aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/llvm/lib/Analysis/SyncDependenceAnalysis.cpp
blob: 8447dc87069dbcc6c62220e7ea1e63fea0b44c44 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
//===- SyncDependenceAnalysis.cpp - Divergent Branch Dependence Calculation
//--===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements an algorithm that returns for a divergent branch
// the set of basic blocks whose phi nodes become divergent due to divergent
// control. These are the blocks that are reachable by two disjoint paths from
// the branch or loop exits that have a reaching path that is disjoint from a
// path to the loop latch.
//
// The SyncDependenceAnalysis is used in the DivergenceAnalysis to model
// control-induced divergence in phi nodes.
//
// -- Summary --
// The SyncDependenceAnalysis lazily computes sync dependences [3].
// The analysis evaluates the disjoint path criterion [2] by a reduction
// to SSA construction. The SSA construction algorithm is implemented as
// a simple data-flow analysis [1].
//
// [1] "A Simple, Fast Dominance Algorithm", SPI '01, Cooper, Harvey and Kennedy
// [2] "Efficiently Computing Static Single Assignment Form
//     and the Control Dependence Graph", TOPLAS '91,
//           Cytron, Ferrante, Rosen, Wegman and Zadeck
// [3] "Improving Performance of OpenCL on CPUs", CC '12, Karrenberg and Hack
// [4] "Divergence Analysis", TOPLAS '13, Sampaio, Souza, Collange and Pereira
//
// -- Sync dependence --
// Sync dependence [4] characterizes the control flow aspect of the
// propagation of branch divergence. For example,
//
//   %cond = icmp slt i32 %tid, 10
//   br i1 %cond, label %then, label %else
// then:
//   br label %merge
// else:
//   br label %merge
// merge:
//   %a = phi i32 [ 0, %then ], [ 1, %else ]
//
// Suppose %tid holds the thread ID. Although %a is not data dependent on %tid
// because %tid is not on its use-def chains, %a is sync dependent on %tid
// because the branch "br i1 %cond" depends on %tid and affects which value %a
// is assigned to.
//
// -- Reduction to SSA construction --
// There are two disjoint paths from A to X, if a certain variant of SSA
// construction places a phi node in X under the following set-up scheme [2].
//
// This variant of SSA construction ignores incoming undef values.
// That is paths from the entry without a definition do not result in
// phi nodes.
//
//       entry
//     /      \
//    A        \
//  /   \       Y
// B     C     /
//  \   /  \  /
//    D     E
//     \   /
//       F
// Assume that A contains a divergent branch. We are interested
// in the set of all blocks where each block is reachable from A
// via two disjoint paths. This would be the set {D, F} in this
// case.
// To generally reduce this query to SSA construction we introduce
// a virtual variable x and assign to x different values in each
// successor block of A.
//           entry
//         /      \
//        A        \
//      /   \       Y
// x = 0   x = 1   /
//      \  /   \  /
//        D     E
//         \   /
//           F
// Our flavor of SSA construction for x will construct the following
//            entry
//          /      \
//         A        \
//       /   \       Y
// x0 = 0   x1 = 1  /
//       \   /   \ /
//      x2=phi    E
//         \     /
//          x3=phi
// The blocks D and F contain phi nodes and are thus each reachable
// by two disjoins paths from A.
//
// -- Remarks --
// In case of loop exits we need to check the disjoint path criterion for loops
// [2]. To this end, we check whether the definition of x differs between the
// loop exit and the loop header (_after_ SSA construction).
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/PostDominators.h"
#include "llvm/Analysis/SyncDependenceAnalysis.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"

#include <stack>
#include <unordered_set>

#define DEBUG_TYPE "sync-dependence"

namespace llvm {

ConstBlockSet SyncDependenceAnalysis::EmptyBlockSet;

SyncDependenceAnalysis::SyncDependenceAnalysis(const DominatorTree &DT,
                                               const PostDominatorTree &PDT,
                                               const LoopInfo &LI)
    : FuncRPOT(DT.getRoot()->getParent()), DT(DT), PDT(PDT), LI(LI) {}

SyncDependenceAnalysis::~SyncDependenceAnalysis() {}

using FunctionRPOT = ReversePostOrderTraversal<const Function *>;

// divergence propagator for reducible CFGs
struct DivergencePropagator {
  const FunctionRPOT &FuncRPOT;
  const DominatorTree &DT;
  const PostDominatorTree &PDT;
  const LoopInfo &LI;

  // identified join points
  std::unique_ptr<ConstBlockSet> JoinBlocks;

  // reached loop exits (by a path disjoint to a path to the loop header)
  SmallPtrSet<const BasicBlock *, 4> ReachedLoopExits;

  // if DefMap[B] == C then C is the dominating definition at block B
  // if DefMap[B] ~ undef then we haven't seen B yet
  // if DefMap[B] == B then B is a join point of disjoint paths from X or B is
  // an immediate successor of X (initial value).
  using DefiningBlockMap = std::map<const BasicBlock *, const BasicBlock *>;
  DefiningBlockMap DefMap;

  // all blocks with pending visits
  std::unordered_set<const BasicBlock *> PendingUpdates;

  DivergencePropagator(const FunctionRPOT &FuncRPOT, const DominatorTree &DT,
                       const PostDominatorTree &PDT, const LoopInfo &LI)
      : FuncRPOT(FuncRPOT), DT(DT), PDT(PDT), LI(LI),
        JoinBlocks(new ConstBlockSet) {}

  // set the definition at @block and mark @block as pending for a visit
  void addPending(const BasicBlock &Block, const BasicBlock &DefBlock) {
    bool WasAdded = DefMap.emplace(&Block, &DefBlock).second;
    if (WasAdded)
      PendingUpdates.insert(&Block);
  }

  void printDefs(raw_ostream &Out) {
    Out << "Propagator::DefMap {\n";
    for (const auto *Block : FuncRPOT) {
      auto It = DefMap.find(Block);
      Out << Block->getName() << " : ";
      if (It == DefMap.end()) {
        Out << "\n";
      } else {
        const auto *DefBlock = It->second;
        Out << (DefBlock ? DefBlock->getName() : "<null>") << "\n";
      }
    }
    Out << "}\n";
  }

  // process @succBlock with reaching definition @defBlock
  // the original divergent branch was in @parentLoop (if any)
  void visitSuccessor(const BasicBlock &SuccBlock, const Loop *ParentLoop,
                      const BasicBlock &DefBlock) {

    // @succBlock is a loop exit
    if (ParentLoop && !ParentLoop->contains(&SuccBlock)) {
      DefMap.emplace(&SuccBlock, &DefBlock);
      ReachedLoopExits.insert(&SuccBlock);
      return;
    }

    // first reaching def?
    auto ItLastDef = DefMap.find(&SuccBlock);
    if (ItLastDef == DefMap.end()) {
      addPending(SuccBlock, DefBlock);
      return;
    }

    // a join of at least two definitions
    if (ItLastDef->second != &DefBlock) {
      // do we know this join already?
      if (!JoinBlocks->insert(&SuccBlock).second)
        return;

      // update the definition
      addPending(SuccBlock, SuccBlock);
    }
  }

  // find all blocks reachable by two disjoint paths from @rootTerm.
  // This method works for both divergent terminators and loops with
  // divergent exits.
  // @rootBlock is either the block containing the branch or the header of the
  // divergent loop.
  // @nodeSuccessors is the set of successors of the node (Loop or Terminator)
  // headed by @rootBlock.
  // @parentLoop is the parent loop of the Loop or the loop that contains the
  // Terminator.
  template <typename SuccessorIterable>
  std::unique_ptr<ConstBlockSet>
  computeJoinPoints(const BasicBlock &RootBlock,
                    SuccessorIterable NodeSuccessors, const Loop *ParentLoop) {
    assert(JoinBlocks);

    LLVM_DEBUG(dbgs() << "SDA:computeJoinPoints. Parent loop: " << (ParentLoop ? ParentLoop->getName() : "<null>") << "\n" );

    // bootstrap with branch targets
    for (const auto *SuccBlock : NodeSuccessors) {
      DefMap.emplace(SuccBlock, SuccBlock);

      if (ParentLoop && !ParentLoop->contains(SuccBlock)) {
        // immediate loop exit from node.
        ReachedLoopExits.insert(SuccBlock);
      } else {
        // regular successor
        PendingUpdates.insert(SuccBlock);
      }
    }

    LLVM_DEBUG(
      dbgs() << "SDA: rpo order:\n";
      for (const auto * RpoBlock : FuncRPOT) {
        dbgs() << "- " << RpoBlock->getName() << "\n";
      }
    );

    auto ItBeginRPO = FuncRPOT.begin();

    // skip until term (TODO RPOT won't let us start at @term directly)
    for (; *ItBeginRPO != &RootBlock; ++ItBeginRPO) {}

    auto ItEndRPO = FuncRPOT.end();
    assert(ItBeginRPO != ItEndRPO);

    // propagate definitions at the immediate successors of the node in RPO
    auto ItBlockRPO = ItBeginRPO;
    while ((++ItBlockRPO != ItEndRPO) &&
           !PendingUpdates.empty()) {
      const auto *Block = *ItBlockRPO;
      LLVM_DEBUG(dbgs() << "SDA::joins. visiting " << Block->getName() << "\n");

      // skip Block if not pending update
      auto ItPending = PendingUpdates.find(Block);
      if (ItPending == PendingUpdates.end())
        continue;
      PendingUpdates.erase(ItPending);

      // propagate definition at Block to its successors
      auto ItDef = DefMap.find(Block);
      const auto *DefBlock = ItDef->second;
      assert(DefBlock);

      auto *BlockLoop = LI.getLoopFor(Block);
      if (ParentLoop &&
          (ParentLoop != BlockLoop && ParentLoop->contains(BlockLoop))) {
        // if the successor is the header of a nested loop pretend its a
        // single node with the loop's exits as successors
        SmallVector<BasicBlock *, 4> BlockLoopExits;
        BlockLoop->getExitBlocks(BlockLoopExits);
        for (const auto *BlockLoopExit : BlockLoopExits) {
          visitSuccessor(*BlockLoopExit, ParentLoop, *DefBlock);
        }

      } else {
        // the successors are either on the same loop level or loop exits
        for (const auto *SuccBlock : successors(Block)) {
          visitSuccessor(*SuccBlock, ParentLoop, *DefBlock);
        }
      }
    }

    LLVM_DEBUG(dbgs() << "SDA::joins. After propagation:\n"; printDefs(dbgs()));

    // We need to know the definition at the parent loop header to decide
    // whether the definition at the header is different from the definition at
    // the loop exits, which would indicate a divergent loop exits.
    //
    // A // loop header
    // |
    // B // nested loop header
    // |
    // C -> X (exit from B loop) -..-> (A latch)
    // |
    // D -> back to B (B latch)
    // |
    // proper exit from both loops
    //
    // analyze reached loop exits
    if (!ReachedLoopExits.empty()) {
      const BasicBlock *ParentLoopHeader =
          ParentLoop ? ParentLoop->getHeader() : nullptr;

      assert(ParentLoop);
      auto ItHeaderDef = DefMap.find(ParentLoopHeader);
      const auto *HeaderDefBlock = (ItHeaderDef == DefMap.end()) ? nullptr : ItHeaderDef->second;

      LLVM_DEBUG(printDefs(dbgs()));
      assert(HeaderDefBlock && "no definition at header of carrying loop");

      for (const auto *ExitBlock : ReachedLoopExits) {
        auto ItExitDef = DefMap.find(ExitBlock);
        assert((ItExitDef != DefMap.end()) &&
               "no reaching def at reachable loop exit");
        if (ItExitDef->second != HeaderDefBlock) {
          JoinBlocks->insert(ExitBlock);
        }
      }
    }

    return std::move(JoinBlocks);
  }
};

const ConstBlockSet &SyncDependenceAnalysis::join_blocks(const Loop &Loop) {
  using LoopExitVec = SmallVector<BasicBlock *, 4>;
  LoopExitVec LoopExits;
  Loop.getExitBlocks(LoopExits);
  if (LoopExits.size() < 1) {
    return EmptyBlockSet;
  }

  // already available in cache?
  auto ItCached = CachedLoopExitJoins.find(&Loop);
  if (ItCached != CachedLoopExitJoins.end()) {
    return *ItCached->second;
  }

  // compute all join points
  DivergencePropagator Propagator{FuncRPOT, DT, PDT, LI};
  auto JoinBlocks = Propagator.computeJoinPoints<const LoopExitVec &>(
      *Loop.getHeader(), LoopExits, Loop.getParentLoop());

  auto ItInserted = CachedLoopExitJoins.emplace(&Loop, std::move(JoinBlocks));
  assert(ItInserted.second);
  return *ItInserted.first->second;
}

const ConstBlockSet &
SyncDependenceAnalysis::join_blocks(const Instruction &Term) {
  // trivial case
  if (Term.getNumSuccessors() < 1) {
    return EmptyBlockSet;
  }

  // already available in cache?
  auto ItCached = CachedBranchJoins.find(&Term);
  if (ItCached != CachedBranchJoins.end())
    return *ItCached->second;

  // compute all join points
  DivergencePropagator Propagator{FuncRPOT, DT, PDT, LI};
  const auto &TermBlock = *Term.getParent();
  auto JoinBlocks = Propagator.computeJoinPoints<succ_const_range>(
      TermBlock, successors(Term.getParent()), LI.getLoopFor(&TermBlock));

  auto ItInserted = CachedBranchJoins.emplace(&Term, std::move(JoinBlocks));
  assert(ItInserted.second);
  return *ItInserted.first->second;
}

} // namespace llvm