aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/IR/InstrTypes.h
blob: 5091bb4078336a659a8edab75b5078611f8e759a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
//===-- llvm/InstrTypes.h - Important Instruction subclasses ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines various meta classes of instructions that exist in the VM
// representation.  Specific concrete subclasses of these may be found in the
// i*.h files...
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_INSTRTYPES_H
#define LLVM_IR_INSTRTYPES_H

#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Twine.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/OperandTraits.h"

namespace llvm {

class LLVMContext;

//===----------------------------------------------------------------------===//
//                            TerminatorInst Class
//===----------------------------------------------------------------------===//

/// Subclasses of this class are all able to terminate a basic
/// block. Thus, these are all the flow control type of operations.
///
class TerminatorInst : public Instruction {
protected:
  TerminatorInst(Type *Ty, Instruction::TermOps iType,
                 Use *Ops, unsigned NumOps,
                 Instruction *InsertBefore = nullptr)
    : Instruction(Ty, iType, Ops, NumOps, InsertBefore) {}

  TerminatorInst(Type *Ty, Instruction::TermOps iType,
                 Use *Ops, unsigned NumOps, BasicBlock *InsertAtEnd)
    : Instruction(Ty, iType, Ops, NumOps, InsertAtEnd) {}

  // Out of line virtual method, so the vtable, etc has a home.
  ~TerminatorInst() override;

  /// Virtual methods - Terminators should overload these and provide inline
  /// overrides of non-V methods.
  virtual BasicBlock *getSuccessorV(unsigned idx) const = 0;
  virtual unsigned getNumSuccessorsV() const = 0;
  virtual void setSuccessorV(unsigned idx, BasicBlock *B) = 0;

public:
  /// Return the number of successors that this terminator has.
  unsigned getNumSuccessors() const {
    return getNumSuccessorsV();
  }

  /// Return the specified successor.
  BasicBlock *getSuccessor(unsigned idx) const {
    return getSuccessorV(idx);
  }

  /// Update the specified successor to point at the provided block.
  void setSuccessor(unsigned idx, BasicBlock *B) {
    setSuccessorV(idx, B);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Instruction *I) {
    return I->isTerminator();
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }

  // \brief Returns true if this terminator relates to exception handling.
  bool isExceptional() const {
    switch (getOpcode()) {
    case Instruction::CatchSwitch:
    case Instruction::CatchRet:
    case Instruction::CleanupRet:
    case Instruction::Invoke:
    case Instruction::Resume:
      return true;
    default:
      return false;
    }
  }

  //===--------------------------------------------------------------------===//
  // succ_iterator definition
  //===--------------------------------------------------------------------===//

  template <class Term, class BB> // Successor Iterator
  class SuccIterator : public std::iterator<std::random_access_iterator_tag, BB,
                                            int, BB *, BB *> {
    typedef std::iterator<std::random_access_iterator_tag, BB, int, BB *, BB *>
        super;

  public:
    typedef typename super::pointer pointer;
    typedef typename super::reference reference;

  private:
    Term TermInst;
    unsigned idx;
    typedef SuccIterator<Term, BB> Self;

    inline bool index_is_valid(unsigned idx) {
      return idx < TermInst->getNumSuccessors();
    }

    /// \brief Proxy object to allow write access in operator[]
    class SuccessorProxy {
      Self it;

    public:
      explicit SuccessorProxy(const Self &it) : it(it) {}

      SuccessorProxy(const SuccessorProxy &) = default;

      SuccessorProxy &operator=(SuccessorProxy r) {
        *this = reference(r);
        return *this;
      }

      SuccessorProxy &operator=(reference r) {
        it.TermInst->setSuccessor(it.idx, r);
        return *this;
      }

      operator reference() const { return *it; }
    };

  public:
    // begin iterator
    explicit inline SuccIterator(Term T) : TermInst(T), idx(0) {}
    // end iterator
    inline SuccIterator(Term T, bool) : TermInst(T) {
      if (TermInst)
        idx = TermInst->getNumSuccessors();
      else
        // Term == NULL happens, if a basic block is not fully constructed and
        // consequently getTerminator() returns NULL. In this case we construct
        // a SuccIterator which describes a basic block that has zero
        // successors.
        // Defining SuccIterator for incomplete and malformed CFGs is especially
        // useful for debugging.
        idx = 0;
    }

    /// This is used to interface between code that wants to
    /// operate on terminator instructions directly.
    unsigned getSuccessorIndex() const { return idx; }

    inline bool operator==(const Self &x) const { return idx == x.idx; }
    inline bool operator!=(const Self &x) const { return !operator==(x); }

    inline reference operator*() const { return TermInst->getSuccessor(idx); }
    inline pointer operator->() const { return operator*(); }

    inline Self &operator++() {
      ++idx;
      return *this;
    } // Preincrement

    inline Self operator++(int) { // Postincrement
      Self tmp = *this;
      ++*this;
      return tmp;
    }

    inline Self &operator--() {
      --idx;
      return *this;
    }                             // Predecrement
    inline Self operator--(int) { // Postdecrement
      Self tmp = *this;
      --*this;
      return tmp;
    }

    inline bool operator<(const Self &x) const {
      assert(TermInst == x.TermInst &&
             "Cannot compare iterators of different blocks!");
      return idx < x.idx;
    }

    inline bool operator<=(const Self &x) const {
      assert(TermInst == x.TermInst &&
             "Cannot compare iterators of different blocks!");
      return idx <= x.idx;
    }
    inline bool operator>=(const Self &x) const {
      assert(TermInst == x.TermInst &&
             "Cannot compare iterators of different blocks!");
      return idx >= x.idx;
    }

    inline bool operator>(const Self &x) const {
      assert(TermInst == x.TermInst &&
             "Cannot compare iterators of different blocks!");
      return idx > x.idx;
    }

    inline Self &operator+=(int Right) {
      unsigned new_idx = idx + Right;
      assert(index_is_valid(new_idx) && "Iterator index out of bound");
      idx = new_idx;
      return *this;
    }

    inline Self operator+(int Right) const {
      Self tmp = *this;
      tmp += Right;
      return tmp;
    }

    inline Self &operator-=(int Right) { return operator+=(-Right); }

    inline Self operator-(int Right) const { return operator+(-Right); }

    inline int operator-(const Self &x) const {
      assert(TermInst == x.TermInst &&
             "Cannot work on iterators of different blocks!");
      int distance = idx - x.idx;
      return distance;
    }

    inline SuccessorProxy operator[](int offset) {
      Self tmp = *this;
      tmp += offset;
      return SuccessorProxy(tmp);
    }

    /// Get the source BB of this iterator.
    inline BB *getSource() {
      assert(TermInst && "Source not available, if basic block was malformed");
      return TermInst->getParent();
    }
  };

  typedef SuccIterator<TerminatorInst *, BasicBlock> succ_iterator;
  typedef SuccIterator<const TerminatorInst *, const BasicBlock>
      succ_const_iterator;
  typedef llvm::iterator_range<succ_iterator> succ_range;
  typedef llvm::iterator_range<succ_const_iterator> succ_const_range;

private:
  inline succ_iterator succ_begin() { return succ_iterator(this); }
  inline succ_const_iterator succ_begin() const {
    return succ_const_iterator(this);
  }
  inline succ_iterator succ_end() { return succ_iterator(this, true); }
  inline succ_const_iterator succ_end() const {
    return succ_const_iterator(this, true);
  }

public:
  inline succ_range successors() {
    return succ_range(succ_begin(), succ_end());
  }
  inline succ_const_range successors() const {
    return succ_const_range(succ_begin(), succ_end());
  }
};

//===----------------------------------------------------------------------===//
//                          UnaryInstruction Class
//===----------------------------------------------------------------------===//

class UnaryInstruction : public Instruction {
  void *operator new(size_t, unsigned) = delete;

protected:
  UnaryInstruction(Type *Ty, unsigned iType, Value *V,
                   Instruction *IB = nullptr)
    : Instruction(Ty, iType, &Op<0>(), 1, IB) {
    Op<0>() = V;
  }
  UnaryInstruction(Type *Ty, unsigned iType, Value *V, BasicBlock *IAE)
    : Instruction(Ty, iType, &Op<0>(), 1, IAE) {
    Op<0>() = V;
  }

public:
  // allocate space for exactly one operand
  void *operator new(size_t s) {
    return User::operator new(s, 1);
  }

  // Out of line virtual method, so the vtable, etc has a home.
  ~UnaryInstruction() override;

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::Alloca ||
           I->getOpcode() == Instruction::Load ||
           I->getOpcode() == Instruction::VAArg ||
           I->getOpcode() == Instruction::ExtractValue ||
           (I->getOpcode() >= CastOpsBegin && I->getOpcode() < CastOpsEnd);
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<UnaryInstruction> :
  public FixedNumOperandTraits<UnaryInstruction, 1> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(UnaryInstruction, Value)

//===----------------------------------------------------------------------===//
//                           BinaryOperator Class
//===----------------------------------------------------------------------===//

class BinaryOperator : public Instruction {
  void *operator new(size_t, unsigned) = delete;

protected:
  void init(BinaryOps iType);
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
                 const Twine &Name, Instruction *InsertBefore);
  BinaryOperator(BinaryOps iType, Value *S1, Value *S2, Type *Ty,
                 const Twine &Name, BasicBlock *InsertAtEnd);

  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;
  BinaryOperator *cloneImpl() const;

public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }

  /// Transparently provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// Construct a binary instruction, given the opcode and the two
  /// operands.  Optionally (if InstBefore is specified) insert the instruction
  /// into a BasicBlock right before the specified instruction.  The specified
  /// Instruction is allowed to be a dereferenced end iterator.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const Twine &Name = Twine(),
                                Instruction *InsertBefore = nullptr);

  /// Construct a binary instruction, given the opcode and the two
  /// operands.  Also automatically insert this instruction to the end of the
  /// BasicBlock specified.
  ///
  static BinaryOperator *Create(BinaryOps Op, Value *S1, Value *S2,
                                const Twine &Name, BasicBlock *InsertAtEnd);

  /// These methods just forward to Create, and are useful when you
  /// statically know what type of instruction you're going to create.  These
  /// helpers just save some typing.
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name = "") {\
    return Create(Instruction::OPC, V1, V2, Name);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name, BasicBlock *BB) {\
    return Create(Instruction::OPC, V1, V2, Name, BB);\
  }
#include "llvm/IR/Instruction.def"
#define HANDLE_BINARY_INST(N, OPC, CLASS) \
  static BinaryOperator *Create##OPC(Value *V1, Value *V2, \
                                     const Twine &Name, Instruction *I) {\
    return Create(Instruction::OPC, V1, V2, Name, I);\
  }
#include "llvm/IR/Instruction.def"

  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setHasNoSignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNSW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setHasNoSignedWrap(true);
    return BO;
  }

  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }
  static BinaryOperator *CreateNUW(BinaryOps Opc, Value *V1, Value *V2,
                                   const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setHasNoUnsignedWrap(true);
    return BO;
  }

  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name = "") {
    BinaryOperator *BO = Create(Opc, V1, V2, Name);
    BO->setIsExact(true);
    return BO;
  }
  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name, BasicBlock *BB) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, BB);
    BO->setIsExact(true);
    return BO;
  }
  static BinaryOperator *CreateExact(BinaryOps Opc, Value *V1, Value *V2,
                                     const Twine &Name, Instruction *I) {
    BinaryOperator *BO = Create(Opc, V1, V2, Name, I);
    BO->setIsExact(true);
    return BO;
  }

#define DEFINE_HELPERS(OPC, NUWNSWEXACT)                                       \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(Value *V1, Value *V2,        \
                                                  const Twine &Name = "") {    \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name);                \
  }                                                                            \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(                             \
      Value *V1, Value *V2, const Twine &Name, BasicBlock *BB) {               \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, BB);            \
  }                                                                            \
  static BinaryOperator *Create##NUWNSWEXACT##OPC(                             \
      Value *V1, Value *V2, const Twine &Name, Instruction *I) {               \
    return Create##NUWNSWEXACT(Instruction::OPC, V1, V2, Name, I);             \
  }

  DEFINE_HELPERS(Add, NSW) // CreateNSWAdd
  DEFINE_HELPERS(Add, NUW) // CreateNUWAdd
  DEFINE_HELPERS(Sub, NSW) // CreateNSWSub
  DEFINE_HELPERS(Sub, NUW) // CreateNUWSub
  DEFINE_HELPERS(Mul, NSW) // CreateNSWMul
  DEFINE_HELPERS(Mul, NUW) // CreateNUWMul
  DEFINE_HELPERS(Shl, NSW) // CreateNSWShl
  DEFINE_HELPERS(Shl, NUW) // CreateNUWShl

  DEFINE_HELPERS(SDiv, Exact)  // CreateExactSDiv
  DEFINE_HELPERS(UDiv, Exact)  // CreateExactUDiv
  DEFINE_HELPERS(AShr, Exact)  // CreateExactAShr
  DEFINE_HELPERS(LShr, Exact)  // CreateExactLShr

#undef DEFINE_HELPERS

  /// Helper functions to construct and inspect unary operations (NEG and NOT)
  /// via binary operators SUB and XOR:
  ///
  /// Create the NEG and NOT instructions out of SUB and XOR instructions.
  ///
  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name = "",
                                   Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNeg(Value *Op, const Twine &Name,
                                   BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name = "",
                                      Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNSWNeg(Value *Op, const Twine &Name,
                                      BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name = "",
                                      Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNUWNeg(Value *Op, const Twine &Name,
                                      BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name = "",
                                    Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateFNeg(Value *Op, const Twine &Name,
                                    BasicBlock *InsertAtEnd);
  static BinaryOperator *CreateNot(Value *Op, const Twine &Name = "",
                                   Instruction *InsertBefore = nullptr);
  static BinaryOperator *CreateNot(Value *Op, const Twine &Name,
                                   BasicBlock *InsertAtEnd);

  /// Check if the given Value is a NEG, FNeg, or NOT instruction.
  ///
  static bool isNeg(const Value *V);
  static bool isFNeg(const Value *V, bool IgnoreZeroSign=false);
  static bool isNot(const Value *V);

  /// Helper functions to extract the unary argument of a NEG, FNEG or NOT
  /// operation implemented via Sub, FSub, or Xor.
  ///
  static const Value *getNegArgument(const Value *BinOp);
  static       Value *getNegArgument(      Value *BinOp);
  static const Value *getFNegArgument(const Value *BinOp);
  static       Value *getFNegArgument(      Value *BinOp);
  static const Value *getNotArgument(const Value *BinOp);
  static       Value *getNotArgument(      Value *BinOp);

  BinaryOps getOpcode() const {
    return static_cast<BinaryOps>(Instruction::getOpcode());
  }

  /// Exchange the two operands to this instruction.
  /// This instruction is safe to use on any binary instruction and
  /// does not modify the semantics of the instruction.  If the instruction
  /// cannot be reversed (ie, it's a Div), then return true.
  ///
  bool swapOperands();

  /// Set or clear the nsw flag on this instruction, which must be an operator
  /// which supports this flag. See LangRef.html for the meaning of this flag.
  void setHasNoUnsignedWrap(bool b = true);

  /// Set or clear the nsw flag on this instruction, which must be an operator
  /// which supports this flag. See LangRef.html for the meaning of this flag.
  void setHasNoSignedWrap(bool b = true);

  /// Set or clear the exact flag on this instruction, which must be an operator
  /// which supports this flag. See LangRef.html for the meaning of this flag.
  void setIsExact(bool b = true);

  /// Determine whether the no unsigned wrap flag is set.
  bool hasNoUnsignedWrap() const;

  /// Determine whether the no signed wrap flag is set.
  bool hasNoSignedWrap() const;

  /// Determine whether the exact flag is set.
  bool isExact() const;

  /// Convenience method to copy supported wrapping, exact, and fast-math flags
  /// from V to this instruction.
  void copyIRFlags(const Value *V);

  /// Logical 'and' of any supported wrapping, exact, and fast-math flags of
  /// V and this instruction.
  void andIRFlags(const Value *V);

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Instruction *I) {
    return I->isBinaryOp();
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<BinaryOperator> :
  public FixedNumOperandTraits<BinaryOperator, 2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BinaryOperator, Value)

//===----------------------------------------------------------------------===//
//                               CastInst Class
//===----------------------------------------------------------------------===//

/// This is the base class for all instructions that perform data
/// casts. It is simply provided so that instruction category testing
/// can be performed with code like:
///
/// if (isa<CastInst>(Instr)) { ... }
/// @brief Base class of casting instructions.
class CastInst : public UnaryInstruction {
  void anchor() override;

protected:
  /// @brief Constructor with insert-before-instruction semantics for subclasses
  CastInst(Type *Ty, unsigned iType, Value *S,
           const Twine &NameStr = "", Instruction *InsertBefore = nullptr)
    : UnaryInstruction(Ty, iType, S, InsertBefore) {
    setName(NameStr);
  }
  /// @brief Constructor with insert-at-end-of-block semantics for subclasses
  CastInst(Type *Ty, unsigned iType, Value *S,
           const Twine &NameStr, BasicBlock *InsertAtEnd)
    : UnaryInstruction(Ty, iType, S, InsertAtEnd) {
    setName(NameStr);
  }

public:
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category (Instruction::isCast(opcode) returns true). This
  /// constructor has insert-before-instruction semantics to automatically
  /// insert the new CastInst before InsertBefore (if it is non-null).
  /// @brief Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode of the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );
  /// Provides a way to construct any of the CastInst subclasses using an
  /// opcode instead of the subclass's constructor. The opcode must be in the
  /// CastOps category. This constructor has insert-at-end-of-block semantics
  /// to automatically insert the new CastInst at the end of InsertAtEnd (if
  /// its non-null).
  /// @brief Construct any of the CastInst subclasses
  static CastInst *Create(
    Instruction::CastOps,    ///< The opcode for the cast instruction
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a ZExt or BitCast cast instruction
  static CastInst *CreateZExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a SExt or BitCast cast instruction
  static CastInst *CreateSExtOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a BitCast AddrSpaceCast, or a PtrToInt cast instruction.
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a BitCast, AddrSpaceCast or a PtrToInt cast instruction.
  static CastInst *CreatePointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a BitCast or an AddrSpaceCast cast instruction.
  static CastInst *CreatePointerBitCastOrAddrSpaceCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a BitCast or an AddrSpaceCast cast instruction.
  static CastInst *CreatePointerBitCastOrAddrSpaceCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a BitCast, a PtrToInt, or an IntToPTr cast instruction.
  ///
  /// If the value is a pointer type and the destination an integer type,
  /// creates a PtrToInt cast. If the value is an integer type and the
  /// destination a pointer type, creates an IntToPtr cast. Otherwise, creates
  /// a bitcast.
  static CastInst *CreateBitOrPointerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The pointer value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    bool isSigned,           ///< Whether to regard S as signed or not
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a ZExt, BitCast, or Trunc for int -> int casts.
  static CastInst *CreateIntegerCast(
    Value *S,                ///< The integer value to be casted (operand 0)
    Type *Ty,          ///< The integer type to which operand is casted
    bool isSigned,           ///< Whether to regard S as signed or not
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    Type *Ty,          ///< The floating point type to cast to
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create an FPExt, BitCast, or FPTrunc for fp -> fp casts
  static CastInst *CreateFPCast(
    Value *S,                ///< The floating point value to be casted
    Type *Ty,          ///< The floating point type to cast to
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which cast should be made
    const Twine &Name = "", ///< Name for the instruction
    Instruction *InsertBefore = nullptr ///< Place to insert the instruction
  );

  /// @brief Create a Trunc or BitCast cast instruction
  static CastInst *CreateTruncOrBitCast(
    Value *S,                ///< The value to be casted (operand 0)
    Type *Ty,          ///< The type to which operand is casted
    const Twine &Name, ///< The name for the instruction
    BasicBlock *InsertAtEnd  ///< The block to insert the instruction into
  );

  /// @brief Check whether it is valid to call getCastOpcode for these types.
  static bool isCastable(
    Type *SrcTy, ///< The Type from which the value should be cast.
    Type *DestTy ///< The Type to which the value should be cast.
  );

  /// @brief Check whether a bitcast between these types is valid
  static bool isBitCastable(
    Type *SrcTy, ///< The Type from which the value should be cast.
    Type *DestTy ///< The Type to which the value should be cast.
  );

  /// @brief Check whether a bitcast, inttoptr, or ptrtoint cast between these
  /// types is valid and a no-op.
  ///
  /// This ensures that any pointer<->integer cast has enough bits in the
  /// integer and any other cast is a bitcast.
  static bool isBitOrNoopPointerCastable(
      Type *SrcTy,  ///< The Type from which the value should be cast.
      Type *DestTy, ///< The Type to which the value should be cast.
      const DataLayout &DL);

  /// Returns the opcode necessary to cast Val into Ty using usual casting
  /// rules.
  /// @brief Infer the opcode for cast operand and type
  static Instruction::CastOps getCastOpcode(
    const Value *Val, ///< The value to cast
    bool SrcIsSigned, ///< Whether to treat the source as signed
    Type *Ty,   ///< The Type to which the value should be casted
    bool DstIsSigned  ///< Whether to treate the dest. as signed
  );

  /// There are several places where we need to know if a cast instruction
  /// only deals with integer source and destination types. To simplify that
  /// logic, this method is provided.
  /// @returns true iff the cast has only integral typed operand and dest type.
  /// @brief Determine if this is an integer-only cast.
  bool isIntegerCast() const;

  /// A lossless cast is one that does not alter the basic value. It implies
  /// a no-op cast but is more stringent, preventing things like int->float,
  /// long->double, or int->ptr.
  /// @returns true iff the cast is lossless.
  /// @brief Determine if this is a lossless cast.
  bool isLosslessCast() const;

  /// A no-op cast is one that can be effected without changing any bits.
  /// It implies that the source and destination types are the same size. The
  /// IntPtrTy argument is used to make accurate determinations for casts
  /// involving Integer and Pointer types. They are no-op casts if the integer
  /// is the same size as the pointer. However, pointer size varies with
  /// platform. Generally, the result of DataLayout::getIntPtrType() should be
  /// passed in. If that's not available, use Type::Int64Ty, which will make
  /// the isNoopCast call conservative.
  /// @brief Determine if the described cast is a no-op cast.
  static bool isNoopCast(
    Instruction::CastOps Opcode,  ///< Opcode of cast
    Type *SrcTy,   ///< SrcTy of cast
    Type *DstTy,   ///< DstTy of cast
    Type *IntPtrTy ///< Integer type corresponding to Ptr types
  );

  /// @brief Determine if this cast is a no-op cast.
  bool isNoopCast(
    Type *IntPtrTy ///< Integer type corresponding to pointer
  ) const;

  /// @brief Determine if this cast is a no-op cast.
  ///
  /// \param DL is the DataLayout to get the Int Ptr type from.
  bool isNoopCast(const DataLayout &DL) const;

  /// Determine how a pair of casts can be eliminated, if they can be at all.
  /// This is a helper function for both CastInst and ConstantExpr.
  /// @returns 0 if the CastInst pair can't be eliminated, otherwise
  /// returns Instruction::CastOps value for a cast that can replace
  /// the pair, casting SrcTy to DstTy.
  /// @brief Determine if a cast pair is eliminable
  static unsigned isEliminableCastPair(
    Instruction::CastOps firstOpcode,  ///< Opcode of first cast
    Instruction::CastOps secondOpcode, ///< Opcode of second cast
    Type *SrcTy, ///< SrcTy of 1st cast
    Type *MidTy, ///< DstTy of 1st cast & SrcTy of 2nd cast
    Type *DstTy, ///< DstTy of 2nd cast
    Type *SrcIntPtrTy, ///< Integer type corresponding to Ptr SrcTy, or null
    Type *MidIntPtrTy, ///< Integer type corresponding to Ptr MidTy, or null
    Type *DstIntPtrTy  ///< Integer type corresponding to Ptr DstTy, or null
  );

  /// @brief Return the opcode of this CastInst
  Instruction::CastOps getOpcode() const {
    return Instruction::CastOps(Instruction::getOpcode());
  }

  /// @brief Return the source type, as a convenience
  Type* getSrcTy() const { return getOperand(0)->getType(); }
  /// @brief Return the destination type, as a convenience
  Type* getDestTy() const { return getType(); }

  /// This method can be used to determine if a cast from S to DstTy using
  /// Opcode op is valid or not.
  /// @returns true iff the proposed cast is valid.
  /// @brief Determine if a cast is valid without creating one.
  static bool castIsValid(Instruction::CastOps op, Value *S, Type *DstTy);

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Instruction *I) {
    return I->isCast();
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

//===----------------------------------------------------------------------===//
//                               CmpInst Class
//===----------------------------------------------------------------------===//

/// This class is the base class for the comparison instructions.
/// @brief Abstract base class of comparison instructions.
class CmpInst : public Instruction {
public:
  /// This enumeration lists the possible predicates for CmpInst subclasses.
  /// Values in the range 0-31 are reserved for FCmpInst, while values in the
  /// range 32-64 are reserved for ICmpInst. This is necessary to ensure the
  /// predicate values are not overlapping between the classes.
  enum Predicate {
    // Opcode              U L G E    Intuitive operation
    FCMP_FALSE =  0,  ///< 0 0 0 0    Always false (always folded)
    FCMP_OEQ   =  1,  ///< 0 0 0 1    True if ordered and equal
    FCMP_OGT   =  2,  ///< 0 0 1 0    True if ordered and greater than
    FCMP_OGE   =  3,  ///< 0 0 1 1    True if ordered and greater than or equal
    FCMP_OLT   =  4,  ///< 0 1 0 0    True if ordered and less than
    FCMP_OLE   =  5,  ///< 0 1 0 1    True if ordered and less than or equal
    FCMP_ONE   =  6,  ///< 0 1 1 0    True if ordered and operands are unequal
    FCMP_ORD   =  7,  ///< 0 1 1 1    True if ordered (no nans)
    FCMP_UNO   =  8,  ///< 1 0 0 0    True if unordered: isnan(X) | isnan(Y)
    FCMP_UEQ   =  9,  ///< 1 0 0 1    True if unordered or equal
    FCMP_UGT   = 10,  ///< 1 0 1 0    True if unordered or greater than
    FCMP_UGE   = 11,  ///< 1 0 1 1    True if unordered, greater than, or equal
    FCMP_ULT   = 12,  ///< 1 1 0 0    True if unordered or less than
    FCMP_ULE   = 13,  ///< 1 1 0 1    True if unordered, less than, or equal
    FCMP_UNE   = 14,  ///< 1 1 1 0    True if unordered or not equal
    FCMP_TRUE  = 15,  ///< 1 1 1 1    Always true (always folded)
    FIRST_FCMP_PREDICATE = FCMP_FALSE,
    LAST_FCMP_PREDICATE = FCMP_TRUE,
    BAD_FCMP_PREDICATE = FCMP_TRUE + 1,
    ICMP_EQ    = 32,  ///< equal
    ICMP_NE    = 33,  ///< not equal
    ICMP_UGT   = 34,  ///< unsigned greater than
    ICMP_UGE   = 35,  ///< unsigned greater or equal
    ICMP_ULT   = 36,  ///< unsigned less than
    ICMP_ULE   = 37,  ///< unsigned less or equal
    ICMP_SGT   = 38,  ///< signed greater than
    ICMP_SGE   = 39,  ///< signed greater or equal
    ICMP_SLT   = 40,  ///< signed less than
    ICMP_SLE   = 41,  ///< signed less or equal
    FIRST_ICMP_PREDICATE = ICMP_EQ,
    LAST_ICMP_PREDICATE = ICMP_SLE,
    BAD_ICMP_PREDICATE = ICMP_SLE + 1
  };

private:
  void *operator new(size_t, unsigned) = delete;
  CmpInst() = delete;

protected:
  CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
          Value *LHS, Value *RHS, const Twine &Name = "",
          Instruction *InsertBefore = nullptr);

  CmpInst(Type *ty, Instruction::OtherOps op, Predicate pred,
          Value *LHS, Value *RHS, const Twine &Name,
          BasicBlock *InsertAtEnd);

  void anchor() override; // Out of line virtual method.

public:
  // allocate space for exactly two operands
  void *operator new(size_t s) {
    return User::operator new(s, 2);
  }
  /// Construct a compare instruction, given the opcode, the predicate and
  /// the two operands.  Optionally (if InstBefore is specified) insert the
  /// instruction into a BasicBlock right before the specified instruction.
  /// The specified Instruction is allowed to be a dereferenced end iterator.
  /// @brief Create a CmpInst
  static CmpInst *Create(OtherOps Op,
                         Predicate predicate, Value *S1,
                         Value *S2, const Twine &Name = "",
                         Instruction *InsertBefore = nullptr);

  /// Construct a compare instruction, given the opcode, the predicate and the
  /// two operands.  Also automatically insert this instruction to the end of
  /// the BasicBlock specified.
  /// @brief Create a CmpInst
  static CmpInst *Create(OtherOps Op, Predicate predicate, Value *S1,
                         Value *S2, const Twine &Name, BasicBlock *InsertAtEnd);

  /// @brief Get the opcode casted to the right type
  OtherOps getOpcode() const {
    return static_cast<OtherOps>(Instruction::getOpcode());
  }

  /// @brief Return the predicate for this instruction.
  Predicate getPredicate() const {
    return Predicate(getSubclassDataFromInstruction());
  }

  /// @brief Set the predicate for this instruction to the specified value.
  void setPredicate(Predicate P) { setInstructionSubclassData(P); }

  static bool isFPPredicate(Predicate P) {
    return P >= FIRST_FCMP_PREDICATE && P <= LAST_FCMP_PREDICATE;
  }

  static bool isIntPredicate(Predicate P) {
    return P >= FIRST_ICMP_PREDICATE && P <= LAST_ICMP_PREDICATE;
  }

  bool isFPPredicate() const { return isFPPredicate(getPredicate()); }
  bool isIntPredicate() const { return isIntPredicate(getPredicate()); }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for the instruction's current predicate.
  /// @brief Return the inverse of the instruction's predicate.
  Predicate getInversePredicate() const {
    return getInversePredicate(getPredicate());
  }

  /// For example, EQ -> NE, UGT -> ULE, SLT -> SGE,
  ///              OEQ -> UNE, UGT -> OLE, OLT -> UGE, etc.
  /// @returns the inverse predicate for predicate provided in \p pred.
  /// @brief Return the inverse of a given predicate
  static Predicate getInversePredicate(Predicate pred);

  /// For example, EQ->EQ, SLE->SGE, ULT->UGT,
  ///              OEQ->OEQ, ULE->UGE, OLT->OGT, etc.
  /// @returns the predicate that would be the result of exchanging the two
  /// operands of the CmpInst instruction without changing the result
  /// produced.
  /// @brief Return the predicate as if the operands were swapped
  Predicate getSwappedPredicate() const {
    return getSwappedPredicate(getPredicate());
  }

  /// This is a static version that you can use without an instruction
  /// available.
  /// @brief Return the predicate as if the operands were swapped.
  static Predicate getSwappedPredicate(Predicate pred);

  /// @brief Provide more efficient getOperand methods.
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// This is just a convenience that dispatches to the subclasses.
  /// @brief Swap the operands and adjust predicate accordingly to retain
  /// the same comparison.
  void swapOperands();

  /// This is just a convenience that dispatches to the subclasses.
  /// @brief Determine if this CmpInst is commutative.
  bool isCommutative() const;

  /// This is just a convenience that dispatches to the subclasses.
  /// @brief Determine if this is an equals/not equals predicate.
  bool isEquality() const;

  /// @returns true if the comparison is signed, false otherwise.
  /// @brief Determine if this instruction is using a signed comparison.
  bool isSigned() const {
    return isSigned(getPredicate());
  }

  /// @returns true if the comparison is unsigned, false otherwise.
  /// @brief Determine if this instruction is using an unsigned comparison.
  bool isUnsigned() const {
    return isUnsigned(getPredicate());
  }

  /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
  /// @returns the signed version of the unsigned predicate pred.
  /// @brief return the signed version of a predicate
  static Predicate getSignedPredicate(Predicate pred);

  /// For example, ULT->SLT, ULE->SLE, UGT->SGT, UGE->SGE, SLT->Failed assert
  /// @returns the signed version of the predicate for this instruction (which
  /// has to be an unsigned predicate).
  /// @brief return the signed version of a predicate
  Predicate getSignedPredicate() {
    return getSignedPredicate(getPredicate());
  }

  /// This is just a convenience.
  /// @brief Determine if this is true when both operands are the same.
  bool isTrueWhenEqual() const {
    return isTrueWhenEqual(getPredicate());
  }

  /// This is just a convenience.
  /// @brief Determine if this is false when both operands are the same.
  bool isFalseWhenEqual() const {
    return isFalseWhenEqual(getPredicate());
  }

  /// @returns true if the predicate is unsigned, false otherwise.
  /// @brief Determine if the predicate is an unsigned operation.
  static bool isUnsigned(Predicate predicate);

  /// @returns true if the predicate is signed, false otherwise.
  /// @brief Determine if the predicate is an signed operation.
  static bool isSigned(Predicate predicate);

  /// @brief Determine if the predicate is an ordered operation.
  static bool isOrdered(Predicate predicate);

  /// @brief Determine if the predicate is an unordered operation.
  static bool isUnordered(Predicate predicate);

  /// Determine if the predicate is true when comparing a value with itself.
  static bool isTrueWhenEqual(Predicate predicate);

  /// Determine if the predicate is false when comparing a value with itself.
  static bool isFalseWhenEqual(Predicate predicate);

  /// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Instruction *I) {
    return I->getOpcode() == Instruction::ICmp ||
           I->getOpcode() == Instruction::FCmp;
  }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }

  /// @brief Create a result type for fcmp/icmp
  static Type* makeCmpResultType(Type* opnd_type) {
    if (VectorType* vt = dyn_cast<VectorType>(opnd_type)) {
      return VectorType::get(Type::getInt1Ty(opnd_type->getContext()),
                             vt->getNumElements());
    }
    return Type::getInt1Ty(opnd_type->getContext());
  }

private:
  // Shadow Value::setValueSubclassData with a private forwarding method so that
  // subclasses cannot accidentally use it.
  void setValueSubclassData(unsigned short D) {
    Value::setValueSubclassData(D);
  }
};

// FIXME: these are redundant if CmpInst < BinaryOperator
template <>
struct OperandTraits<CmpInst> : public FixedNumOperandTraits<CmpInst, 2> {
};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CmpInst, Value)

//===----------------------------------------------------------------------===//
//                           FuncletPadInst Class
//===----------------------------------------------------------------------===//
class FuncletPadInst : public Instruction {
private:
  void init(Value *ParentPad, ArrayRef<Value *> Args, const Twine &NameStr);

  FuncletPadInst(const FuncletPadInst &CPI);

  explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
                          ArrayRef<Value *> Args, unsigned Values,
                          const Twine &NameStr, Instruction *InsertBefore);
  explicit FuncletPadInst(Instruction::FuncletPadOps Op, Value *ParentPad,
                          ArrayRef<Value *> Args, unsigned Values,
                          const Twine &NameStr, BasicBlock *InsertAtEnd);

protected:
  // Note: Instruction needs to be a friend here to call cloneImpl.
  friend class Instruction;
  friend class CatchPadInst;
  friend class CleanupPadInst;
  FuncletPadInst *cloneImpl() const;

public:
  /// Provide fast operand accessors
  DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);

  /// getNumArgOperands - Return the number of funcletpad arguments.
  ///
  unsigned getNumArgOperands() const { return getNumOperands() - 1; }

  /// Convenience accessors

  /// \brief Return the outer EH-pad this funclet is nested within.
  ///
  /// Note: This returns the associated CatchSwitchInst if this FuncletPadInst
  /// is a CatchPadInst.
  Value *getParentPad() const { return Op<-1>(); }
  void setParentPad(Value *ParentPad) {
    assert(ParentPad);
    Op<-1>() = ParentPad;
  }

  /// getArgOperand/setArgOperand - Return/set the i-th funcletpad argument.
  ///
  Value *getArgOperand(unsigned i) const { return getOperand(i); }
  void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }

  /// arg_operands - iteration adapter for range-for loops.
  op_range arg_operands() { return op_range(op_begin(), op_end() - 1); }

  /// arg_operands - iteration adapter for range-for loops.
  const_op_range arg_operands() const {
    return const_op_range(op_begin(), op_end() - 1);
  }

  // Methods for support type inquiry through isa, cast, and dyn_cast:
  static inline bool classof(const Instruction *I) { return I->isFuncletPad(); }
  static inline bool classof(const Value *V) {
    return isa<Instruction>(V) && classof(cast<Instruction>(V));
  }
};

template <>
struct OperandTraits<FuncletPadInst>
    : public VariadicOperandTraits<FuncletPadInst, /*MINARITY=*/1> {};

DEFINE_TRANSPARENT_OPERAND_ACCESSORS(FuncletPadInst, Value)

/// \brief A lightweight accessor for an operand bundle meant to be passed
/// around by value.
struct OperandBundleUse {
  ArrayRef<Use> Inputs;

  OperandBundleUse() {}
  explicit OperandBundleUse(StringMapEntry<uint32_t> *Tag, ArrayRef<Use> Inputs)
      : Inputs(Inputs), Tag(Tag) {}

  /// \brief Return true if the operand at index \p Idx in this operand bundle
  /// has the attribute A.
  bool operandHasAttr(unsigned Idx, Attribute::AttrKind A) const {
    if (isDeoptOperandBundle())
      if (A == Attribute::ReadOnly || A == Attribute::NoCapture)
        return Inputs[Idx]->getType()->isPointerTy();

    // Conservative answer:  no operands have any attributes.
    return false;
  };

  /// \brief Return the tag of this operand bundle as a string.
  StringRef getTagName() const {
    return Tag->getKey();
  }

  /// \brief Return the tag of this operand bundle as an integer.
  ///
  /// Operand bundle tags are interned by LLVMContextImpl::getOrInsertBundleTag,
  /// and this function returns the unique integer getOrInsertBundleTag
  /// associated the tag of this operand bundle to.
  uint32_t getTagID() const {
    return Tag->getValue();
  }

  /// \brief Return true if this is a "deopt" operand bundle.
  bool isDeoptOperandBundle() const {
    return getTagID() == LLVMContext::OB_deopt;
  }

  /// \brief Return true if this is a "funclet" operand bundle.
  bool isFuncletOperandBundle() const {
    return getTagID() == LLVMContext::OB_funclet;
  }

private:
  /// \brief Pointer to an entry in LLVMContextImpl::getOrInsertBundleTag.
  StringMapEntry<uint32_t> *Tag;
};

/// \brief A container for an operand bundle being viewed as a set of values
/// rather than a set of uses.
///
/// Unlike OperandBundleUse, OperandBundleDefT owns the memory it carries, and
/// so it is possible to create and pass around "self-contained" instances of
/// OperandBundleDef and ConstOperandBundleDef.
template <typename InputTy> class OperandBundleDefT {
  std::string Tag;
  std::vector<InputTy> Inputs;

public:
  explicit OperandBundleDefT(std::string Tag, std::vector<InputTy> Inputs)
      : Tag(std::move(Tag)), Inputs(std::move(Inputs)) {}
  explicit OperandBundleDefT(std::string Tag, ArrayRef<InputTy> Inputs)
      : Tag(std::move(Tag)), Inputs(Inputs) {}

  explicit OperandBundleDefT(const OperandBundleUse &OBU) {
    Tag = OBU.getTagName();
    Inputs.insert(Inputs.end(), OBU.Inputs.begin(), OBU.Inputs.end());
  }

  ArrayRef<InputTy> inputs() const { return Inputs; }

  typedef typename std::vector<InputTy>::const_iterator input_iterator;
  size_t input_size() const { return Inputs.size(); }
  input_iterator input_begin() const { return Inputs.begin(); }
  input_iterator input_end() const { return Inputs.end(); }

  StringRef getTag() const { return Tag; }
};

typedef OperandBundleDefT<Value *> OperandBundleDef;
typedef OperandBundleDefT<const Value *> ConstOperandBundleDef;

/// \brief A mixin to add operand bundle functionality to llvm instruction
/// classes.
///
/// OperandBundleUser uses the descriptor area co-allocated with the host User
/// to store some meta information about which operands are "normal" operands,
/// and which ones belong to some operand bundle.
///
/// The layout of an operand bundle user is
///
///          +-----------uint32_t End-------------------------------------+
///          |                                                            |
///          |  +--------uint32_t Begin--------------------+              |
///          |  |                                          |              |
///          ^  ^                                          v              v
///  |------|------|----|----|----|----|----|---------|----|---------|----|-----
///  | BOI0 | BOI1 | .. | DU | U0 | U1 | .. | BOI0_U0 | .. | BOI1_U0 | .. | Un
///  |------|------|----|----|----|----|----|---------|----|---------|----|-----
///   v  v                                  ^              ^
///   |  |                                  |              |
///   |  +--------uint32_t Begin------------+              |
///   |                                                    |
///   +-----------uint32_t End-----------------------------+
///
///
/// BOI0, BOI1 ... are descriptions of operand bundles in this User's use list.
/// These descriptions are installed and managed by this class, and they're all
/// instances of OperandBundleUser<T>::BundleOpInfo.
///
/// DU is an additional descriptor installed by User's 'operator new' to keep
/// track of the 'BOI0 ... BOIN' co-allocation.  OperandBundleUser does not
/// access or modify DU in any way, it's an implementation detail private to
/// User.
///
/// The regular Use& vector for the User starts at U0.  The operand bundle uses
/// are part of the Use& vector, just like normal uses.  In the diagram above,
/// the operand bundle uses start at BOI0_U0.  Each instance of BundleOpInfo has
/// information about a contiguous set of uses constituting an operand bundle,
/// and the total set of operand bundle uses themselves form a contiguous set of
/// uses (i.e. there are no gaps between uses corresponding to individual
/// operand bundles).
///
/// This class does not know the location of the set of operand bundle uses
/// within the use list -- that is decided by the User using this class via the
/// BeginIdx argument in populateBundleOperandInfos.
///
/// Currently operand bundle users with hung-off operands are not supported.
template <typename InstrTy, typename OpIteratorTy> class OperandBundleUser {
public:
  /// \brief Return the number of operand bundles associated with this User.
  unsigned getNumOperandBundles() const {
    return std::distance(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// \brief Return true if this User has any operand bundles.
  bool hasOperandBundles() const { return getNumOperandBundles() != 0; }

  /// \brief Return the index of the first bundle operand in the Use array.
  unsigned getBundleOperandsStartIndex() const {
    assert(hasOperandBundles() && "Don't call otherwise!");
    return bundle_op_info_begin()->Begin;
  }

  /// \brief Return the index of the last bundle operand in the Use array.
  unsigned getBundleOperandsEndIndex() const {
    assert(hasOperandBundles() && "Don't call otherwise!");
    return bundle_op_info_end()[-1].End;
  }

  /// \brief Return the total number operands (not operand bundles) used by
  /// every operand bundle in this OperandBundleUser.
  unsigned getNumTotalBundleOperands() const {
    if (!hasOperandBundles())
      return 0;

    unsigned Begin = getBundleOperandsStartIndex();
    unsigned End = getBundleOperandsEndIndex();

    assert(Begin <= End && "Should be!");
    return End - Begin;
  }

  /// \brief Return the operand bundle at a specific index.
  OperandBundleUse getOperandBundleAt(unsigned Index) const {
    assert(Index < getNumOperandBundles() && "Index out of bounds!");
    return operandBundleFromBundleOpInfo(*(bundle_op_info_begin() + Index));
  }

  /// \brief Return the number of operand bundles with the tag Name attached to
  /// this instruction.
  unsigned countOperandBundlesOfType(StringRef Name) const {
    unsigned Count = 0;
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      if (getOperandBundleAt(i).getTagName() == Name)
        Count++;

    return Count;
  }

  /// \brief Return the number of operand bundles with the tag ID attached to
  /// this instruction.
  unsigned countOperandBundlesOfType(uint32_t ID) const {
    unsigned Count = 0;
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      if (getOperandBundleAt(i).getTagID() == ID)
        Count++;

    return Count;
  }

  /// \brief Return an operand bundle by name, if present.
  ///
  /// It is an error to call this for operand bundle types that may have
  /// multiple instances of them on the same instruction.
  Optional<OperandBundleUse> getOperandBundle(StringRef Name) const {
    assert(countOperandBundlesOfType(Name) < 2 && "Precondition violated!");

    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      OperandBundleUse U = getOperandBundleAt(i);
      if (U.getTagName() == Name)
        return U;
    }

    return None;
  }

  /// \brief Return an operand bundle by tag ID, if present.
  ///
  /// It is an error to call this for operand bundle types that may have
  /// multiple instances of them on the same instruction.
  Optional<OperandBundleUse> getOperandBundle(uint32_t ID) const {
    assert(countOperandBundlesOfType(ID) < 2 && "Precondition violated!");

    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i) {
      OperandBundleUse U = getOperandBundleAt(i);
      if (U.getTagID() == ID)
        return U;
    }

    return None;
  }

  /// \brief Return the list of operand bundles attached to this instruction as
  /// a vector of OperandBundleDefs.
  ///
  /// This function copies the OperandBundeUse instances associated with this
  /// OperandBundleUser to a vector of OperandBundleDefs.  Note:
  /// OperandBundeUses and OperandBundleDefs are non-trivially *different*
  /// representations of operand bundles (see documentation above).
  void getOperandBundlesAsDefs(SmallVectorImpl<OperandBundleDef> &Defs) const {
    for (unsigned i = 0, e = getNumOperandBundles(); i != e; ++i)
      Defs.emplace_back(getOperandBundleAt(i));
  }

  /// \brief Return the operand bundle for the operand at index OpIdx.
  ///
  /// It is an error to call this with an OpIdx that does not correspond to an
  /// bundle operand.
  OperandBundleUse getOperandBundleForOperand(unsigned OpIdx) const {
    return operandBundleFromBundleOpInfo(getBundleOpInfoForOperand(OpIdx));
  }

  /// \brief Return true if this operand bundle user has operand bundles that
  /// may read from the heap.
  bool hasReadingOperandBundles() const {
    // Implementation note: this is a conservative implementation of operand
    // bundle semantics, where *any* operand bundle forces a callsite to be at
    // least readonly.
    return hasOperandBundles();
  }

  /// \brief Return true if this operand bundle user has operand bundles that
  /// may write to the heap.
  bool hasClobberingOperandBundles() const {
    for (auto &BOI : bundle_op_infos()) {
      if (BOI.Tag->second == LLVMContext::OB_deopt ||
          BOI.Tag->second == LLVMContext::OB_funclet)
        continue;

      // This instruction has an operand bundle that is not known to us.
      // Assume the worst.
      return true;
    }

    return false;
  }

  /// \brief Return true if the bundle operand at index \p OpIdx has the
  /// attribute \p A.
  bool bundleOperandHasAttr(unsigned OpIdx,  Attribute::AttrKind A) const {
    auto &BOI = getBundleOpInfoForOperand(OpIdx);
    auto OBU = operandBundleFromBundleOpInfo(BOI);
    return OBU.operandHasAttr(OpIdx - BOI.Begin, A);
  }

  /// \brief Return true if \p Other has the same sequence of operand bundle
  /// tags with the same number of operands on each one of them as this
  /// OperandBundleUser.
  bool hasIdenticalOperandBundleSchema(
      const OperandBundleUser<InstrTy, OpIteratorTy> &Other) const {
    if (getNumOperandBundles() != Other.getNumOperandBundles())
      return false;

    return std::equal(bundle_op_info_begin(), bundle_op_info_end(),
                      Other.bundle_op_info_begin());
  };

protected:
  /// \brief Is the function attribute S disallowed by some operand bundle on
  /// this operand bundle user?
  bool isFnAttrDisallowedByOpBundle(StringRef S) const {
    // Operand bundles only possibly disallow readnone, readonly and argmenonly
    // attributes.  All String attributes are fine.
    return false;
  }

  /// \brief Is the function attribute A disallowed by some operand bundle on
  /// this operand bundle user?
  bool isFnAttrDisallowedByOpBundle(Attribute::AttrKind A) const {
    switch (A) {
    default:
      return false;

    case Attribute::ArgMemOnly:
      return hasReadingOperandBundles();

    case Attribute::ReadNone:
      return hasReadingOperandBundles();

    case Attribute::ReadOnly:
      return hasClobberingOperandBundles();
    }

    llvm_unreachable("switch has a default case!");
  }

  /// \brief Used to keep track of an operand bundle.  See the main comment on
  /// OperandBundleUser above.
  struct BundleOpInfo {
    /// \brief The operand bundle tag, interned by
    /// LLVMContextImpl::getOrInsertBundleTag.
    StringMapEntry<uint32_t> *Tag;

    /// \brief The index in the Use& vector where operands for this operand
    /// bundle starts.
    uint32_t Begin;

    /// \brief The index in the Use& vector where operands for this operand
    /// bundle ends.
    uint32_t End;

    bool operator==(const BundleOpInfo &Other) const {
      return Tag == Other.Tag && Begin == Other.Begin && End == Other.End;
    }
  };

  /// \brief Simple helper function to map a BundleOpInfo to an
  /// OperandBundleUse.
  OperandBundleUse
  operandBundleFromBundleOpInfo(const BundleOpInfo &BOI) const {
    auto op_begin = static_cast<const InstrTy *>(this)->op_begin();
    ArrayRef<Use> Inputs(op_begin + BOI.Begin, op_begin + BOI.End);
    return OperandBundleUse(BOI.Tag, Inputs);
  }

  typedef BundleOpInfo *bundle_op_iterator;
  typedef const BundleOpInfo *const_bundle_op_iterator;

  /// \brief Return the start of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  bundle_op_iterator bundle_op_info_begin() {
    if (!static_cast<InstrTy *>(this)->hasDescriptor())
      return nullptr;

    uint8_t *BytesBegin = static_cast<InstrTy *>(this)->getDescriptor().begin();
    return reinterpret_cast<bundle_op_iterator>(BytesBegin);
  }

  /// \brief Return the start of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  const_bundle_op_iterator bundle_op_info_begin() const {
    auto *NonConstThis =
        const_cast<OperandBundleUser<InstrTy, OpIteratorTy> *>(this);
    return NonConstThis->bundle_op_info_begin();
  }

  /// \brief Return the end of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  bundle_op_iterator bundle_op_info_end() {
    if (!static_cast<InstrTy *>(this)->hasDescriptor())
      return nullptr;

    uint8_t *BytesEnd = static_cast<InstrTy *>(this)->getDescriptor().end();
    return reinterpret_cast<bundle_op_iterator>(BytesEnd);
  }

  /// \brief Return the end of the list of BundleOpInfo instances associated
  /// with this OperandBundleUser.
  const_bundle_op_iterator bundle_op_info_end() const {
    auto *NonConstThis =
        const_cast<OperandBundleUser<InstrTy, OpIteratorTy> *>(this);
    return NonConstThis->bundle_op_info_end();
  }

  /// \brief Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
  iterator_range<bundle_op_iterator> bundle_op_infos() {
    return make_range(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// \brief Return the range [\p bundle_op_info_begin, \p bundle_op_info_end).
  iterator_range<const_bundle_op_iterator> bundle_op_infos() const {
    return make_range(bundle_op_info_begin(), bundle_op_info_end());
  }

  /// \brief Populate the BundleOpInfo instances and the Use& vector from \p
  /// Bundles.  Return the op_iterator pointing to the Use& one past the last
  /// last bundle operand use.
  ///
  /// Each \p OperandBundleDef instance is tracked by a OperandBundleInfo
  /// instance allocated in this User's descriptor.
  OpIteratorTy populateBundleOperandInfos(ArrayRef<OperandBundleDef> Bundles,
                                          const unsigned BeginIndex) {
    auto It = static_cast<InstrTy *>(this)->op_begin() + BeginIndex;
    for (auto &B : Bundles)
      It = std::copy(B.input_begin(), B.input_end(), It);

    auto *ContextImpl = static_cast<InstrTy *>(this)->getContext().pImpl;
    auto BI = Bundles.begin();
    unsigned CurrentIndex = BeginIndex;

    for (auto &BOI : bundle_op_infos()) {
      assert(BI != Bundles.end() && "Incorrect allocation?");

      BOI.Tag = ContextImpl->getOrInsertBundleTag(BI->getTag());
      BOI.Begin = CurrentIndex;
      BOI.End = CurrentIndex + BI->input_size();
      CurrentIndex = BOI.End;
      BI++;
    }

    assert(BI == Bundles.end() && "Incorrect allocation?");

    return It;
  }

  /// \brief Return the BundleOpInfo for the operand at index OpIdx.
  ///
  /// It is an error to call this with an OpIdx that does not correspond to an
  /// bundle operand.
  const BundleOpInfo &getBundleOpInfoForOperand(unsigned OpIdx) const {
    for (auto &BOI : bundle_op_infos())
      if (BOI.Begin <= OpIdx && OpIdx < BOI.End)
        return BOI;

    llvm_unreachable("Did not find operand bundle for operand!");
  }

  /// \brief Return the total number of values used in \p Bundles.
  static unsigned CountBundleInputs(ArrayRef<OperandBundleDef> Bundles) {
    unsigned Total = 0;
    for (auto &B : Bundles)
      Total += B.input_size();
    return Total;
  }
};

} // end llvm namespace

#endif // LLVM_IR_INSTRTYPES_H