1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
|
//===- ValueMapper.cpp - Interface shared by lib/Transforms/Utils ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the MapValue function, which is shared by various parts of
// the lib/Transforms/Utils library.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/ValueMapper.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Operator.h"
using namespace llvm;
// Out of line method to get vtable etc for class.
void ValueMapTypeRemapper::anchor() {}
void ValueMaterializer::anchor() {}
void ValueMaterializer::materializeInitFor(GlobalValue *New, GlobalValue *Old) {
}
Value *llvm::MapValue(const Value *V, ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
ValueToValueMapTy::iterator I = VM.find(V);
// If the value already exists in the map, use it.
if (I != VM.end() && I->second) return I->second;
// If we have a materializer and it can materialize a value, use that.
if (Materializer) {
if (Value *NewV =
Materializer->materializeDeclFor(const_cast<Value *>(V))) {
VM[V] = NewV;
if (auto *NewGV = dyn_cast<GlobalValue>(NewV))
Materializer->materializeInitFor(
NewGV, const_cast<GlobalValue *>(cast<GlobalValue>(V)));
return NewV;
}
}
// Global values do not need to be seeded into the VM if they
// are using the identity mapping.
if (isa<GlobalValue>(V)) {
if (Flags & RF_NullMapMissingGlobalValues) {
assert(!(Flags & RF_IgnoreMissingEntries) &&
"Illegal to specify both RF_NullMapMissingGlobalValues and "
"RF_IgnoreMissingEntries");
return nullptr;
}
return VM[V] = const_cast<Value*>(V);
}
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
// Inline asm may need *type* remapping.
FunctionType *NewTy = IA->getFunctionType();
if (TypeMapper) {
NewTy = cast<FunctionType>(TypeMapper->remapType(NewTy));
if (NewTy != IA->getFunctionType())
V = InlineAsm::get(NewTy, IA->getAsmString(), IA->getConstraintString(),
IA->hasSideEffects(), IA->isAlignStack());
}
return VM[V] = const_cast<Value*>(V);
}
if (const auto *MDV = dyn_cast<MetadataAsValue>(V)) {
const Metadata *MD = MDV->getMetadata();
// If this is a module-level metadata and we know that nothing at the module
// level is changing, then use an identity mapping.
if (!isa<LocalAsMetadata>(MD) && (Flags & RF_NoModuleLevelChanges))
return VM[V] = const_cast<Value *>(V);
auto *MappedMD = MapMetadata(MD, VM, Flags, TypeMapper, Materializer);
if (MD == MappedMD || (!MappedMD && (Flags & RF_IgnoreMissingEntries)))
return VM[V] = const_cast<Value *>(V);
// FIXME: This assert crashes during bootstrap, but I think it should be
// correct. For now, just match behaviour from before the metadata/value
// split.
//
// assert((MappedMD || (Flags & RF_NullMapMissingGlobalValues)) &&
// "Referenced metadata value not in value map");
return VM[V] = MetadataAsValue::get(V->getContext(), MappedMD);
}
// Okay, this either must be a constant (which may or may not be mappable) or
// is something that is not in the mapping table.
Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V));
if (!C)
return nullptr;
if (BlockAddress *BA = dyn_cast<BlockAddress>(C)) {
Function *F =
cast<Function>(MapValue(BA->getFunction(), VM, Flags, TypeMapper, Materializer));
BasicBlock *BB = cast_or_null<BasicBlock>(MapValue(BA->getBasicBlock(), VM,
Flags, TypeMapper, Materializer));
return VM[V] = BlockAddress::get(F, BB ? BB : BA->getBasicBlock());
}
// Otherwise, we have some other constant to remap. Start by checking to see
// if all operands have an identity remapping.
unsigned OpNo = 0, NumOperands = C->getNumOperands();
Value *Mapped = nullptr;
for (; OpNo != NumOperands; ++OpNo) {
Value *Op = C->getOperand(OpNo);
Mapped = MapValue(Op, VM, Flags, TypeMapper, Materializer);
if (Mapped != C) break;
}
// See if the type mapper wants to remap the type as well.
Type *NewTy = C->getType();
if (TypeMapper)
NewTy = TypeMapper->remapType(NewTy);
// If the result type and all operands match up, then just insert an identity
// mapping.
if (OpNo == NumOperands && NewTy == C->getType())
return VM[V] = C;
// Okay, we need to create a new constant. We've already processed some or
// all of the operands, set them all up now.
SmallVector<Constant*, 8> Ops;
Ops.reserve(NumOperands);
for (unsigned j = 0; j != OpNo; ++j)
Ops.push_back(cast<Constant>(C->getOperand(j)));
// If one of the operands mismatch, push it and the other mapped operands.
if (OpNo != NumOperands) {
Ops.push_back(cast<Constant>(Mapped));
// Map the rest of the operands that aren't processed yet.
for (++OpNo; OpNo != NumOperands; ++OpNo)
Ops.push_back(MapValue(cast<Constant>(C->getOperand(OpNo)), VM,
Flags, TypeMapper, Materializer));
}
Type *NewSrcTy = nullptr;
if (TypeMapper)
if (auto *GEPO = dyn_cast<GEPOperator>(C))
NewSrcTy = TypeMapper->remapType(GEPO->getSourceElementType());
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
return VM[V] = CE->getWithOperands(Ops, NewTy, false, NewSrcTy);
if (isa<ConstantArray>(C))
return VM[V] = ConstantArray::get(cast<ArrayType>(NewTy), Ops);
if (isa<ConstantStruct>(C))
return VM[V] = ConstantStruct::get(cast<StructType>(NewTy), Ops);
if (isa<ConstantVector>(C))
return VM[V] = ConstantVector::get(Ops);
// If this is a no-operand constant, it must be because the type was remapped.
if (isa<UndefValue>(C))
return VM[V] = UndefValue::get(NewTy);
if (isa<ConstantAggregateZero>(C))
return VM[V] = ConstantAggregateZero::get(NewTy);
assert(isa<ConstantPointerNull>(C));
return VM[V] = ConstantPointerNull::get(cast<PointerType>(NewTy));
}
static Metadata *mapToMetadata(ValueToValueMapTy &VM, const Metadata *Key,
Metadata *Val, ValueMaterializer *Materializer,
RemapFlags Flags) {
VM.MD()[Key].reset(Val);
if (Materializer && !(Flags & RF_HaveUnmaterializedMetadata)) {
auto *N = dyn_cast_or_null<MDNode>(Val);
// Need to invoke this once we have non-temporary MD.
if (!N || !N->isTemporary())
Materializer->replaceTemporaryMetadata(Key, Val);
}
return Val;
}
static Metadata *mapToSelf(ValueToValueMapTy &VM, const Metadata *MD,
ValueMaterializer *Materializer, RemapFlags Flags) {
return mapToMetadata(VM, MD, const_cast<Metadata *>(MD), Materializer, Flags);
}
static Metadata *MapMetadataImpl(const Metadata *MD,
SmallVectorImpl<MDNode *> &DistinctWorklist,
ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer);
static Metadata *mapMetadataOp(Metadata *Op,
SmallVectorImpl<MDNode *> &DistinctWorklist,
ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
if (!Op)
return nullptr;
if (Materializer && !Materializer->isMetadataNeeded(Op))
return nullptr;
if (Metadata *MappedOp = MapMetadataImpl(Op, DistinctWorklist, VM, Flags,
TypeMapper, Materializer))
return MappedOp;
// Use identity map if MappedOp is null and we can ignore missing entries.
if (Flags & RF_IgnoreMissingEntries)
return Op;
// FIXME: This assert crashes during bootstrap, but I think it should be
// correct. For now, just match behaviour from before the metadata/value
// split.
//
// assert((Flags & RF_NullMapMissingGlobalValues) &&
// "Referenced metadata not in value map!");
return nullptr;
}
/// Resolve uniquing cycles involving the given metadata.
static void resolveCycles(Metadata *MD, bool MDMaterialized) {
if (auto *N = dyn_cast_or_null<MDNode>(MD)) {
if (!MDMaterialized && N->isTemporary())
return;
if (!N->isResolved())
N->resolveCycles(MDMaterialized);
}
}
/// Remap the operands of an MDNode.
///
/// If \c Node is temporary, uniquing cycles are ignored. If \c Node is
/// distinct, uniquing cycles are resolved as they're found.
///
/// \pre \c Node.isDistinct() or \c Node.isTemporary().
static bool remapOperands(MDNode &Node,
SmallVectorImpl<MDNode *> &DistinctWorklist,
ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
assert(!Node.isUniqued() && "Expected temporary or distinct node");
const bool IsDistinct = Node.isDistinct();
bool AnyChanged = false;
for (unsigned I = 0, E = Node.getNumOperands(); I != E; ++I) {
Metadata *Old = Node.getOperand(I);
Metadata *New = mapMetadataOp(Old, DistinctWorklist, VM, Flags, TypeMapper,
Materializer);
if (Old != New) {
AnyChanged = true;
Node.replaceOperandWith(I, New);
// Resolve uniquing cycles underneath distinct nodes on the fly so they
// don't infect later operands.
if (IsDistinct)
resolveCycles(New, !(Flags & RF_HaveUnmaterializedMetadata));
}
}
return AnyChanged;
}
/// Map a distinct MDNode.
///
/// Whether distinct nodes change is independent of their operands. If \a
/// RF_MoveDistinctMDs, then they are reused, and their operands remapped in
/// place; effectively, they're moved from one graph to another. Otherwise,
/// they're cloned/duplicated, and the new copy's operands are remapped.
static Metadata *mapDistinctNode(const MDNode *Node,
SmallVectorImpl<MDNode *> &DistinctWorklist,
ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
assert(Node->isDistinct() && "Expected distinct node");
MDNode *NewMD;
if (Flags & RF_MoveDistinctMDs)
NewMD = const_cast<MDNode *>(Node);
else
NewMD = MDNode::replaceWithDistinct(Node->clone());
// Remap operands later.
DistinctWorklist.push_back(NewMD);
return mapToMetadata(VM, Node, NewMD, Materializer, Flags);
}
/// \brief Map a uniqued MDNode.
///
/// Uniqued nodes may not need to be recreated (they may map to themselves).
static Metadata *mapUniquedNode(const MDNode *Node,
SmallVectorImpl<MDNode *> &DistinctWorklist,
ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
assert(((Flags & RF_HaveUnmaterializedMetadata) || Node->isUniqued()) &&
"Expected uniqued node");
// Create a temporary node and map it upfront in case we have a uniquing
// cycle. If necessary, this mapping will get updated by RAUW logic before
// returning.
auto ClonedMD = Node->clone();
mapToMetadata(VM, Node, ClonedMD.get(), Materializer, Flags);
if (!remapOperands(*ClonedMD, DistinctWorklist, VM, Flags, TypeMapper,
Materializer)) {
// No operands changed, so use the original.
ClonedMD->replaceAllUsesWith(const_cast<MDNode *>(Node));
// Even though replaceAllUsesWith would have replaced the value map
// entry, we need to explictly map with the final non-temporary node
// to replace any temporary metadata via the callback.
return mapToSelf(VM, Node, Materializer, Flags);
}
// Uniquify the cloned node. Explicitly map it with the final non-temporary
// node so that replacement of temporary metadata via the callback occurs.
return mapToMetadata(VM, Node,
MDNode::replaceWithUniqued(std::move(ClonedMD)),
Materializer, Flags);
}
static Metadata *MapMetadataImpl(const Metadata *MD,
SmallVectorImpl<MDNode *> &DistinctWorklist,
ValueToValueMapTy &VM, RemapFlags Flags,
ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
// If the value already exists in the map, use it.
if (Metadata *NewMD = VM.MD().lookup(MD).get())
return NewMD;
if (isa<MDString>(MD))
return mapToSelf(VM, MD, Materializer, Flags);
if (isa<ConstantAsMetadata>(MD))
if ((Flags & RF_NoModuleLevelChanges))
return mapToSelf(VM, MD, Materializer, Flags);
if (const auto *VMD = dyn_cast<ValueAsMetadata>(MD)) {
Value *MappedV =
MapValue(VMD->getValue(), VM, Flags, TypeMapper, Materializer);
if (VMD->getValue() == MappedV ||
(!MappedV && (Flags & RF_IgnoreMissingEntries)))
return mapToSelf(VM, MD, Materializer, Flags);
// FIXME: This assert crashes during bootstrap, but I think it should be
// correct. For now, just match behaviour from before the metadata/value
// split.
//
// assert((MappedV || (Flags & RF_NullMapMissingGlobalValues)) &&
// "Referenced metadata not in value map!");
if (MappedV)
return mapToMetadata(VM, MD, ValueAsMetadata::get(MappedV), Materializer,
Flags);
return nullptr;
}
// Note: this cast precedes the Flags check so we always get its associated
// assertion.
const MDNode *Node = cast<MDNode>(MD);
// If this is a module-level metadata and we know that nothing at the
// module level is changing, then use an identity mapping.
if (Flags & RF_NoModuleLevelChanges)
return mapToSelf(VM, MD, Materializer, Flags);
// Require resolved nodes whenever metadata might be remapped.
assert(((Flags & RF_HaveUnmaterializedMetadata) || Node->isResolved()) &&
"Unexpected unresolved node");
if (Materializer && Node->isTemporary()) {
assert(Flags & RF_HaveUnmaterializedMetadata);
Metadata *TempMD =
Materializer->mapTemporaryMetadata(const_cast<Metadata *>(MD));
// If the above callback returned an existing temporary node, use it
// instead of the current temporary node. This happens when earlier
// function importing passes already created and saved a temporary
// metadata node for the same value id.
if (TempMD) {
mapToMetadata(VM, MD, TempMD, Materializer, Flags);
return TempMD;
}
}
if (Node->isDistinct())
return mapDistinctNode(Node, DistinctWorklist, VM, Flags, TypeMapper,
Materializer);
return mapUniquedNode(Node, DistinctWorklist, VM, Flags, TypeMapper,
Materializer);
}
Metadata *llvm::MapMetadata(const Metadata *MD, ValueToValueMapTy &VM,
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
SmallVector<MDNode *, 8> DistinctWorklist;
Metadata *NewMD = MapMetadataImpl(MD, DistinctWorklist, VM, Flags, TypeMapper,
Materializer);
// When there are no module-level changes, it's possible that the metadata
// graph has temporaries. Skip the logic to resolve cycles, since it's
// unnecessary (and invalid) in that case.
if (Flags & RF_NoModuleLevelChanges)
return NewMD;
// Resolve cycles involving the entry metadata.
resolveCycles(NewMD, !(Flags & RF_HaveUnmaterializedMetadata));
// Remap the operands of distinct MDNodes.
while (!DistinctWorklist.empty())
remapOperands(*DistinctWorklist.pop_back_val(), DistinctWorklist, VM, Flags,
TypeMapper, Materializer);
return NewMD;
}
MDNode *llvm::MapMetadata(const MDNode *MD, ValueToValueMapTy &VM,
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer) {
return cast<MDNode>(MapMetadata(static_cast<const Metadata *>(MD), VM, Flags,
TypeMapper, Materializer));
}
/// RemapInstruction - Convert the instruction operands from referencing the
/// current values into those specified by VMap.
///
void llvm::RemapInstruction(Instruction *I, ValueToValueMapTy &VMap,
RemapFlags Flags, ValueMapTypeRemapper *TypeMapper,
ValueMaterializer *Materializer){
// Remap operands.
for (User::op_iterator op = I->op_begin(), E = I->op_end(); op != E; ++op) {
Value *V = MapValue(*op, VMap, Flags, TypeMapper, Materializer);
// If we aren't ignoring missing entries, assert that something happened.
if (V)
*op = V;
else
assert((Flags & RF_IgnoreMissingEntries) &&
"Referenced value not in value map!");
}
// Remap phi nodes' incoming blocks.
if (PHINode *PN = dyn_cast<PHINode>(I)) {
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
Value *V = MapValue(PN->getIncomingBlock(i), VMap, Flags);
// If we aren't ignoring missing entries, assert that something happened.
if (V)
PN->setIncomingBlock(i, cast<BasicBlock>(V));
else
assert((Flags & RF_IgnoreMissingEntries) &&
"Referenced block not in value map!");
}
}
// Remap attached metadata.
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
I->getAllMetadata(MDs);
for (const auto &MI : MDs) {
MDNode *Old = MI.second;
MDNode *New = MapMetadata(Old, VMap, Flags, TypeMapper, Materializer);
if (New != Old)
I->setMetadata(MI.first, New);
}
if (!TypeMapper)
return;
// If the instruction's type is being remapped, do so now.
if (auto CS = CallSite(I)) {
SmallVector<Type *, 3> Tys;
FunctionType *FTy = CS.getFunctionType();
Tys.reserve(FTy->getNumParams());
for (Type *Ty : FTy->params())
Tys.push_back(TypeMapper->remapType(Ty));
CS.mutateFunctionType(FunctionType::get(
TypeMapper->remapType(I->getType()), Tys, FTy->isVarArg()));
return;
}
if (auto *AI = dyn_cast<AllocaInst>(I))
AI->setAllocatedType(TypeMapper->remapType(AI->getAllocatedType()));
if (auto *GEP = dyn_cast<GetElementPtrInst>(I)) {
GEP->setSourceElementType(
TypeMapper->remapType(GEP->getSourceElementType()));
GEP->setResultElementType(
TypeMapper->remapType(GEP->getResultElementType()));
}
I->mutateType(TypeMapper->remapType(I->getType()));
}
|