aboutsummaryrefslogtreecommitdiff
path: root/ELF/Arch/X86.cpp
blob: a1e9bcaf1b129acdecb0485a16224ef32abab749 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
//===- X86.cpp ------------------------------------------------------------===//
//
//                             The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "Error.h"
#include "InputFiles.h"
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
#include "llvm/Support/Endian.h"

using namespace llvm;
using namespace llvm::support::endian;
using namespace llvm::ELF;
using namespace lld;
using namespace lld::elf;

namespace {
class X86 final : public TargetInfo {
public:
  X86();
  RelExpr getRelExpr(uint32_t Type, const SymbolBody &S,
                     const uint8_t *Loc) const override;
  int64_t getImplicitAddend(const uint8_t *Buf, uint32_t Type) const override;
  void writeGotPltHeader(uint8_t *Buf) const override;
  uint32_t getDynRel(uint32_t Type) const override;
  void writeGotPlt(uint8_t *Buf, const SymbolBody &S) const override;
  void writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const override;
  void writePltHeader(uint8_t *Buf) const override;
  void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
                int32_t Index, unsigned RelOff) const override;
  void relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;

  RelExpr adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
                          RelExpr Expr) const override;
  void relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  void relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  void relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
  void relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const override;
};
} // namespace

X86::X86() {
  GotBaseSymOff = -1;
  CopyRel = R_386_COPY;
  GotRel = R_386_GLOB_DAT;
  PltRel = R_386_JUMP_SLOT;
  IRelativeRel = R_386_IRELATIVE;
  RelativeRel = R_386_RELATIVE;
  TlsGotRel = R_386_TLS_TPOFF;
  TlsModuleIndexRel = R_386_TLS_DTPMOD32;
  TlsOffsetRel = R_386_TLS_DTPOFF32;
  GotEntrySize = 4;
  GotPltEntrySize = 4;
  PltEntrySize = 16;
  PltHeaderSize = 16;
  TlsGdRelaxSkip = 2;
  TrapInstr = 0xcccccccc; // 0xcc = INT3
}

RelExpr X86::getRelExpr(uint32_t Type, const SymbolBody &S,
                        const uint8_t *Loc) const {
  switch (Type) {
  case R_386_8:
  case R_386_16:
  case R_386_32:
  case R_386_TLS_LDO_32:
    return R_ABS;
  case R_386_TLS_GD:
    return R_TLSGD;
  case R_386_TLS_LDM:
    return R_TLSLD;
  case R_386_PLT32:
    return R_PLT_PC;
  case R_386_PC8:
  case R_386_PC16:
  case R_386_PC32:
    return R_PC;
  case R_386_GOTPC:
    return R_GOTONLY_PC_FROM_END;
  case R_386_TLS_IE:
    return R_GOT;
  case R_386_GOT32:
  case R_386_GOT32X:
    // These relocations can be calculated in two different ways.
    // Usual calculation is G + A - GOT what means an offset in GOT table
    // (R_GOT_FROM_END). When instruction pointed by relocation has no base
    // register, then relocations can be used when PIC code is disabled. In that
    // case calculation is G + A, it resolves to an address of entry in GOT
    // (R_GOT) and not an offset.
    //
    // To check that instruction has no base register we scan ModR/M byte.
    // See "Table 2-2. 32-Bit Addressing Forms with the ModR/M Byte"
    // (http://www.intel.com/content/dam/www/public/us/en/documents/manuals/
    //  64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf)
    if ((Loc[-1] & 0xc7) != 0x5)
      return R_GOT_FROM_END;
    if (Config->Pic)
      error(toString(S.File) + ": relocation " + toString(Type) + " against '" +
            S.getName() +
            "' without base register can not be used when PIC enabled");
    return R_GOT;
  case R_386_TLS_GOTIE:
    return R_GOT_FROM_END;
  case R_386_GOTOFF:
    return R_GOTREL_FROM_END;
  case R_386_TLS_LE:
    return R_TLS;
  case R_386_TLS_LE_32:
    return R_NEG_TLS;
  case R_386_NONE:
    return R_NONE;
  default:
    error(toString(S.File) + ": unknown relocation type: " + toString(Type));
    return R_HINT;
  }
}

RelExpr X86::adjustRelaxExpr(uint32_t Type, const uint8_t *Data,
                             RelExpr Expr) const {
  switch (Expr) {
  default:
    return Expr;
  case R_RELAX_TLS_GD_TO_IE:
    return R_RELAX_TLS_GD_TO_IE_END;
  case R_RELAX_TLS_GD_TO_LE:
    return R_RELAX_TLS_GD_TO_LE_NEG;
  }
}

void X86::writeGotPltHeader(uint8_t *Buf) const {
  write32le(Buf, InX::Dynamic->getVA());
}

void X86::writeGotPlt(uint8_t *Buf, const SymbolBody &S) const {
  // Entries in .got.plt initially points back to the corresponding
  // PLT entries with a fixed offset to skip the first instruction.
  write32le(Buf, S.getPltVA() + 6);
}

void X86::writeIgotPlt(uint8_t *Buf, const SymbolBody &S) const {
  // An x86 entry is the address of the ifunc resolver function.
  write32le(Buf, S.getVA());
}

uint32_t X86::getDynRel(uint32_t Type) const {
  if (Type == R_386_TLS_LE)
    return R_386_TLS_TPOFF;
  if (Type == R_386_TLS_LE_32)
    return R_386_TLS_TPOFF32;
  return Type;
}

void X86::writePltHeader(uint8_t *Buf) const {
  if (Config->Pic) {
    const uint8_t V[] = {
        0xff, 0xb3, 0x04, 0x00, 0x00, 0x00, // pushl GOTPLT+4(%ebx)
        0xff, 0xa3, 0x08, 0x00, 0x00, 0x00, // jmp *GOTPLT+8(%ebx)
        0x90, 0x90, 0x90, 0x90              // nop
    };
    memcpy(Buf, V, sizeof(V));

    uint32_t Ebx = InX::Got->getVA() + InX::Got->getSize();
    uint32_t GotPlt = InX::GotPlt->getVA() - Ebx;
    write32le(Buf + 2, GotPlt + 4);
    write32le(Buf + 8, GotPlt + 8);
    return;
  }

  const uint8_t PltData[] = {
      0xff, 0x35, 0x00, 0x00, 0x00, 0x00, // pushl (GOTPLT+4)
      0xff, 0x25, 0x00, 0x00, 0x00, 0x00, // jmp *(GOTPLT+8)
      0x90, 0x90, 0x90, 0x90              // nop
  };
  memcpy(Buf, PltData, sizeof(PltData));
  uint32_t GotPlt = InX::GotPlt->getVA();
  write32le(Buf + 2, GotPlt + 4);
  write32le(Buf + 8, GotPlt + 8);
}

void X86::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
                   uint64_t PltEntryAddr, int32_t Index,
                   unsigned RelOff) const {
  const uint8_t Inst[] = {
      0xff, 0x00, 0x00, 0x00, 0x00, 0x00, // jmp *foo_in_GOT|*foo@GOT(%ebx)
      0x68, 0x00, 0x00, 0x00, 0x00,       // pushl $reloc_offset
      0xe9, 0x00, 0x00, 0x00, 0x00        // jmp .PLT0@PC
  };
  memcpy(Buf, Inst, sizeof(Inst));

  if (Config->Pic) {
    // jmp *foo@GOT(%ebx)
    uint32_t Ebx = InX::Got->getVA() + InX::Got->getSize();
    Buf[1] = 0xa3;
    write32le(Buf + 2, GotPltEntryAddr - Ebx);
  } else {
    // jmp *foo_in_GOT
    Buf[1] = 0x25;
    write32le(Buf + 2, GotPltEntryAddr);
  }

  write32le(Buf + 7, RelOff);
  write32le(Buf + 12, -Index * PltEntrySize - PltHeaderSize - 16);
}

int64_t X86::getImplicitAddend(const uint8_t *Buf, uint32_t Type) const {
  switch (Type) {
  default:
    return 0;
  case R_386_8:
  case R_386_PC8:
    return SignExtend64<8>(*Buf);
  case R_386_16:
  case R_386_PC16:
    return SignExtend64<16>(read16le(Buf));
  case R_386_32:
  case R_386_GOT32:
  case R_386_GOT32X:
  case R_386_GOTOFF:
  case R_386_GOTPC:
  case R_386_PC32:
  case R_386_PLT32:
  case R_386_TLS_LDO_32:
  case R_386_TLS_LE:
    return SignExtend64<32>(read32le(Buf));
  }
}

void X86::relocateOne(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
  // R_386_{PC,}{8,16} are not part of the i386 psABI, but they are
  // being used for some 16-bit programs such as boot loaders, so
  // we want to support them.
  switch (Type) {
  case R_386_8:
    checkUInt<8>(Loc, Val, Type);
    *Loc = Val;
    break;
  case R_386_PC8:
    checkInt<8>(Loc, Val, Type);
    *Loc = Val;
    break;
  case R_386_16:
    checkUInt<16>(Loc, Val, Type);
    write16le(Loc, Val);
    break;
  case R_386_PC16:
    // R_386_PC16 is normally used with 16 bit code. In that situation
    // the PC is 16 bits, just like the addend. This means that it can
    // point from any 16 bit address to any other if the possibility
    // of wrapping is included.
    // The only restriction we have to check then is that the destination
    // address fits in 16 bits. That is impossible to do here. The problem is
    // that we are passed the final value, which already had the
    // current location subtracted from it.
    // We just check that Val fits in 17 bits. This misses some cases, but
    // should have no false positives.
    checkInt<17>(Loc, Val, Type);
    write16le(Loc, Val);
    break;
  default:
    checkInt<32>(Loc, Val, Type);
    write32le(Loc, Val);
  }
}

void X86::relaxTlsGdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
  // Convert
  //   leal x@tlsgd(, %ebx, 1),
  //   call __tls_get_addr@plt
  // to
  //   movl %gs:0,%eax
  //   subl $x@ntpoff,%eax
  const uint8_t Inst[] = {
      0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
      0x81, 0xe8, 0x00, 0x00, 0x00, 0x00  // subl 0(%ebx), %eax
  };
  memcpy(Loc - 3, Inst, sizeof(Inst));
  write32le(Loc + 5, Val);
}

void X86::relaxTlsGdToIe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
  // Convert
  //   leal x@tlsgd(, %ebx, 1),
  //   call __tls_get_addr@plt
  // to
  //   movl %gs:0, %eax
  //   addl x@gotntpoff(%ebx), %eax
  const uint8_t Inst[] = {
      0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0, %eax
      0x03, 0x83, 0x00, 0x00, 0x00, 0x00  // addl 0(%ebx), %eax
  };
  memcpy(Loc - 3, Inst, sizeof(Inst));
  write32le(Loc + 5, Val);
}

// In some conditions, relocations can be optimized to avoid using GOT.
// This function does that for Initial Exec to Local Exec case.
void X86::relaxTlsIeToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
  // Ulrich's document section 6.2 says that @gotntpoff can
  // be used with MOVL or ADDL instructions.
  // @indntpoff is similar to @gotntpoff, but for use in
  // position dependent code.
  uint8_t Reg = (Loc[-1] >> 3) & 7;

  if (Type == R_386_TLS_IE) {
    if (Loc[-1] == 0xa1) {
      // "movl foo@indntpoff,%eax" -> "movl $foo,%eax"
      // This case is different from the generic case below because
      // this is a 5 byte instruction while below is 6 bytes.
      Loc[-1] = 0xb8;
    } else if (Loc[-2] == 0x8b) {
      // "movl foo@indntpoff,%reg" -> "movl $foo,%reg"
      Loc[-2] = 0xc7;
      Loc[-1] = 0xc0 | Reg;
    } else {
      // "addl foo@indntpoff,%reg" -> "addl $foo,%reg"
      Loc[-2] = 0x81;
      Loc[-1] = 0xc0 | Reg;
    }
  } else {
    assert(Type == R_386_TLS_GOTIE);
    if (Loc[-2] == 0x8b) {
      // "movl foo@gottpoff(%rip),%reg" -> "movl $foo,%reg"
      Loc[-2] = 0xc7;
      Loc[-1] = 0xc0 | Reg;
    } else {
      // "addl foo@gotntpoff(%rip),%reg" -> "leal foo(%reg),%reg"
      Loc[-2] = 0x8d;
      Loc[-1] = 0x80 | (Reg << 3) | Reg;
    }
  }
  write32le(Loc, Val);
}

void X86::relaxTlsLdToLe(uint8_t *Loc, uint32_t Type, uint64_t Val) const {
  if (Type == R_386_TLS_LDO_32) {
    write32le(Loc, Val);
    return;
  }

  // Convert
  //   leal foo(%reg),%eax
  //   call ___tls_get_addr
  // to
  //   movl %gs:0,%eax
  //   nop
  //   leal 0(%esi,1),%esi
  const uint8_t Inst[] = {
      0x65, 0xa1, 0x00, 0x00, 0x00, 0x00, // movl %gs:0,%eax
      0x90,                               // nop
      0x8d, 0x74, 0x26, 0x00              // leal 0(%esi,1),%esi
  };
  memcpy(Loc - 2, Inst, sizeof(Inst));
}

TargetInfo *elf::getX86TargetInfo() {
  static X86 Target;
  return &Target;
}