DIDerivedType>(Ty))
    visitDerivedType(DTy);
  else
    llvm_unreachable("Unknown DIType");
}

/// Read file contents from the actual file or from the source
std::string BTFDebug::populateFileContent(const DISubprogram *SP) {
  auto File = SP->getFile();
  std::string FileName;

  if (File->getDirectory().size())
    FileName = File->getDirectory().str() + "/" + File->getFilename().str();
  else
    FileName = File->getFilename();

  // No need to populate the contends if it has been populated!
  if (FileContent.find(FileName) != FileContent.end())
    return FileName;

  std::vector<std::string> Content;
  std::string Line;
  Content.push_back(Line); // Line 0 for empty string

  auto Source = File->getSource();
  if (Source) {
    std::istringstream InputString(Source.getValue());
    while (std::getline(InputString, Line))
      Content.push_back(Line);
  } else {
    std::ifstream InputFile(FileName);
    while (std::getline(InputFile, Line))
      Content.push_back(Line);
  }

  FileContent[FileName] = Content;
  return FileName;
}

void BTFDebug::constructLineInfo(const DISubprogram *SP, MCSymbol *Label,
                                 uint32_t Line, uint32_t Column) {
  std::string FileName = populateFileContent(SP);
  BTFLineInfo LineInfo;

  LineInfo.Label = Label;
  LineInfo.FileNameOff = addString(FileName);
  // If file content is not available, let LineOff = 0.
  if (Line < FileContent[FileName].size())
    LineInfo.LineOff = addString(FileContent[FileName][Line]);
  else
    LineInfo.LineOff = 0;
  LineInfo.LineNum = Line;
  LineInfo.ColumnNum = Column;
  LineInfoTable[SecNameOff].push_back(LineInfo);
}

void BTFDebug::emitCommonHeader() {
  OS.AddComment("0x" + Twine::utohexstr(BTF::MAGIC));
  OS.EmitIntValue(BTF::MAGIC, 2);
  OS.EmitIntValue(BTF::VERSION, 1);
  OS.EmitIntValue(0, 1);
}

void BTFDebug::emitBTFSection() {
  MCContext &Ctx = OS.getContext();
  OS.SwitchSection(Ctx.getELFSection(".BTF", ELF::SHT_PROGBITS, 0));

  // Emit header.
  emitCommonHeader();
  OS.EmitIntValue(BTF::HeaderSize, 4);

  uint32_t TypeLen = 0, StrLen;
  for (const auto &TypeEntry : TypeEntries)
    TypeLen += TypeEntry->getSize();
  StrLen = StringTable.getSize();

  OS.EmitIntValue(0, 4);
  OS.EmitIntValue(TypeLen, 4);
  OS.EmitIntValue(TypeLen, 4);
  OS.EmitIntValue(StrLen, 4);

  // Emit type table.
  for (const auto &TypeEntry : TypeEntries)
    TypeEntry->emitType(OS);

  // Emit string table.
  uint32_t StringOffset = 0;
  for (const auto &S : StringTable.getTable()) {
    OS.AddComment("string offset=" + std::to_string(StringOffset));
    OS.EmitBytes(S);
    OS.EmitBytes(StringRef("\0", 1));
    StringOffset += S.size() + 1;
  }
}

void BTFDebug::emitBTFExtSection() {
  MCContext &Ctx = OS.getContext();
  OS.SwitchSection(Ctx.getELFSection(".BTF.ext", ELF::SHT_PROGBITS, 0));

  // Emit header.
  emitCommonHeader();
  OS.EmitIntValue(BTF::ExtHeaderSize, 4);

  // Account for FuncInfo/LineInfo record size as well.
  uint32_t FuncLen = 4, LineLen = 4;
  for (const auto &FuncSec : FuncInfoTable) {
    FuncLen += BTF::SecFuncInfoSize;
    FuncLen += FuncSec.second.size() * BTF::BPFFuncInfoSize;
  }
  for (const auto &LineSec : LineInfoTable) {
    LineLen += BTF::SecLineInfoSize;
    LineLen += LineSec.second.size() * BTF::BPFLineInfoSize;
  }

  OS.EmitIntValue(0, 4);
  OS.EmitIntValue(FuncLen, 4);
  OS.EmitIntValue(FuncLen, 4);
  OS.EmitIntValue(LineLen, 4);

  // Emit func_info table.
  OS.AddComment("FuncInfo");
  OS.EmitIntValue(BTF::BPFFuncInfoSize, 4);
  for (const auto &FuncSec : FuncInfoTable) {
    OS.AddComment("FuncInfo section string offset=" +
                  std::to_string(FuncSec.first));
    OS.EmitIntValue(FuncSec.first, 4);
    OS.EmitIntValue(FuncSec.second.size(), 4);
    for (const auto &FuncInfo : FuncSec.second) {
      Asm->EmitLabelReference(FuncInfo.Label, 4);
      OS.EmitIntValue(FuncInfo.TypeId, 4);
    }
  }

  // Emit line_info table.
  OS.AddComment("LineInfo");
  OS.EmitIntValue(BTF::BPFLineInfoSize, 4);
  for (const auto &LineSec : LineInfoTable) {
    OS.AddComment("LineInfo section string offset=" +
                  std::to_string(LineSec.first));
    OS.EmitIntValue(LineSec.first, 4);
    OS.EmitIntValue(LineSec.second.size(), 4);
    for (const auto &LineInfo : LineSec.second) {
      Asm->EmitLabelReference(LineInfo.Label, 4);
      OS.EmitIntValue(LineInfo.FileNameOff, 4);
      OS.EmitIntValue(LineInfo.LineOff, 4);
      OS.AddComment("Line " + std::to_string(LineInfo.LineNum) + " Col " +
                    std::to_string(LineInfo.ColumnNum));
      OS.EmitIntValue(LineInfo.LineNum << 10 | LineInfo.ColumnNum, 4);
    }
  }
}

void BTFDebug::beginFunctionImpl(const MachineFunction *MF) {
  auto *SP = MF->getFunction().getSubprogram();
  auto *Unit = SP->getUnit();

  if (Unit->getEmissionKind() == DICompileUnit::NoDebug) {
    SkipInstruction = true;
    return;
  }
  SkipInstruction = false;

  // Collect all types locally referenced in this function.
  // Use RetainedNodes so we can collect all argument names
  // even if the argument is not used.
  std::unordered_map<uint32_t, StringRef> FuncArgNames;
  for (const DINode *DN : SP->getRetainedNodes()) {
    if (const auto *DV = dyn_cast<DILocalVariable>(DN)) {
      visitTypeEntry(DV->getType().resolve());

      // Collect function arguments for subprogram func type.
      uint32_t Arg = DV->getArg();
      if (Arg)
        FuncArgNames[Arg] = DV->getName();
    }
  }

  // Construct subprogram func proto type.
  uint32_t ProtoTypeId;
  visitSubroutineType(SP->getType(), true, FuncArgNames, ProtoTypeId);

  // Construct subprogram func type
  auto FuncTypeEntry =
      llvm::make_unique<BTFTypeFunc>(SP->getName(), ProtoTypeId);
  uint32_t FuncTypeId = addType(std::move(FuncTypeEntry));

  // Construct funcinfo and the first lineinfo for the function.
  MCSymbol *FuncLabel = Asm->getFunctionBegin();
  BTFFuncInfo FuncInfo;
  FuncInfo.Label = FuncLabel;
  FuncInfo.TypeId = FuncTypeId;
  if (FuncLabel->isInSection()) {
    MCSection &Section = FuncLabel->getSection();
    const MCSectionELF *SectionELF = dyn_cast<MCSectionELF>(&Section);
    assert(SectionELF && "Null section for Function Label");
    SecNameOff = addString(SectionELF->getSectionName());
  } else {
    SecNameOff = addString(".text");
  }
  FuncInfoTable[SecNameOff].push_back(FuncInfo);
}

void BTFDebug::endFunctionImpl(const MachineFunction *MF) {
  SkipInstruction = false;
  LineInfoGenerated = false;
  SecNameOff = 0;
}

void BTFDebug::beginInstruction(const MachineInstr *MI) {
  DebugHandlerBase::beginInstruction(MI);

  if (SkipInstruction || MI->isMetaInstruction() ||
      MI->getFlag(MachineInstr::FrameSetup))
    return;

  if (MI->isInlineAsm()) {
    // Count the number of register definitions to find the asm string.
    unsigned NumDefs = 0;
    for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
         ++NumDefs)
      ;

    // Skip this inline asm instruction if the asmstr is empty.
    const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
    if (AsmStr[0] == 0)
      return;
  }

  // Skip this instruction if no DebugLoc or the DebugLoc
  // is the same as the previous instruction.
  const DebugLoc &DL = MI->getDebugLoc();
  if (!DL || PrevInstLoc == DL) {
    // This instruction will be skipped, no LineInfo has
    // been generated, construct one based on function signature.
    if (LineInfoGenerated == false) {
      auto *S = MI->getMF()->getFunction().getSubprogram();
      MCSymbol *FuncLabel = Asm->getFunctionBegin();
      constructLineInfo(S, FuncLabel, S->getLine(), 0);
      LineInfoGenerated = true;
    }

    return;
  }

  // Create a temporary label to remember the insn for lineinfo.
  MCSymbol *LineSym = OS.getContext().createTempSymbol();
  OS.EmitLabel(LineSym);

  // Construct the lineinfo.
  auto SP = DL.get()->getScope()->getSubprogram();
  constructLineInfo(SP, LineSym, DL.getLine(), DL.getCol());

  LineInfoGenerated = true;
  PrevInstLoc = DL;
}

void BTFDebug::endModule() {
  // Collect all types referenced by globals.
  const Module *M = MMI->getModule();
  for (const DICompileUnit *CUNode : M->debug_compile_units()) {
    for (const auto *GVE : CUNode->getGlobalVariables()) {
      DIGlobalVariable *GV = GVE->getVariable();
      visitTypeEntry(GV->getType().resolve());
    }
  }

  // Complete BTF type cross refereences.
  for (const auto &TypeEntry : TypeEntries)
    TypeEntry->completeType(*this);

  // Emit BTF sections.
  emitBTFSection();
  emitBTFExtSection();
}