aboutsummaryrefslogtreecommitdiff
path: root/include/llvm/Analysis/MemorySSA.h
diff options
context:
space:
mode:
Diffstat (limited to 'include/llvm/Analysis/MemorySSA.h')
-rw-r--r--include/llvm/Analysis/MemorySSA.h1155
1 files changed, 1155 insertions, 0 deletions
diff --git a/include/llvm/Analysis/MemorySSA.h b/include/llvm/Analysis/MemorySSA.h
new file mode 100644
index 000000000000..db31ae9f4f10
--- /dev/null
+++ b/include/llvm/Analysis/MemorySSA.h
@@ -0,0 +1,1155 @@
+//===- MemorySSA.h - Build Memory SSA ---------------------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+///
+/// \file
+/// \brief This file exposes an interface to building/using memory SSA to
+/// walk memory instructions using a use/def graph.
+///
+/// Memory SSA class builds an SSA form that links together memory access
+/// instructions such as loads, stores, atomics, and calls. Additionally, it
+/// does a trivial form of "heap versioning" Every time the memory state changes
+/// in the program, we generate a new heap version. It generates
+/// MemoryDef/Uses/Phis that are overlayed on top of the existing instructions.
+///
+/// As a trivial example,
+/// define i32 @main() #0 {
+/// entry:
+/// %call = call noalias i8* @_Znwm(i64 4) #2
+/// %0 = bitcast i8* %call to i32*
+/// %call1 = call noalias i8* @_Znwm(i64 4) #2
+/// %1 = bitcast i8* %call1 to i32*
+/// store i32 5, i32* %0, align 4
+/// store i32 7, i32* %1, align 4
+/// %2 = load i32* %0, align 4
+/// %3 = load i32* %1, align 4
+/// %add = add nsw i32 %2, %3
+/// ret i32 %add
+/// }
+///
+/// Will become
+/// define i32 @main() #0 {
+/// entry:
+/// ; 1 = MemoryDef(0)
+/// %call = call noalias i8* @_Znwm(i64 4) #3
+/// %2 = bitcast i8* %call to i32*
+/// ; 2 = MemoryDef(1)
+/// %call1 = call noalias i8* @_Znwm(i64 4) #3
+/// %4 = bitcast i8* %call1 to i32*
+/// ; 3 = MemoryDef(2)
+/// store i32 5, i32* %2, align 4
+/// ; 4 = MemoryDef(3)
+/// store i32 7, i32* %4, align 4
+/// ; MemoryUse(3)
+/// %7 = load i32* %2, align 4
+/// ; MemoryUse(4)
+/// %8 = load i32* %4, align 4
+/// %add = add nsw i32 %7, %8
+/// ret i32 %add
+/// }
+///
+/// Given this form, all the stores that could ever effect the load at %8 can be
+/// gotten by using the MemoryUse associated with it, and walking from use to
+/// def until you hit the top of the function.
+///
+/// Each def also has a list of users associated with it, so you can walk from
+/// both def to users, and users to defs. Note that we disambiguate MemoryUses,
+/// but not the RHS of MemoryDefs. You can see this above at %7, which would
+/// otherwise be a MemoryUse(4). Being disambiguated means that for a given
+/// store, all the MemoryUses on its use lists are may-aliases of that store
+/// (but the MemoryDefs on its use list may not be).
+///
+/// MemoryDefs are not disambiguated because it would require multiple reaching
+/// definitions, which would require multiple phis, and multiple memoryaccesses
+/// per instruction.
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_MEMORYSSA_H
+#define LLVM_ANALYSIS_MEMORYSSA_H
+
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/GraphTraits.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/SmallVector.h"
+#include "llvm/ADT/ilist.h"
+#include "llvm/ADT/ilist_node.h"
+#include "llvm/ADT/iterator.h"
+#include "llvm/ADT/iterator_range.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/Analysis/MemoryLocation.h"
+#include "llvm/Analysis/PHITransAddr.h"
+#include "llvm/IR/BasicBlock.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Module.h"
+#include "llvm/IR/OperandTraits.h"
+#include "llvm/IR/Type.h"
+#include "llvm/IR/Use.h"
+#include "llvm/IR/User.h"
+#include "llvm/IR/Value.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/Casting.h"
+#include "llvm/Support/ErrorHandling.h"
+#include <algorithm>
+#include <cassert>
+#include <cstddef>
+#include <iterator>
+#include <memory>
+#include <utility>
+
+namespace llvm {
+
+class Function;
+class Instruction;
+class MemoryAccess;
+class LLVMContext;
+class raw_ostream;
+namespace MSSAHelpers {
+struct AllAccessTag {};
+struct DefsOnlyTag {};
+}
+
+enum {
+ // Used to signify what the default invalid ID is for MemoryAccess's
+ // getID()
+ INVALID_MEMORYACCESS_ID = 0
+};
+
+template <class T> class memoryaccess_def_iterator_base;
+using memoryaccess_def_iterator = memoryaccess_def_iterator_base<MemoryAccess>;
+using const_memoryaccess_def_iterator =
+ memoryaccess_def_iterator_base<const MemoryAccess>;
+
+// \brief The base for all memory accesses. All memory accesses in a block are
+// linked together using an intrusive list.
+class MemoryAccess
+ : public User,
+ public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>,
+ public ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>> {
+public:
+ using AllAccessType =
+ ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
+ using DefsOnlyType =
+ ilist_node<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
+
+ // Methods for support type inquiry through isa, cast, and
+ // dyn_cast
+ static inline bool classof(const Value *V) {
+ unsigned ID = V->getValueID();
+ return ID == MemoryUseVal || ID == MemoryPhiVal || ID == MemoryDefVal;
+ }
+
+ MemoryAccess(const MemoryAccess &) = delete;
+ MemoryAccess &operator=(const MemoryAccess &) = delete;
+ ~MemoryAccess() override;
+
+ void *operator new(size_t, unsigned) = delete;
+ void *operator new(size_t) = delete;
+
+ BasicBlock *getBlock() const { return Block; }
+
+ virtual void print(raw_ostream &OS) const = 0;
+ virtual void dump() const;
+
+ /// \brief The user iterators for a memory access
+ typedef user_iterator iterator;
+ typedef const_user_iterator const_iterator;
+
+ /// \brief This iterator walks over all of the defs in a given
+ /// MemoryAccess. For MemoryPhi nodes, this walks arguments. For
+ /// MemoryUse/MemoryDef, this walks the defining access.
+ memoryaccess_def_iterator defs_begin();
+ const_memoryaccess_def_iterator defs_begin() const;
+ memoryaccess_def_iterator defs_end();
+ const_memoryaccess_def_iterator defs_end() const;
+
+ /// \brief Get the iterators for the all access list and the defs only list
+ /// We default to the all access list.
+ AllAccessType::self_iterator getIterator() {
+ return this->AllAccessType::getIterator();
+ }
+ AllAccessType::const_self_iterator getIterator() const {
+ return this->AllAccessType::getIterator();
+ }
+ AllAccessType::reverse_self_iterator getReverseIterator() {
+ return this->AllAccessType::getReverseIterator();
+ }
+ AllAccessType::const_reverse_self_iterator getReverseIterator() const {
+ return this->AllAccessType::getReverseIterator();
+ }
+ DefsOnlyType::self_iterator getDefsIterator() {
+ return this->DefsOnlyType::getIterator();
+ }
+ DefsOnlyType::const_self_iterator getDefsIterator() const {
+ return this->DefsOnlyType::getIterator();
+ }
+ DefsOnlyType::reverse_self_iterator getReverseDefsIterator() {
+ return this->DefsOnlyType::getReverseIterator();
+ }
+ DefsOnlyType::const_reverse_self_iterator getReverseDefsIterator() const {
+ return this->DefsOnlyType::getReverseIterator();
+ }
+
+protected:
+ friend class MemorySSA;
+ friend class MemoryUseOrDef;
+ friend class MemoryUse;
+ friend class MemoryDef;
+ friend class MemoryPhi;
+
+ /// \brief Used by MemorySSA to change the block of a MemoryAccess when it is
+ /// moved.
+ void setBlock(BasicBlock *BB) { Block = BB; }
+
+ /// \brief Used for debugging and tracking things about MemoryAccesses.
+ /// Guaranteed unique among MemoryAccesses, no guarantees otherwise.
+ virtual unsigned getID() const = 0;
+
+ MemoryAccess(LLVMContext &C, unsigned Vty, BasicBlock *BB,
+ unsigned NumOperands)
+ : User(Type::getVoidTy(C), Vty, nullptr, NumOperands), Block(BB) {}
+
+private:
+ BasicBlock *Block;
+};
+
+inline raw_ostream &operator<<(raw_ostream &OS, const MemoryAccess &MA) {
+ MA.print(OS);
+ return OS;
+}
+
+/// \brief Class that has the common methods + fields of memory uses/defs. It's
+/// a little awkward to have, but there are many cases where we want either a
+/// use or def, and there are many cases where uses are needed (defs aren't
+/// acceptable), and vice-versa.
+///
+/// This class should never be instantiated directly; make a MemoryUse or
+/// MemoryDef instead.
+class MemoryUseOrDef : public MemoryAccess {
+public:
+ void *operator new(size_t, unsigned) = delete;
+ void *operator new(size_t) = delete;
+
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
+
+ /// \brief Get the instruction that this MemoryUse represents.
+ Instruction *getMemoryInst() const { return MemoryInst; }
+
+ /// \brief Get the access that produces the memory state used by this Use.
+ MemoryAccess *getDefiningAccess() const { return getOperand(0); }
+
+ static inline bool classof(const Value *MA) {
+ return MA->getValueID() == MemoryUseVal || MA->getValueID() == MemoryDefVal;
+ }
+
+ // Sadly, these have to be public because they are needed in some of the
+ // iterators.
+ virtual bool isOptimized() const = 0;
+ virtual MemoryAccess *getOptimized() const = 0;
+ virtual void setOptimized(MemoryAccess *) = 0;
+
+ /// \brief Reset the ID of what this MemoryUse was optimized to, causing it to
+ /// be rewalked by the walker if necessary.
+ /// This really should only be called by tests.
+ virtual void resetOptimized() = 0;
+
+protected:
+ friend class MemorySSA;
+ friend class MemorySSAUpdater;
+ MemoryUseOrDef(LLVMContext &C, MemoryAccess *DMA, unsigned Vty,
+ Instruction *MI, BasicBlock *BB)
+ : MemoryAccess(C, Vty, BB, 1), MemoryInst(MI) {
+ setDefiningAccess(DMA);
+ }
+ void setDefiningAccess(MemoryAccess *DMA, bool Optimized = false) {
+ if (!Optimized) {
+ setOperand(0, DMA);
+ return;
+ }
+ setOptimized(DMA);
+ }
+
+private:
+ Instruction *MemoryInst;
+};
+
+template <>
+struct OperandTraits<MemoryUseOrDef>
+ : public FixedNumOperandTraits<MemoryUseOrDef, 1> {};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUseOrDef, MemoryAccess)
+
+/// \brief Represents read-only accesses to memory
+///
+/// In particular, the set of Instructions that will be represented by
+/// MemoryUse's is exactly the set of Instructions for which
+/// AliasAnalysis::getModRefInfo returns "Ref".
+class MemoryUse final : public MemoryUseOrDef {
+public:
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
+
+ MemoryUse(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB)
+ : MemoryUseOrDef(C, DMA, MemoryUseVal, MI, BB), OptimizedID(0) {}
+
+ // allocate space for exactly one operand
+ void *operator new(size_t s) { return User::operator new(s, 1); }
+ void *operator new(size_t, unsigned) = delete;
+
+ static inline bool classof(const Value *MA) {
+ return MA->getValueID() == MemoryUseVal;
+ }
+
+ void print(raw_ostream &OS) const override;
+
+ virtual void setOptimized(MemoryAccess *DMA) override {
+ OptimizedID = DMA->getID();
+ setOperand(0, DMA);
+ }
+
+ virtual bool isOptimized() const override {
+ return getDefiningAccess() && OptimizedID == getDefiningAccess()->getID();
+ }
+
+ virtual MemoryAccess *getOptimized() const override {
+ return getDefiningAccess();
+ }
+ virtual void resetOptimized() override {
+ OptimizedID = INVALID_MEMORYACCESS_ID;
+ }
+
+protected:
+ friend class MemorySSA;
+
+ unsigned getID() const override {
+ llvm_unreachable("MemoryUses do not have IDs");
+ }
+
+private:
+ unsigned int OptimizedID;
+};
+
+template <>
+struct OperandTraits<MemoryUse> : public FixedNumOperandTraits<MemoryUse, 1> {};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryUse, MemoryAccess)
+
+/// \brief Represents a read-write access to memory, whether it is a must-alias,
+/// or a may-alias.
+///
+/// In particular, the set of Instructions that will be represented by
+/// MemoryDef's is exactly the set of Instructions for which
+/// AliasAnalysis::getModRefInfo returns "Mod" or "ModRef".
+/// Note that, in order to provide def-def chains, all defs also have a use
+/// associated with them. This use points to the nearest reaching
+/// MemoryDef/MemoryPhi.
+class MemoryDef final : public MemoryUseOrDef {
+public:
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
+
+ MemoryDef(LLVMContext &C, MemoryAccess *DMA, Instruction *MI, BasicBlock *BB,
+ unsigned Ver)
+ : MemoryUseOrDef(C, DMA, MemoryDefVal, MI, BB), ID(Ver),
+ Optimized(nullptr), OptimizedID(INVALID_MEMORYACCESS_ID) {}
+
+ // allocate space for exactly one operand
+ void *operator new(size_t s) { return User::operator new(s, 1); }
+ void *operator new(size_t, unsigned) = delete;
+
+ static inline bool classof(const Value *MA) {
+ return MA->getValueID() == MemoryDefVal;
+ }
+
+ virtual void setOptimized(MemoryAccess *MA) override {
+ Optimized = MA;
+ OptimizedID = getDefiningAccess()->getID();
+ }
+ virtual MemoryAccess *getOptimized() const override { return Optimized; }
+ virtual bool isOptimized() const override {
+ return getOptimized() && getDefiningAccess() &&
+ OptimizedID == getDefiningAccess()->getID();
+ }
+ virtual void resetOptimized() override {
+ OptimizedID = INVALID_MEMORYACCESS_ID;
+ }
+
+ void print(raw_ostream &OS) const override;
+
+protected:
+ friend class MemorySSA;
+
+ unsigned getID() const override { return ID; }
+
+private:
+ const unsigned ID;
+ MemoryAccess *Optimized;
+ unsigned int OptimizedID;
+};
+
+template <>
+struct OperandTraits<MemoryDef> : public FixedNumOperandTraits<MemoryDef, 1> {};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryDef, MemoryAccess)
+
+/// \brief Represents phi nodes for memory accesses.
+///
+/// These have the same semantic as regular phi nodes, with the exception that
+/// only one phi will ever exist in a given basic block.
+/// Guaranteeing one phi per block means guaranteeing there is only ever one
+/// valid reaching MemoryDef/MemoryPHI along each path to the phi node.
+/// This is ensured by not allowing disambiguation of the RHS of a MemoryDef or
+/// a MemoryPhi's operands.
+/// That is, given
+/// if (a) {
+/// store %a
+/// store %b
+/// }
+/// it *must* be transformed into
+/// if (a) {
+/// 1 = MemoryDef(liveOnEntry)
+/// store %a
+/// 2 = MemoryDef(1)
+/// store %b
+/// }
+/// and *not*
+/// if (a) {
+/// 1 = MemoryDef(liveOnEntry)
+/// store %a
+/// 2 = MemoryDef(liveOnEntry)
+/// store %b
+/// }
+/// even if the two stores do not conflict. Otherwise, both 1 and 2 reach the
+/// end of the branch, and if there are not two phi nodes, one will be
+/// disconnected completely from the SSA graph below that point.
+/// Because MemoryUse's do not generate new definitions, they do not have this
+/// issue.
+class MemoryPhi final : public MemoryAccess {
+ // allocate space for exactly zero operands
+ void *operator new(size_t s) { return User::operator new(s); }
+
+public:
+ /// Provide fast operand accessors
+ DECLARE_TRANSPARENT_OPERAND_ACCESSORS(MemoryAccess);
+
+ MemoryPhi(LLVMContext &C, BasicBlock *BB, unsigned Ver, unsigned NumPreds = 0)
+ : MemoryAccess(C, MemoryPhiVal, BB, 0), ID(Ver), ReservedSpace(NumPreds) {
+ allocHungoffUses(ReservedSpace);
+ }
+
+ void *operator new(size_t, unsigned) = delete;
+
+ // Block iterator interface. This provides access to the list of incoming
+ // basic blocks, which parallels the list of incoming values.
+ typedef BasicBlock **block_iterator;
+ typedef BasicBlock *const *const_block_iterator;
+
+ block_iterator block_begin() {
+ auto *Ref = reinterpret_cast<Use::UserRef *>(op_begin() + ReservedSpace);
+ return reinterpret_cast<block_iterator>(Ref + 1);
+ }
+
+ const_block_iterator block_begin() const {
+ const auto *Ref =
+ reinterpret_cast<const Use::UserRef *>(op_begin() + ReservedSpace);
+ return reinterpret_cast<const_block_iterator>(Ref + 1);
+ }
+
+ block_iterator block_end() { return block_begin() + getNumOperands(); }
+
+ const_block_iterator block_end() const {
+ return block_begin() + getNumOperands();
+ }
+
+ iterator_range<block_iterator> blocks() {
+ return make_range(block_begin(), block_end());
+ }
+
+ iterator_range<const_block_iterator> blocks() const {
+ return make_range(block_begin(), block_end());
+ }
+
+ op_range incoming_values() { return operands(); }
+
+ const_op_range incoming_values() const { return operands(); }
+
+ /// \brief Return the number of incoming edges
+ unsigned getNumIncomingValues() const { return getNumOperands(); }
+
+ /// \brief Return incoming value number x
+ MemoryAccess *getIncomingValue(unsigned I) const { return getOperand(I); }
+ void setIncomingValue(unsigned I, MemoryAccess *V) {
+ assert(V && "PHI node got a null value!");
+ setOperand(I, V);
+ }
+ static unsigned getOperandNumForIncomingValue(unsigned I) { return I; }
+ static unsigned getIncomingValueNumForOperand(unsigned I) { return I; }
+
+ /// \brief Return incoming basic block number @p i.
+ BasicBlock *getIncomingBlock(unsigned I) const { return block_begin()[I]; }
+
+ /// \brief Return incoming basic block corresponding
+ /// to an operand of the PHI.
+ BasicBlock *getIncomingBlock(const Use &U) const {
+ assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
+ return getIncomingBlock(unsigned(&U - op_begin()));
+ }
+
+ /// \brief Return incoming basic block corresponding
+ /// to value use iterator.
+ BasicBlock *getIncomingBlock(MemoryAccess::const_user_iterator I) const {
+ return getIncomingBlock(I.getUse());
+ }
+
+ void setIncomingBlock(unsigned I, BasicBlock *BB) {
+ assert(BB && "PHI node got a null basic block!");
+ block_begin()[I] = BB;
+ }
+
+ /// \brief Add an incoming value to the end of the PHI list
+ void addIncoming(MemoryAccess *V, BasicBlock *BB) {
+ if (getNumOperands() == ReservedSpace)
+ growOperands(); // Get more space!
+ // Initialize some new operands.
+ setNumHungOffUseOperands(getNumOperands() + 1);
+ setIncomingValue(getNumOperands() - 1, V);
+ setIncomingBlock(getNumOperands() - 1, BB);
+ }
+
+ /// \brief Return the first index of the specified basic
+ /// block in the value list for this PHI. Returns -1 if no instance.
+ int getBasicBlockIndex(const BasicBlock *BB) const {
+ for (unsigned I = 0, E = getNumOperands(); I != E; ++I)
+ if (block_begin()[I] == BB)
+ return I;
+ return -1;
+ }
+
+ Value *getIncomingValueForBlock(const BasicBlock *BB) const {
+ int Idx = getBasicBlockIndex(BB);
+ assert(Idx >= 0 && "Invalid basic block argument!");
+ return getIncomingValue(Idx);
+ }
+
+ static inline bool classof(const Value *V) {
+ return V->getValueID() == MemoryPhiVal;
+ }
+
+ void print(raw_ostream &OS) const override;
+
+protected:
+ friend class MemorySSA;
+
+ /// \brief this is more complicated than the generic
+ /// User::allocHungoffUses, because we have to allocate Uses for the incoming
+ /// values and pointers to the incoming blocks, all in one allocation.
+ void allocHungoffUses(unsigned N) {
+ User::allocHungoffUses(N, /* IsPhi */ true);
+ }
+
+ unsigned getID() const final { return ID; }
+
+private:
+ // For debugging only
+ const unsigned ID;
+ unsigned ReservedSpace;
+
+ /// \brief This grows the operand list in response to a push_back style of
+ /// operation. This grows the number of ops by 1.5 times.
+ void growOperands() {
+ unsigned E = getNumOperands();
+ // 2 op PHI nodes are VERY common, so reserve at least enough for that.
+ ReservedSpace = std::max(E + E / 2, 2u);
+ growHungoffUses(ReservedSpace, /* IsPhi */ true);
+ }
+};
+
+template <> struct OperandTraits<MemoryPhi> : public HungoffOperandTraits<2> {};
+DEFINE_TRANSPARENT_OPERAND_ACCESSORS(MemoryPhi, MemoryAccess)
+
+class MemorySSAWalker;
+
+/// \brief Encapsulates MemorySSA, including all data associated with memory
+/// accesses.
+class MemorySSA {
+public:
+ MemorySSA(Function &, AliasAnalysis *, DominatorTree *);
+ ~MemorySSA();
+
+ MemorySSAWalker *getWalker();
+
+ /// \brief Given a memory Mod/Ref'ing instruction, get the MemorySSA
+ /// access associated with it. If passed a basic block gets the memory phi
+ /// node that exists for that block, if there is one. Otherwise, this will get
+ /// a MemoryUseOrDef.
+ MemoryUseOrDef *getMemoryAccess(const Instruction *) const;
+ MemoryPhi *getMemoryAccess(const BasicBlock *BB) const;
+
+ void dump() const;
+ void print(raw_ostream &) const;
+
+ /// \brief Return true if \p MA represents the live on entry value
+ ///
+ /// Loads and stores from pointer arguments and other global values may be
+ /// defined by memory operations that do not occur in the current function, so
+ /// they may be live on entry to the function. MemorySSA represents such
+ /// memory state by the live on entry definition, which is guaranteed to occur
+ /// before any other memory access in the function.
+ inline bool isLiveOnEntryDef(const MemoryAccess *MA) const {
+ return MA == LiveOnEntryDef.get();
+ }
+
+ inline MemoryAccess *getLiveOnEntryDef() const {
+ return LiveOnEntryDef.get();
+ }
+
+ // Sadly, iplists, by default, owns and deletes pointers added to the
+ // list. It's not currently possible to have two iplists for the same type,
+ // where one owns the pointers, and one does not. This is because the traits
+ // are per-type, not per-tag. If this ever changes, we should make the
+ // DefList an iplist.
+ using AccessList = iplist<MemoryAccess, ilist_tag<MSSAHelpers::AllAccessTag>>;
+ using DefsList =
+ simple_ilist<MemoryAccess, ilist_tag<MSSAHelpers::DefsOnlyTag>>;
+
+ /// \brief Return the list of MemoryAccess's for a given basic block.
+ ///
+ /// This list is not modifiable by the user.
+ const AccessList *getBlockAccesses(const BasicBlock *BB) const {
+ return getWritableBlockAccesses(BB);
+ }
+
+ /// \brief Return the list of MemoryDef's and MemoryPhi's for a given basic
+ /// block.
+ ///
+ /// This list is not modifiable by the user.
+ const DefsList *getBlockDefs(const BasicBlock *BB) const {
+ return getWritableBlockDefs(BB);
+ }
+
+ /// \brief Given two memory accesses in the same basic block, determine
+ /// whether MemoryAccess \p A dominates MemoryAccess \p B.
+ bool locallyDominates(const MemoryAccess *A, const MemoryAccess *B) const;
+
+ /// \brief Given two memory accesses in potentially different blocks,
+ /// determine whether MemoryAccess \p A dominates MemoryAccess \p B.
+ bool dominates(const MemoryAccess *A, const MemoryAccess *B) const;
+
+ /// \brief Given a MemoryAccess and a Use, determine whether MemoryAccess \p A
+ /// dominates Use \p B.
+ bool dominates(const MemoryAccess *A, const Use &B) const;
+
+ /// \brief Verify that MemorySSA is self consistent (IE definitions dominate
+ /// all uses, uses appear in the right places). This is used by unit tests.
+ void verifyMemorySSA() const;
+
+ /// Used in various insertion functions to specify whether we are talking
+ /// about the beginning or end of a block.
+ enum InsertionPlace { Beginning, End };
+
+protected:
+ // Used by Memory SSA annotater, dumpers, and wrapper pass
+ friend class MemorySSAAnnotatedWriter;
+ friend class MemorySSAPrinterLegacyPass;
+ friend class MemorySSAUpdater;
+
+ void verifyDefUses(Function &F) const;
+ void verifyDomination(Function &F) const;
+ void verifyOrdering(Function &F) const;
+
+ // This is used by the use optimizer and updater.
+ AccessList *getWritableBlockAccesses(const BasicBlock *BB) const {
+ auto It = PerBlockAccesses.find(BB);
+ return It == PerBlockAccesses.end() ? nullptr : It->second.get();
+ }
+
+ // This is used by the use optimizer and updater.
+ DefsList *getWritableBlockDefs(const BasicBlock *BB) const {
+ auto It = PerBlockDefs.find(BB);
+ return It == PerBlockDefs.end() ? nullptr : It->second.get();
+ }
+
+ // These is used by the updater to perform various internal MemorySSA
+ // machinsations. They do not always leave the IR in a correct state, and
+ // relies on the updater to fixup what it breaks, so it is not public.
+
+ void moveTo(MemoryUseOrDef *What, BasicBlock *BB, AccessList::iterator Where);
+ void moveTo(MemoryUseOrDef *What, BasicBlock *BB, InsertionPlace Point);
+ // Rename the dominator tree branch rooted at BB.
+ void renamePass(BasicBlock *BB, MemoryAccess *IncomingVal,
+ SmallPtrSetImpl<BasicBlock *> &Visited) {
+ renamePass(DT->getNode(BB), IncomingVal, Visited, true, true);
+ }
+ void removeFromLookups(MemoryAccess *);
+ void removeFromLists(MemoryAccess *, bool ShouldDelete = true);
+ void insertIntoListsForBlock(MemoryAccess *, const BasicBlock *,
+ InsertionPlace);
+ void insertIntoListsBefore(MemoryAccess *, const BasicBlock *,
+ AccessList::iterator);
+ MemoryUseOrDef *createDefinedAccess(Instruction *, MemoryAccess *);
+
+private:
+ class CachingWalker;
+ class OptimizeUses;
+
+ CachingWalker *getWalkerImpl();
+ void buildMemorySSA();
+ void optimizeUses();
+
+ void verifyUseInDefs(MemoryAccess *, MemoryAccess *) const;
+ using AccessMap = DenseMap<const BasicBlock *, std::unique_ptr<AccessList>>;
+ using DefsMap = DenseMap<const BasicBlock *, std::unique_ptr<DefsList>>;
+
+ void
+ determineInsertionPoint(const SmallPtrSetImpl<BasicBlock *> &DefiningBlocks);
+ void markUnreachableAsLiveOnEntry(BasicBlock *BB);
+ bool dominatesUse(const MemoryAccess *, const MemoryAccess *) const;
+ MemoryPhi *createMemoryPhi(BasicBlock *BB);
+ MemoryUseOrDef *createNewAccess(Instruction *);
+ MemoryAccess *findDominatingDef(BasicBlock *, enum InsertionPlace);
+ void placePHINodes(const SmallPtrSetImpl<BasicBlock *> &,
+ const DenseMap<const BasicBlock *, unsigned int> &);
+ MemoryAccess *renameBlock(BasicBlock *, MemoryAccess *, bool);
+ void renameSuccessorPhis(BasicBlock *, MemoryAccess *, bool);
+ void renamePass(DomTreeNode *, MemoryAccess *IncomingVal,
+ SmallPtrSetImpl<BasicBlock *> &Visited,
+ bool SkipVisited = false, bool RenameAllUses = false);
+ AccessList *getOrCreateAccessList(const BasicBlock *);
+ DefsList *getOrCreateDefsList(const BasicBlock *);
+ void renumberBlock(const BasicBlock *) const;
+ AliasAnalysis *AA;
+ DominatorTree *DT;
+ Function &F;
+
+ // Memory SSA mappings
+ DenseMap<const Value *, MemoryAccess *> ValueToMemoryAccess;
+ // These two mappings contain the main block to access/def mappings for
+ // MemorySSA. The list contained in PerBlockAccesses really owns all the
+ // MemoryAccesses.
+ // Both maps maintain the invariant that if a block is found in them, the
+ // corresponding list is not empty, and if a block is not found in them, the
+ // corresponding list is empty.
+ AccessMap PerBlockAccesses;
+ DefsMap PerBlockDefs;
+ std::unique_ptr<MemoryAccess> LiveOnEntryDef;
+
+ // Domination mappings
+ // Note that the numbering is local to a block, even though the map is
+ // global.
+ mutable SmallPtrSet<const BasicBlock *, 16> BlockNumberingValid;
+ mutable DenseMap<const MemoryAccess *, unsigned long> BlockNumbering;
+
+ // Memory SSA building info
+ std::unique_ptr<CachingWalker> Walker;
+ unsigned NextID;
+};
+
+// Internal MemorySSA utils, for use by MemorySSA classes and walkers
+class MemorySSAUtil {
+protected:
+ friend class MemorySSAWalker;
+ friend class GVNHoist;
+ // This function should not be used by new passes.
+ static bool defClobbersUseOrDef(MemoryDef *MD, const MemoryUseOrDef *MU,
+ AliasAnalysis &AA);
+};
+
+// This pass does eager building and then printing of MemorySSA. It is used by
+// the tests to be able to build, dump, and verify Memory SSA.
+class MemorySSAPrinterLegacyPass : public FunctionPass {
+public:
+ MemorySSAPrinterLegacyPass();
+
+ bool runOnFunction(Function &) override;
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+ static char ID;
+};
+
+/// An analysis that produces \c MemorySSA for a function.
+///
+class MemorySSAAnalysis : public AnalysisInfoMixin<MemorySSAAnalysis> {
+ friend AnalysisInfoMixin<MemorySSAAnalysis>;
+
+ static AnalysisKey Key;
+
+public:
+ // Wrap MemorySSA result to ensure address stability of internal MemorySSA
+ // pointers after construction. Use a wrapper class instead of plain
+ // unique_ptr<MemorySSA> to avoid build breakage on MSVC.
+ struct Result {
+ Result(std::unique_ptr<MemorySSA> &&MSSA) : MSSA(std::move(MSSA)) {}
+ MemorySSA &getMSSA() { return *MSSA.get(); }
+
+ std::unique_ptr<MemorySSA> MSSA;
+ };
+
+ Result run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// \brief Printer pass for \c MemorySSA.
+class MemorySSAPrinterPass : public PassInfoMixin<MemorySSAPrinterPass> {
+ raw_ostream &OS;
+
+public:
+ explicit MemorySSAPrinterPass(raw_ostream &OS) : OS(OS) {}
+
+ PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// \brief Verifier pass for \c MemorySSA.
+struct MemorySSAVerifierPass : PassInfoMixin<MemorySSAVerifierPass> {
+ PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
+};
+
+/// \brief Legacy analysis pass which computes \c MemorySSA.
+class MemorySSAWrapperPass : public FunctionPass {
+public:
+ MemorySSAWrapperPass();
+
+ static char ID;
+
+ bool runOnFunction(Function &) override;
+ void releaseMemory() override;
+ MemorySSA &getMSSA() { return *MSSA; }
+ const MemorySSA &getMSSA() const { return *MSSA; }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override;
+
+ void verifyAnalysis() const override;
+ void print(raw_ostream &OS, const Module *M = nullptr) const override;
+
+private:
+ std::unique_ptr<MemorySSA> MSSA;
+};
+
+/// \brief This is the generic walker interface for walkers of MemorySSA.
+/// Walkers are used to be able to further disambiguate the def-use chains
+/// MemorySSA gives you, or otherwise produce better info than MemorySSA gives
+/// you.
+/// In particular, while the def-use chains provide basic information, and are
+/// guaranteed to give, for example, the nearest may-aliasing MemoryDef for a
+/// MemoryUse as AliasAnalysis considers it, a user mant want better or other
+/// information. In particular, they may want to use SCEV info to further
+/// disambiguate memory accesses, or they may want the nearest dominating
+/// may-aliasing MemoryDef for a call or a store. This API enables a
+/// standardized interface to getting and using that info.
+class MemorySSAWalker {
+public:
+ MemorySSAWalker(MemorySSA *);
+ virtual ~MemorySSAWalker() = default;
+
+ using MemoryAccessSet = SmallVector<MemoryAccess *, 8>;
+
+ /// \brief Given a memory Mod/Ref/ModRef'ing instruction, calling this
+ /// will give you the nearest dominating MemoryAccess that Mod's the location
+ /// the instruction accesses (by skipping any def which AA can prove does not
+ /// alias the location(s) accessed by the instruction given).
+ ///
+ /// Note that this will return a single access, and it must dominate the
+ /// Instruction, so if an operand of a MemoryPhi node Mod's the instruction,
+ /// this will return the MemoryPhi, not the operand. This means that
+ /// given:
+ /// if (a) {
+ /// 1 = MemoryDef(liveOnEntry)
+ /// store %a
+ /// } else {
+ /// 2 = MemoryDef(liveOnEntry)
+ /// store %b
+ /// }
+ /// 3 = MemoryPhi(2, 1)
+ /// MemoryUse(3)
+ /// load %a
+ ///
+ /// calling this API on load(%a) will return the MemoryPhi, not the MemoryDef
+ /// in the if (a) branch.
+ MemoryAccess *getClobberingMemoryAccess(const Instruction *I) {
+ MemoryAccess *MA = MSSA->getMemoryAccess(I);
+ assert(MA && "Handed an instruction that MemorySSA doesn't recognize?");
+ return getClobberingMemoryAccess(MA);
+ }
+
+ /// Does the same thing as getClobberingMemoryAccess(const Instruction *I),
+ /// but takes a MemoryAccess instead of an Instruction.
+ virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) = 0;
+
+ /// \brief Given a potentially clobbering memory access and a new location,
+ /// calling this will give you the nearest dominating clobbering MemoryAccess
+ /// (by skipping non-aliasing def links).
+ ///
+ /// This version of the function is mainly used to disambiguate phi translated
+ /// pointers, where the value of a pointer may have changed from the initial
+ /// memory access. Note that this expects to be handed either a MemoryUse,
+ /// or an already potentially clobbering access. Unlike the above API, if
+ /// given a MemoryDef that clobbers the pointer as the starting access, it
+ /// will return that MemoryDef, whereas the above would return the clobber
+ /// starting from the use side of the memory def.
+ virtual MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
+ const MemoryLocation &) = 0;
+
+ /// \brief Given a memory access, invalidate anything this walker knows about
+ /// that access.
+ /// This API is used by walkers that store information to perform basic cache
+ /// invalidation. This will be called by MemorySSA at appropriate times for
+ /// the walker it uses or returns.
+ virtual void invalidateInfo(MemoryAccess *) {}
+
+ virtual void verify(const MemorySSA *MSSA) { assert(MSSA == this->MSSA); }
+
+protected:
+ friend class MemorySSA; // For updating MSSA pointer in MemorySSA move
+ // constructor.
+ MemorySSA *MSSA;
+};
+
+/// \brief A MemorySSAWalker that does no alias queries, or anything else. It
+/// simply returns the links as they were constructed by the builder.
+class DoNothingMemorySSAWalker final : public MemorySSAWalker {
+public:
+ // Keep the overrides below from hiding the Instruction overload of
+ // getClobberingMemoryAccess.
+ using MemorySSAWalker::getClobberingMemoryAccess;
+
+ MemoryAccess *getClobberingMemoryAccess(MemoryAccess *) override;
+ MemoryAccess *getClobberingMemoryAccess(MemoryAccess *,
+ const MemoryLocation &) override;
+};
+
+using MemoryAccessPair = std::pair<MemoryAccess *, MemoryLocation>;
+using ConstMemoryAccessPair = std::pair<const MemoryAccess *, MemoryLocation>;
+
+/// \brief Iterator base class used to implement const and non-const iterators
+/// over the defining accesses of a MemoryAccess.
+template <class T>
+class memoryaccess_def_iterator_base
+ : public iterator_facade_base<memoryaccess_def_iterator_base<T>,
+ std::forward_iterator_tag, T, ptrdiff_t, T *,
+ T *> {
+ using BaseT = typename memoryaccess_def_iterator_base::iterator_facade_base;
+
+public:
+ memoryaccess_def_iterator_base(T *Start) : Access(Start) {}
+ memoryaccess_def_iterator_base() = default;
+
+ bool operator==(const memoryaccess_def_iterator_base &Other) const {
+ return Access == Other.Access && (!Access || ArgNo == Other.ArgNo);
+ }
+
+ // This is a bit ugly, but for MemoryPHI's, unlike PHINodes, you can't get the
+ // block from the operand in constant time (In a PHINode, the uselist has
+ // both, so it's just subtraction). We provide it as part of the
+ // iterator to avoid callers having to linear walk to get the block.
+ // If the operation becomes constant time on MemoryPHI's, this bit of
+ // abstraction breaking should be removed.
+ BasicBlock *getPhiArgBlock() const {
+ MemoryPhi *MP = dyn_cast<MemoryPhi>(Access);
+ assert(MP && "Tried to get phi arg block when not iterating over a PHI");
+ return MP->getIncomingBlock(ArgNo);
+ }
+ typename BaseT::iterator::pointer operator*() const {
+ assert(Access && "Tried to access past the end of our iterator");
+ // Go to the first argument for phis, and the defining access for everything
+ // else.
+ if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access))
+ return MP->getIncomingValue(ArgNo);
+ return cast<MemoryUseOrDef>(Access)->getDefiningAccess();
+ }
+ using BaseT::operator++;
+ memoryaccess_def_iterator &operator++() {
+ assert(Access && "Hit end of iterator");
+ if (MemoryPhi *MP = dyn_cast<MemoryPhi>(Access)) {
+ if (++ArgNo >= MP->getNumIncomingValues()) {
+ ArgNo = 0;
+ Access = nullptr;
+ }
+ } else {
+ Access = nullptr;
+ }
+ return *this;
+ }
+
+private:
+ T *Access = nullptr;
+ unsigned ArgNo = 0;
+};
+
+inline memoryaccess_def_iterator MemoryAccess::defs_begin() {
+ return memoryaccess_def_iterator(this);
+}
+
+inline const_memoryaccess_def_iterator MemoryAccess::defs_begin() const {
+ return const_memoryaccess_def_iterator(this);
+}
+
+inline memoryaccess_def_iterator MemoryAccess::defs_end() {
+ return memoryaccess_def_iterator();
+}
+
+inline const_memoryaccess_def_iterator MemoryAccess::defs_end() const {
+ return const_memoryaccess_def_iterator();
+}
+
+/// \brief GraphTraits for a MemoryAccess, which walks defs in the normal case,
+/// and uses in the inverse case.
+template <> struct GraphTraits<MemoryAccess *> {
+ using NodeRef = MemoryAccess *;
+ using ChildIteratorType = memoryaccess_def_iterator;
+
+ static NodeRef getEntryNode(NodeRef N) { return N; }
+ static ChildIteratorType child_begin(NodeRef N) { return N->defs_begin(); }
+ static ChildIteratorType child_end(NodeRef N) { return N->defs_end(); }
+};
+
+template <> struct GraphTraits<Inverse<MemoryAccess *>> {
+ using NodeRef = MemoryAccess *;
+ using ChildIteratorType = MemoryAccess::iterator;
+
+ static NodeRef getEntryNode(NodeRef N) { return N; }
+ static ChildIteratorType child_begin(NodeRef N) { return N->user_begin(); }
+ static ChildIteratorType child_end(NodeRef N) { return N->user_end(); }
+};
+
+/// \brief Provide an iterator that walks defs, giving both the memory access,
+/// and the current pointer location, updating the pointer location as it
+/// changes due to phi node translation.
+///
+/// This iterator, while somewhat specialized, is what most clients actually
+/// want when walking upwards through MemorySSA def chains. It takes a pair of
+/// <MemoryAccess,MemoryLocation>, and walks defs, properly translating the
+/// memory location through phi nodes for the user.
+class upward_defs_iterator
+ : public iterator_facade_base<upward_defs_iterator,
+ std::forward_iterator_tag,
+ const MemoryAccessPair> {
+ using BaseT = upward_defs_iterator::iterator_facade_base;
+
+public:
+ upward_defs_iterator(const MemoryAccessPair &Info)
+ : DefIterator(Info.first), Location(Info.second),
+ OriginalAccess(Info.first) {
+ CurrentPair.first = nullptr;
+
+ WalkingPhi = Info.first && isa<MemoryPhi>(Info.first);
+ fillInCurrentPair();
+ }
+
+ upward_defs_iterator() { CurrentPair.first = nullptr; }
+
+ bool operator==(const upward_defs_iterator &Other) const {
+ return DefIterator == Other.DefIterator;
+ }
+
+ BaseT::iterator::reference operator*() const {
+ assert(DefIterator != OriginalAccess->defs_end() &&
+ "Tried to access past the end of our iterator");
+ return CurrentPair;
+ }
+
+ using BaseT::operator++;
+ upward_defs_iterator &operator++() {
+ assert(DefIterator != OriginalAccess->defs_end() &&
+ "Tried to access past the end of the iterator");
+ ++DefIterator;
+ if (DefIterator != OriginalAccess->defs_end())
+ fillInCurrentPair();
+ return *this;
+ }
+
+ BasicBlock *getPhiArgBlock() const { return DefIterator.getPhiArgBlock(); }
+
+private:
+ void fillInCurrentPair() {
+ CurrentPair.first = *DefIterator;
+ if (WalkingPhi && Location.Ptr) {
+ PHITransAddr Translator(
+ const_cast<Value *>(Location.Ptr),
+ OriginalAccess->getBlock()->getModule()->getDataLayout(), nullptr);
+ if (!Translator.PHITranslateValue(OriginalAccess->getBlock(),
+ DefIterator.getPhiArgBlock(), nullptr,
+ false))
+ if (Translator.getAddr() != Location.Ptr) {
+ CurrentPair.second = Location.getWithNewPtr(Translator.getAddr());
+ return;
+ }
+ }
+ CurrentPair.second = Location;
+ }
+
+ MemoryAccessPair CurrentPair;
+ memoryaccess_def_iterator DefIterator;
+ MemoryLocation Location;
+ MemoryAccess *OriginalAccess = nullptr;
+ bool WalkingPhi = false;
+};
+
+inline upward_defs_iterator upward_defs_begin(const MemoryAccessPair &Pair) {
+ return upward_defs_iterator(Pair);
+}
+
+inline upward_defs_iterator upward_defs_end() { return upward_defs_iterator(); }
+
+inline iterator_range<upward_defs_iterator>
+upward_defs(const MemoryAccessPair &Pair) {
+ return make_range(upward_defs_begin(Pair), upward_defs_end());
+}
+
+/// Walks the defining accesses of MemoryDefs. Stops after we hit something that
+/// has no defining use (e.g. a MemoryPhi or liveOnEntry). Note that, when
+/// comparing against a null def_chain_iterator, this will compare equal only
+/// after walking said Phi/liveOnEntry.
+///
+/// The UseOptimizedChain flag specifies whether to walk the clobbering
+/// access chain, or all the accesses.
+///
+/// Normally, MemoryDef are all just def/use linked together, so a def_chain on
+/// a MemoryDef will walk all MemoryDefs above it in the program until it hits
+/// a phi node. The optimized chain walks the clobbering access of a store.
+/// So if you are just trying to find, given a store, what the next
+/// thing that would clobber the same memory is, you want the optimized chain.
+template <class T, bool UseOptimizedChain = false>
+struct def_chain_iterator
+ : public iterator_facade_base<def_chain_iterator<T, UseOptimizedChain>,
+ std::forward_iterator_tag, MemoryAccess *> {
+ def_chain_iterator() : MA(nullptr) {}
+ def_chain_iterator(T MA) : MA(MA) {}
+
+ T operator*() const { return MA; }
+
+ def_chain_iterator &operator++() {
+ // N.B. liveOnEntry has a null defining access.
+ if (auto *MUD = dyn_cast<MemoryUseOrDef>(MA)) {
+ if (UseOptimizedChain && MUD->isOptimized())
+ MA = MUD->getOptimized();
+ else
+ MA = MUD->getDefiningAccess();
+ } else {
+ MA = nullptr;
+ }
+
+ return *this;
+ }
+
+ bool operator==(const def_chain_iterator &O) const { return MA == O.MA; }
+
+private:
+ T MA;
+};
+
+template <class T>
+inline iterator_range<def_chain_iterator<T>>
+def_chain(T MA, MemoryAccess *UpTo = nullptr) {
+#ifdef EXPENSIVE_CHECKS
+ assert((!UpTo || find(def_chain(MA), UpTo) != def_chain_iterator<T>()) &&
+ "UpTo isn't in the def chain!");
+#endif
+ return make_range(def_chain_iterator<T>(MA), def_chain_iterator<T>(UpTo));
+}
+
+template <class T>
+inline iterator_range<def_chain_iterator<T, true>> optimized_def_chain(T MA) {
+ return make_range(def_chain_iterator<T, true>(MA),
+ def_chain_iterator<T, true>(nullptr));
+}
+
+} // end namespace llvm
+
+#endif // LLVM_ANALYSIS_MEMORYSSA_H