aboutsummaryrefslogtreecommitdiff
path: root/lib/CodeGen/RegAllocPBQP.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'lib/CodeGen/RegAllocPBQP.cpp')
-rw-r--r--lib/CodeGen/RegAllocPBQP.cpp994
1 files changed, 386 insertions, 608 deletions
diff --git a/lib/CodeGen/RegAllocPBQP.cpp b/lib/CodeGen/RegAllocPBQP.cpp
index 61f337bab49c..ea0d1fe0233f 100644
--- a/lib/CodeGen/RegAllocPBQP.cpp
+++ b/lib/CodeGen/RegAllocPBQP.cpp
@@ -31,9 +31,6 @@
#define DEBUG_TYPE "regalloc"
-#include "PBQP/HeuristicSolver.h"
-#include "PBQP/Graph.h"
-#include "PBQP/Heuristics/Briggs.h"
#include "RenderMachineFunction.h"
#include "Splitter.h"
#include "VirtRegMap.h"
@@ -41,9 +38,13 @@
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
+#include "llvm/CodeGen/RegAllocPBQP.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/CodeGen/PBQP/HeuristicSolver.h"
+#include "llvm/CodeGen/PBQP/Graph.h"
+#include "llvm/CodeGen/PBQP/Heuristics/Briggs.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Support/Debug.h"
@@ -51,7 +52,6 @@
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <limits>
-#include <map>
#include <memory>
#include <set>
#include <vector>
@@ -60,7 +60,7 @@ using namespace llvm;
static RegisterRegAlloc
registerPBQPRepAlloc("pbqp", "PBQP register allocator",
- llvm::createPBQPRegisterAllocator);
+ createDefaultPBQPRegisterAllocator);
static cl::opt<bool>
pbqpCoalescing("pbqp-coalescing",
@@ -69,698 +69,471 @@ pbqpCoalescing("pbqp-coalescing",
static cl::opt<bool>
pbqpPreSplitting("pbqp-pre-splitting",
- cl::desc("Pre-splite before PBQP register allocation."),
+ cl::desc("Pre-split before PBQP register allocation."),
cl::init(false), cl::Hidden);
namespace {
- ///
- /// PBQP based allocators solve the register allocation problem by mapping
- /// register allocation problems to Partitioned Boolean Quadratic
- /// Programming problems.
- class PBQPRegAlloc : public MachineFunctionPass {
- public:
+///
+/// PBQP based allocators solve the register allocation problem by mapping
+/// register allocation problems to Partitioned Boolean Quadratic
+/// Programming problems.
+class RegAllocPBQP : public MachineFunctionPass {
+public:
+
+ static char ID;
+
+ /// Construct a PBQP register allocator.
+ RegAllocPBQP(std::auto_ptr<PBQPBuilder> b)
+ : MachineFunctionPass(ID), builder(b) {
+ initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
+ initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
+ initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
+ initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
+ initializeLiveStacksPass(*PassRegistry::getPassRegistry());
+ initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
+ initializeLoopSplitterPass(*PassRegistry::getPassRegistry());
+ initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
+ initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry());
+ }
- static char ID;
+ /// Return the pass name.
+ virtual const char* getPassName() const {
+ return "PBQP Register Allocator";
+ }
- /// Construct a PBQP register allocator.
- PBQPRegAlloc() : MachineFunctionPass(ID) {}
+ /// PBQP analysis usage.
+ virtual void getAnalysisUsage(AnalysisUsage &au) const;
- /// Return the pass name.
- virtual const char* getPassName() const {
- return "PBQP Register Allocator";
- }
+ /// Perform register allocation
+ virtual bool runOnMachineFunction(MachineFunction &MF);
- /// PBQP analysis usage.
- virtual void getAnalysisUsage(AnalysisUsage &au) const {
- au.addRequired<SlotIndexes>();
- au.addPreserved<SlotIndexes>();
- au.addRequired<LiveIntervals>();
- //au.addRequiredID(SplitCriticalEdgesID);
- au.addRequired<RegisterCoalescer>();
- au.addRequired<CalculateSpillWeights>();
- au.addRequired<LiveStacks>();
- au.addPreserved<LiveStacks>();
- au.addRequired<MachineLoopInfo>();
- au.addPreserved<MachineLoopInfo>();
- if (pbqpPreSplitting)
- au.addRequired<LoopSplitter>();
- au.addRequired<VirtRegMap>();
- au.addRequired<RenderMachineFunction>();
- MachineFunctionPass::getAnalysisUsage(au);
- }
+private:
- /// Perform register allocation
- virtual bool runOnMachineFunction(MachineFunction &MF);
+ typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
+ typedef std::vector<const LiveInterval*> Node2LIMap;
+ typedef std::vector<unsigned> AllowedSet;
+ typedef std::vector<AllowedSet> AllowedSetMap;
+ typedef std::pair<unsigned, unsigned> RegPair;
+ typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
+ typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
+ typedef std::set<unsigned> RegSet;
- private:
- class LIOrdering {
- public:
- bool operator()(const LiveInterval *li1, const LiveInterval *li2) const {
- return li1->reg < li2->reg;
- }
- };
-
- typedef std::map<const LiveInterval*, unsigned, LIOrdering> LI2NodeMap;
- typedef std::vector<const LiveInterval*> Node2LIMap;
- typedef std::vector<unsigned> AllowedSet;
- typedef std::vector<AllowedSet> AllowedSetMap;
- typedef std::set<unsigned> RegSet;
- typedef std::pair<unsigned, unsigned> RegPair;
- typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
-
- typedef std::set<LiveInterval*, LIOrdering> LiveIntervalSet;
-
- typedef std::vector<PBQP::Graph::NodeItr> NodeVector;
-
- MachineFunction *mf;
- const TargetMachine *tm;
- const TargetRegisterInfo *tri;
- const TargetInstrInfo *tii;
- const MachineLoopInfo *loopInfo;
- MachineRegisterInfo *mri;
- RenderMachineFunction *rmf;
-
- LiveIntervals *lis;
- LiveStacks *lss;
- VirtRegMap *vrm;
-
- LI2NodeMap li2Node;
- Node2LIMap node2LI;
- AllowedSetMap allowedSets;
- LiveIntervalSet vregIntervalsToAlloc,
- emptyVRegIntervals;
- NodeVector problemNodes;
-
-
- /// Builds a PBQP cost vector.
- template <typename RegContainer>
- PBQP::Vector buildCostVector(unsigned vReg,
- const RegContainer &allowed,
- const CoalesceMap &cealesces,
- PBQP::PBQPNum spillCost) const;
-
- /// \brief Builds a PBQP interference matrix.
- ///
- /// @return Either a pointer to a non-zero PBQP matrix representing the
- /// allocation option costs, or a null pointer for a zero matrix.
- ///
- /// Expects allowed sets for two interfering LiveIntervals. These allowed
- /// sets should contain only allocable registers from the LiveInterval's
- /// register class, with any interfering pre-colored registers removed.
- template <typename RegContainer>
- PBQP::Matrix* buildInterferenceMatrix(const RegContainer &allowed1,
- const RegContainer &allowed2) const;
-
- ///
- /// Expects allowed sets for two potentially coalescable LiveIntervals,
- /// and an estimated benefit due to coalescing. The allowed sets should
- /// contain only allocable registers from the LiveInterval's register
- /// classes, with any interfering pre-colored registers removed.
- template <typename RegContainer>
- PBQP::Matrix* buildCoalescingMatrix(const RegContainer &allowed1,
- const RegContainer &allowed2,
- PBQP::PBQPNum cBenefit) const;
-
- /// \brief Finds coalescing opportunities and returns them as a map.
- ///
- /// Any entries in the map are guaranteed coalescable, even if their
- /// corresponding live intervals overlap.
- CoalesceMap findCoalesces();
-
- /// \brief Finds the initial set of vreg intervals to allocate.
- void findVRegIntervalsToAlloc();
-
- /// \brief Constructs a PBQP problem representation of the register
- /// allocation problem for this function.
- ///
- /// @return a PBQP solver object for the register allocation problem.
- PBQP::Graph constructPBQPProblem();
-
- /// \brief Adds a stack interval if the given live interval has been
- /// spilled. Used to support stack slot coloring.
- void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
-
- /// \brief Given a solved PBQP problem maps this solution back to a register
- /// assignment.
- bool mapPBQPToRegAlloc(const PBQP::Solution &solution);
-
- /// \brief Postprocessing before final spilling. Sets basic block "live in"
- /// variables.
- void finalizeAlloc() const;
-
- };
-
- char PBQPRegAlloc::ID = 0;
-}
+ std::auto_ptr<PBQPBuilder> builder;
+ MachineFunction *mf;
+ const TargetMachine *tm;
+ const TargetRegisterInfo *tri;
+ const TargetInstrInfo *tii;
+ const MachineLoopInfo *loopInfo;
+ MachineRegisterInfo *mri;
+ RenderMachineFunction *rmf;
-template <typename RegContainer>
-PBQP::Vector PBQPRegAlloc::buildCostVector(unsigned vReg,
- const RegContainer &allowed,
- const CoalesceMap &coalesces,
- PBQP::PBQPNum spillCost) const {
+ LiveIntervals *lis;
+ LiveStacks *lss;
+ VirtRegMap *vrm;
- typedef typename RegContainer::const_iterator AllowedItr;
+ RegSet vregsToAlloc, emptyIntervalVRegs;
- // Allocate vector. Additional element (0th) used for spill option
- PBQP::Vector v(allowed.size() + 1, 0);
+ /// \brief Finds the initial set of vreg intervals to allocate.
+ void findVRegIntervalsToAlloc();
- v[0] = spillCost;
+ /// \brief Adds a stack interval if the given live interval has been
+ /// spilled. Used to support stack slot coloring.
+ void addStackInterval(const LiveInterval *spilled,MachineRegisterInfo* mri);
- // Iterate over the allowed registers inserting coalesce benefits if there
- // are any.
- unsigned ai = 0;
- for (AllowedItr itr = allowed.begin(), end = allowed.end();
- itr != end; ++itr, ++ai) {
+ /// \brief Given a solved PBQP problem maps this solution back to a register
+ /// assignment.
+ bool mapPBQPToRegAlloc(const PBQPRAProblem &problem,
+ const PBQP::Solution &solution);
- unsigned pReg = *itr;
+ /// \brief Postprocessing before final spilling. Sets basic block "live in"
+ /// variables.
+ void finalizeAlloc() const;
- CoalesceMap::const_iterator cmItr =
- coalesces.find(RegPair(vReg, pReg));
+};
- // No coalesce - on to the next preg.
- if (cmItr == coalesces.end())
- continue;
+char RegAllocPBQP::ID = 0;
- // We have a coalesce - insert the benefit.
- v[ai + 1] = -cmItr->second;
- }
+} // End anonymous namespace.
- return v;
+unsigned PBQPRAProblem::getVRegForNode(PBQP::Graph::ConstNodeItr node) const {
+ Node2VReg::const_iterator vregItr = node2VReg.find(node);
+ assert(vregItr != node2VReg.end() && "No vreg for node.");
+ return vregItr->second;
}
-template <typename RegContainer>
-PBQP::Matrix* PBQPRegAlloc::buildInterferenceMatrix(
- const RegContainer &allowed1, const RegContainer &allowed2) const {
-
- typedef typename RegContainer::const_iterator RegContainerIterator;
-
- // Construct a PBQP matrix representing the cost of allocation options. The
- // rows and columns correspond to the allocation options for the two live
- // intervals. Elements will be infinite where corresponding registers alias,
- // since we cannot allocate aliasing registers to interfering live intervals.
- // All other elements (non-aliasing combinations) will have zero cost. Note
- // that the spill option (element 0,0) has zero cost, since we can allocate
- // both intervals to memory safely (the cost for each individual allocation
- // to memory is accounted for by the cost vectors for each live interval).
- PBQP::Matrix *m =
- new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
-
- // Assume this is a zero matrix until proven otherwise. Zero matrices occur
- // between interfering live ranges with non-overlapping register sets (e.g.
- // non-overlapping reg classes, or disjoint sets of allowed regs within the
- // same class). The term "overlapping" is used advisedly: sets which do not
- // intersect, but contain registers which alias, will have non-zero matrices.
- // We optimize zero matrices away to improve solver speed.
- bool isZeroMatrix = true;
-
-
- // Row index. Starts at 1, since the 0th row is for the spill option, which
- // is always zero.
- unsigned ri = 1;
-
- // Iterate over allowed sets, insert infinities where required.
- for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
- a1Itr != a1End; ++a1Itr) {
-
- // Column index, starts at 1 as for row index.
- unsigned ci = 1;
- unsigned reg1 = *a1Itr;
-
- for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
- a2Itr != a2End; ++a2Itr) {
-
- unsigned reg2 = *a2Itr;
-
- // If the row/column regs are identical or alias insert an infinity.
- if (tri->regsOverlap(reg1, reg2)) {
- (*m)[ri][ci] = std::numeric_limits<PBQP::PBQPNum>::infinity();
- isZeroMatrix = false;
- }
-
- ++ci;
- }
-
- ++ri;
- }
-
- // If this turns out to be a zero matrix...
- if (isZeroMatrix) {
- // free it and return null.
- delete m;
- return 0;
- }
-
- // ...otherwise return the cost matrix.
- return m;
+PBQP::Graph::NodeItr PBQPRAProblem::getNodeForVReg(unsigned vreg) const {
+ VReg2Node::const_iterator nodeItr = vreg2Node.find(vreg);
+ assert(nodeItr != vreg2Node.end() && "No node for vreg.");
+ return nodeItr->second;
+
}
-template <typename RegContainer>
-PBQP::Matrix* PBQPRegAlloc::buildCoalescingMatrix(
- const RegContainer &allowed1, const RegContainer &allowed2,
- PBQP::PBQPNum cBenefit) const {
-
- typedef typename RegContainer::const_iterator RegContainerIterator;
-
- // Construct a PBQP Matrix representing the benefits of coalescing. As with
- // interference matrices the rows and columns represent allowed registers
- // for the LiveIntervals which are (potentially) to be coalesced. The amount
- // -cBenefit will be placed in any element representing the same register
- // for both intervals.
- PBQP::Matrix *m =
- new PBQP::Matrix(allowed1.size() + 1, allowed2.size() + 1, 0);
-
- // Reset costs to zero.
- m->reset(0);
-
- // Assume the matrix is zero till proven otherwise. Zero matrices will be
- // optimized away as in the interference case.
- bool isZeroMatrix = true;
-
- // Row index. Starts at 1, since the 0th row is for the spill option, which
- // is always zero.
- unsigned ri = 1;
-
- // Iterate over the allowed sets, insert coalescing benefits where
- // appropriate.
- for (RegContainerIterator a1Itr = allowed1.begin(), a1End = allowed1.end();
- a1Itr != a1End; ++a1Itr) {
-
- // Column index, starts at 1 as for row index.
- unsigned ci = 1;
- unsigned reg1 = *a1Itr;
-
- for (RegContainerIterator a2Itr = allowed2.begin(), a2End = allowed2.end();
- a2Itr != a2End; ++a2Itr) {
-
- // If the row and column represent the same register insert a beneficial
- // cost to preference this allocation - it would allow us to eliminate a
- // move instruction.
- if (reg1 == *a2Itr) {
- (*m)[ri][ci] = -cBenefit;
- isZeroMatrix = false;
- }
-
- ++ci;
- }
-
- ++ri;
- }
-
- // If this turns out to be a zero matrix...
- if (isZeroMatrix) {
- // ...free it and return null.
- delete m;
- return 0;
- }
-
- return m;
+const PBQPRAProblem::AllowedSet&
+ PBQPRAProblem::getAllowedSet(unsigned vreg) const {
+ AllowedSetMap::const_iterator allowedSetItr = allowedSets.find(vreg);
+ assert(allowedSetItr != allowedSets.end() && "No pregs for vreg.");
+ const AllowedSet &allowedSet = allowedSetItr->second;
+ return allowedSet;
}
-PBQPRegAlloc::CoalesceMap PBQPRegAlloc::findCoalesces() {
-
- typedef MachineFunction::const_iterator MFIterator;
- typedef MachineBasicBlock::const_iterator MBBIterator;
- typedef LiveInterval::const_vni_iterator VNIIterator;
+unsigned PBQPRAProblem::getPRegForOption(unsigned vreg, unsigned option) const {
+ assert(isPRegOption(vreg, option) && "Not a preg option.");
- CoalesceMap coalescesFound;
+ const AllowedSet& allowedSet = getAllowedSet(vreg);
+ assert(option <= allowedSet.size() && "Option outside allowed set.");
+ return allowedSet[option - 1];
+}
- // To find coalesces we need to iterate over the function looking for
- // copy instructions.
- for (MFIterator bbItr = mf->begin(), bbEnd = mf->end();
- bbItr != bbEnd; ++bbItr) {
+std::auto_ptr<PBQPRAProblem> PBQPBuilder::build(MachineFunction *mf,
+ const LiveIntervals *lis,
+ const MachineLoopInfo *loopInfo,
+ const RegSet &vregs) {
- const MachineBasicBlock *mbb = &*bbItr;
+ typedef std::vector<const LiveInterval*> LIVector;
- for (MBBIterator iItr = mbb->begin(), iEnd = mbb->end();
- iItr != iEnd; ++iItr) {
+ MachineRegisterInfo *mri = &mf->getRegInfo();
+ const TargetRegisterInfo *tri = mf->getTarget().getRegisterInfo();
- const MachineInstr *instr = &*iItr;
+ std::auto_ptr<PBQPRAProblem> p(new PBQPRAProblem());
+ PBQP::Graph &g = p->getGraph();
+ RegSet pregs;
- // If this isn't a copy then continue to the next instruction.
- if (!instr->isCopy())
- continue;
-
- unsigned srcReg = instr->getOperand(1).getReg();
- unsigned dstReg = instr->getOperand(0).getReg();
+ // Collect the set of preg intervals, record that they're used in the MF.
+ for (LiveIntervals::const_iterator itr = lis->begin(), end = lis->end();
+ itr != end; ++itr) {
+ if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
+ pregs.insert(itr->first);
+ mri->setPhysRegUsed(itr->first);
+ }
+ }
- // If the registers are already the same our job is nice and easy.
- if (dstReg == srcReg)
- continue;
+ BitVector reservedRegs = tri->getReservedRegs(*mf);
+
+ // Iterate over vregs.
+ for (RegSet::const_iterator vregItr = vregs.begin(), vregEnd = vregs.end();
+ vregItr != vregEnd; ++vregItr) {
+ unsigned vreg = *vregItr;
+ const TargetRegisterClass *trc = mri->getRegClass(vreg);
+ const LiveInterval *vregLI = &lis->getInterval(vreg);
+
+ // Compute an initial allowed set for the current vreg.
+ typedef std::vector<unsigned> VRAllowed;
+ VRAllowed vrAllowed;
+ for (TargetRegisterClass::iterator aoItr = trc->allocation_order_begin(*mf),
+ aoEnd = trc->allocation_order_end(*mf);
+ aoItr != aoEnd; ++aoItr) {
+ unsigned preg = *aoItr;
+ if (!reservedRegs.test(preg)) {
+ vrAllowed.push_back(preg);
+ }
+ }
- bool srcRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(srcReg),
- dstRegIsPhysical = TargetRegisterInfo::isPhysicalRegister(dstReg);
+ // Remove any physical registers which overlap.
+ for (RegSet::const_iterator pregItr = pregs.begin(),
+ pregEnd = pregs.end();
+ pregItr != pregEnd; ++pregItr) {
+ unsigned preg = *pregItr;
+ const LiveInterval *pregLI = &lis->getInterval(preg);
- // If both registers are physical then we can't coalesce.
- if (srcRegIsPhysical && dstRegIsPhysical)
+ if (pregLI->empty()) {
continue;
+ }
- // If it's a copy that includes two virtual register but the source and
- // destination classes differ then we can't coalesce.
- if (!srcRegIsPhysical && !dstRegIsPhysical &&
- mri->getRegClass(srcReg) != mri->getRegClass(dstReg))
+ if (!vregLI->overlaps(*pregLI)) {
continue;
-
- // If one is physical and one is virtual, check that the physical is
- // allocatable in the class of the virtual.
- if (srcRegIsPhysical && !dstRegIsPhysical) {
- const TargetRegisterClass *dstRegClass = mri->getRegClass(dstReg);
- if (std::find(dstRegClass->allocation_order_begin(*mf),
- dstRegClass->allocation_order_end(*mf), srcReg) ==
- dstRegClass->allocation_order_end(*mf))
- continue;
}
- if (!srcRegIsPhysical && dstRegIsPhysical) {
- const TargetRegisterClass *srcRegClass = mri->getRegClass(srcReg);
- if (std::find(srcRegClass->allocation_order_begin(*mf),
- srcRegClass->allocation_order_end(*mf), dstReg) ==
- srcRegClass->allocation_order_end(*mf))
- continue;
- }
-
- // If we've made it here we have a copy with compatible register classes.
- // We can probably coalesce, but we need to consider overlap.
- const LiveInterval *srcLI = &lis->getInterval(srcReg),
- *dstLI = &lis->getInterval(dstReg);
- if (srcLI->overlaps(*dstLI)) {
- // Even in the case of an overlap we might still be able to coalesce,
- // but we need to make sure that no definition of either range occurs
- // while the other range is live.
+ // Remove the register from the allowed set.
+ VRAllowed::iterator eraseItr =
+ std::find(vrAllowed.begin(), vrAllowed.end(), preg);
- // Otherwise start by assuming we're ok.
- bool badDef = false;
-
- // Test all defs of the source range.
- for (VNIIterator
- vniItr = srcLI->vni_begin(), vniEnd = srcLI->vni_end();
- vniItr != vniEnd; ++vniItr) {
+ if (eraseItr != vrAllowed.end()) {
+ vrAllowed.erase(eraseItr);
+ }
- // If we find a poorly defined def we err on the side of caution.
- if (!(*vniItr)->def.isValid()) {
- badDef = true;
- break;
- }
+ // Also remove any aliases.
+ const unsigned *aliasItr = tri->getAliasSet(preg);
+ if (aliasItr != 0) {
+ for (; *aliasItr != 0; ++aliasItr) {
+ VRAllowed::iterator eraseItr =
+ std::find(vrAllowed.begin(), vrAllowed.end(), *aliasItr);
- // If we find a def that kills the coalescing opportunity then
- // record it and break from the loop.
- if (dstLI->liveAt((*vniItr)->def)) {
- badDef = true;
- break;
+ if (eraseItr != vrAllowed.end()) {
+ vrAllowed.erase(eraseItr);
}
}
+ }
+ }
- // If we have a bad def give up, continue to the next instruction.
- if (badDef)
- continue;
-
- // Otherwise test definitions of the destination range.
- for (VNIIterator
- vniItr = dstLI->vni_begin(), vniEnd = dstLI->vni_end();
- vniItr != vniEnd; ++vniItr) {
+ // Construct the node.
+ PBQP::Graph::NodeItr node =
+ g.addNode(PBQP::Vector(vrAllowed.size() + 1, 0));
- // We want to make sure we skip the copy instruction itself.
- if ((*vniItr)->getCopy() == instr)
- continue;
+ // Record the mapping and allowed set in the problem.
+ p->recordVReg(vreg, node, vrAllowed.begin(), vrAllowed.end());
- if (!(*vniItr)->def.isValid()) {
- badDef = true;
- break;
- }
+ PBQP::PBQPNum spillCost = (vregLI->weight != 0.0) ?
+ vregLI->weight : std::numeric_limits<PBQP::PBQPNum>::min();
- if (srcLI->liveAt((*vniItr)->def)) {
- badDef = true;
- break;
- }
- }
+ addSpillCosts(g.getNodeCosts(node), spillCost);
+ }
- // As before a bad def we give up and continue to the next instr.
- if (badDef)
- continue;
+ for (RegSet::const_iterator vr1Itr = vregs.begin(), vrEnd = vregs.end();
+ vr1Itr != vrEnd; ++vr1Itr) {
+ unsigned vr1 = *vr1Itr;
+ const LiveInterval &l1 = lis->getInterval(vr1);
+ const PBQPRAProblem::AllowedSet &vr1Allowed = p->getAllowedSet(vr1);
+
+ for (RegSet::const_iterator vr2Itr = llvm::next(vr1Itr);
+ vr2Itr != vrEnd; ++vr2Itr) {
+ unsigned vr2 = *vr2Itr;
+ const LiveInterval &l2 = lis->getInterval(vr2);
+ const PBQPRAProblem::AllowedSet &vr2Allowed = p->getAllowedSet(vr2);
+
+ assert(!l2.empty() && "Empty interval in vreg set?");
+ if (l1.overlaps(l2)) {
+ PBQP::Graph::EdgeItr edge =
+ g.addEdge(p->getNodeForVReg(vr1), p->getNodeForVReg(vr2),
+ PBQP::Matrix(vr1Allowed.size()+1, vr2Allowed.size()+1, 0));
+
+ addInterferenceCosts(g.getEdgeCosts(edge), vr1Allowed, vr2Allowed, tri);
}
-
- // If we make it to here then either the ranges didn't overlap, or they
- // did, but none of their definitions would prevent us from coalescing.
- // We're good to go with the coalesce.
-
- float cBenefit = std::pow(10.0f, (float)loopInfo->getLoopDepth(mbb)) / 5.0;
-
- coalescesFound[RegPair(srcReg, dstReg)] = cBenefit;
- coalescesFound[RegPair(dstReg, srcReg)] = cBenefit;
}
-
}
- return coalescesFound;
+ return p;
}
-void PBQPRegAlloc::findVRegIntervalsToAlloc() {
-
- // Iterate over all live ranges.
- for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
- itr != end; ++itr) {
-
- // Ignore physical ones.
- if (TargetRegisterInfo::isPhysicalRegister(itr->first))
- continue;
-
- LiveInterval *li = itr->second;
-
- // If this live interval is non-empty we will use pbqp to allocate it.
- // Empty intervals we allocate in a simple post-processing stage in
- // finalizeAlloc.
- if (!li->empty()) {
- vregIntervalsToAlloc.insert(li);
- }
- else {
- emptyVRegIntervals.insert(li);
- }
- }
+void PBQPBuilder::addSpillCosts(PBQP::Vector &costVec,
+ PBQP::PBQPNum spillCost) {
+ costVec[0] = spillCost;
}
-PBQP::Graph PBQPRegAlloc::constructPBQPProblem() {
-
- typedef std::vector<const LiveInterval*> LIVector;
- typedef std::vector<unsigned> RegVector;
+void PBQPBuilder::addInterferenceCosts(
+ PBQP::Matrix &costMat,
+ const PBQPRAProblem::AllowedSet &vr1Allowed,
+ const PBQPRAProblem::AllowedSet &vr2Allowed,
+ const TargetRegisterInfo *tri) {
+ assert(costMat.getRows() == vr1Allowed.size() + 1 && "Matrix height mismatch.");
+ assert(costMat.getCols() == vr2Allowed.size() + 1 && "Matrix width mismatch.");
- // This will store the physical intervals for easy reference.
- LIVector physIntervals;
+ for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
+ unsigned preg1 = vr1Allowed[i];
- // Start by clearing the old node <-> live interval mappings & allowed sets
- li2Node.clear();
- node2LI.clear();
- allowedSets.clear();
-
- // Populate physIntervals, update preg use:
- for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
- itr != end; ++itr) {
+ for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
+ unsigned preg2 = vr2Allowed[j];
- if (TargetRegisterInfo::isPhysicalRegister(itr->first)) {
- physIntervals.push_back(itr->second);
- mri->setPhysRegUsed(itr->second->reg);
+ if (tri->regsOverlap(preg1, preg2)) {
+ costMat[i + 1][j + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
+ }
}
}
+}
- // Iterate over vreg intervals, construct live interval <-> node number
- // mappings.
- for (LiveIntervalSet::const_iterator
- itr = vregIntervalsToAlloc.begin(), end = vregIntervalsToAlloc.end();
- itr != end; ++itr) {
- const LiveInterval *li = *itr;
-
- li2Node[li] = node2LI.size();
- node2LI.push_back(li);
- }
-
- // Get the set of potential coalesces.
- CoalesceMap coalesces;
-
- if (pbqpCoalescing) {
- coalesces = findCoalesces();
- }
-
- // Construct a PBQP solver for this problem
- PBQP::Graph problem;
- problemNodes.resize(vregIntervalsToAlloc.size());
-
- // Resize allowedSets container appropriately.
- allowedSets.resize(vregIntervalsToAlloc.size());
-
- BitVector ReservedRegs = tri->getReservedRegs(*mf);
-
- // Iterate over virtual register intervals to compute allowed sets...
- for (unsigned node = 0; node < node2LI.size(); ++node) {
-
- // Grab pointers to the interval and its register class.
- const LiveInterval *li = node2LI[node];
- const TargetRegisterClass *liRC = mri->getRegClass(li->reg);
+std::auto_ptr<PBQPRAProblem> PBQPBuilderWithCoalescing::build(
+ MachineFunction *mf,
+ const LiveIntervals *lis,
+ const MachineLoopInfo *loopInfo,
+ const RegSet &vregs) {
- // Start by assuming all allocable registers in the class are allowed...
- RegVector liAllowed;
- TargetRegisterClass::iterator aob = liRC->allocation_order_begin(*mf);
- TargetRegisterClass::iterator aoe = liRC->allocation_order_end(*mf);
- for (TargetRegisterClass::iterator it = aob; it != aoe; ++it)
- if (!ReservedRegs.test(*it))
- liAllowed.push_back(*it);
+ std::auto_ptr<PBQPRAProblem> p = PBQPBuilder::build(mf, lis, loopInfo, vregs);
+ PBQP::Graph &g = p->getGraph();
- // Eliminate the physical registers which overlap with this range, along
- // with all their aliases.
- for (LIVector::iterator pItr = physIntervals.begin(),
- pEnd = physIntervals.end(); pItr != pEnd; ++pItr) {
+ const TargetMachine &tm = mf->getTarget();
+ CoalescerPair cp(*tm.getInstrInfo(), *tm.getRegisterInfo());
- if (!li->overlaps(**pItr))
- continue;
+ // Scan the machine function and add a coalescing cost whenever CoalescerPair
+ // gives the Ok.
+ for (MachineFunction::const_iterator mbbItr = mf->begin(),
+ mbbEnd = mf->end();
+ mbbItr != mbbEnd; ++mbbItr) {
+ const MachineBasicBlock *mbb = &*mbbItr;
- unsigned pReg = (*pItr)->reg;
-
- // If we get here then the live intervals overlap, but we're still ok
- // if they're coalescable.
- if (coalesces.find(RegPair(li->reg, pReg)) != coalesces.end())
- continue;
+ for (MachineBasicBlock::const_iterator miItr = mbb->begin(),
+ miEnd = mbb->end();
+ miItr != miEnd; ++miItr) {
+ const MachineInstr *mi = &*miItr;
- // If we get here then we have a genuine exclusion.
+ if (!cp.setRegisters(mi)) {
+ continue; // Not coalescable.
+ }
- // Remove the overlapping reg...
- RegVector::iterator eraseItr =
- std::find(liAllowed.begin(), liAllowed.end(), pReg);
+ if (cp.getSrcReg() == cp.getDstReg()) {
+ continue; // Already coalesced.
+ }
- if (eraseItr != liAllowed.end())
- liAllowed.erase(eraseItr);
+ unsigned dst = cp.getDstReg(),
+ src = cp.getSrcReg();
- const unsigned *aliasItr = tri->getAliasSet(pReg);
+ const float copyFactor = 0.5; // Cost of copy relative to load. Current
+ // value plucked randomly out of the air.
+
+ PBQP::PBQPNum cBenefit =
+ copyFactor * LiveIntervals::getSpillWeight(false, true,
+ loopInfo->getLoopDepth(mbb));
- if (aliasItr != 0) {
- // ...and its aliases.
- for (; *aliasItr != 0; ++aliasItr) {
- RegVector::iterator eraseItr =
- std::find(liAllowed.begin(), liAllowed.end(), *aliasItr);
+ if (cp.isPhys()) {
+ if (!lis->isAllocatable(dst)) {
+ continue;
+ }
- if (eraseItr != liAllowed.end()) {
- liAllowed.erase(eraseItr);
+ const PBQPRAProblem::AllowedSet &allowed = p->getAllowedSet(src);
+ unsigned pregOpt = 0;
+ while (pregOpt < allowed.size() && allowed[pregOpt] != dst) {
+ ++pregOpt;
+ }
+ if (pregOpt < allowed.size()) {
+ ++pregOpt; // +1 to account for spill option.
+ PBQP::Graph::NodeItr node = p->getNodeForVReg(src);
+ addPhysRegCoalesce(g.getNodeCosts(node), pregOpt, cBenefit);
+ }
+ } else {
+ const PBQPRAProblem::AllowedSet *allowed1 = &p->getAllowedSet(dst);
+ const PBQPRAProblem::AllowedSet *allowed2 = &p->getAllowedSet(src);
+ PBQP::Graph::NodeItr node1 = p->getNodeForVReg(dst);
+ PBQP::Graph::NodeItr node2 = p->getNodeForVReg(src);
+ PBQP::Graph::EdgeItr edge = g.findEdge(node1, node2);
+ if (edge == g.edgesEnd()) {
+ edge = g.addEdge(node1, node2, PBQP::Matrix(allowed1->size() + 1,
+ allowed2->size() + 1,
+ 0));
+ } else {
+ if (g.getEdgeNode1(edge) == node2) {
+ std::swap(node1, node2);
+ std::swap(allowed1, allowed2);
}
}
+
+ addVirtRegCoalesce(g.getEdgeCosts(edge), *allowed1, *allowed2,
+ cBenefit);
}
}
+ }
- // Copy the allowed set into a member vector for use when constructing cost
- // vectors & matrices, and mapping PBQP solutions back to assignments.
- allowedSets[node] = AllowedSet(liAllowed.begin(), liAllowed.end());
+ return p;
+}
- // Set the spill cost to the interval weight, or epsilon if the
- // interval weight is zero
- PBQP::PBQPNum spillCost = (li->weight != 0.0) ?
- li->weight : std::numeric_limits<PBQP::PBQPNum>::min();
+void PBQPBuilderWithCoalescing::addPhysRegCoalesce(PBQP::Vector &costVec,
+ unsigned pregOption,
+ PBQP::PBQPNum benefit) {
+ costVec[pregOption] += -benefit;
+}
- // Build a cost vector for this interval.
- problemNodes[node] =
- problem.addNode(
- buildCostVector(li->reg, allowedSets[node], coalesces, spillCost));
+void PBQPBuilderWithCoalescing::addVirtRegCoalesce(
+ PBQP::Matrix &costMat,
+ const PBQPRAProblem::AllowedSet &vr1Allowed,
+ const PBQPRAProblem::AllowedSet &vr2Allowed,
+ PBQP::PBQPNum benefit) {
- }
+ assert(costMat.getRows() == vr1Allowed.size() + 1 && "Size mismatch.");
+ assert(costMat.getCols() == vr2Allowed.size() + 1 && "Size mismatch.");
+ for (unsigned i = 0; i != vr1Allowed.size(); ++i) {
+ unsigned preg1 = vr1Allowed[i];
+ for (unsigned j = 0; j != vr2Allowed.size(); ++j) {
+ unsigned preg2 = vr2Allowed[j];
+
+ if (preg1 == preg2) {
+ costMat[i + 1][j + 1] += -benefit;
+ }
+ }
+ }
+}
- // Now add the cost matrices...
- for (unsigned node1 = 0; node1 < node2LI.size(); ++node1) {
- const LiveInterval *li = node2LI[node1];
- // Test for live range overlaps and insert interference matrices.
- for (unsigned node2 = node1 + 1; node2 < node2LI.size(); ++node2) {
- const LiveInterval *li2 = node2LI[node2];
+void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
+ au.addRequired<SlotIndexes>();
+ au.addPreserved<SlotIndexes>();
+ au.addRequired<LiveIntervals>();
+ //au.addRequiredID(SplitCriticalEdgesID);
+ au.addRequired<RegisterCoalescer>();
+ au.addRequired<CalculateSpillWeights>();
+ au.addRequired<LiveStacks>();
+ au.addPreserved<LiveStacks>();
+ au.addRequired<MachineLoopInfo>();
+ au.addPreserved<MachineLoopInfo>();
+ if (pbqpPreSplitting)
+ au.addRequired<LoopSplitter>();
+ au.addRequired<VirtRegMap>();
+ au.addRequired<RenderMachineFunction>();
+ MachineFunctionPass::getAnalysisUsage(au);
+}
- CoalesceMap::const_iterator cmItr =
- coalesces.find(RegPair(li->reg, li2->reg));
+void RegAllocPBQP::findVRegIntervalsToAlloc() {
- PBQP::Matrix *m = 0;
+ // Iterate over all live ranges.
+ for (LiveIntervals::iterator itr = lis->begin(), end = lis->end();
+ itr != end; ++itr) {
- if (cmItr != coalesces.end()) {
- m = buildCoalescingMatrix(allowedSets[node1], allowedSets[node2],
- cmItr->second);
- }
- else if (li->overlaps(*li2)) {
- m = buildInterferenceMatrix(allowedSets[node1], allowedSets[node2]);
- }
+ // Ignore physical ones.
+ if (TargetRegisterInfo::isPhysicalRegister(itr->first))
+ continue;
- if (m != 0) {
- problem.addEdge(problemNodes[node1],
- problemNodes[node2],
- *m);
+ LiveInterval *li = itr->second;
- delete m;
- }
+ // If this live interval is non-empty we will use pbqp to allocate it.
+ // Empty intervals we allocate in a simple post-processing stage in
+ // finalizeAlloc.
+ if (!li->empty()) {
+ vregsToAlloc.insert(li->reg);
+ } else {
+ emptyIntervalVRegs.insert(li->reg);
}
}
-
- assert(problem.getNumNodes() == allowedSets.size());
-/*
- std::cerr << "Allocating for " << problem.getNumNodes() << " nodes, "
- << problem.getNumEdges() << " edges.\n";
-
- problem.printDot(std::cerr);
-*/
- // We're done, PBQP problem constructed - return it.
- return problem;
}
-void PBQPRegAlloc::addStackInterval(const LiveInterval *spilled,
+void RegAllocPBQP::addStackInterval(const LiveInterval *spilled,
MachineRegisterInfo* mri) {
int stackSlot = vrm->getStackSlot(spilled->reg);
- if (stackSlot == VirtRegMap::NO_STACK_SLOT)
+ if (stackSlot == VirtRegMap::NO_STACK_SLOT) {
return;
+ }
const TargetRegisterClass *RC = mri->getRegClass(spilled->reg);
LiveInterval &stackInterval = lss->getOrCreateInterval(stackSlot, RC);
VNInfo *vni;
- if (stackInterval.getNumValNums() != 0)
+ if (stackInterval.getNumValNums() != 0) {
vni = stackInterval.getValNumInfo(0);
- else
+ } else {
vni = stackInterval.getNextValue(
- SlotIndex(), 0, false, lss->getVNInfoAllocator());
+ SlotIndex(), 0, lss->getVNInfoAllocator());
+ }
LiveInterval &rhsInterval = lis->getInterval(spilled->reg);
stackInterval.MergeRangesInAsValue(rhsInterval, vni);
}
-bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
-
+bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAProblem &problem,
+ const PBQP::Solution &solution) {
// Set to true if we have any spills
bool anotherRoundNeeded = false;
// Clear the existing allocation.
vrm->clearAllVirt();
- // Iterate over the nodes mapping the PBQP solution to a register assignment.
- for (unsigned node = 0; node < node2LI.size(); ++node) {
- unsigned virtReg = node2LI[node]->reg,
- allocSelection = solution.getSelection(problemNodes[node]);
-
-
- // If the PBQP solution is non-zero it's a physical register...
- if (allocSelection != 0) {
- // Get the physical reg, subtracting 1 to account for the spill option.
- unsigned physReg = allowedSets[node][allocSelection - 1];
-
- DEBUG(dbgs() << "VREG " << virtReg << " -> "
- << tri->getName(physReg) << "\n");
-
- assert(physReg != 0);
-
- // Add to the virt reg map and update the used phys regs.
- vrm->assignVirt2Phys(virtReg, physReg);
- }
- // ...Otherwise it's a spill.
- else {
-
- // Make sure we ignore this virtual reg on the next round
- // of allocation
- vregIntervalsToAlloc.erase(&lis->getInterval(virtReg));
-
- // Insert spill ranges for this live range
- const LiveInterval *spillInterval = node2LI[node];
- double oldSpillWeight = spillInterval->weight;
+ const PBQP::Graph &g = problem.getGraph();
+ // Iterate over the nodes mapping the PBQP solution to a register
+ // assignment.
+ for (PBQP::Graph::ConstNodeItr node = g.nodesBegin(),
+ nodeEnd = g.nodesEnd();
+ node != nodeEnd; ++node) {
+ unsigned vreg = problem.getVRegForNode(node);
+ unsigned alloc = solution.getSelection(node);
+
+ if (problem.isPRegOption(vreg, alloc)) {
+ unsigned preg = problem.getPRegForOption(vreg, alloc);
+ DEBUG(dbgs() << "VREG " << vreg << " -> " << tri->getName(preg) << "\n");
+ assert(preg != 0 && "Invalid preg selected.");
+ vrm->assignVirt2Phys(vreg, preg);
+ } else if (problem.isSpillOption(vreg, alloc)) {
+ vregsToAlloc.erase(vreg);
+ const LiveInterval* spillInterval = &lis->getInterval(vreg);
+ double oldWeight = spillInterval->weight;
SmallVector<LiveInterval*, 8> spillIs;
rmf->rememberUseDefs(spillInterval);
std::vector<LiveInterval*> newSpills =
@@ -768,42 +541,42 @@ bool PBQPRegAlloc::mapPBQPToRegAlloc(const PBQP::Solution &solution) {
addStackInterval(spillInterval, mri);
rmf->rememberSpills(spillInterval, newSpills);
- (void) oldSpillWeight;
- DEBUG(dbgs() << "VREG " << virtReg << " -> SPILLED (Cost: "
- << oldSpillWeight << ", New vregs: ");
+ (void) oldWeight;
+ DEBUG(dbgs() << "VREG " << vreg << " -> SPILLED (Cost: "
+ << oldWeight << ", New vregs: ");
// Copy any newly inserted live intervals into the list of regs to
// allocate.
for (std::vector<LiveInterval*>::const_iterator
itr = newSpills.begin(), end = newSpills.end();
itr != end; ++itr) {
-
assert(!(*itr)->empty() && "Empty spill range.");
-
DEBUG(dbgs() << (*itr)->reg << " ");
-
- vregIntervalsToAlloc.insert(*itr);
+ vregsToAlloc.insert((*itr)->reg);
}
DEBUG(dbgs() << ")\n");
// We need another round if spill intervals were added.
anotherRoundNeeded |= !newSpills.empty();
+ } else {
+ assert(false && "Unknown allocation option.");
}
}
return !anotherRoundNeeded;
}
-void PBQPRegAlloc::finalizeAlloc() const {
+
+void RegAllocPBQP::finalizeAlloc() const {
typedef LiveIntervals::iterator LIIterator;
typedef LiveInterval::Ranges::const_iterator LRIterator;
// First allocate registers for the empty intervals.
- for (LiveIntervalSet::const_iterator
- itr = emptyVRegIntervals.begin(), end = emptyVRegIntervals.end();
+ for (RegSet::const_iterator
+ itr = emptyIntervalVRegs.begin(), end = emptyIntervalVRegs.end();
itr != end; ++itr) {
- LiveInterval *li = *itr;
+ LiveInterval *li = &lis->getInterval(*itr);
unsigned physReg = vrm->getRegAllocPref(li->reg);
@@ -828,11 +601,9 @@ void PBQPRegAlloc::finalizeAlloc() const {
// Get the physical register for this interval
if (TargetRegisterInfo::isPhysicalRegister(li->reg)) {
reg = li->reg;
- }
- else if (vrm->isAssignedReg(li->reg)) {
+ } else if (vrm->isAssignedReg(li->reg)) {
reg = vrm->getPhys(li->reg);
- }
- else {
+ } else {
// Ranges which are assigned a stack slot only are ignored.
continue;
}
@@ -849,7 +620,7 @@ void PBQPRegAlloc::finalizeAlloc() const {
// Find the set of basic blocks which this range is live into...
if (lis->findLiveInMBBs(lrItr->start, lrItr->end, liveInMBBs)) {
// And add the physreg for this interval to their live-in sets.
- for (unsigned i = 0; i < liveInMBBs.size(); ++i) {
+ for (unsigned i = 0; i != liveInMBBs.size(); ++i) {
if (liveInMBBs[i] != entryMBB) {
if (!liveInMBBs[i]->isLiveIn(reg)) {
liveInMBBs[i]->addLiveIn(reg);
@@ -863,7 +634,7 @@ void PBQPRegAlloc::finalizeAlloc() const {
}
-bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
+bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
mf = &MF;
tm = &mf->getTarget();
@@ -894,7 +665,7 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
findVRegIntervalsToAlloc();
// If there are non-empty intervals allocate them using pbqp.
- if (!vregIntervalsToAlloc.empty()) {
+ if (!vregsToAlloc.empty()) {
bool pbqpAllocComplete = false;
unsigned round = 0;
@@ -902,11 +673,13 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
while (!pbqpAllocComplete) {
DEBUG(dbgs() << " PBQP Regalloc round " << round << ":\n");
- PBQP::Graph problem = constructPBQPProblem();
+ std::auto_ptr<PBQPRAProblem> problem =
+ builder->build(mf, lis, loopInfo, vregsToAlloc);
PBQP::Solution solution =
- PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(problem);
+ PBQP::HeuristicSolver<PBQP::Heuristics::Briggs>::solve(
+ problem->getGraph());
- pbqpAllocComplete = mapPBQPToRegAlloc(solution);
+ pbqpAllocComplete = mapPBQPToRegAlloc(*problem, solution);
++round;
}
@@ -917,12 +690,8 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
rmf->renderMachineFunction("After PBQP register allocation.", vrm);
- vregIntervalsToAlloc.clear();
- emptyVRegIntervals.clear();
- li2Node.clear();
- node2LI.clear();
- allowedSets.clear();
- problemNodes.clear();
+ vregsToAlloc.clear();
+ emptyIntervalVRegs.clear();
DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *vrm << "\n");
@@ -934,9 +703,18 @@ bool PBQPRegAlloc::runOnMachineFunction(MachineFunction &MF) {
return true;
}
-FunctionPass* llvm::createPBQPRegisterAllocator() {
- return new PBQPRegAlloc();
+FunctionPass* llvm::createPBQPRegisterAllocator(
+ std::auto_ptr<PBQPBuilder> builder) {
+ return new RegAllocPBQP(builder);
}
+FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
+ if (pbqpCoalescing) {
+ return createPBQPRegisterAllocator(
+ std::auto_ptr<PBQPBuilder>(new PBQPBuilderWithCoalescing()));
+ } // else
+ return createPBQPRegisterAllocator(
+ std::auto_ptr<PBQPBuilder>(new PBQPBuilder()));
+}
#undef DEBUG_TYPE