aboutsummaryrefslogtreecommitdiff
path: root/sys/netinet/ipfw/ip_dummynet.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/netinet/ipfw/ip_dummynet.c')
-rw-r--r--sys/netinet/ipfw/ip_dummynet.c2371
1 files changed, 2371 insertions, 0 deletions
diff --git a/sys/netinet/ipfw/ip_dummynet.c b/sys/netinet/ipfw/ip_dummynet.c
new file mode 100644
index 000000000000..2f11ae08a579
--- /dev/null
+++ b/sys/netinet/ipfw/ip_dummynet.c
@@ -0,0 +1,2371 @@
+/*-
+ * Copyright (c) 1998-2002 Luigi Rizzo, Universita` di Pisa
+ * Portions Copyright (c) 2000 Akamba Corp.
+ * All rights reserved
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ * 1. Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * 2. Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
+ * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
+ * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+ * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
+ * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
+ * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
+ * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
+ * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
+ * SUCH DAMAGE.
+ */
+
+#include <sys/cdefs.h>
+__FBSDID("$FreeBSD$");
+
+#define DUMMYNET_DEBUG
+
+#include "opt_inet6.h"
+
+/*
+ * This module implements IP dummynet, a bandwidth limiter/delay emulator
+ * used in conjunction with the ipfw package.
+ * Description of the data structures used is in ip_dummynet.h
+ * Here you mainly find the following blocks of code:
+ * + variable declarations;
+ * + heap management functions;
+ * + scheduler and dummynet functions;
+ * + configuration and initialization.
+ *
+ * NOTA BENE: critical sections are protected by the "dummynet lock".
+ *
+ * Most important Changes:
+ *
+ * 011004: KLDable
+ * 010124: Fixed WF2Q behaviour
+ * 010122: Fixed spl protection.
+ * 000601: WF2Q support
+ * 000106: large rewrite, use heaps to handle very many pipes.
+ * 980513: initial release
+ *
+ * include files marked with XXX are probably not needed
+ */
+
+#include <sys/limits.h>
+#include <sys/param.h>
+#include <sys/systm.h>
+#include <sys/malloc.h>
+#include <sys/mbuf.h>
+#include <sys/kernel.h>
+#include <sys/lock.h>
+#include <sys/module.h>
+#include <sys/priv.h>
+#include <sys/proc.h>
+#include <sys/rwlock.h>
+#include <sys/socket.h>
+#include <sys/socketvar.h>
+#include <sys/time.h>
+#include <sys/sysctl.h>
+#include <sys/taskqueue.h>
+#include <net/if.h> /* IFNAMSIZ, struct ifaddr, ifq head, lock.h mutex.h */
+#include <net/netisr.h>
+#include <netinet/in.h>
+#include <netinet/ip.h> /* ip_len, ip_off */
+#include <netinet/ip_fw.h>
+#include <netinet/ip_dummynet.h>
+#include <netinet/ip_var.h> /* ip_output(), IP_FORWARDING */
+
+#include <netinet/if_ether.h> /* various ether_* routines */
+
+#include <netinet/ip6.h> /* for ip6_input, ip6_output prototypes */
+#include <netinet6/ip6_var.h>
+
+/*
+ * We keep a private variable for the simulation time, but we could
+ * probably use an existing one ("softticks" in sys/kern/kern_timeout.c)
+ */
+static dn_key curr_time = 0 ; /* current simulation time */
+
+static int dn_hash_size = 64 ; /* default hash size */
+
+/* statistics on number of queue searches and search steps */
+static long searches, search_steps ;
+static int pipe_expire = 1 ; /* expire queue if empty */
+static int dn_max_ratio = 16 ; /* max queues/buckets ratio */
+
+static long pipe_slot_limit = 100; /* Foot shooting limit for pipe queues. */
+static long pipe_byte_limit = 1024 * 1024;
+
+static int red_lookup_depth = 256; /* RED - default lookup table depth */
+static int red_avg_pkt_size = 512; /* RED - default medium packet size */
+static int red_max_pkt_size = 1500; /* RED - default max packet size */
+
+static struct timeval prev_t, t;
+static long tick_last; /* Last tick duration (usec). */
+static long tick_delta; /* Last vs standard tick diff (usec). */
+static long tick_delta_sum; /* Accumulated tick difference (usec).*/
+static long tick_adjustment; /* Tick adjustments done. */
+static long tick_lost; /* Lost(coalesced) ticks number. */
+/* Adjusted vs non-adjusted curr_time difference (ticks). */
+static long tick_diff;
+
+static int io_fast;
+static unsigned long io_pkt;
+static unsigned long io_pkt_fast;
+static unsigned long io_pkt_drop;
+
+/*
+ * Three heaps contain queues and pipes that the scheduler handles:
+ *
+ * ready_heap contains all dn_flow_queue related to fixed-rate pipes.
+ *
+ * wfq_ready_heap contains the pipes associated with WF2Q flows
+ *
+ * extract_heap contains pipes associated with delay lines.
+ *
+ */
+
+MALLOC_DEFINE(M_DUMMYNET, "dummynet", "dummynet heap");
+
+static struct dn_heap ready_heap, extract_heap, wfq_ready_heap ;
+
+static int heap_init(struct dn_heap *h, int size);
+static int heap_insert (struct dn_heap *h, dn_key key1, void *p);
+static void heap_extract(struct dn_heap *h, void *obj);
+static void transmit_event(struct dn_pipe *pipe, struct mbuf **head,
+ struct mbuf **tail);
+static void ready_event(struct dn_flow_queue *q, struct mbuf **head,
+ struct mbuf **tail);
+static void ready_event_wfq(struct dn_pipe *p, struct mbuf **head,
+ struct mbuf **tail);
+
+#define HASHSIZE 16
+#define HASH(num) ((((num) >> 8) ^ ((num) >> 4) ^ (num)) & 0x0f)
+static struct dn_pipe_head pipehash[HASHSIZE]; /* all pipes */
+static struct dn_flow_set_head flowsethash[HASHSIZE]; /* all flowsets */
+
+static struct callout dn_timeout;
+
+extern void (*bridge_dn_p)(struct mbuf *, struct ifnet *);
+
+#ifdef SYSCTL_NODE
+SYSCTL_DECL(_net_inet);
+SYSCTL_DECL(_net_inet_ip);
+
+SYSCTL_NODE(_net_inet_ip, OID_AUTO, dummynet, CTLFLAG_RW, 0, "Dummynet");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, hash_size,
+ CTLFLAG_RW, &dn_hash_size, 0, "Default hash table size");
+#if 0 /* curr_time is 64 bit */
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, curr_time,
+ CTLFLAG_RD, &curr_time, 0, "Current tick");
+#endif
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, ready_heap,
+ CTLFLAG_RD, &ready_heap.size, 0, "Size of ready heap");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, extract_heap,
+ CTLFLAG_RD, &extract_heap.size, 0, "Size of extract heap");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, searches,
+ CTLFLAG_RD, &searches, 0, "Number of queue searches");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, search_steps,
+ CTLFLAG_RD, &search_steps, 0, "Number of queue search steps");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, expire,
+ CTLFLAG_RW, &pipe_expire, 0, "Expire queue if empty");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, max_chain_len,
+ CTLFLAG_RW, &dn_max_ratio, 0,
+ "Max ratio between dynamic queues and buckets");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_lookup_depth,
+ CTLFLAG_RD, &red_lookup_depth, 0, "Depth of RED lookup table");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_avg_pkt_size,
+ CTLFLAG_RD, &red_avg_pkt_size, 0, "RED Medium packet size");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, red_max_pkt_size,
+ CTLFLAG_RD, &red_max_pkt_size, 0, "RED Max packet size");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta,
+ CTLFLAG_RD, &tick_delta, 0, "Last vs standard tick difference (usec).");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_delta_sum,
+ CTLFLAG_RD, &tick_delta_sum, 0, "Accumulated tick difference (usec).");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_adjustment,
+ CTLFLAG_RD, &tick_adjustment, 0, "Tick adjustments done.");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_diff,
+ CTLFLAG_RD, &tick_diff, 0,
+ "Adjusted vs non-adjusted curr_time difference (ticks).");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, tick_lost,
+ CTLFLAG_RD, &tick_lost, 0,
+ "Number of ticks coalesced by dummynet taskqueue.");
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, io_fast,
+ CTLFLAG_RW, &io_fast, 0, "Enable fast dummynet io.");
+SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt,
+ CTLFLAG_RD, &io_pkt, 0,
+ "Number of packets passed to dummynet.");
+SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_fast,
+ CTLFLAG_RD, &io_pkt_fast, 0,
+ "Number of packets bypassed dummynet scheduler.");
+SYSCTL_ULONG(_net_inet_ip_dummynet, OID_AUTO, io_pkt_drop,
+ CTLFLAG_RD, &io_pkt_drop, 0,
+ "Number of packets dropped by dummynet.");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, pipe_slot_limit,
+ CTLFLAG_RW, &pipe_slot_limit, 0, "Upper limit in slots for pipe queue.");
+SYSCTL_LONG(_net_inet_ip_dummynet, OID_AUTO, pipe_byte_limit,
+ CTLFLAG_RW, &pipe_byte_limit, 0, "Upper limit in bytes for pipe queue.");
+#endif
+
+#ifdef DUMMYNET_DEBUG
+int dummynet_debug = 0;
+#ifdef SYSCTL_NODE
+SYSCTL_INT(_net_inet_ip_dummynet, OID_AUTO, debug, CTLFLAG_RW, &dummynet_debug,
+ 0, "control debugging printfs");
+#endif
+#define DPRINTF(X) if (dummynet_debug) printf X
+#else
+#define DPRINTF(X)
+#endif
+
+static struct task dn_task;
+static struct taskqueue *dn_tq = NULL;
+static void dummynet_task(void *, int);
+
+static struct mtx dummynet_mtx;
+#define DUMMYNET_LOCK_INIT() \
+ mtx_init(&dummynet_mtx, "dummynet", NULL, MTX_DEF)
+#define DUMMYNET_LOCK_DESTROY() mtx_destroy(&dummynet_mtx)
+#define DUMMYNET_LOCK() mtx_lock(&dummynet_mtx)
+#define DUMMYNET_UNLOCK() mtx_unlock(&dummynet_mtx)
+#define DUMMYNET_LOCK_ASSERT() mtx_assert(&dummynet_mtx, MA_OWNED)
+
+static int config_pipe(struct dn_pipe *p);
+static int ip_dn_ctl(struct sockopt *sopt);
+
+static void dummynet(void *);
+static void dummynet_flush(void);
+static void dummynet_send(struct mbuf *);
+void dummynet_drain(void);
+static int dummynet_io(struct mbuf **, int , struct ip_fw_args *);
+static void dn_rule_delete(void *);
+
+/*
+ * Heap management functions.
+ *
+ * In the heap, first node is element 0. Children of i are 2i+1 and 2i+2.
+ * Some macros help finding parent/children so we can optimize them.
+ *
+ * heap_init() is called to expand the heap when needed.
+ * Increment size in blocks of 16 entries.
+ * XXX failure to allocate a new element is a pretty bad failure
+ * as we basically stall a whole queue forever!!
+ * Returns 1 on error, 0 on success
+ */
+#define HEAP_FATHER(x) ( ( (x) - 1 ) / 2 )
+#define HEAP_LEFT(x) ( 2*(x) + 1 )
+#define HEAP_IS_LEFT(x) ( (x) & 1 )
+#define HEAP_RIGHT(x) ( 2*(x) + 2 )
+#define HEAP_SWAP(a, b, buffer) { buffer = a ; a = b ; b = buffer ; }
+#define HEAP_INCREMENT 15
+
+static int
+heap_init(struct dn_heap *h, int new_size)
+{
+ struct dn_heap_entry *p;
+
+ if (h->size >= new_size ) {
+ printf("dummynet: %s, Bogus call, have %d want %d\n", __func__,
+ h->size, new_size);
+ return 0 ;
+ }
+ new_size = (new_size + HEAP_INCREMENT ) & ~HEAP_INCREMENT ;
+ p = malloc(new_size * sizeof(*p), M_DUMMYNET, M_NOWAIT);
+ if (p == NULL) {
+ printf("dummynet: %s, resize %d failed\n", __func__, new_size );
+ return 1 ; /* error */
+ }
+ if (h->size > 0) {
+ bcopy(h->p, p, h->size * sizeof(*p) );
+ free(h->p, M_DUMMYNET);
+ }
+ h->p = p ;
+ h->size = new_size ;
+ return 0 ;
+}
+
+/*
+ * Insert element in heap. Normally, p != NULL, we insert p in
+ * a new position and bubble up. If p == NULL, then the element is
+ * already in place, and key is the position where to start the
+ * bubble-up.
+ * Returns 1 on failure (cannot allocate new heap entry)
+ *
+ * If offset > 0 the position (index, int) of the element in the heap is
+ * also stored in the element itself at the given offset in bytes.
+ */
+#define SET_OFFSET(heap, node) \
+ if (heap->offset > 0) \
+ *((int *)((char *)(heap->p[node].object) + heap->offset)) = node ;
+/*
+ * RESET_OFFSET is used for sanity checks. It sets offset to an invalid value.
+ */
+#define RESET_OFFSET(heap, node) \
+ if (heap->offset > 0) \
+ *((int *)((char *)(heap->p[node].object) + heap->offset)) = -1 ;
+static int
+heap_insert(struct dn_heap *h, dn_key key1, void *p)
+{
+ int son = h->elements ;
+
+ if (p == NULL) /* data already there, set starting point */
+ son = key1 ;
+ else { /* insert new element at the end, possibly resize */
+ son = h->elements ;
+ if (son == h->size) /* need resize... */
+ if (heap_init(h, h->elements+1) )
+ return 1 ; /* failure... */
+ h->p[son].object = p ;
+ h->p[son].key = key1 ;
+ h->elements++ ;
+ }
+ while (son > 0) { /* bubble up */
+ int father = HEAP_FATHER(son) ;
+ struct dn_heap_entry tmp ;
+
+ if (DN_KEY_LT( h->p[father].key, h->p[son].key ) )
+ break ; /* found right position */
+ /* son smaller than father, swap and repeat */
+ HEAP_SWAP(h->p[son], h->p[father], tmp) ;
+ SET_OFFSET(h, son);
+ son = father ;
+ }
+ SET_OFFSET(h, son);
+ return 0 ;
+}
+
+/*
+ * remove top element from heap, or obj if obj != NULL
+ */
+static void
+heap_extract(struct dn_heap *h, void *obj)
+{
+ int child, father, max = h->elements - 1 ;
+
+ if (max < 0) {
+ printf("dummynet: warning, extract from empty heap 0x%p\n", h);
+ return ;
+ }
+ father = 0 ; /* default: move up smallest child */
+ if (obj != NULL) { /* extract specific element, index is at offset */
+ if (h->offset <= 0)
+ panic("dummynet: heap_extract from middle not supported on this heap!!!\n");
+ father = *((int *)((char *)obj + h->offset)) ;
+ if (father < 0 || father >= h->elements) {
+ printf("dummynet: heap_extract, father %d out of bound 0..%d\n",
+ father, h->elements);
+ panic("dummynet: heap_extract");
+ }
+ }
+ RESET_OFFSET(h, father);
+ child = HEAP_LEFT(father) ; /* left child */
+ while (child <= max) { /* valid entry */
+ if (child != max && DN_KEY_LT(h->p[child+1].key, h->p[child].key) )
+ child = child+1 ; /* take right child, otherwise left */
+ h->p[father] = h->p[child] ;
+ SET_OFFSET(h, father);
+ father = child ;
+ child = HEAP_LEFT(child) ; /* left child for next loop */
+ }
+ h->elements-- ;
+ if (father != max) {
+ /*
+ * Fill hole with last entry and bubble up, reusing the insert code
+ */
+ h->p[father] = h->p[max] ;
+ heap_insert(h, father, NULL); /* this one cannot fail */
+ }
+}
+
+#if 0
+/*
+ * change object position and update references
+ * XXX this one is never used!
+ */
+static void
+heap_move(struct dn_heap *h, dn_key new_key, void *object)
+{
+ int temp;
+ int i ;
+ int max = h->elements-1 ;
+ struct dn_heap_entry buf ;
+
+ if (h->offset <= 0)
+ panic("cannot move items on this heap");
+
+ i = *((int *)((char *)object + h->offset));
+ if (DN_KEY_LT(new_key, h->p[i].key) ) { /* must move up */
+ h->p[i].key = new_key ;
+ for (; i>0 && DN_KEY_LT(new_key, h->p[(temp = HEAP_FATHER(i))].key) ;
+ i = temp ) { /* bubble up */
+ HEAP_SWAP(h->p[i], h->p[temp], buf) ;
+ SET_OFFSET(h, i);
+ }
+ } else { /* must move down */
+ h->p[i].key = new_key ;
+ while ( (temp = HEAP_LEFT(i)) <= max ) { /* found left child */
+ if ((temp != max) && DN_KEY_GT(h->p[temp].key, h->p[temp+1].key))
+ temp++ ; /* select child with min key */
+ if (DN_KEY_GT(new_key, h->p[temp].key)) { /* go down */
+ HEAP_SWAP(h->p[i], h->p[temp], buf) ;
+ SET_OFFSET(h, i);
+ } else
+ break ;
+ i = temp ;
+ }
+ }
+ SET_OFFSET(h, i);
+}
+#endif /* heap_move, unused */
+
+/*
+ * heapify() will reorganize data inside an array to maintain the
+ * heap property. It is needed when we delete a bunch of entries.
+ */
+static void
+heapify(struct dn_heap *h)
+{
+ int i ;
+
+ for (i = 0 ; i < h->elements ; i++ )
+ heap_insert(h, i , NULL) ;
+}
+
+/*
+ * cleanup the heap and free data structure
+ */
+static void
+heap_free(struct dn_heap *h)
+{
+ if (h->size >0 )
+ free(h->p, M_DUMMYNET);
+ bzero(h, sizeof(*h) );
+}
+
+/*
+ * --- end of heap management functions ---
+ */
+
+/*
+ * Return the mbuf tag holding the dummynet state. As an optimization
+ * this is assumed to be the first tag on the list. If this turns out
+ * wrong we'll need to search the list.
+ */
+static struct dn_pkt_tag *
+dn_tag_get(struct mbuf *m)
+{
+ struct m_tag *mtag = m_tag_first(m);
+ KASSERT(mtag != NULL &&
+ mtag->m_tag_cookie == MTAG_ABI_COMPAT &&
+ mtag->m_tag_id == PACKET_TAG_DUMMYNET,
+ ("packet on dummynet queue w/o dummynet tag!"));
+ return (struct dn_pkt_tag *)(mtag+1);
+}
+
+/*
+ * Scheduler functions:
+ *
+ * transmit_event() is called when the delay-line needs to enter
+ * the scheduler, either because of existing pkts getting ready,
+ * or new packets entering the queue. The event handled is the delivery
+ * time of the packet.
+ *
+ * ready_event() does something similar with fixed-rate queues, and the
+ * event handled is the finish time of the head pkt.
+ *
+ * wfq_ready_event() does something similar with WF2Q queues, and the
+ * event handled is the start time of the head pkt.
+ *
+ * In all cases, we make sure that the data structures are consistent
+ * before passing pkts out, because this might trigger recursive
+ * invocations of the procedures.
+ */
+static void
+transmit_event(struct dn_pipe *pipe, struct mbuf **head, struct mbuf **tail)
+{
+ struct mbuf *m;
+ struct dn_pkt_tag *pkt;
+
+ DUMMYNET_LOCK_ASSERT();
+
+ while ((m = pipe->head) != NULL) {
+ pkt = dn_tag_get(m);
+ if (!DN_KEY_LEQ(pkt->output_time, curr_time))
+ break;
+
+ pipe->head = m->m_nextpkt;
+ if (*tail != NULL)
+ (*tail)->m_nextpkt = m;
+ else
+ *head = m;
+ *tail = m;
+ }
+ if (*tail != NULL)
+ (*tail)->m_nextpkt = NULL;
+
+ /* If there are leftover packets, put into the heap for next event. */
+ if ((m = pipe->head) != NULL) {
+ pkt = dn_tag_get(m);
+ /*
+ * XXX Should check errors on heap_insert, by draining the
+ * whole pipe p and hoping in the future we are more successful.
+ */
+ heap_insert(&extract_heap, pkt->output_time, pipe);
+ }
+}
+
+#define div64(a, b) ((int64_t)(a) / (int64_t)(b))
+#define DN_TO_DROP 0xffff
+/*
+ * Compute how many ticks we have to wait before being able to send
+ * a packet. This is computed as the "wire time" for the packet
+ * (length + extra bits), minus the credit available, scaled to ticks.
+ * Check that the result is not be negative (it could be if we have
+ * too much leftover credit in q->numbytes).
+ */
+static inline dn_key
+set_ticks(struct mbuf *m, struct dn_flow_queue *q, struct dn_pipe *p)
+{
+ int64_t ret;
+
+ ret = div64( (m->m_pkthdr.len * 8 + q->extra_bits) * hz
+ - q->numbytes + p->bandwidth - 1 , p->bandwidth);
+#if 0
+ printf("%s %d extra_bits %d numb %d ret %d\n",
+ __FUNCTION__, __LINE__,
+ (int)(q->extra_bits & 0xffffffff),
+ (int)(q->numbytes & 0xffffffff),
+ (int)(ret & 0xffffffff));
+#endif
+ if (ret < 0)
+ ret = 0;
+ return ret;
+}
+
+/*
+ * Convert the additional MAC overheads/delays into an equivalent
+ * number of bits for the given data rate. The samples are in milliseconds
+ * so we need to divide by 1000.
+ */
+static dn_key
+compute_extra_bits(struct mbuf *pkt, struct dn_pipe *p)
+{
+ int index;
+ dn_key extra_bits;
+
+ if (!p->samples || p->samples_no == 0)
+ return 0;
+ index = random() % p->samples_no;
+ extra_bits = ((dn_key)p->samples[index] * p->bandwidth) / 1000;
+ if (index >= p->loss_level) {
+ struct dn_pkt_tag *dt = dn_tag_get(pkt);
+ if (dt)
+ dt->dn_dir = DN_TO_DROP;
+ }
+ return extra_bits;
+}
+
+static void
+free_pipe(struct dn_pipe *p)
+{
+ if (p->samples)
+ free(p->samples, M_DUMMYNET);
+ free(p, M_DUMMYNET);
+}
+
+/*
+ * extract pkt from queue, compute output time (could be now)
+ * and put into delay line (p_queue)
+ */
+static void
+move_pkt(struct mbuf *pkt, struct dn_flow_queue *q, struct dn_pipe *p,
+ int len)
+{
+ struct dn_pkt_tag *dt = dn_tag_get(pkt);
+
+ q->head = pkt->m_nextpkt ;
+ q->len-- ;
+ q->len_bytes -= len ;
+
+ dt->output_time = curr_time + p->delay ;
+
+ if (p->head == NULL)
+ p->head = pkt;
+ else
+ p->tail->m_nextpkt = pkt;
+ p->tail = pkt;
+ p->tail->m_nextpkt = NULL;
+}
+
+/*
+ * ready_event() is invoked every time the queue must enter the
+ * scheduler, either because the first packet arrives, or because
+ * a previously scheduled event fired.
+ * On invokation, drain as many pkts as possible (could be 0) and then
+ * if there are leftover packets reinsert the pkt in the scheduler.
+ */
+static void
+ready_event(struct dn_flow_queue *q, struct mbuf **head, struct mbuf **tail)
+{
+ struct mbuf *pkt;
+ struct dn_pipe *p = q->fs->pipe;
+ int p_was_empty;
+
+ DUMMYNET_LOCK_ASSERT();
+
+ if (p == NULL) {
+ printf("dummynet: ready_event- pipe is gone\n");
+ return;
+ }
+ p_was_empty = (p->head == NULL);
+
+ /*
+ * Schedule fixed-rate queues linked to this pipe:
+ * account for the bw accumulated since last scheduling, then
+ * drain as many pkts as allowed by q->numbytes and move to
+ * the delay line (in p) computing output time.
+ * bandwidth==0 (no limit) means we can drain the whole queue,
+ * setting len_scaled = 0 does the job.
+ */
+ q->numbytes += (curr_time - q->sched_time) * p->bandwidth;
+ while ((pkt = q->head) != NULL) {
+ int len = pkt->m_pkthdr.len;
+ dn_key len_scaled = p->bandwidth ? len*8*hz
+ + q->extra_bits*hz
+ : 0;
+
+ if (DN_KEY_GT(len_scaled, q->numbytes))
+ break;
+ q->numbytes -= len_scaled;
+ move_pkt(pkt, q, p, len);
+ if (q->head)
+ q->extra_bits = compute_extra_bits(q->head, p);
+ }
+ /*
+ * If we have more packets queued, schedule next ready event
+ * (can only occur when bandwidth != 0, otherwise we would have
+ * flushed the whole queue in the previous loop).
+ * To this purpose we record the current time and compute how many
+ * ticks to go for the finish time of the packet.
+ */
+ if ((pkt = q->head) != NULL) { /* this implies bandwidth != 0 */
+ dn_key t = set_ticks(pkt, q, p); /* ticks i have to wait */
+
+ q->sched_time = curr_time;
+ heap_insert(&ready_heap, curr_time + t, (void *)q);
+ /*
+ * XXX Should check errors on heap_insert, and drain the whole
+ * queue on error hoping next time we are luckier.
+ */
+ } else /* RED needs to know when the queue becomes empty. */
+ q->q_time = curr_time;
+
+ /*
+ * If the delay line was empty call transmit_event() now.
+ * Otherwise, the scheduler will take care of it.
+ */
+ if (p_was_empty)
+ transmit_event(p, head, tail);
+}
+
+/*
+ * Called when we can transmit packets on WF2Q queues. Take pkts out of
+ * the queues at their start time, and enqueue into the delay line.
+ * Packets are drained until p->numbytes < 0. As long as
+ * len_scaled >= p->numbytes, the packet goes into the delay line
+ * with a deadline p->delay. For the last packet, if p->numbytes < 0,
+ * there is an additional delay.
+ */
+static void
+ready_event_wfq(struct dn_pipe *p, struct mbuf **head, struct mbuf **tail)
+{
+ int p_was_empty = (p->head == NULL);
+ struct dn_heap *sch = &(p->scheduler_heap);
+ struct dn_heap *neh = &(p->not_eligible_heap);
+ int64_t p_numbytes = p->numbytes;
+
+ DUMMYNET_LOCK_ASSERT();
+
+ if (p->if_name[0] == 0) /* tx clock is simulated */
+ /*
+ * Since result may not fit into p->numbytes (32bit) we
+ * are using 64bit var here.
+ */
+ p_numbytes += (curr_time - p->sched_time) * p->bandwidth;
+ else { /*
+ * tx clock is for real,
+ * the ifq must be empty or this is a NOP.
+ */
+ if (p->ifp && p->ifp->if_snd.ifq_head != NULL)
+ return;
+ else {
+ DPRINTF(("dummynet: pipe %d ready from %s --\n",
+ p->pipe_nr, p->if_name));
+ }
+ }
+
+ /*
+ * While we have backlogged traffic AND credit, we need to do
+ * something on the queue.
+ */
+ while (p_numbytes >= 0 && (sch->elements > 0 || neh->elements > 0)) {
+ if (sch->elements > 0) {
+ /* Have some eligible pkts to send out. */
+ struct dn_flow_queue *q = sch->p[0].object;
+ struct mbuf *pkt = q->head;
+ struct dn_flow_set *fs = q->fs;
+ uint64_t len = pkt->m_pkthdr.len;
+ int len_scaled = p->bandwidth ? len * 8 * hz : 0;
+
+ heap_extract(sch, NULL); /* Remove queue from heap. */
+ p_numbytes -= len_scaled;
+ move_pkt(pkt, q, p, len);
+
+ p->V += (len << MY_M) / p->sum; /* Update V. */
+ q->S = q->F; /* Update start time. */
+ if (q->len == 0) {
+ /* Flow not backlogged any more. */
+ fs->backlogged--;
+ heap_insert(&(p->idle_heap), q->F, q);
+ } else {
+ /* Still backlogged. */
+
+ /*
+ * Update F and position in backlogged queue,
+ * then put flow in not_eligible_heap
+ * (we will fix this later).
+ */
+ len = (q->head)->m_pkthdr.len;
+ q->F += (len << MY_M) / (uint64_t)fs->weight;
+ if (DN_KEY_LEQ(q->S, p->V))
+ heap_insert(neh, q->S, q);
+ else
+ heap_insert(sch, q->F, q);
+ }
+ }
+ /*
+ * Now compute V = max(V, min(S_i)). Remember that all elements
+ * in sch have by definition S_i <= V so if sch is not empty,
+ * V is surely the max and we must not update it. Conversely,
+ * if sch is empty we only need to look at neh.
+ */
+ if (sch->elements == 0 && neh->elements > 0)
+ p->V = MAX64(p->V, neh->p[0].key);
+ /* Move from neh to sch any packets that have become eligible */
+ while (neh->elements > 0 && DN_KEY_LEQ(neh->p[0].key, p->V)) {
+ struct dn_flow_queue *q = neh->p[0].object;
+ heap_extract(neh, NULL);
+ heap_insert(sch, q->F, q);
+ }
+
+ if (p->if_name[0] != '\0') { /* Tx clock is from a real thing */
+ p_numbytes = -1; /* Mark not ready for I/O. */
+ break;
+ }
+ }
+ if (sch->elements == 0 && neh->elements == 0 && p_numbytes >= 0 &&
+ p->idle_heap.elements > 0) {
+ /*
+ * No traffic and no events scheduled.
+ * We can get rid of idle-heap.
+ */
+ int i;
+
+ for (i = 0; i < p->idle_heap.elements; i++) {
+ struct dn_flow_queue *q = p->idle_heap.p[i].object;
+
+ q->F = 0;
+ q->S = q->F + 1;
+ }
+ p->sum = 0;
+ p->V = 0;
+ p->idle_heap.elements = 0;
+ }
+ /*
+ * If we are getting clocks from dummynet (not a real interface) and
+ * If we are under credit, schedule the next ready event.
+ * Also fix the delivery time of the last packet.
+ */
+ if (p->if_name[0]==0 && p_numbytes < 0) { /* This implies bw > 0. */
+ dn_key t = 0; /* Number of ticks i have to wait. */
+
+ if (p->bandwidth > 0)
+ t = (p->bandwidth - 1 - p_numbytes) / p->bandwidth;
+ dn_tag_get(p->tail)->output_time += t;
+ p->sched_time = curr_time;
+ heap_insert(&wfq_ready_heap, curr_time + t, (void *)p);
+ /*
+ * XXX Should check errors on heap_insert, and drain the whole
+ * queue on error hoping next time we are luckier.
+ */
+ }
+
+ /* Fit (adjust if necessary) 64bit result into 32bit variable. */
+ if (p_numbytes > INT_MAX)
+ p->numbytes = INT_MAX;
+ else if (p_numbytes < INT_MIN)
+ p->numbytes = INT_MIN;
+ else
+ p->numbytes = p_numbytes;
+
+ /*
+ * If the delay line was empty call transmit_event() now.
+ * Otherwise, the scheduler will take care of it.
+ */
+ if (p_was_empty)
+ transmit_event(p, head, tail);
+}
+
+/*
+ * This is called one tick, after previous run. It is used to
+ * schedule next run.
+ */
+static void
+dummynet(void * __unused unused)
+{
+
+ taskqueue_enqueue(dn_tq, &dn_task);
+}
+
+/*
+ * The main dummynet processing function.
+ */
+static void
+dummynet_task(void *context, int pending)
+{
+ struct mbuf *head = NULL, *tail = NULL;
+ struct dn_pipe *pipe;
+ struct dn_heap *heaps[3];
+ struct dn_heap *h;
+ void *p; /* generic parameter to handler */
+ int i;
+
+ DUMMYNET_LOCK();
+
+ heaps[0] = &ready_heap; /* fixed-rate queues */
+ heaps[1] = &wfq_ready_heap; /* wfq queues */
+ heaps[2] = &extract_heap; /* delay line */
+
+ /* Update number of lost(coalesced) ticks. */
+ tick_lost += pending - 1;
+
+ getmicrouptime(&t);
+ /* Last tick duration (usec). */
+ tick_last = (t.tv_sec - prev_t.tv_sec) * 1000000 +
+ (t.tv_usec - prev_t.tv_usec);
+ /* Last tick vs standard tick difference (usec). */
+ tick_delta = (tick_last * hz - 1000000) / hz;
+ /* Accumulated tick difference (usec). */
+ tick_delta_sum += tick_delta;
+
+ prev_t = t;
+
+ /*
+ * Adjust curr_time if accumulated tick difference greater than
+ * 'standard' tick. Since curr_time should be monotonically increasing,
+ * we do positive adjustment as required and throttle curr_time in
+ * case of negative adjustment.
+ */
+ curr_time++;
+ if (tick_delta_sum - tick >= 0) {
+ int diff = tick_delta_sum / tick;
+
+ curr_time += diff;
+ tick_diff += diff;
+ tick_delta_sum %= tick;
+ tick_adjustment++;
+ } else if (tick_delta_sum + tick <= 0) {
+ curr_time--;
+ tick_diff--;
+ tick_delta_sum += tick;
+ tick_adjustment++;
+ }
+
+ for (i = 0; i < 3; i++) {
+ h = heaps[i];
+ while (h->elements > 0 && DN_KEY_LEQ(h->p[0].key, curr_time)) {
+ if (h->p[0].key > curr_time)
+ printf("dummynet: warning, "
+ "heap %d is %d ticks late\n",
+ i, (int)(curr_time - h->p[0].key));
+ /* store a copy before heap_extract */
+ p = h->p[0].object;
+ /* need to extract before processing */
+ heap_extract(h, NULL);
+ if (i == 0)
+ ready_event(p, &head, &tail);
+ else if (i == 1) {
+ struct dn_pipe *pipe = p;
+ if (pipe->if_name[0] != '\0')
+ printf("dummynet: bad ready_event_wfq "
+ "for pipe %s\n", pipe->if_name);
+ else
+ ready_event_wfq(p, &head, &tail);
+ } else
+ transmit_event(p, &head, &tail);
+ }
+ }
+
+ /* Sweep pipes trying to expire idle flow_queues. */
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(pipe, &pipehash[i], next)
+ if (pipe->idle_heap.elements > 0 &&
+ DN_KEY_LT(pipe->idle_heap.p[0].key, pipe->V)) {
+ struct dn_flow_queue *q =
+ pipe->idle_heap.p[0].object;
+
+ heap_extract(&(pipe->idle_heap), NULL);
+ /* Mark timestamp as invalid. */
+ q->S = q->F + 1;
+ pipe->sum -= q->fs->weight;
+ }
+
+ DUMMYNET_UNLOCK();
+
+ if (head != NULL)
+ dummynet_send(head);
+
+ callout_reset(&dn_timeout, 1, dummynet, NULL);
+}
+
+static void
+dummynet_send(struct mbuf *m)
+{
+ struct dn_pkt_tag *pkt;
+ struct mbuf *n;
+ struct ip *ip;
+
+ for (; m != NULL; m = n) {
+ n = m->m_nextpkt;
+ m->m_nextpkt = NULL;
+ pkt = dn_tag_get(m);
+ switch (pkt->dn_dir) {
+ case DN_TO_IP_OUT:
+ ip_output(m, NULL, NULL, IP_FORWARDING, NULL, NULL);
+ break ;
+ case DN_TO_IP_IN :
+ ip = mtod(m, struct ip *);
+ ip->ip_len = htons(ip->ip_len);
+ ip->ip_off = htons(ip->ip_off);
+ netisr_dispatch(NETISR_IP, m);
+ break;
+#ifdef INET6
+ case DN_TO_IP6_IN:
+ netisr_dispatch(NETISR_IPV6, m);
+ break;
+
+ case DN_TO_IP6_OUT:
+ ip6_output(m, NULL, NULL, IPV6_FORWARDING, NULL, NULL, NULL);
+ break;
+#endif
+ case DN_TO_IFB_FWD:
+ if (bridge_dn_p != NULL)
+ ((*bridge_dn_p)(m, pkt->ifp));
+ else
+ printf("dummynet: if_bridge not loaded\n");
+
+ break;
+ case DN_TO_ETH_DEMUX:
+ /*
+ * The Ethernet code assumes the Ethernet header is
+ * contiguous in the first mbuf header.
+ * Insure this is true.
+ */
+ if (m->m_len < ETHER_HDR_LEN &&
+ (m = m_pullup(m, ETHER_HDR_LEN)) == NULL) {
+ printf("dummynet/ether: pullup failed, "
+ "dropping packet\n");
+ break;
+ }
+ ether_demux(m->m_pkthdr.rcvif, m);
+ break;
+ case DN_TO_ETH_OUT:
+ ether_output_frame(pkt->ifp, m);
+ break;
+
+ case DN_TO_DROP:
+ /* drop the packet after some time */
+ m_freem(m);
+ break;
+
+ default:
+ printf("dummynet: bad switch %d!\n", pkt->dn_dir);
+ m_freem(m);
+ break;
+ }
+ }
+}
+
+/*
+ * Unconditionally expire empty queues in case of shortage.
+ * Returns the number of queues freed.
+ */
+static int
+expire_queues(struct dn_flow_set *fs)
+{
+ struct dn_flow_queue *q, *prev ;
+ int i, initial_elements = fs->rq_elements ;
+
+ if (fs->last_expired == time_uptime)
+ return 0 ;
+ fs->last_expired = time_uptime ;
+ for (i = 0 ; i <= fs->rq_size ; i++) /* last one is overflow */
+ for (prev=NULL, q = fs->rq[i] ; q != NULL ; )
+ if (q->head != NULL || q->S != q->F+1) {
+ prev = q ;
+ q = q->next ;
+ } else { /* entry is idle, expire it */
+ struct dn_flow_queue *old_q = q ;
+
+ if (prev != NULL)
+ prev->next = q = q->next ;
+ else
+ fs->rq[i] = q = q->next ;
+ fs->rq_elements-- ;
+ free(old_q, M_DUMMYNET);
+ }
+ return initial_elements - fs->rq_elements ;
+}
+
+/*
+ * If room, create a new queue and put at head of slot i;
+ * otherwise, create or use the default queue.
+ */
+static struct dn_flow_queue *
+create_queue(struct dn_flow_set *fs, int i)
+{
+ struct dn_flow_queue *q;
+
+ if (fs->rq_elements > fs->rq_size * dn_max_ratio &&
+ expire_queues(fs) == 0) {
+ /* No way to get room, use or create overflow queue. */
+ i = fs->rq_size;
+ if (fs->rq[i] != NULL)
+ return fs->rq[i];
+ }
+ q = malloc(sizeof(*q), M_DUMMYNET, M_NOWAIT | M_ZERO);
+ if (q == NULL) {
+ printf("dummynet: sorry, cannot allocate queue for new flow\n");
+ return (NULL);
+ }
+ q->fs = fs;
+ q->hash_slot = i;
+ q->next = fs->rq[i];
+ q->S = q->F + 1; /* hack - mark timestamp as invalid. */
+ q->numbytes = io_fast ? fs->pipe->bandwidth : 0;
+ fs->rq[i] = q;
+ fs->rq_elements++;
+ return (q);
+}
+
+/*
+ * Given a flow_set and a pkt in last_pkt, find a matching queue
+ * after appropriate masking. The queue is moved to front
+ * so that further searches take less time.
+ */
+static struct dn_flow_queue *
+find_queue(struct dn_flow_set *fs, struct ipfw_flow_id *id)
+{
+ int i = 0 ; /* we need i and q for new allocations */
+ struct dn_flow_queue *q, *prev;
+ int is_v6 = IS_IP6_FLOW_ID(id);
+
+ if ( !(fs->flags_fs & DN_HAVE_FLOW_MASK) )
+ q = fs->rq[0] ;
+ else {
+ /* first, do the masking, then hash */
+ id->dst_port &= fs->flow_mask.dst_port ;
+ id->src_port &= fs->flow_mask.src_port ;
+ id->proto &= fs->flow_mask.proto ;
+ id->flags = 0 ; /* we don't care about this one */
+ if (is_v6) {
+ APPLY_MASK(&id->dst_ip6, &fs->flow_mask.dst_ip6);
+ APPLY_MASK(&id->src_ip6, &fs->flow_mask.src_ip6);
+ id->flow_id6 &= fs->flow_mask.flow_id6;
+
+ i = ((id->dst_ip6.__u6_addr.__u6_addr32[0]) & 0xffff)^
+ ((id->dst_ip6.__u6_addr.__u6_addr32[1]) & 0xffff)^
+ ((id->dst_ip6.__u6_addr.__u6_addr32[2]) & 0xffff)^
+ ((id->dst_ip6.__u6_addr.__u6_addr32[3]) & 0xffff)^
+
+ ((id->dst_ip6.__u6_addr.__u6_addr32[0] >> 15) & 0xffff)^
+ ((id->dst_ip6.__u6_addr.__u6_addr32[1] >> 15) & 0xffff)^
+ ((id->dst_ip6.__u6_addr.__u6_addr32[2] >> 15) & 0xffff)^
+ ((id->dst_ip6.__u6_addr.__u6_addr32[3] >> 15) & 0xffff)^
+
+ ((id->src_ip6.__u6_addr.__u6_addr32[0] << 1) & 0xfffff)^
+ ((id->src_ip6.__u6_addr.__u6_addr32[1] << 1) & 0xfffff)^
+ ((id->src_ip6.__u6_addr.__u6_addr32[2] << 1) & 0xfffff)^
+ ((id->src_ip6.__u6_addr.__u6_addr32[3] << 1) & 0xfffff)^
+
+ ((id->src_ip6.__u6_addr.__u6_addr32[0] << 16) & 0xffff)^
+ ((id->src_ip6.__u6_addr.__u6_addr32[1] << 16) & 0xffff)^
+ ((id->src_ip6.__u6_addr.__u6_addr32[2] << 16) & 0xffff)^
+ ((id->src_ip6.__u6_addr.__u6_addr32[3] << 16) & 0xffff)^
+
+ (id->dst_port << 1) ^ (id->src_port) ^
+ (id->proto ) ^
+ (id->flow_id6);
+ } else {
+ id->dst_ip &= fs->flow_mask.dst_ip ;
+ id->src_ip &= fs->flow_mask.src_ip ;
+
+ i = ( (id->dst_ip) & 0xffff ) ^
+ ( (id->dst_ip >> 15) & 0xffff ) ^
+ ( (id->src_ip << 1) & 0xffff ) ^
+ ( (id->src_ip >> 16 ) & 0xffff ) ^
+ (id->dst_port << 1) ^ (id->src_port) ^
+ (id->proto );
+ }
+ i = i % fs->rq_size ;
+ /* finally, scan the current list for a match */
+ searches++ ;
+ for (prev=NULL, q = fs->rq[i] ; q ; ) {
+ search_steps++;
+ if (is_v6 &&
+ IN6_ARE_ADDR_EQUAL(&id->dst_ip6,&q->id.dst_ip6) &&
+ IN6_ARE_ADDR_EQUAL(&id->src_ip6,&q->id.src_ip6) &&
+ id->dst_port == q->id.dst_port &&
+ id->src_port == q->id.src_port &&
+ id->proto == q->id.proto &&
+ id->flags == q->id.flags &&
+ id->flow_id6 == q->id.flow_id6)
+ break ; /* found */
+
+ if (!is_v6 && id->dst_ip == q->id.dst_ip &&
+ id->src_ip == q->id.src_ip &&
+ id->dst_port == q->id.dst_port &&
+ id->src_port == q->id.src_port &&
+ id->proto == q->id.proto &&
+ id->flags == q->id.flags)
+ break ; /* found */
+
+ /* No match. Check if we can expire the entry */
+ if (pipe_expire && q->head == NULL && q->S == q->F+1 ) {
+ /* entry is idle and not in any heap, expire it */
+ struct dn_flow_queue *old_q = q ;
+
+ if (prev != NULL)
+ prev->next = q = q->next ;
+ else
+ fs->rq[i] = q = q->next ;
+ fs->rq_elements-- ;
+ free(old_q, M_DUMMYNET);
+ continue ;
+ }
+ prev = q ;
+ q = q->next ;
+ }
+ if (q && prev != NULL) { /* found and not in front */
+ prev->next = q->next ;
+ q->next = fs->rq[i] ;
+ fs->rq[i] = q ;
+ }
+ }
+ if (q == NULL) { /* no match, need to allocate a new entry */
+ q = create_queue(fs, i);
+ if (q != NULL)
+ q->id = *id ;
+ }
+ return q ;
+}
+
+static int
+red_drops(struct dn_flow_set *fs, struct dn_flow_queue *q, int len)
+{
+ /*
+ * RED algorithm
+ *
+ * RED calculates the average queue size (avg) using a low-pass filter
+ * with an exponential weighted (w_q) moving average:
+ * avg <- (1-w_q) * avg + w_q * q_size
+ * where q_size is the queue length (measured in bytes or * packets).
+ *
+ * If q_size == 0, we compute the idle time for the link, and set
+ * avg = (1 - w_q)^(idle/s)
+ * where s is the time needed for transmitting a medium-sized packet.
+ *
+ * Now, if avg < min_th the packet is enqueued.
+ * If avg > max_th the packet is dropped. Otherwise, the packet is
+ * dropped with probability P function of avg.
+ */
+
+ int64_t p_b = 0;
+
+ /* Queue in bytes or packets? */
+ u_int q_size = (fs->flags_fs & DN_QSIZE_IS_BYTES) ?
+ q->len_bytes : q->len;
+
+ DPRINTF(("\ndummynet: %d q: %2u ", (int)curr_time, q_size));
+
+ /* Average queue size estimation. */
+ if (q_size != 0) {
+ /* Queue is not empty, avg <- avg + (q_size - avg) * w_q */
+ int diff = SCALE(q_size) - q->avg;
+ int64_t v = SCALE_MUL((int64_t)diff, (int64_t)fs->w_q);
+
+ q->avg += (int)v;
+ } else {
+ /*
+ * Queue is empty, find for how long the queue has been
+ * empty and use a lookup table for computing
+ * (1 - * w_q)^(idle_time/s) where s is the time to send a
+ * (small) packet.
+ * XXX check wraps...
+ */
+ if (q->avg) {
+ u_int t = (curr_time - q->q_time) / fs->lookup_step;
+
+ q->avg = (t < fs->lookup_depth) ?
+ SCALE_MUL(q->avg, fs->w_q_lookup[t]) : 0;
+ }
+ }
+ DPRINTF(("dummynet: avg: %u ", SCALE_VAL(q->avg)));
+
+ /* Should i drop? */
+ if (q->avg < fs->min_th) {
+ q->count = -1;
+ return (0); /* accept packet */
+ }
+ if (q->avg >= fs->max_th) { /* average queue >= max threshold */
+ if (fs->flags_fs & DN_IS_GENTLE_RED) {
+ /*
+ * According to Gentle-RED, if avg is greater than
+ * max_th the packet is dropped with a probability
+ * p_b = c_3 * avg - c_4
+ * where c_3 = (1 - max_p) / max_th
+ * c_4 = 1 - 2 * max_p
+ */
+ p_b = SCALE_MUL((int64_t)fs->c_3, (int64_t)q->avg) -
+ fs->c_4;
+ } else {
+ q->count = -1;
+ DPRINTF(("dummynet: - drop"));
+ return (1);
+ }
+ } else if (q->avg > fs->min_th) {
+ /*
+ * We compute p_b using the linear dropping function
+ * p_b = c_1 * avg - c_2
+ * where c_1 = max_p / (max_th - min_th)
+ * c_2 = max_p * min_th / (max_th - min_th)
+ */
+ p_b = SCALE_MUL((int64_t)fs->c_1, (int64_t)q->avg) - fs->c_2;
+ }
+
+ if (fs->flags_fs & DN_QSIZE_IS_BYTES)
+ p_b = (p_b * len) / fs->max_pkt_size;
+ if (++q->count == 0)
+ q->random = random() & 0xffff;
+ else {
+ /*
+ * q->count counts packets arrived since last drop, so a greater
+ * value of q->count means a greater packet drop probability.
+ */
+ if (SCALE_MUL(p_b, SCALE((int64_t)q->count)) > q->random) {
+ q->count = 0;
+ DPRINTF(("dummynet: - red drop"));
+ /* After a drop we calculate a new random value. */
+ q->random = random() & 0xffff;
+ return (1); /* drop */
+ }
+ }
+ /* End of RED algorithm. */
+
+ return (0); /* accept */
+}
+
+static __inline struct dn_flow_set *
+locate_flowset(int fs_nr)
+{
+ struct dn_flow_set *fs;
+
+ SLIST_FOREACH(fs, &flowsethash[HASH(fs_nr)], next)
+ if (fs->fs_nr == fs_nr)
+ return (fs);
+
+ return (NULL);
+}
+
+static __inline struct dn_pipe *
+locate_pipe(int pipe_nr)
+{
+ struct dn_pipe *pipe;
+
+ SLIST_FOREACH(pipe, &pipehash[HASH(pipe_nr)], next)
+ if (pipe->pipe_nr == pipe_nr)
+ return (pipe);
+
+ return (NULL);
+}
+
+/*
+ * dummynet hook for packets. Below 'pipe' is a pipe or a queue
+ * depending on whether WF2Q or fixed bw is used.
+ *
+ * pipe_nr pipe or queue the packet is destined for.
+ * dir where shall we send the packet after dummynet.
+ * m the mbuf with the packet
+ * ifp the 'ifp' parameter from the caller.
+ * NULL in ip_input, destination interface in ip_output,
+ * rule matching rule, in case of multiple passes
+ */
+static int
+dummynet_io(struct mbuf **m0, int dir, struct ip_fw_args *fwa)
+{
+ struct mbuf *m = *m0, *head = NULL, *tail = NULL;
+ struct dn_pkt_tag *pkt;
+ struct m_tag *mtag;
+ struct dn_flow_set *fs = NULL;
+ struct dn_pipe *pipe;
+ uint64_t len = m->m_pkthdr.len;
+ struct dn_flow_queue *q = NULL;
+ int is_pipe;
+ ipfw_insn *cmd = ACTION_PTR(fwa->rule);
+
+ KASSERT(m->m_nextpkt == NULL,
+ ("dummynet_io: mbuf queue passed to dummynet"));
+
+ if (cmd->opcode == O_LOG)
+ cmd += F_LEN(cmd);
+ if (cmd->opcode == O_ALTQ)
+ cmd += F_LEN(cmd);
+ if (cmd->opcode == O_TAG)
+ cmd += F_LEN(cmd);
+ is_pipe = (cmd->opcode == O_PIPE);
+
+ DUMMYNET_LOCK();
+ io_pkt++;
+ /*
+ * This is a dummynet rule, so we expect an O_PIPE or O_QUEUE rule.
+ *
+ * XXXGL: probably the pipe->fs and fs->pipe logic here
+ * below can be simplified.
+ */
+ if (is_pipe) {
+ pipe = locate_pipe(fwa->cookie);
+ if (pipe != NULL)
+ fs = &(pipe->fs);
+ } else
+ fs = locate_flowset(fwa->cookie);
+
+ if (fs == NULL)
+ goto dropit; /* This queue/pipe does not exist! */
+ pipe = fs->pipe;
+ if (pipe == NULL) { /* Must be a queue, try find a matching pipe. */
+ pipe = locate_pipe(fs->parent_nr);
+ if (pipe != NULL)
+ fs->pipe = pipe;
+ else {
+ printf("dummynet: no pipe %d for queue %d, drop pkt\n",
+ fs->parent_nr, fs->fs_nr);
+ goto dropit;
+ }
+ }
+ q = find_queue(fs, &(fwa->f_id));
+ if (q == NULL)
+ goto dropit; /* Cannot allocate queue. */
+
+ /* Update statistics, then check reasons to drop pkt. */
+ q->tot_bytes += len;
+ q->tot_pkts++;
+ if (fs->plr && random() < fs->plr)
+ goto dropit; /* Random pkt drop. */
+ if (fs->flags_fs & DN_QSIZE_IS_BYTES) {
+ if (q->len_bytes > fs->qsize)
+ goto dropit; /* Queue size overflow. */
+ } else {
+ if (q->len >= fs->qsize)
+ goto dropit; /* Queue count overflow. */
+ }
+ if (fs->flags_fs & DN_IS_RED && red_drops(fs, q, len))
+ goto dropit;
+
+ /* XXX expensive to zero, see if we can remove it. */
+ mtag = m_tag_get(PACKET_TAG_DUMMYNET,
+ sizeof(struct dn_pkt_tag), M_NOWAIT | M_ZERO);
+ if (mtag == NULL)
+ goto dropit; /* Cannot allocate packet header. */
+ m_tag_prepend(m, mtag); /* Attach to mbuf chain. */
+
+ pkt = (struct dn_pkt_tag *)(mtag + 1);
+ /*
+ * Ok, i can handle the pkt now...
+ * Build and enqueue packet + parameters.
+ */
+ pkt->rule = fwa->rule;
+ pkt->dn_dir = dir;
+
+ pkt->ifp = fwa->oif;
+
+ if (q->head == NULL)
+ q->head = m;
+ else
+ q->tail->m_nextpkt = m;
+ q->tail = m;
+ q->len++;
+ q->len_bytes += len;
+
+ if (q->head != m) /* Flow was not idle, we are done. */
+ goto done;
+
+ if (q->q_time < curr_time)
+ q->numbytes = io_fast ? fs->pipe->bandwidth : 0;
+ q->q_time = curr_time;
+
+ /*
+ * If we reach this point the flow was previously idle, so we need
+ * to schedule it. This involves different actions for fixed-rate or
+ * WF2Q queues.
+ */
+ if (is_pipe) {
+ /* Fixed-rate queue: just insert into the ready_heap. */
+ dn_key t = 0;
+
+ if (pipe->bandwidth) {
+ q->extra_bits = compute_extra_bits(m, pipe);
+ t = set_ticks(m, q, pipe);
+ }
+ q->sched_time = curr_time;
+ if (t == 0) /* Must process it now. */
+ ready_event(q, &head, &tail);
+ else
+ heap_insert(&ready_heap, curr_time + t , q);
+ } else {
+ /*
+ * WF2Q. First, compute start time S: if the flow was
+ * idle (S = F + 1) set S to the virtual time V for the
+ * controlling pipe, and update the sum of weights for the pipe;
+ * otherwise, remove flow from idle_heap and set S to max(F,V).
+ * Second, compute finish time F = S + len / weight.
+ * Third, if pipe was idle, update V = max(S, V).
+ * Fourth, count one more backlogged flow.
+ */
+ if (DN_KEY_GT(q->S, q->F)) { /* Means timestamps are invalid. */
+ q->S = pipe->V;
+ pipe->sum += fs->weight; /* Add weight of new queue. */
+ } else {
+ heap_extract(&(pipe->idle_heap), q);
+ q->S = MAX64(q->F, pipe->V);
+ }
+ q->F = q->S + (len << MY_M) / (uint64_t)fs->weight;
+
+ if (pipe->not_eligible_heap.elements == 0 &&
+ pipe->scheduler_heap.elements == 0)
+ pipe->V = MAX64(q->S, pipe->V);
+ fs->backlogged++;
+ /*
+ * Look at eligibility. A flow is not eligibile if S>V (when
+ * this happens, it means that there is some other flow already
+ * scheduled for the same pipe, so the scheduler_heap cannot be
+ * empty). If the flow is not eligible we just store it in the
+ * not_eligible_heap. Otherwise, we store in the scheduler_heap
+ * and possibly invoke ready_event_wfq() right now if there is
+ * leftover credit.
+ * Note that for all flows in scheduler_heap (SCH), S_i <= V,
+ * and for all flows in not_eligible_heap (NEH), S_i > V.
+ * So when we need to compute max(V, min(S_i)) forall i in
+ * SCH+NEH, we only need to look into NEH.
+ */
+ if (DN_KEY_GT(q->S, pipe->V)) { /* Not eligible. */
+ if (pipe->scheduler_heap.elements == 0)
+ printf("dummynet: ++ ouch! not eligible but empty scheduler!\n");
+ heap_insert(&(pipe->not_eligible_heap), q->S, q);
+ } else {
+ heap_insert(&(pipe->scheduler_heap), q->F, q);
+ if (pipe->numbytes >= 0) { /* Pipe is idle. */
+ if (pipe->scheduler_heap.elements != 1)
+ printf("dummynet: OUCH! pipe should have been idle!\n");
+ DPRINTF(("dummynet: waking up pipe %d at %d\n",
+ pipe->pipe_nr, (int)(q->F >> MY_M)));
+ pipe->sched_time = curr_time;
+ ready_event_wfq(pipe, &head, &tail);
+ }
+ }
+ }
+done:
+ if (head == m && dir != DN_TO_IFB_FWD && dir != DN_TO_ETH_DEMUX &&
+ dir != DN_TO_ETH_OUT) { /* Fast io. */
+ io_pkt_fast++;
+ if (m->m_nextpkt != NULL)
+ printf("dummynet: fast io: pkt chain detected!\n");
+ head = m->m_nextpkt = NULL;
+ } else
+ *m0 = NULL; /* Normal io. */
+
+ DUMMYNET_UNLOCK();
+ if (head != NULL)
+ dummynet_send(head);
+ return (0);
+
+dropit:
+ io_pkt_drop++;
+ if (q)
+ q->drops++;
+ DUMMYNET_UNLOCK();
+ m_freem(m);
+ *m0 = NULL;
+ return ((fs && (fs->flags_fs & DN_NOERROR)) ? 0 : ENOBUFS);
+}
+
+/*
+ * Below, the rt_unref is only needed when (pkt->dn_dir == DN_TO_IP_OUT)
+ * Doing this would probably save us the initial bzero of dn_pkt
+ */
+#define DN_FREE_PKT(_m) do { \
+ m_freem(_m); \
+} while (0)
+
+/*
+ * Dispose all packets and flow_queues on a flow_set.
+ * If all=1, also remove red lookup table and other storage,
+ * including the descriptor itself.
+ * For the one in dn_pipe MUST also cleanup ready_heap...
+ */
+static void
+purge_flow_set(struct dn_flow_set *fs, int all)
+{
+ struct dn_flow_queue *q, *qn;
+ int i;
+
+ DUMMYNET_LOCK_ASSERT();
+
+ for (i = 0; i <= fs->rq_size; i++) {
+ for (q = fs->rq[i]; q != NULL; q = qn) {
+ struct mbuf *m, *mnext;
+
+ mnext = q->head;
+ while ((m = mnext) != NULL) {
+ mnext = m->m_nextpkt;
+ DN_FREE_PKT(m);
+ }
+ qn = q->next;
+ free(q, M_DUMMYNET);
+ }
+ fs->rq[i] = NULL;
+ }
+
+ fs->rq_elements = 0;
+ if (all) {
+ /* RED - free lookup table. */
+ if (fs->w_q_lookup != NULL)
+ free(fs->w_q_lookup, M_DUMMYNET);
+ if (fs->rq != NULL)
+ free(fs->rq, M_DUMMYNET);
+ /* If this fs is not part of a pipe, free it. */
+ if (fs->pipe == NULL || fs != &(fs->pipe->fs))
+ free(fs, M_DUMMYNET);
+ }
+}
+
+/*
+ * Dispose all packets queued on a pipe (not a flow_set).
+ * Also free all resources associated to a pipe, which is about
+ * to be deleted.
+ */
+static void
+purge_pipe(struct dn_pipe *pipe)
+{
+ struct mbuf *m, *mnext;
+
+ purge_flow_set( &(pipe->fs), 1 );
+
+ mnext = pipe->head;
+ while ((m = mnext) != NULL) {
+ mnext = m->m_nextpkt;
+ DN_FREE_PKT(m);
+ }
+
+ heap_free( &(pipe->scheduler_heap) );
+ heap_free( &(pipe->not_eligible_heap) );
+ heap_free( &(pipe->idle_heap) );
+}
+
+/*
+ * Delete all pipes and heaps returning memory. Must also
+ * remove references from all ipfw rules to all pipes.
+ */
+static void
+dummynet_flush(void)
+{
+ struct dn_pipe *pipe, *pipe1;
+ struct dn_flow_set *fs, *fs1;
+ int i;
+
+ DUMMYNET_LOCK();
+ /* Free heaps so we don't have unwanted events. */
+ heap_free(&ready_heap);
+ heap_free(&wfq_ready_heap);
+ heap_free(&extract_heap);
+
+ /*
+ * Now purge all queued pkts and delete all pipes.
+ *
+ * XXXGL: can we merge the for(;;) cycles into one or not?
+ */
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH_SAFE(fs, &flowsethash[i], next, fs1) {
+ SLIST_REMOVE(&flowsethash[i], fs, dn_flow_set, next);
+ purge_flow_set(fs, 1);
+ }
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH_SAFE(pipe, &pipehash[i], next, pipe1) {
+ SLIST_REMOVE(&pipehash[i], pipe, dn_pipe, next);
+ purge_pipe(pipe);
+ free_pipe(pipe);
+ }
+ DUMMYNET_UNLOCK();
+}
+
+extern struct ip_fw *ip_fw_default_rule ;
+static void
+dn_rule_delete_fs(struct dn_flow_set *fs, void *r)
+{
+ int i ;
+ struct dn_flow_queue *q ;
+ struct mbuf *m ;
+
+ for (i = 0 ; i <= fs->rq_size ; i++) /* last one is ovflow */
+ for (q = fs->rq[i] ; q ; q = q->next )
+ for (m = q->head ; m ; m = m->m_nextpkt ) {
+ struct dn_pkt_tag *pkt = dn_tag_get(m) ;
+ if (pkt->rule == r)
+ pkt->rule = ip_fw_default_rule ;
+ }
+}
+
+/*
+ * When a firewall rule is deleted, scan all queues and remove the pointer
+ * to the rule from matching packets, making them point to the default rule.
+ * The pointer is used to reinject packets in case one_pass = 0.
+ */
+void
+dn_rule_delete(void *r)
+{
+ struct dn_pipe *pipe;
+ struct dn_flow_set *fs;
+ struct dn_pkt_tag *pkt;
+ struct mbuf *m;
+ int i;
+
+ DUMMYNET_LOCK();
+ /*
+ * If the rule references a queue (dn_flow_set), then scan
+ * the flow set, otherwise scan pipes. Should do either, but doing
+ * both does not harm.
+ */
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(fs, &flowsethash[i], next)
+ dn_rule_delete_fs(fs, r);
+
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(pipe, &pipehash[i], next) {
+ fs = &(pipe->fs);
+ dn_rule_delete_fs(fs, r);
+ for (m = pipe->head ; m ; m = m->m_nextpkt ) {
+ pkt = dn_tag_get(m);
+ if (pkt->rule == r)
+ pkt->rule = ip_fw_default_rule;
+ }
+ }
+ DUMMYNET_UNLOCK();
+}
+
+/*
+ * setup RED parameters
+ */
+static int
+config_red(struct dn_flow_set *p, struct dn_flow_set *x)
+{
+ int i;
+
+ x->w_q = p->w_q;
+ x->min_th = SCALE(p->min_th);
+ x->max_th = SCALE(p->max_th);
+ x->max_p = p->max_p;
+
+ x->c_1 = p->max_p / (p->max_th - p->min_th);
+ x->c_2 = SCALE_MUL(x->c_1, SCALE(p->min_th));
+
+ if (x->flags_fs & DN_IS_GENTLE_RED) {
+ x->c_3 = (SCALE(1) - p->max_p) / p->max_th;
+ x->c_4 = SCALE(1) - 2 * p->max_p;
+ }
+
+ /* If the lookup table already exist, free and create it again. */
+ if (x->w_q_lookup) {
+ free(x->w_q_lookup, M_DUMMYNET);
+ x->w_q_lookup = NULL;
+ }
+ if (red_lookup_depth == 0) {
+ printf("\ndummynet: net.inet.ip.dummynet.red_lookup_depth"
+ "must be > 0\n");
+ free(x, M_DUMMYNET);
+ return (EINVAL);
+ }
+ x->lookup_depth = red_lookup_depth;
+ x->w_q_lookup = (u_int *)malloc(x->lookup_depth * sizeof(int),
+ M_DUMMYNET, M_NOWAIT);
+ if (x->w_q_lookup == NULL) {
+ printf("dummynet: sorry, cannot allocate red lookup table\n");
+ free(x, M_DUMMYNET);
+ return(ENOSPC);
+ }
+
+ /* Fill the lookup table with (1 - w_q)^x */
+ x->lookup_step = p->lookup_step;
+ x->lookup_weight = p->lookup_weight;
+ x->w_q_lookup[0] = SCALE(1) - x->w_q;
+
+ for (i = 1; i < x->lookup_depth; i++)
+ x->w_q_lookup[i] =
+ SCALE_MUL(x->w_q_lookup[i - 1], x->lookup_weight);
+
+ if (red_avg_pkt_size < 1)
+ red_avg_pkt_size = 512;
+ x->avg_pkt_size = red_avg_pkt_size;
+ if (red_max_pkt_size < 1)
+ red_max_pkt_size = 1500;
+ x->max_pkt_size = red_max_pkt_size;
+ return (0);
+}
+
+static int
+alloc_hash(struct dn_flow_set *x, struct dn_flow_set *pfs)
+{
+ if (x->flags_fs & DN_HAVE_FLOW_MASK) { /* allocate some slots */
+ int l = pfs->rq_size;
+
+ if (l == 0)
+ l = dn_hash_size;
+ if (l < 4)
+ l = 4;
+ else if (l > DN_MAX_HASH_SIZE)
+ l = DN_MAX_HASH_SIZE;
+ x->rq_size = l;
+ } else /* one is enough for null mask */
+ x->rq_size = 1;
+ x->rq = malloc((1 + x->rq_size) * sizeof(struct dn_flow_queue *),
+ M_DUMMYNET, M_NOWAIT | M_ZERO);
+ if (x->rq == NULL) {
+ printf("dummynet: sorry, cannot allocate queue\n");
+ return (ENOMEM);
+ }
+ x->rq_elements = 0;
+ return 0 ;
+}
+
+static void
+set_fs_parms(struct dn_flow_set *x, struct dn_flow_set *src)
+{
+ x->flags_fs = src->flags_fs;
+ x->qsize = src->qsize;
+ x->plr = src->plr;
+ x->flow_mask = src->flow_mask;
+ if (x->flags_fs & DN_QSIZE_IS_BYTES) {
+ if (x->qsize > pipe_byte_limit)
+ x->qsize = 1024 * 1024;
+ } else {
+ if (x->qsize == 0)
+ x->qsize = 50;
+ if (x->qsize > pipe_slot_limit)
+ x->qsize = 50;
+ }
+ /* Configuring RED. */
+ if (x->flags_fs & DN_IS_RED)
+ config_red(src, x); /* XXX should check errors */
+}
+
+/*
+ * Setup pipe or queue parameters.
+ */
+static int
+config_pipe(struct dn_pipe *p)
+{
+ struct dn_flow_set *pfs = &(p->fs);
+ struct dn_flow_queue *q;
+ int i, error;
+
+ /*
+ * The config program passes parameters as follows:
+ * bw = bits/second (0 means no limits),
+ * delay = ms, must be translated into ticks.
+ * qsize = slots/bytes
+ */
+ p->delay = (p->delay * hz) / 1000;
+ /* We need either a pipe number or a flow_set number. */
+ if (p->pipe_nr == 0 && pfs->fs_nr == 0)
+ return (EINVAL);
+ if (p->pipe_nr != 0 && pfs->fs_nr != 0)
+ return (EINVAL);
+ if (p->pipe_nr != 0) { /* this is a pipe */
+ struct dn_pipe *pipe;
+
+ DUMMYNET_LOCK();
+ pipe = locate_pipe(p->pipe_nr); /* locate pipe */
+
+ if (pipe == NULL) { /* new pipe */
+ pipe = malloc(sizeof(struct dn_pipe), M_DUMMYNET,
+ M_NOWAIT | M_ZERO);
+ if (pipe == NULL) {
+ DUMMYNET_UNLOCK();
+ printf("dummynet: no memory for new pipe\n");
+ return (ENOMEM);
+ }
+ pipe->pipe_nr = p->pipe_nr;
+ pipe->fs.pipe = pipe;
+ /*
+ * idle_heap is the only one from which
+ * we extract from the middle.
+ */
+ pipe->idle_heap.size = pipe->idle_heap.elements = 0;
+ pipe->idle_heap.offset =
+ offsetof(struct dn_flow_queue, heap_pos);
+ } else
+ /* Flush accumulated credit for all queues. */
+ for (i = 0; i <= pipe->fs.rq_size; i++)
+ for (q = pipe->fs.rq[i]; q; q = q->next)
+ q->numbytes = io_fast ? p->bandwidth : 0;
+
+ pipe->bandwidth = p->bandwidth;
+ pipe->numbytes = 0; /* just in case... */
+ bcopy(p->if_name, pipe->if_name, sizeof(p->if_name));
+ pipe->ifp = NULL; /* reset interface ptr */
+ pipe->delay = p->delay;
+ set_fs_parms(&(pipe->fs), pfs);
+
+ /* Handle changes in the delay profile. */
+ if (p->samples_no > 0) {
+ if (pipe->samples_no != p->samples_no) {
+ if (pipe->samples != NULL)
+ free(pipe->samples, M_DUMMYNET);
+ pipe->samples =
+ malloc(p->samples_no*sizeof(dn_key),
+ M_DUMMYNET, M_NOWAIT | M_ZERO);
+ if (pipe->samples == NULL) {
+ DUMMYNET_UNLOCK();
+ printf("dummynet: no memory "
+ "for new samples\n");
+ return (ENOMEM);
+ }
+ pipe->samples_no = p->samples_no;
+ }
+
+ strncpy(pipe->name,p->name,sizeof(pipe->name));
+ pipe->loss_level = p->loss_level;
+ for (i = 0; i<pipe->samples_no; ++i)
+ pipe->samples[i] = p->samples[i];
+ } else if (pipe->samples != NULL) {
+ free(pipe->samples, M_DUMMYNET);
+ pipe->samples = NULL;
+ pipe->samples_no = 0;
+ }
+
+ if (pipe->fs.rq == NULL) { /* a new pipe */
+ error = alloc_hash(&(pipe->fs), pfs);
+ if (error) {
+ DUMMYNET_UNLOCK();
+ free_pipe(pipe);
+ return (error);
+ }
+ SLIST_INSERT_HEAD(&pipehash[HASH(pipe->pipe_nr)],
+ pipe, next);
+ }
+ DUMMYNET_UNLOCK();
+ } else { /* config queue */
+ struct dn_flow_set *fs;
+
+ DUMMYNET_LOCK();
+ fs = locate_flowset(pfs->fs_nr); /* locate flow_set */
+
+ if (fs == NULL) { /* new */
+ if (pfs->parent_nr == 0) { /* need link to a pipe */
+ DUMMYNET_UNLOCK();
+ return (EINVAL);
+ }
+ fs = malloc(sizeof(struct dn_flow_set), M_DUMMYNET,
+ M_NOWAIT | M_ZERO);
+ if (fs == NULL) {
+ DUMMYNET_UNLOCK();
+ printf(
+ "dummynet: no memory for new flow_set\n");
+ return (ENOMEM);
+ }
+ fs->fs_nr = pfs->fs_nr;
+ fs->parent_nr = pfs->parent_nr;
+ fs->weight = pfs->weight;
+ if (fs->weight == 0)
+ fs->weight = 1;
+ else if (fs->weight > 100)
+ fs->weight = 100;
+ } else {
+ /*
+ * Change parent pipe not allowed;
+ * must delete and recreate.
+ */
+ if (pfs->parent_nr != 0 &&
+ fs->parent_nr != pfs->parent_nr) {
+ DUMMYNET_UNLOCK();
+ return (EINVAL);
+ }
+ }
+
+ set_fs_parms(fs, pfs);
+
+ if (fs->rq == NULL) { /* a new flow_set */
+ error = alloc_hash(fs, pfs);
+ if (error) {
+ DUMMYNET_UNLOCK();
+ free(fs, M_DUMMYNET);
+ return (error);
+ }
+ SLIST_INSERT_HEAD(&flowsethash[HASH(fs->fs_nr)],
+ fs, next);
+ }
+ DUMMYNET_UNLOCK();
+ }
+ return (0);
+}
+
+/*
+ * Helper function to remove from a heap queues which are linked to
+ * a flow_set about to be deleted.
+ */
+static void
+fs_remove_from_heap(struct dn_heap *h, struct dn_flow_set *fs)
+{
+ int i = 0, found = 0 ;
+ for (; i < h->elements ;)
+ if ( ((struct dn_flow_queue *)h->p[i].object)->fs == fs) {
+ h->elements-- ;
+ h->p[i] = h->p[h->elements] ;
+ found++ ;
+ } else
+ i++ ;
+ if (found)
+ heapify(h);
+}
+
+/*
+ * helper function to remove a pipe from a heap (can be there at most once)
+ */
+static void
+pipe_remove_from_heap(struct dn_heap *h, struct dn_pipe *p)
+{
+ if (h->elements > 0) {
+ int i = 0 ;
+ for (i=0; i < h->elements ; i++ ) {
+ if (h->p[i].object == p) { /* found it */
+ h->elements-- ;
+ h->p[i] = h->p[h->elements] ;
+ heapify(h);
+ break ;
+ }
+ }
+ }
+}
+
+/*
+ * drain all queues. Called in case of severe mbuf shortage.
+ */
+void
+dummynet_drain(void)
+{
+ struct dn_flow_set *fs;
+ struct dn_pipe *pipe;
+ struct mbuf *m, *mnext;
+ int i;
+
+ DUMMYNET_LOCK_ASSERT();
+
+ heap_free(&ready_heap);
+ heap_free(&wfq_ready_heap);
+ heap_free(&extract_heap);
+ /* remove all references to this pipe from flow_sets */
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(fs, &flowsethash[i], next)
+ purge_flow_set(fs, 0);
+
+ for (i = 0; i < HASHSIZE; i++) {
+ SLIST_FOREACH(pipe, &pipehash[i], next) {
+ purge_flow_set(&(pipe->fs), 0);
+
+ mnext = pipe->head;
+ while ((m = mnext) != NULL) {
+ mnext = m->m_nextpkt;
+ DN_FREE_PKT(m);
+ }
+ pipe->head = pipe->tail = NULL;
+ }
+ }
+}
+
+/*
+ * Fully delete a pipe or a queue, cleaning up associated info.
+ */
+static int
+delete_pipe(struct dn_pipe *p)
+{
+
+ if (p->pipe_nr == 0 && p->fs.fs_nr == 0)
+ return EINVAL ;
+ if (p->pipe_nr != 0 && p->fs.fs_nr != 0)
+ return EINVAL ;
+ if (p->pipe_nr != 0) { /* this is an old-style pipe */
+ struct dn_pipe *pipe;
+ struct dn_flow_set *fs;
+ int i;
+
+ DUMMYNET_LOCK();
+ pipe = locate_pipe(p->pipe_nr); /* locate pipe */
+
+ if (pipe == NULL) {
+ DUMMYNET_UNLOCK();
+ return (ENOENT); /* not found */
+ }
+
+ /* Unlink from list of pipes. */
+ SLIST_REMOVE(&pipehash[HASH(pipe->pipe_nr)], pipe, dn_pipe, next);
+
+ /* Remove all references to this pipe from flow_sets. */
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(fs, &flowsethash[i], next)
+ if (fs->pipe == pipe) {
+ printf("dummynet: ++ ref to pipe %d from fs %d\n",
+ p->pipe_nr, fs->fs_nr);
+ fs->pipe = NULL ;
+ purge_flow_set(fs, 0);
+ }
+ fs_remove_from_heap(&ready_heap, &(pipe->fs));
+ purge_pipe(pipe); /* remove all data associated to this pipe */
+ /* remove reference to here from extract_heap and wfq_ready_heap */
+ pipe_remove_from_heap(&extract_heap, pipe);
+ pipe_remove_from_heap(&wfq_ready_heap, pipe);
+ DUMMYNET_UNLOCK();
+
+ free_pipe(pipe);
+ } else { /* this is a WF2Q queue (dn_flow_set) */
+ struct dn_flow_set *fs;
+
+ DUMMYNET_LOCK();
+ fs = locate_flowset(p->fs.fs_nr); /* locate set */
+
+ if (fs == NULL) {
+ DUMMYNET_UNLOCK();
+ return (ENOENT); /* not found */
+ }
+
+ /* Unlink from list of flowsets. */
+ SLIST_REMOVE( &flowsethash[HASH(fs->fs_nr)], fs, dn_flow_set, next);
+
+ if (fs->pipe != NULL) {
+ /* Update total weight on parent pipe and cleanup parent heaps. */
+ fs->pipe->sum -= fs->weight * fs->backlogged ;
+ fs_remove_from_heap(&(fs->pipe->not_eligible_heap), fs);
+ fs_remove_from_heap(&(fs->pipe->scheduler_heap), fs);
+#if 1 /* XXX should i remove from idle_heap as well ? */
+ fs_remove_from_heap(&(fs->pipe->idle_heap), fs);
+#endif
+ }
+ purge_flow_set(fs, 1);
+ DUMMYNET_UNLOCK();
+ }
+ return 0 ;
+}
+
+/*
+ * helper function used to copy data from kernel in DUMMYNET_GET
+ */
+static char *
+dn_copy_set(struct dn_flow_set *set, char *bp)
+{
+ int i, copied = 0 ;
+ struct dn_flow_queue *q, *qp = (struct dn_flow_queue *)bp;
+
+ DUMMYNET_LOCK_ASSERT();
+
+ for (i = 0 ; i <= set->rq_size ; i++)
+ for (q = set->rq[i] ; q ; q = q->next, qp++ ) {
+ if (q->hash_slot != i)
+ printf("dummynet: ++ at %d: wrong slot (have %d, "
+ "should be %d)\n", copied, q->hash_slot, i);
+ if (q->fs != set)
+ printf("dummynet: ++ at %d: wrong fs ptr (have %p, should be %p)\n",
+ i, q->fs, set);
+ copied++ ;
+ bcopy(q, qp, sizeof( *q ) );
+ /* cleanup pointers */
+ qp->next = NULL ;
+ qp->head = qp->tail = NULL ;
+ qp->fs = NULL ;
+ }
+ if (copied != set->rq_elements)
+ printf("dummynet: ++ wrong count, have %d should be %d\n",
+ copied, set->rq_elements);
+ return (char *)qp ;
+}
+
+static size_t
+dn_calc_size(void)
+{
+ struct dn_flow_set *fs;
+ struct dn_pipe *pipe;
+ size_t size = 0;
+ int i;
+
+ DUMMYNET_LOCK_ASSERT();
+ /*
+ * Compute size of data structures: list of pipes and flow_sets.
+ */
+ for (i = 0; i < HASHSIZE; i++) {
+ SLIST_FOREACH(pipe, &pipehash[i], next)
+ size += sizeof(*pipe) +
+ pipe->fs.rq_elements * sizeof(struct dn_flow_queue);
+ SLIST_FOREACH(fs, &flowsethash[i], next)
+ size += sizeof (*fs) +
+ fs->rq_elements * sizeof(struct dn_flow_queue);
+ }
+ return size;
+}
+
+static int
+dummynet_get(struct sockopt *sopt)
+{
+ char *buf, *bp ; /* bp is the "copy-pointer" */
+ size_t size ;
+ struct dn_flow_set *fs;
+ struct dn_pipe *pipe;
+ int error=0, i ;
+
+ /* XXX lock held too long */
+ DUMMYNET_LOCK();
+ /*
+ * XXX: Ugly, but we need to allocate memory with M_WAITOK flag and we
+ * cannot use this flag while holding a mutex.
+ */
+ for (i = 0; i < 10; i++) {
+ size = dn_calc_size();
+ DUMMYNET_UNLOCK();
+ buf = malloc(size, M_TEMP, M_WAITOK);
+ DUMMYNET_LOCK();
+ if (size == dn_calc_size())
+ break;
+ free(buf, M_TEMP);
+ buf = NULL;
+ }
+ if (buf == NULL) {
+ DUMMYNET_UNLOCK();
+ return ENOBUFS ;
+ }
+ bp = buf;
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(pipe, &pipehash[i], next) {
+ struct dn_pipe *pipe_bp = (struct dn_pipe *)bp;
+
+ /*
+ * Copy pipe descriptor into *bp, convert delay back to ms,
+ * then copy the flow_set descriptor(s) one at a time.
+ * After each flow_set, copy the queue descriptor it owns.
+ */
+ bcopy(pipe, bp, sizeof(*pipe));
+ pipe_bp->delay = (pipe_bp->delay * 1000) / hz;
+ /*
+ * XXX the following is a hack based on ->next being the
+ * first field in dn_pipe and dn_flow_set. The correct
+ * solution would be to move the dn_flow_set to the beginning
+ * of struct dn_pipe.
+ */
+ pipe_bp->next.sle_next = (struct dn_pipe *)DN_IS_PIPE;
+ /* Clean pointers. */
+ pipe_bp->head = pipe_bp->tail = NULL;
+ pipe_bp->fs.next.sle_next = NULL;
+ pipe_bp->fs.pipe = NULL;
+ pipe_bp->fs.rq = NULL;
+ pipe_bp->samples = NULL;
+
+ bp += sizeof(*pipe) ;
+ bp = dn_copy_set(&(pipe->fs), bp);
+ }
+
+ for (i = 0; i < HASHSIZE; i++)
+ SLIST_FOREACH(fs, &flowsethash[i], next) {
+ struct dn_flow_set *fs_bp = (struct dn_flow_set *)bp;
+
+ bcopy(fs, bp, sizeof(*fs));
+ /* XXX same hack as above */
+ fs_bp->next.sle_next = (struct dn_flow_set *)DN_IS_QUEUE;
+ fs_bp->pipe = NULL;
+ fs_bp->rq = NULL;
+ bp += sizeof(*fs);
+ bp = dn_copy_set(fs, bp);
+ }
+
+ DUMMYNET_UNLOCK();
+
+ error = sooptcopyout(sopt, buf, size);
+ free(buf, M_TEMP);
+ return error ;
+}
+
+/*
+ * Handler for the various dummynet socket options (get, flush, config, del)
+ */
+static int
+ip_dn_ctl(struct sockopt *sopt)
+{
+ int error = 0 ;
+ struct dn_pipe *p;
+ struct dn_pipe_max tmp_pipe; /* pipe + large buffer */
+
+ error = priv_check(sopt->sopt_td, PRIV_NETINET_DUMMYNET);
+ if (error)
+ return (error);
+
+ /* Disallow sets in really-really secure mode. */
+ if (sopt->sopt_dir == SOPT_SET) {
+#if __FreeBSD_version >= 500034
+ error = securelevel_ge(sopt->sopt_td->td_ucred, 3);
+ if (error)
+ return (error);
+#else
+ if (securelevel >= 3)
+ return (EPERM);
+#endif
+ }
+
+ switch (sopt->sopt_name) {
+ default :
+ printf("dummynet: -- unknown option %d", sopt->sopt_name);
+ return EINVAL ;
+
+ case IP_DUMMYNET_GET :
+ error = dummynet_get(sopt);
+ break ;
+
+ case IP_DUMMYNET_FLUSH :
+ dummynet_flush() ;
+ break ;
+
+ case IP_DUMMYNET_CONFIGURE :
+ p = (struct dn_pipe *)&tmp_pipe ;
+ error = sooptcopyin(sopt, p, sizeof(tmp_pipe), sizeof *p);
+ if (error)
+ break ;
+ if (p->samples_no > 0)
+ p->samples = &tmp_pipe.samples[0];
+
+ error = config_pipe(p);
+ break ;
+
+ case IP_DUMMYNET_DEL : /* remove a pipe or queue */
+ p = (struct dn_pipe *)&tmp_pipe ;
+ error = sooptcopyin(sopt, p, sizeof *p, sizeof *p);
+ if (error)
+ break ;
+
+ error = delete_pipe(p);
+ break ;
+ }
+ return error ;
+}
+
+static void
+ip_dn_init(void)
+{
+ int i;
+
+ if (bootverbose)
+ printf("DUMMYNET with IPv6 initialized (040826)\n");
+
+ DUMMYNET_LOCK_INIT();
+
+ for (i = 0; i < HASHSIZE; i++) {
+ SLIST_INIT(&pipehash[i]);
+ SLIST_INIT(&flowsethash[i]);
+ }
+ ready_heap.size = ready_heap.elements = 0;
+ ready_heap.offset = 0;
+
+ wfq_ready_heap.size = wfq_ready_heap.elements = 0;
+ wfq_ready_heap.offset = 0;
+
+ extract_heap.size = extract_heap.elements = 0;
+ extract_heap.offset = 0;
+
+ ip_dn_ctl_ptr = ip_dn_ctl;
+ ip_dn_io_ptr = dummynet_io;
+ ip_dn_ruledel_ptr = dn_rule_delete;
+
+ TASK_INIT(&dn_task, 0, dummynet_task, NULL);
+ dn_tq = taskqueue_create_fast("dummynet", M_NOWAIT,
+ taskqueue_thread_enqueue, &dn_tq);
+ taskqueue_start_threads(&dn_tq, 1, PI_NET, "dummynet");
+
+ callout_init(&dn_timeout, CALLOUT_MPSAFE);
+ callout_reset(&dn_timeout, 1, dummynet, NULL);
+
+ /* Initialize curr_time adjustment mechanics. */
+ getmicrouptime(&prev_t);
+}
+
+#ifdef KLD_MODULE
+static void
+ip_dn_destroy(void)
+{
+ ip_dn_ctl_ptr = NULL;
+ ip_dn_io_ptr = NULL;
+ ip_dn_ruledel_ptr = NULL;
+
+ DUMMYNET_LOCK();
+ callout_stop(&dn_timeout);
+ DUMMYNET_UNLOCK();
+ taskqueue_drain(dn_tq, &dn_task);
+ taskqueue_free(dn_tq);
+
+ dummynet_flush();
+
+ DUMMYNET_LOCK_DESTROY();
+}
+#endif /* KLD_MODULE */
+
+static int
+dummynet_modevent(module_t mod, int type, void *data)
+{
+
+ switch (type) {
+ case MOD_LOAD:
+ if (ip_dn_io_ptr) {
+ printf("DUMMYNET already loaded\n");
+ return EEXIST ;
+ }
+ ip_dn_init();
+ break;
+
+ case MOD_UNLOAD:
+#if !defined(KLD_MODULE)
+ printf("dummynet statically compiled, cannot unload\n");
+ return EINVAL ;
+#else
+ ip_dn_destroy();
+#endif
+ break ;
+ default:
+ return EOPNOTSUPP;
+ break ;
+ }
+ return 0 ;
+}
+
+static moduledata_t dummynet_mod = {
+ "dummynet",
+ dummynet_modevent,
+ NULL
+};
+DECLARE_MODULE(dummynet, dummynet_mod, SI_SUB_PROTO_IFATTACHDOMAIN, SI_ORDER_ANY);
+MODULE_DEPEND(dummynet, ipfw, 2, 2, 2);
+MODULE_VERSION(dummynet, 1);