aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/DebugInfo/GSYM/GsymReader.cpp
blob: 1b448cf80b70df173a29b3c91f031b0f24009af6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//===- GsymReader.cpp -----------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/DebugInfo/GSYM/GsymReader.h"

#include <assert.h>
#include <inttypes.h>
#include <stdio.h>
#include <stdlib.h>

#include "llvm/DebugInfo/GSYM/GsymCreator.h"
#include "llvm/DebugInfo/GSYM/InlineInfo.h"
#include "llvm/DebugInfo/GSYM/LineTable.h"
#include "llvm/Support/BinaryStreamReader.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/MemoryBuffer.h"

using namespace llvm;
using namespace gsym;

GsymReader::GsymReader(std::unique_ptr<MemoryBuffer> Buffer) :
    MemBuffer(std::move(Buffer)),
    Endian(support::endian::system_endianness()) {}

  GsymReader::GsymReader(GsymReader &&RHS) = default;

GsymReader::~GsymReader() = default;

llvm::Expected<GsymReader> GsymReader::openFile(StringRef Filename) {
  // Open the input file and return an appropriate error if needed.
  ErrorOr<std::unique_ptr<MemoryBuffer>> BuffOrErr =
      MemoryBuffer::getFileOrSTDIN(Filename);
  auto Err = BuffOrErr.getError();
  if (Err)
    return llvm::errorCodeToError(Err);
  return create(BuffOrErr.get());
}

llvm::Expected<GsymReader> GsymReader::copyBuffer(StringRef Bytes) {
  auto MemBuffer = MemoryBuffer::getMemBufferCopy(Bytes, "GSYM bytes");
  return create(MemBuffer);
}

llvm::Expected<llvm::gsym::GsymReader>
GsymReader::create(std::unique_ptr<MemoryBuffer> &MemBuffer) {
  if (!MemBuffer.get())
    return createStringError(std::errc::invalid_argument,
                             "invalid memory buffer");
  GsymReader GR(std::move(MemBuffer));
  llvm::Error Err = GR.parse();
  if (Err)
    return std::move(Err);
  return std::move(GR);
}

llvm::Error
GsymReader::parse() {
  BinaryStreamReader FileData(MemBuffer->getBuffer(),
                              support::endian::system_endianness());
  // Check for the magic bytes. This file format is designed to be mmap'ed
  // into a process and accessed as read only. This is done for performance
  // and efficiency for symbolicating and parsing GSYM data.
  if (FileData.readObject(Hdr))
    return createStringError(std::errc::invalid_argument,
                             "not enough data for a GSYM header");

  const auto HostByteOrder = support::endian::system_endianness();
  switch (Hdr->Magic) {
    case GSYM_MAGIC:
      Endian = HostByteOrder;
      break;
    case GSYM_CIGAM:
      // This is a GSYM file, but not native endianness.
      Endian = sys::IsBigEndianHost ? support::little : support::big;
      Swap.reset(new SwappedData);
      break;
    default:
      return createStringError(std::errc::invalid_argument,
                               "not a GSYM file");
  }

  bool DataIsLittleEndian = HostByteOrder != support::little;
  // Read a correctly byte swapped header if we need to.
  if (Swap) {
    DataExtractor Data(MemBuffer->getBuffer(), DataIsLittleEndian, 4);
    if (auto ExpectedHdr = Header::decode(Data))
      Swap->Hdr = ExpectedHdr.get();
    else
      return ExpectedHdr.takeError();
    Hdr = &Swap->Hdr;
  }

  // Detect errors in the header and report any that are found. If we make it
  // past this without errors, we know we have a good magic value, a supported
  // version number, verified address offset size and a valid UUID size.
  if (Error Err = Hdr->checkForError())
    return Err;

  if (!Swap) {
    // This is the native endianness case that is most common and optimized for
    // efficient lookups. Here we just grab pointers to the native data and
    // use ArrayRef objects to allow efficient read only access.

    // Read the address offsets.
    if (FileData.padToAlignment(Hdr->AddrOffSize) ||
        FileData.readArray(AddrOffsets,
                           Hdr->NumAddresses * Hdr->AddrOffSize))
      return createStringError(std::errc::invalid_argument,
                              "failed to read address table");

    // Read the address info offsets.
    if (FileData.padToAlignment(4) ||
        FileData.readArray(AddrInfoOffsets, Hdr->NumAddresses))
      return createStringError(std::errc::invalid_argument,
                              "failed to read address info offsets table");

    // Read the file table.
    uint32_t NumFiles = 0;
    if (FileData.readInteger(NumFiles) || FileData.readArray(Files, NumFiles))
      return createStringError(std::errc::invalid_argument,
                              "failed to read file table");

    // Get the string table.
    FileData.setOffset(Hdr->StrtabOffset);
    if (FileData.readFixedString(StrTab.Data, Hdr->StrtabSize))
      return createStringError(std::errc::invalid_argument,
                              "failed to read string table");
} else {
  // This is the non native endianness case that is not common and not
  // optimized for lookups. Here we decode the important tables into local
  // storage and then set the ArrayRef objects to point to these swapped
  // copies of the read only data so lookups can be as efficient as possible.
  DataExtractor Data(MemBuffer->getBuffer(), DataIsLittleEndian, 4);

  // Read the address offsets.
  uint64_t Offset = alignTo(sizeof(Header), Hdr->AddrOffSize);
  Swap->AddrOffsets.resize(Hdr->NumAddresses * Hdr->AddrOffSize);
  switch (Hdr->AddrOffSize) {
    case 1:
      if (!Data.getU8(&Offset, Swap->AddrOffsets.data(), Hdr->NumAddresses))
        return createStringError(std::errc::invalid_argument,
                                  "failed to read address table");
      break;
    case 2:
      if (!Data.getU16(&Offset,
                        reinterpret_cast<uint16_t *>(Swap->AddrOffsets.data()),
                        Hdr->NumAddresses))
        return createStringError(std::errc::invalid_argument,
                                  "failed to read address table");
      break;
    case 4:
      if (!Data.getU32(&Offset,
                        reinterpret_cast<uint32_t *>(Swap->AddrOffsets.data()),
                        Hdr->NumAddresses))
        return createStringError(std::errc::invalid_argument,
                                  "failed to read address table");
      break;
    case 8:
      if (!Data.getU64(&Offset,
                        reinterpret_cast<uint64_t *>(Swap->AddrOffsets.data()),
                        Hdr->NumAddresses))
        return createStringError(std::errc::invalid_argument,
                                  "failed to read address table");
    }
    AddrOffsets = ArrayRef<uint8_t>(Swap->AddrOffsets);

    // Read the address info offsets.
    Offset = alignTo(Offset, 4);
    Swap->AddrInfoOffsets.resize(Hdr->NumAddresses);
    if (Data.getU32(&Offset, Swap->AddrInfoOffsets.data(), Hdr->NumAddresses))
      AddrInfoOffsets = ArrayRef<uint32_t>(Swap->AddrInfoOffsets);
    else
      return createStringError(std::errc::invalid_argument,
                               "failed to read address table");
    // Read the file table.
    const uint32_t NumFiles = Data.getU32(&Offset);
    if (NumFiles > 0) {
      Swap->Files.resize(NumFiles);
      if (Data.getU32(&Offset, &Swap->Files[0].Dir, NumFiles*2))
        Files = ArrayRef<FileEntry>(Swap->Files);
      else
        return createStringError(std::errc::invalid_argument,
                                 "failed to read file table");
    }
    // Get the string table.
    StrTab.Data = MemBuffer->getBuffer().substr(Hdr->StrtabOffset,
                                                Hdr->StrtabSize);
    if (StrTab.Data.empty())
      return createStringError(std::errc::invalid_argument,
                               "failed to read string table");
  }
  return Error::success();

}

const Header &GsymReader::getHeader() const {
  // The only way to get a GsymReader is from GsymReader::openFile(...) or
  // GsymReader::copyBuffer() and the header must be valid and initialized to
  // a valid pointer value, so the assert below should not trigger.
  assert(Hdr);
  return *Hdr;
}

Optional<uint64_t> GsymReader::getAddress(size_t Index) const {
  switch (Hdr->AddrOffSize) {
  case 1: return addressForIndex<uint8_t>(Index);
  case 2: return addressForIndex<uint16_t>(Index);
  case 4: return addressForIndex<uint32_t>(Index);
  case 8: return addressForIndex<uint64_t>(Index);
  }
  return llvm::None;
}

Optional<uint64_t> GsymReader::getAddressInfoOffset(size_t Index) const {
  const auto NumAddrInfoOffsets = AddrInfoOffsets.size();
  if (Index < NumAddrInfoOffsets)
    return AddrInfoOffsets[Index];
  return llvm::None;
}

Expected<uint64_t>
GsymReader::getAddressIndex(const uint64_t Addr) const {
  if (Addr < Hdr->BaseAddress)
    return createStringError(std::errc::invalid_argument,
                             "address 0x%" PRIx64 " not in GSYM", Addr);
  const uint64_t AddrOffset = Addr - Hdr->BaseAddress;
  switch (Hdr->AddrOffSize) {
  case 1: return getAddressOffsetIndex<uint8_t>(AddrOffset);
  case 2: return getAddressOffsetIndex<uint16_t>(AddrOffset);
  case 4: return getAddressOffsetIndex<uint32_t>(AddrOffset);
  case 8: return getAddressOffsetIndex<uint64_t>(AddrOffset);
  default: break;
  }
  return createStringError(std::errc::invalid_argument,
                           "unsupported address offset size %u",
                           Hdr->AddrOffSize);
}

llvm::Expected<FunctionInfo> GsymReader::getFunctionInfo(uint64_t Addr) const {
  Expected<uint64_t> AddressIndex = getAddressIndex(Addr);
  if (!AddressIndex)
    return AddressIndex.takeError();
  // Address info offsets size should have been checked in parse().
  assert(*AddressIndex < AddrInfoOffsets.size());
  auto AddrInfoOffset = AddrInfoOffsets[*AddressIndex];
  DataExtractor Data(MemBuffer->getBuffer().substr(AddrInfoOffset), Endian, 4);
  if (Optional<uint64_t> OptAddr = getAddress(*AddressIndex)) {
    auto ExpectedFI = FunctionInfo::decode(Data, *OptAddr);
    if (ExpectedFI) {
      if (ExpectedFI->Range.contains(Addr) || ExpectedFI->Range.size() == 0)
        return ExpectedFI;
      return createStringError(std::errc::invalid_argument,
                                "address 0x%" PRIx64 " not in GSYM", Addr);
    }
  }
  return createStringError(std::errc::invalid_argument,
                           "failed to extract address[%" PRIu64 "]",
                           *AddressIndex);
}