aboutsummaryrefslogtreecommitdiff
path: root/contrib/gcc/loop-doloop.c
blob: 7b9d168157a3143f13e7e79b31dde93d1ec9fa76 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
/* Perform doloop optimizations
   Copyright (C) 2004, 2005, 2006 Free Software Foundation, Inc.
   Based on code by Michael P. Hayes (m.hayes@elec.canterbury.ac.nz)

This file is part of GCC.

GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.

GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING.  If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA.  */

#include "config.h"
#include "system.h"
#include "coretypes.h"
#include "tm.h"
#include "rtl.h"
#include "flags.h"
#include "expr.h"
#include "hard-reg-set.h"
#include "basic-block.h"
#include "toplev.h"
#include "tm_p.h"
#include "cfgloop.h"
#include "output.h"
#include "params.h"
#include "target.h"

/* This module is used to modify loops with a determinable number of
   iterations to use special low-overhead looping instructions.

   It first validates whether the loop is well behaved and has a
   determinable number of iterations (either at compile or run-time).
   It then modifies the loop to use a low-overhead looping pattern as
   follows:

   1. A pseudo register is allocated as the loop iteration counter.

   2. The number of loop iterations is calculated and is stored
      in the loop counter.

   3. At the end of the loop, the jump insn is replaced by the
      doloop_end pattern.  The compare must remain because it might be
      used elsewhere.  If the loop-variable or condition register are
      used elsewhere, they will be eliminated by flow.

   4. An optional doloop_begin pattern is inserted at the top of the
      loop.

   TODO The optimization should only performed when either the biv used for exit
   condition is unused at all except for the exit test, or if we do not have to
   change its value, since otherwise we have to add a new induction variable,
   which usually will not pay up (unless the cost of the doloop pattern is
   somehow extremely lower than the cost of compare & jump, or unless the bct
   register cannot be used for anything else but doloop -- ??? detect these
   cases).  */

#ifdef HAVE_doloop_end

/* Return the loop termination condition for PATTERN or zero
   if it is not a decrement and branch jump insn.  */

rtx
doloop_condition_get (rtx pattern)
{
  rtx cmp;
  rtx inc;
  rtx reg;
  rtx inc_src;
  rtx condition;

  /* The canonical doloop pattern we expect is:

     (parallel [(set (pc) (if_then_else (condition)
                                        (label_ref (label))
                                        (pc)))
                (set (reg) (plus (reg) (const_int -1)))
                (additional clobbers and uses)])

     Some targets (IA-64) wrap the set of the loop counter in
     an if_then_else too.

     In summary, the branch must be the first entry of the
     parallel (also required by jump.c), and the second
     entry of the parallel must be a set of the loop counter
     register.  */

  if (GET_CODE (pattern) != PARALLEL)
    return 0;

  cmp = XVECEXP (pattern, 0, 0);
  inc = XVECEXP (pattern, 0, 1);

  /* Check for (set (reg) (something)).  */
  if (GET_CODE (inc) != SET)
    return 0;
  reg = SET_DEST (inc);
  if (! REG_P (reg))
    return 0;

  /* Check if something = (plus (reg) (const_int -1)).
     On IA-64, this decrement is wrapped in an if_then_else.  */
  inc_src = SET_SRC (inc);
  if (GET_CODE (inc_src) == IF_THEN_ELSE)
    inc_src = XEXP (inc_src, 1);
  if (GET_CODE (inc_src) != PLUS
      || XEXP (inc_src, 0) != reg
      || XEXP (inc_src, 1) != constm1_rtx)
    return 0;

  /* Check for (set (pc) (if_then_else (condition)
                                       (label_ref (label))
                                       (pc))).  */
  if (GET_CODE (cmp) != SET
      || SET_DEST (cmp) != pc_rtx
      || GET_CODE (SET_SRC (cmp)) != IF_THEN_ELSE
      || GET_CODE (XEXP (SET_SRC (cmp), 1)) != LABEL_REF
      || XEXP (SET_SRC (cmp), 2) != pc_rtx)
    return 0;

  /* Extract loop termination condition.  */
  condition = XEXP (SET_SRC (cmp), 0);

  /* We expect a GE or NE comparison with 0 or 1.  */
  if ((GET_CODE (condition) != GE
       && GET_CODE (condition) != NE)
      || (XEXP (condition, 1) != const0_rtx
          && XEXP (condition, 1) != const1_rtx))
    return 0;

  if ((XEXP (condition, 0) == reg)
      || (GET_CODE (XEXP (condition, 0)) == PLUS
		   && XEXP (XEXP (condition, 0), 0) == reg))
    return condition;

  /* ??? If a machine uses a funny comparison, we could return a
     canonicalized form here.  */

  return 0;
}

/* Return nonzero if the loop specified by LOOP is suitable for
   the use of special low-overhead looping instructions.  DESC
   describes the number of iterations of the loop.  */

static bool
doloop_valid_p (struct loop *loop, struct niter_desc *desc)
{
  basic_block *body = get_loop_body (loop), bb;
  rtx insn;
  unsigned i;
  bool result = true;

  /* Check for loops that may not terminate under special conditions.  */
  if (!desc->simple_p
      || desc->assumptions
      || desc->infinite)
    {
      /* There are some cases that would require a special attention.
	 For example if the comparison is LEU and the comparison value
	 is UINT_MAX then the loop will not terminate.  Similarly, if the
	 comparison code is GEU and the comparison value is 0, the
	 loop will not terminate.

	 If the absolute increment is not 1, the loop can be infinite
	 even with LTU/GTU, e.g. for (i = 3; i > 0; i -= 2)

	 ??? We could compute these conditions at run-time and have a
	 additional jump around the loop to ensure an infinite loop.
	 However, it is very unlikely that this is the intended
	 behavior of the loop and checking for these rare boundary
	 conditions would pessimize all other code.

	 If the loop is executed only a few times an extra check to
	 restart the loop could use up most of the benefits of using a
	 count register loop.  Note however, that normally, this
	 restart branch would never execute, so it could be predicted
	 well by the CPU.  We should generate the pessimistic code by
	 default, and have an option, e.g. -funsafe-loops that would
	 enable count-register loops in this case.  */
      if (dump_file)
	fprintf (dump_file, "Doloop: Possible infinite iteration case.\n");
      result = false;
      goto cleanup;
    }

  for (i = 0; i < loop->num_nodes; i++)
    {
      bb = body[i];

      for (insn = BB_HEAD (bb);
	   insn != NEXT_INSN (BB_END (bb));
	   insn = NEXT_INSN (insn))
	{
	  /* Different targets have different necessities for low-overhead
	     looping.  Call the back end for each instruction within the loop
	     to let it decide whether the insn prohibits a low-overhead loop.
	     It will then return the cause for it to emit to the dump file.  */
	  const char * invalid = targetm.invalid_within_doloop (insn);
	  if (invalid)
	    {
	      if (dump_file)
		fprintf (dump_file, "Doloop: %s\n", invalid);
	      result = false;
	      goto cleanup;
	    }
	}
    }
  result = true;

cleanup:
  free (body);

  return result;
}

/* Adds test of COND jumping to DEST on edge *E and set *E to the new fallthru
   edge.  If the condition is always false, do not do anything.  If it is always
   true, redirect E to DEST and return false.  In all other cases, true is
   returned.  */

static bool
add_test (rtx cond, edge *e, basic_block dest)
{
  rtx seq, jump, label;
  enum machine_mode mode;
  rtx op0 = XEXP (cond, 0), op1 = XEXP (cond, 1);
  enum rtx_code code = GET_CODE (cond);
  basic_block bb;

  mode = GET_MODE (XEXP (cond, 0));
  if (mode == VOIDmode)
    mode = GET_MODE (XEXP (cond, 1));

  start_sequence ();
  op0 = force_operand (op0, NULL_RTX);
  op1 = force_operand (op1, NULL_RTX);
  label = block_label (dest);
  do_compare_rtx_and_jump (op0, op1, code, 0, mode, NULL_RTX, NULL_RTX, label);

  jump = get_last_insn ();
  if (!JUMP_P (jump))
    {
      /* The condition is always false and the jump was optimized out.  */
      end_sequence ();
      return true;
    }

  seq = get_insns ();
  end_sequence ();
  bb = loop_split_edge_with (*e, seq);
  *e = single_succ_edge (bb);

  if (any_uncondjump_p (jump))
    {
      /* The condition is always true.  */
      delete_insn (jump);
      redirect_edge_and_branch_force (*e, dest);
      return false;
    }
      
  JUMP_LABEL (jump) = label;

  /* The jump is supposed to handle an unlikely special case.  */
  REG_NOTES (jump)
	  = gen_rtx_EXPR_LIST (REG_BR_PROB,
			       const0_rtx, REG_NOTES (jump));
  LABEL_NUSES (label)++;

  make_edge (bb, dest, (*e)->flags & ~EDGE_FALLTHRU);
  return true;
}

/* Modify the loop to use the low-overhead looping insn where LOOP
   describes the loop, DESC describes the number of iterations of the
   loop, and DOLOOP_INSN is the low-overhead looping insn to emit at the
   end of the loop.  CONDITION is the condition separated from the
   DOLOOP_SEQ.  COUNT is the number of iterations of the LOOP.  */

static void
doloop_modify (struct loop *loop, struct niter_desc *desc,
	       rtx doloop_seq, rtx condition, rtx count)
{
  rtx counter_reg;
  rtx tmp, noloop = NULL_RTX;
  rtx sequence;
  rtx jump_insn;
  rtx jump_label;
  int nonneg = 0;
  bool increment_count;
  basic_block loop_end = desc->out_edge->src;
  enum machine_mode mode;

  jump_insn = BB_END (loop_end);

  if (dump_file)
    {
      fprintf (dump_file, "Doloop: Inserting doloop pattern (");
      if (desc->const_iter)
	fprintf (dump_file, HOST_WIDEST_INT_PRINT_DEC, desc->niter);
      else
	fputs ("runtime", dump_file);
      fputs (" iterations).\n", dump_file);
    }

  /* Discard original jump to continue loop.  The original compare
     result may still be live, so it cannot be discarded explicitly.  */
  delete_insn (jump_insn);

  counter_reg = XEXP (condition, 0);
  if (GET_CODE (counter_reg) == PLUS)
    counter_reg = XEXP (counter_reg, 0);
  mode = GET_MODE (counter_reg);

  increment_count = false;
  switch (GET_CODE (condition))
    {
    case NE:
      /* Currently only NE tests against zero and one are supported.  */
      noloop = XEXP (condition, 1);
      if (noloop != const0_rtx)
	{
	  gcc_assert (noloop == const1_rtx);
	  increment_count = true;
	}
      break;

    case GE:
      /* Currently only GE tests against zero are supported.  */
      gcc_assert (XEXP (condition, 1) == const0_rtx);

      noloop = constm1_rtx;

      /* The iteration count does not need incrementing for a GE test.  */
      increment_count = false;

      /* Determine if the iteration counter will be non-negative.
	 Note that the maximum value loaded is iterations_max - 1.  */
      if (desc->niter_max
	  <= ((unsigned HOST_WIDEST_INT) 1
	      << (GET_MODE_BITSIZE (mode) - 1)))
	nonneg = 1;
      break;

      /* Abort if an invalid doloop pattern has been generated.  */
    default:
      gcc_unreachable ();
    }

  if (increment_count)
    count = simplify_gen_binary (PLUS, mode, count, const1_rtx);

  /* Insert initialization of the count register into the loop header.  */
  start_sequence ();
  tmp = force_operand (count, counter_reg);
  convert_move (counter_reg, tmp, 1);
  sequence = get_insns ();
  end_sequence ();
  emit_insn_after (sequence, BB_END (loop_preheader_edge (loop)->src));

  if (desc->noloop_assumptions)
    {
      rtx ass = copy_rtx (desc->noloop_assumptions);
      basic_block preheader = loop_preheader_edge (loop)->src;
      basic_block set_zero
	      = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
      basic_block new_preheader
	      = loop_split_edge_with (loop_preheader_edge (loop), NULL_RTX);
      edge te;

      /* Expand the condition testing the assumptions and if it does not pass,
	 reset the count register to 0.  */
      redirect_edge_and_branch_force (single_succ_edge (preheader), new_preheader);
      set_immediate_dominator (CDI_DOMINATORS, new_preheader, preheader);

      set_zero->count = 0;
      set_zero->frequency = 0;

      te = single_succ_edge (preheader);
      for (; ass; ass = XEXP (ass, 1))
	if (!add_test (XEXP (ass, 0), &te, set_zero))
	  break;

      if (ass)
	{
	  /* We reached a condition that is always true.  This is very hard to
	     reproduce (such a loop does not roll, and thus it would most
	     likely get optimized out by some of the preceding optimizations).
	     In fact, I do not have any testcase for it.  However, it would
	     also be very hard to show that it is impossible, so we must
	     handle this case.  */
	  set_zero->count = preheader->count;
	  set_zero->frequency = preheader->frequency;
	}
 
      if (EDGE_COUNT (set_zero->preds) == 0)
	{
	  /* All the conditions were simplified to false, remove the
	     unreachable set_zero block.  */
	  remove_bb_from_loops (set_zero);
	  delete_basic_block (set_zero);
	}
      else
	{
	  /* Reset the counter to zero in the set_zero block.  */
	  start_sequence ();
	  convert_move (counter_reg, noloop, 0);
	  sequence = get_insns ();
	  end_sequence ();
	  emit_insn_after (sequence, BB_END (set_zero));
      
	  set_immediate_dominator (CDI_DOMINATORS, set_zero,
				   recount_dominator (CDI_DOMINATORS,
						      set_zero));
	}

      set_immediate_dominator (CDI_DOMINATORS, new_preheader,
			       recount_dominator (CDI_DOMINATORS,
						  new_preheader));
    }

  /* Some targets (eg, C4x) need to initialize special looping
     registers.  */
#ifdef HAVE_doloop_begin
  {
    rtx init;
    unsigned level = get_loop_level (loop) + 1;
    init = gen_doloop_begin (counter_reg,
			     desc->const_iter ? desc->niter_expr : const0_rtx,
			     GEN_INT (desc->niter_max),
			     GEN_INT (level));
    if (init)
      {
	start_sequence ();
	emit_insn (init);
	sequence = get_insns ();
	end_sequence ();
	emit_insn_after (sequence, BB_END (loop_preheader_edge (loop)->src));
      }
  }
#endif

  /* Insert the new low-overhead looping insn.  */
  emit_jump_insn_after (doloop_seq, BB_END (loop_end));
  jump_insn = BB_END (loop_end);
  jump_label = block_label (desc->in_edge->dest);
  JUMP_LABEL (jump_insn) = jump_label;
  LABEL_NUSES (jump_label)++;

  /* Ensure the right fallthru edge is marked, for case we have reversed
     the condition.  */
  desc->in_edge->flags &= ~EDGE_FALLTHRU;
  desc->out_edge->flags |= EDGE_FALLTHRU;

  /* Add a REG_NONNEG note if the actual or estimated maximum number
     of iterations is non-negative.  */
  if (nonneg)
    {
      REG_NOTES (jump_insn)
	= gen_rtx_EXPR_LIST (REG_NONNEG, NULL_RTX, REG_NOTES (jump_insn));
    }
}

/* Process loop described by LOOP validating that the loop is suitable for
   conversion to use a low overhead looping instruction, replacing the jump
   insn where suitable.  Returns true if the loop was successfully
   modified.  */

static bool
doloop_optimize (struct loop *loop)
{
  enum machine_mode mode;
  rtx doloop_seq, doloop_pat, doloop_reg;
  rtx iterations, count;
  rtx iterations_max;
  rtx start_label;
  rtx condition;
  unsigned level, est_niter;
  int max_cost;
  struct niter_desc *desc;
  unsigned word_mode_size;
  unsigned HOST_WIDE_INT word_mode_max;

  if (dump_file)
    fprintf (dump_file, "Doloop: Processing loop %d.\n", loop->num);

  iv_analysis_loop_init (loop);

  /* Find the simple exit of a LOOP.  */
  desc = get_simple_loop_desc (loop);

  /* Check that loop is a candidate for a low-overhead looping insn.  */
  if (!doloop_valid_p (loop, desc))
    {
      if (dump_file)
	fprintf (dump_file,
		 "Doloop: The loop is not suitable.\n");
      return false;
    }
  mode = desc->mode;

  est_niter = 3;
  if (desc->const_iter)
    est_niter = desc->niter;
  /* If the estimate on number of iterations is reliable (comes from profile
     feedback), use it.  Do not use it normally, since the expected number
     of iterations of an unrolled loop is 2.  */
  if (loop->header->count)
    est_niter = expected_loop_iterations (loop);

  if (est_niter < 3)
    {
      if (dump_file)
	fprintf (dump_file,
		 "Doloop: Too few iterations (%u) to be profitable.\n",
		 est_niter);
      return false;
    }

  max_cost
    = COSTS_N_INSNS (PARAM_VALUE (PARAM_MAX_ITERATIONS_COMPUTATION_COST));
  if (rtx_cost (desc->niter_expr, SET) > max_cost)
    {
      if (dump_file)
	fprintf (dump_file,
		 "Doloop: number of iterations too costly to compute.\n");
      return false;
    }

  count = copy_rtx (desc->niter_expr);
  iterations = desc->const_iter ? desc->niter_expr : const0_rtx;
  iterations_max = GEN_INT (desc->niter_max);
  level = get_loop_level (loop) + 1;

  /* Generate looping insn.  If the pattern FAILs then give up trying
     to modify the loop since there is some aspect the back-end does
     not like.  */
  start_label = block_label (desc->in_edge->dest);
  doloop_reg = gen_reg_rtx (mode);
  doloop_seq = gen_doloop_end (doloop_reg, iterations, iterations_max,
			       GEN_INT (level), start_label);

  word_mode_size = GET_MODE_BITSIZE (word_mode);
  word_mode_max
	  = ((unsigned HOST_WIDE_INT) 1 << (word_mode_size - 1) << 1) - 1;
  if (! doloop_seq
      && mode != word_mode
      /* Before trying mode different from the one in that # of iterations is
	 computed, we must be sure that the number of iterations fits into
	 the new mode.  */
      && (word_mode_size >= GET_MODE_BITSIZE (mode)
	  || desc->niter_max <= word_mode_max))
    {
      if (word_mode_size > GET_MODE_BITSIZE (mode))
	{
	  count = simplify_gen_unary (ZERO_EXTEND, word_mode,
				      count, mode);
	  iterations = simplify_gen_unary (ZERO_EXTEND, word_mode,
					   iterations, mode);
	  iterations_max = simplify_gen_unary (ZERO_EXTEND, word_mode,
					       iterations_max, mode);
	}
      else
	{
	  count = lowpart_subreg (word_mode, count, mode);
	  iterations = lowpart_subreg (word_mode, iterations, mode);
	  iterations_max = lowpart_subreg (word_mode, iterations_max, mode);
	}
      PUT_MODE (doloop_reg, word_mode);
      doloop_seq = gen_doloop_end (doloop_reg, iterations, iterations_max,
				   GEN_INT (level), start_label);
    }
  if (! doloop_seq)
    {
      if (dump_file)
	fprintf (dump_file,
		 "Doloop: Target unwilling to use doloop pattern!\n");
      return false;
    }

  /* If multiple instructions were created, the last must be the
     jump instruction.  Also, a raw define_insn may yield a plain
     pattern.  */
  doloop_pat = doloop_seq;
  if (INSN_P (doloop_pat))
    {
      while (NEXT_INSN (doloop_pat) != NULL_RTX)
	doloop_pat = NEXT_INSN (doloop_pat);
      if (JUMP_P (doloop_pat))
	doloop_pat = PATTERN (doloop_pat);
      else
	doloop_pat = NULL_RTX;
    }

  if (! doloop_pat
      || ! (condition = doloop_condition_get (doloop_pat)))
    {
      if (dump_file)
	fprintf (dump_file, "Doloop: Unrecognizable doloop pattern!\n");
      return false;
    }

  doloop_modify (loop, desc, doloop_seq, condition, count);
  return true;
}

/* This is the main entry point.  Process all LOOPS using doloop_optimize.  */

void
doloop_optimize_loops (struct loops *loops)
{
  unsigned i;
  struct loop *loop;

  for (i = 1; i < loops->num; i++)
    {
      loop = loops->parray[i];
      if (!loop)
	continue;

      doloop_optimize (loop);
    }

  iv_analysis_done ();

#ifdef ENABLE_CHECKING
  verify_dominators (CDI_DOMINATORS);
  verify_loop_structure (loops);
#endif
}
#endif /* HAVE_doloop_end */