aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Vectorize/VPlan.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Vectorize/VPlan.h')
-rw-r--r--contrib/llvm/lib/Transforms/Vectorize/VPlan.h1688
1 files changed, 0 insertions, 1688 deletions
diff --git a/contrib/llvm/lib/Transforms/Vectorize/VPlan.h b/contrib/llvm/lib/Transforms/Vectorize/VPlan.h
deleted file mode 100644
index 8a06412ad590..000000000000
--- a/contrib/llvm/lib/Transforms/Vectorize/VPlan.h
+++ /dev/null
@@ -1,1688 +0,0 @@
-//===- VPlan.h - Represent A Vectorizer Plan --------------------*- C++ -*-===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-/// \file
-/// This file contains the declarations of the Vectorization Plan base classes:
-/// 1. VPBasicBlock and VPRegionBlock that inherit from a common pure virtual
-/// VPBlockBase, together implementing a Hierarchical CFG;
-/// 2. Specializations of GraphTraits that allow VPBlockBase graphs to be
-/// treated as proper graphs for generic algorithms;
-/// 3. Pure virtual VPRecipeBase serving as the base class for recipes contained
-/// within VPBasicBlocks;
-/// 4. VPInstruction, a concrete Recipe and VPUser modeling a single planned
-/// instruction;
-/// 5. The VPlan class holding a candidate for vectorization;
-/// 6. The VPlanPrinter class providing a way to print a plan in dot format;
-/// These are documented in docs/VectorizationPlan.rst.
-//
-//===----------------------------------------------------------------------===//
-
-#ifndef LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
-#define LLVM_TRANSFORMS_VECTORIZE_VPLAN_H
-
-#include "VPlanLoopInfo.h"
-#include "VPlanValue.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/DepthFirstIterator.h"
-#include "llvm/ADT/GraphTraits.h"
-#include "llvm/ADT/Optional.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Twine.h"
-#include "llvm/ADT/ilist.h"
-#include "llvm/ADT/ilist_node.h"
-#include "llvm/Analysis/VectorUtils.h"
-#include "llvm/IR/IRBuilder.h"
-#include <algorithm>
-#include <cassert>
-#include <cstddef>
-#include <map>
-#include <string>
-
-namespace llvm {
-
-class LoopVectorizationLegality;
-class LoopVectorizationCostModel;
-class BasicBlock;
-class DominatorTree;
-class InnerLoopVectorizer;
-template <class T> class InterleaveGroup;
-class LoopInfo;
-class raw_ostream;
-class Value;
-class VPBasicBlock;
-class VPRegionBlock;
-class VPlan;
-class VPlanSlp;
-
-/// A range of powers-of-2 vectorization factors with fixed start and
-/// adjustable end. The range includes start and excludes end, e.g.,:
-/// [1, 9) = {1, 2, 4, 8}
-struct VFRange {
- // A power of 2.
- const unsigned Start;
-
- // Need not be a power of 2. If End <= Start range is empty.
- unsigned End;
-};
-
-using VPlanPtr = std::unique_ptr<VPlan>;
-
-/// In what follows, the term "input IR" refers to code that is fed into the
-/// vectorizer whereas the term "output IR" refers to code that is generated by
-/// the vectorizer.
-
-/// VPIteration represents a single point in the iteration space of the output
-/// (vectorized and/or unrolled) IR loop.
-struct VPIteration {
- /// in [0..UF)
- unsigned Part;
-
- /// in [0..VF)
- unsigned Lane;
-};
-
-/// This is a helper struct for maintaining vectorization state. It's used for
-/// mapping values from the original loop to their corresponding values in
-/// the new loop. Two mappings are maintained: one for vectorized values and
-/// one for scalarized values. Vectorized values are represented with UF
-/// vector values in the new loop, and scalarized values are represented with
-/// UF x VF scalar values in the new loop. UF and VF are the unroll and
-/// vectorization factors, respectively.
-///
-/// Entries can be added to either map with setVectorValue and setScalarValue,
-/// which assert that an entry was not already added before. If an entry is to
-/// replace an existing one, call resetVectorValue and resetScalarValue. This is
-/// currently needed to modify the mapped values during "fix-up" operations that
-/// occur once the first phase of widening is complete. These operations include
-/// type truncation and the second phase of recurrence widening.
-///
-/// Entries from either map can be retrieved using the getVectorValue and
-/// getScalarValue functions, which assert that the desired value exists.
-struct VectorizerValueMap {
- friend struct VPTransformState;
-
-private:
- /// The unroll factor. Each entry in the vector map contains UF vector values.
- unsigned UF;
-
- /// The vectorization factor. Each entry in the scalar map contains UF x VF
- /// scalar values.
- unsigned VF;
-
- /// The vector and scalar map storage. We use std::map and not DenseMap
- /// because insertions to DenseMap invalidate its iterators.
- using VectorParts = SmallVector<Value *, 2>;
- using ScalarParts = SmallVector<SmallVector<Value *, 4>, 2>;
- std::map<Value *, VectorParts> VectorMapStorage;
- std::map<Value *, ScalarParts> ScalarMapStorage;
-
-public:
- /// Construct an empty map with the given unroll and vectorization factors.
- VectorizerValueMap(unsigned UF, unsigned VF) : UF(UF), VF(VF) {}
-
- /// \return True if the map has any vector entry for \p Key.
- bool hasAnyVectorValue(Value *Key) const {
- return VectorMapStorage.count(Key);
- }
-
- /// \return True if the map has a vector entry for \p Key and \p Part.
- bool hasVectorValue(Value *Key, unsigned Part) const {
- assert(Part < UF && "Queried Vector Part is too large.");
- if (!hasAnyVectorValue(Key))
- return false;
- const VectorParts &Entry = VectorMapStorage.find(Key)->second;
- assert(Entry.size() == UF && "VectorParts has wrong dimensions.");
- return Entry[Part] != nullptr;
- }
-
- /// \return True if the map has any scalar entry for \p Key.
- bool hasAnyScalarValue(Value *Key) const {
- return ScalarMapStorage.count(Key);
- }
-
- /// \return True if the map has a scalar entry for \p Key and \p Instance.
- bool hasScalarValue(Value *Key, const VPIteration &Instance) const {
- assert(Instance.Part < UF && "Queried Scalar Part is too large.");
- assert(Instance.Lane < VF && "Queried Scalar Lane is too large.");
- if (!hasAnyScalarValue(Key))
- return false;
- const ScalarParts &Entry = ScalarMapStorage.find(Key)->second;
- assert(Entry.size() == UF && "ScalarParts has wrong dimensions.");
- assert(Entry[Instance.Part].size() == VF &&
- "ScalarParts has wrong dimensions.");
- return Entry[Instance.Part][Instance.Lane] != nullptr;
- }
-
- /// Retrieve the existing vector value that corresponds to \p Key and
- /// \p Part.
- Value *getVectorValue(Value *Key, unsigned Part) {
- assert(hasVectorValue(Key, Part) && "Getting non-existent value.");
- return VectorMapStorage[Key][Part];
- }
-
- /// Retrieve the existing scalar value that corresponds to \p Key and
- /// \p Instance.
- Value *getScalarValue(Value *Key, const VPIteration &Instance) {
- assert(hasScalarValue(Key, Instance) && "Getting non-existent value.");
- return ScalarMapStorage[Key][Instance.Part][Instance.Lane];
- }
-
- /// Set a vector value associated with \p Key and \p Part. Assumes such a
- /// value is not already set. If it is, use resetVectorValue() instead.
- void setVectorValue(Value *Key, unsigned Part, Value *Vector) {
- assert(!hasVectorValue(Key, Part) && "Vector value already set for part");
- if (!VectorMapStorage.count(Key)) {
- VectorParts Entry(UF);
- VectorMapStorage[Key] = Entry;
- }
- VectorMapStorage[Key][Part] = Vector;
- }
-
- /// Set a scalar value associated with \p Key and \p Instance. Assumes such a
- /// value is not already set.
- void setScalarValue(Value *Key, const VPIteration &Instance, Value *Scalar) {
- assert(!hasScalarValue(Key, Instance) && "Scalar value already set");
- if (!ScalarMapStorage.count(Key)) {
- ScalarParts Entry(UF);
- // TODO: Consider storing uniform values only per-part, as they occupy
- // lane 0 only, keeping the other VF-1 redundant entries null.
- for (unsigned Part = 0; Part < UF; ++Part)
- Entry[Part].resize(VF, nullptr);
- ScalarMapStorage[Key] = Entry;
- }
- ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
- }
-
- /// Reset the vector value associated with \p Key for the given \p Part.
- /// This function can be used to update values that have already been
- /// vectorized. This is the case for "fix-up" operations including type
- /// truncation and the second phase of recurrence vectorization.
- void resetVectorValue(Value *Key, unsigned Part, Value *Vector) {
- assert(hasVectorValue(Key, Part) && "Vector value not set for part");
- VectorMapStorage[Key][Part] = Vector;
- }
-
- /// Reset the scalar value associated with \p Key for \p Part and \p Lane.
- /// This function can be used to update values that have already been
- /// scalarized. This is the case for "fix-up" operations including scalar phi
- /// nodes for scalarized and predicated instructions.
- void resetScalarValue(Value *Key, const VPIteration &Instance,
- Value *Scalar) {
- assert(hasScalarValue(Key, Instance) &&
- "Scalar value not set for part and lane");
- ScalarMapStorage[Key][Instance.Part][Instance.Lane] = Scalar;
- }
-};
-
-/// This class is used to enable the VPlan to invoke a method of ILV. This is
-/// needed until the method is refactored out of ILV and becomes reusable.
-struct VPCallback {
- virtual ~VPCallback() {}
- virtual Value *getOrCreateVectorValues(Value *V, unsigned Part) = 0;
-};
-
-/// VPTransformState holds information passed down when "executing" a VPlan,
-/// needed for generating the output IR.
-struct VPTransformState {
- VPTransformState(unsigned VF, unsigned UF, LoopInfo *LI, DominatorTree *DT,
- IRBuilder<> &Builder, VectorizerValueMap &ValueMap,
- InnerLoopVectorizer *ILV, VPCallback &Callback)
- : VF(VF), UF(UF), Instance(), LI(LI), DT(DT), Builder(Builder),
- ValueMap(ValueMap), ILV(ILV), Callback(Callback) {}
-
- /// The chosen Vectorization and Unroll Factors of the loop being vectorized.
- unsigned VF;
- unsigned UF;
-
- /// Hold the indices to generate specific scalar instructions. Null indicates
- /// that all instances are to be generated, using either scalar or vector
- /// instructions.
- Optional<VPIteration> Instance;
-
- struct DataState {
- /// A type for vectorized values in the new loop. Each value from the
- /// original loop, when vectorized, is represented by UF vector values in
- /// the new unrolled loop, where UF is the unroll factor.
- typedef SmallVector<Value *, 2> PerPartValuesTy;
-
- DenseMap<VPValue *, PerPartValuesTy> PerPartOutput;
- } Data;
-
- /// Get the generated Value for a given VPValue and a given Part. Note that
- /// as some Defs are still created by ILV and managed in its ValueMap, this
- /// method will delegate the call to ILV in such cases in order to provide
- /// callers a consistent API.
- /// \see set.
- Value *get(VPValue *Def, unsigned Part) {
- // If Values have been set for this Def return the one relevant for \p Part.
- if (Data.PerPartOutput.count(Def))
- return Data.PerPartOutput[Def][Part];
- // Def is managed by ILV: bring the Values from ValueMap.
- return Callback.getOrCreateVectorValues(VPValue2Value[Def], Part);
- }
-
- /// Set the generated Value for a given VPValue and a given Part.
- void set(VPValue *Def, Value *V, unsigned Part) {
- if (!Data.PerPartOutput.count(Def)) {
- DataState::PerPartValuesTy Entry(UF);
- Data.PerPartOutput[Def] = Entry;
- }
- Data.PerPartOutput[Def][Part] = V;
- }
-
- /// Hold state information used when constructing the CFG of the output IR,
- /// traversing the VPBasicBlocks and generating corresponding IR BasicBlocks.
- struct CFGState {
- /// The previous VPBasicBlock visited. Initially set to null.
- VPBasicBlock *PrevVPBB = nullptr;
-
- /// The previous IR BasicBlock created or used. Initially set to the new
- /// header BasicBlock.
- BasicBlock *PrevBB = nullptr;
-
- /// The last IR BasicBlock in the output IR. Set to the new latch
- /// BasicBlock, used for placing the newly created BasicBlocks.
- BasicBlock *LastBB = nullptr;
-
- /// A mapping of each VPBasicBlock to the corresponding BasicBlock. In case
- /// of replication, maps the BasicBlock of the last replica created.
- SmallDenseMap<VPBasicBlock *, BasicBlock *> VPBB2IRBB;
-
- /// Vector of VPBasicBlocks whose terminator instruction needs to be fixed
- /// up at the end of vector code generation.
- SmallVector<VPBasicBlock *, 8> VPBBsToFix;
-
- CFGState() = default;
- } CFG;
-
- /// Hold a pointer to LoopInfo to register new basic blocks in the loop.
- LoopInfo *LI;
-
- /// Hold a pointer to Dominator Tree to register new basic blocks in the loop.
- DominatorTree *DT;
-
- /// Hold a reference to the IRBuilder used to generate output IR code.
- IRBuilder<> &Builder;
-
- /// Hold a reference to the Value state information used when generating the
- /// Values of the output IR.
- VectorizerValueMap &ValueMap;
-
- /// Hold a reference to a mapping between VPValues in VPlan and original
- /// Values they correspond to.
- VPValue2ValueTy VPValue2Value;
-
- /// Hold the trip count of the scalar loop.
- Value *TripCount = nullptr;
-
- /// Hold a pointer to InnerLoopVectorizer to reuse its IR generation methods.
- InnerLoopVectorizer *ILV;
-
- VPCallback &Callback;
-};
-
-/// VPBlockBase is the building block of the Hierarchical Control-Flow Graph.
-/// A VPBlockBase can be either a VPBasicBlock or a VPRegionBlock.
-class VPBlockBase {
- friend class VPBlockUtils;
-
-private:
- const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
-
- /// An optional name for the block.
- std::string Name;
-
- /// The immediate VPRegionBlock which this VPBlockBase belongs to, or null if
- /// it is a topmost VPBlockBase.
- VPRegionBlock *Parent = nullptr;
-
- /// List of predecessor blocks.
- SmallVector<VPBlockBase *, 1> Predecessors;
-
- /// List of successor blocks.
- SmallVector<VPBlockBase *, 1> Successors;
-
- /// Successor selector, null for zero or single successor blocks.
- VPValue *CondBit = nullptr;
-
- /// Current block predicate - null if the block does not need a predicate.
- VPValue *Predicate = nullptr;
-
- /// Add \p Successor as the last successor to this block.
- void appendSuccessor(VPBlockBase *Successor) {
- assert(Successor && "Cannot add nullptr successor!");
- Successors.push_back(Successor);
- }
-
- /// Add \p Predecessor as the last predecessor to this block.
- void appendPredecessor(VPBlockBase *Predecessor) {
- assert(Predecessor && "Cannot add nullptr predecessor!");
- Predecessors.push_back(Predecessor);
- }
-
- /// Remove \p Predecessor from the predecessors of this block.
- void removePredecessor(VPBlockBase *Predecessor) {
- auto Pos = std::find(Predecessors.begin(), Predecessors.end(), Predecessor);
- assert(Pos && "Predecessor does not exist");
- Predecessors.erase(Pos);
- }
-
- /// Remove \p Successor from the successors of this block.
- void removeSuccessor(VPBlockBase *Successor) {
- auto Pos = std::find(Successors.begin(), Successors.end(), Successor);
- assert(Pos && "Successor does not exist");
- Successors.erase(Pos);
- }
-
-protected:
- VPBlockBase(const unsigned char SC, const std::string &N)
- : SubclassID(SC), Name(N) {}
-
-public:
- /// An enumeration for keeping track of the concrete subclass of VPBlockBase
- /// that are actually instantiated. Values of this enumeration are kept in the
- /// SubclassID field of the VPBlockBase objects. They are used for concrete
- /// type identification.
- using VPBlockTy = enum { VPBasicBlockSC, VPRegionBlockSC };
-
- using VPBlocksTy = SmallVectorImpl<VPBlockBase *>;
-
- virtual ~VPBlockBase() = default;
-
- const std::string &getName() const { return Name; }
-
- void setName(const Twine &newName) { Name = newName.str(); }
-
- /// \return an ID for the concrete type of this object.
- /// This is used to implement the classof checks. This should not be used
- /// for any other purpose, as the values may change as LLVM evolves.
- unsigned getVPBlockID() const { return SubclassID; }
-
- VPRegionBlock *getParent() { return Parent; }
- const VPRegionBlock *getParent() const { return Parent; }
-
- void setParent(VPRegionBlock *P) { Parent = P; }
-
- /// \return the VPBasicBlock that is the entry of this VPBlockBase,
- /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
- /// VPBlockBase is a VPBasicBlock, it is returned.
- const VPBasicBlock *getEntryBasicBlock() const;
- VPBasicBlock *getEntryBasicBlock();
-
- /// \return the VPBasicBlock that is the exit of this VPBlockBase,
- /// recursively, if the latter is a VPRegionBlock. Otherwise, if this
- /// VPBlockBase is a VPBasicBlock, it is returned.
- const VPBasicBlock *getExitBasicBlock() const;
- VPBasicBlock *getExitBasicBlock();
-
- const VPBlocksTy &getSuccessors() const { return Successors; }
- VPBlocksTy &getSuccessors() { return Successors; }
-
- const VPBlocksTy &getPredecessors() const { return Predecessors; }
- VPBlocksTy &getPredecessors() { return Predecessors; }
-
- /// \return the successor of this VPBlockBase if it has a single successor.
- /// Otherwise return a null pointer.
- VPBlockBase *getSingleSuccessor() const {
- return (Successors.size() == 1 ? *Successors.begin() : nullptr);
- }
-
- /// \return the predecessor of this VPBlockBase if it has a single
- /// predecessor. Otherwise return a null pointer.
- VPBlockBase *getSinglePredecessor() const {
- return (Predecessors.size() == 1 ? *Predecessors.begin() : nullptr);
- }
-
- size_t getNumSuccessors() const { return Successors.size(); }
- size_t getNumPredecessors() const { return Predecessors.size(); }
-
- /// An Enclosing Block of a block B is any block containing B, including B
- /// itself. \return the closest enclosing block starting from "this", which
- /// has successors. \return the root enclosing block if all enclosing blocks
- /// have no successors.
- VPBlockBase *getEnclosingBlockWithSuccessors();
-
- /// \return the closest enclosing block starting from "this", which has
- /// predecessors. \return the root enclosing block if all enclosing blocks
- /// have no predecessors.
- VPBlockBase *getEnclosingBlockWithPredecessors();
-
- /// \return the successors either attached directly to this VPBlockBase or, if
- /// this VPBlockBase is the exit block of a VPRegionBlock and has no
- /// successors of its own, search recursively for the first enclosing
- /// VPRegionBlock that has successors and return them. If no such
- /// VPRegionBlock exists, return the (empty) successors of the topmost
- /// VPBlockBase reached.
- const VPBlocksTy &getHierarchicalSuccessors() {
- return getEnclosingBlockWithSuccessors()->getSuccessors();
- }
-
- /// \return the hierarchical successor of this VPBlockBase if it has a single
- /// hierarchical successor. Otherwise return a null pointer.
- VPBlockBase *getSingleHierarchicalSuccessor() {
- return getEnclosingBlockWithSuccessors()->getSingleSuccessor();
- }
-
- /// \return the predecessors either attached directly to this VPBlockBase or,
- /// if this VPBlockBase is the entry block of a VPRegionBlock and has no
- /// predecessors of its own, search recursively for the first enclosing
- /// VPRegionBlock that has predecessors and return them. If no such
- /// VPRegionBlock exists, return the (empty) predecessors of the topmost
- /// VPBlockBase reached.
- const VPBlocksTy &getHierarchicalPredecessors() {
- return getEnclosingBlockWithPredecessors()->getPredecessors();
- }
-
- /// \return the hierarchical predecessor of this VPBlockBase if it has a
- /// single hierarchical predecessor. Otherwise return a null pointer.
- VPBlockBase *getSingleHierarchicalPredecessor() {
- return getEnclosingBlockWithPredecessors()->getSinglePredecessor();
- }
-
- /// \return the condition bit selecting the successor.
- VPValue *getCondBit() { return CondBit; }
-
- const VPValue *getCondBit() const { return CondBit; }
-
- void setCondBit(VPValue *CV) { CondBit = CV; }
-
- VPValue *getPredicate() { return Predicate; }
-
- const VPValue *getPredicate() const { return Predicate; }
-
- void setPredicate(VPValue *Pred) { Predicate = Pred; }
-
- /// Set a given VPBlockBase \p Successor as the single successor of this
- /// VPBlockBase. This VPBlockBase is not added as predecessor of \p Successor.
- /// This VPBlockBase must have no successors.
- void setOneSuccessor(VPBlockBase *Successor) {
- assert(Successors.empty() && "Setting one successor when others exist.");
- appendSuccessor(Successor);
- }
-
- /// Set two given VPBlockBases \p IfTrue and \p IfFalse to be the two
- /// successors of this VPBlockBase. \p Condition is set as the successor
- /// selector. This VPBlockBase is not added as predecessor of \p IfTrue or \p
- /// IfFalse. This VPBlockBase must have no successors.
- void setTwoSuccessors(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
- VPValue *Condition) {
- assert(Successors.empty() && "Setting two successors when others exist.");
- assert(Condition && "Setting two successors without condition!");
- CondBit = Condition;
- appendSuccessor(IfTrue);
- appendSuccessor(IfFalse);
- }
-
- /// Set each VPBasicBlock in \p NewPreds as predecessor of this VPBlockBase.
- /// This VPBlockBase must have no predecessors. This VPBlockBase is not added
- /// as successor of any VPBasicBlock in \p NewPreds.
- void setPredecessors(ArrayRef<VPBlockBase *> NewPreds) {
- assert(Predecessors.empty() && "Block predecessors already set.");
- for (auto *Pred : NewPreds)
- appendPredecessor(Pred);
- }
-
- /// Remove all the predecessor of this block.
- void clearPredecessors() { Predecessors.clear(); }
-
- /// Remove all the successors of this block and set to null its condition bit
- void clearSuccessors() {
- Successors.clear();
- CondBit = nullptr;
- }
-
- /// The method which generates the output IR that correspond to this
- /// VPBlockBase, thereby "executing" the VPlan.
- virtual void execute(struct VPTransformState *State) = 0;
-
- /// Delete all blocks reachable from a given VPBlockBase, inclusive.
- static void deleteCFG(VPBlockBase *Entry);
-
- void printAsOperand(raw_ostream &OS, bool PrintType) const {
- OS << getName();
- }
-
- void print(raw_ostream &OS) const {
- // TODO: Only printing VPBB name for now since we only have dot printing
- // support for VPInstructions/Recipes.
- printAsOperand(OS, false);
- }
-
- /// Return true if it is legal to hoist instructions into this block.
- bool isLegalToHoistInto() {
- // There are currently no constraints that prevent an instruction to be
- // hoisted into a VPBlockBase.
- return true;
- }
-};
-
-/// VPRecipeBase is a base class modeling a sequence of one or more output IR
-/// instructions.
-class VPRecipeBase : public ilist_node_with_parent<VPRecipeBase, VPBasicBlock> {
- friend VPBasicBlock;
-
-private:
- const unsigned char SubclassID; ///< Subclass identifier (for isa/dyn_cast).
-
- /// Each VPRecipe belongs to a single VPBasicBlock.
- VPBasicBlock *Parent = nullptr;
-
-public:
- /// An enumeration for keeping track of the concrete subclass of VPRecipeBase
- /// that is actually instantiated. Values of this enumeration are kept in the
- /// SubclassID field of the VPRecipeBase objects. They are used for concrete
- /// type identification.
- using VPRecipeTy = enum {
- VPBlendSC,
- VPBranchOnMaskSC,
- VPInstructionSC,
- VPInterleaveSC,
- VPPredInstPHISC,
- VPReplicateSC,
- VPWidenIntOrFpInductionSC,
- VPWidenMemoryInstructionSC,
- VPWidenPHISC,
- VPWidenSC,
- };
-
- VPRecipeBase(const unsigned char SC) : SubclassID(SC) {}
- virtual ~VPRecipeBase() = default;
-
- /// \return an ID for the concrete type of this object.
- /// This is used to implement the classof checks. This should not be used
- /// for any other purpose, as the values may change as LLVM evolves.
- unsigned getVPRecipeID() const { return SubclassID; }
-
- /// \return the VPBasicBlock which this VPRecipe belongs to.
- VPBasicBlock *getParent() { return Parent; }
- const VPBasicBlock *getParent() const { return Parent; }
-
- /// The method which generates the output IR instructions that correspond to
- /// this VPRecipe, thereby "executing" the VPlan.
- virtual void execute(struct VPTransformState &State) = 0;
-
- /// Each recipe prints itself.
- virtual void print(raw_ostream &O, const Twine &Indent) const = 0;
-
- /// Insert an unlinked recipe into a basic block immediately before
- /// the specified recipe.
- void insertBefore(VPRecipeBase *InsertPos);
-
- /// This method unlinks 'this' from the containing basic block and deletes it.
- ///
- /// \returns an iterator pointing to the element after the erased one
- iplist<VPRecipeBase>::iterator eraseFromParent();
-};
-
-/// This is a concrete Recipe that models a single VPlan-level instruction.
-/// While as any Recipe it may generate a sequence of IR instructions when
-/// executed, these instructions would always form a single-def expression as
-/// the VPInstruction is also a single def-use vertex.
-class VPInstruction : public VPUser, public VPRecipeBase {
- friend class VPlanHCFGTransforms;
- friend class VPlanSlp;
-
-public:
- /// VPlan opcodes, extending LLVM IR with idiomatics instructions.
- enum {
- Not = Instruction::OtherOpsEnd + 1,
- ICmpULE,
- SLPLoad,
- SLPStore,
- };
-
-private:
- typedef unsigned char OpcodeTy;
- OpcodeTy Opcode;
-
- /// Utility method serving execute(): generates a single instance of the
- /// modeled instruction.
- void generateInstruction(VPTransformState &State, unsigned Part);
-
-protected:
- Instruction *getUnderlyingInstr() {
- return cast_or_null<Instruction>(getUnderlyingValue());
- }
-
- void setUnderlyingInstr(Instruction *I) { setUnderlyingValue(I); }
-
-public:
- VPInstruction(unsigned Opcode, ArrayRef<VPValue *> Operands)
- : VPUser(VPValue::VPInstructionSC, Operands),
- VPRecipeBase(VPRecipeBase::VPInstructionSC), Opcode(Opcode) {}
-
- VPInstruction(unsigned Opcode, std::initializer_list<VPValue *> Operands)
- : VPInstruction(Opcode, ArrayRef<VPValue *>(Operands)) {}
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPValue *V) {
- return V->getVPValueID() == VPValue::VPInstructionSC;
- }
-
- VPInstruction *clone() const {
- SmallVector<VPValue *, 2> Operands(operands());
- return new VPInstruction(Opcode, Operands);
- }
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *R) {
- return R->getVPRecipeID() == VPRecipeBase::VPInstructionSC;
- }
-
- unsigned getOpcode() const { return Opcode; }
-
- /// Generate the instruction.
- /// TODO: We currently execute only per-part unless a specific instance is
- /// provided.
- void execute(VPTransformState &State) override;
-
- /// Print the Recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-
- /// Print the VPInstruction.
- void print(raw_ostream &O) const;
-
- /// Return true if this instruction may modify memory.
- bool mayWriteToMemory() const {
- // TODO: we can use attributes of the called function to rule out memory
- // modifications.
- return Opcode == Instruction::Store || Opcode == Instruction::Call ||
- Opcode == Instruction::Invoke || Opcode == SLPStore;
- }
-};
-
-/// VPWidenRecipe is a recipe for producing a copy of vector type for each
-/// Instruction in its ingredients independently, in order. This recipe covers
-/// most of the traditional vectorization cases where each ingredient transforms
-/// into a vectorized version of itself.
-class VPWidenRecipe : public VPRecipeBase {
-private:
- /// Hold the ingredients by pointing to their original BasicBlock location.
- BasicBlock::iterator Begin;
- BasicBlock::iterator End;
-
-public:
- VPWidenRecipe(Instruction *I) : VPRecipeBase(VPWidenSC) {
- End = I->getIterator();
- Begin = End++;
- }
-
- ~VPWidenRecipe() override = default;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPWidenSC;
- }
-
- /// Produce widened copies of all Ingredients.
- void execute(VPTransformState &State) override;
-
- /// Augment the recipe to include Instr, if it lies at its End.
- bool appendInstruction(Instruction *Instr) {
- if (End != Instr->getIterator())
- return false;
- End++;
- return true;
- }
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// A recipe for handling phi nodes of integer and floating-point inductions,
-/// producing their vector and scalar values.
-class VPWidenIntOrFpInductionRecipe : public VPRecipeBase {
-private:
- PHINode *IV;
- TruncInst *Trunc;
-
-public:
- VPWidenIntOrFpInductionRecipe(PHINode *IV, TruncInst *Trunc = nullptr)
- : VPRecipeBase(VPWidenIntOrFpInductionSC), IV(IV), Trunc(Trunc) {}
- ~VPWidenIntOrFpInductionRecipe() override = default;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPWidenIntOrFpInductionSC;
- }
-
- /// Generate the vectorized and scalarized versions of the phi node as
- /// needed by their users.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// A recipe for handling all phi nodes except for integer and FP inductions.
-class VPWidenPHIRecipe : public VPRecipeBase {
-private:
- PHINode *Phi;
-
-public:
- VPWidenPHIRecipe(PHINode *Phi) : VPRecipeBase(VPWidenPHISC), Phi(Phi) {}
- ~VPWidenPHIRecipe() override = default;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPWidenPHISC;
- }
-
- /// Generate the phi/select nodes.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// A recipe for vectorizing a phi-node as a sequence of mask-based select
-/// instructions.
-class VPBlendRecipe : public VPRecipeBase {
-private:
- PHINode *Phi;
-
- /// The blend operation is a User of a mask, if not null.
- std::unique_ptr<VPUser> User;
-
-public:
- VPBlendRecipe(PHINode *Phi, ArrayRef<VPValue *> Masks)
- : VPRecipeBase(VPBlendSC), Phi(Phi) {
- assert((Phi->getNumIncomingValues() == 1 ||
- Phi->getNumIncomingValues() == Masks.size()) &&
- "Expected the same number of incoming values and masks");
- if (!Masks.empty())
- User.reset(new VPUser(Masks));
- }
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPBlendSC;
- }
-
- /// Generate the phi/select nodes.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// VPInterleaveRecipe is a recipe for transforming an interleave group of load
-/// or stores into one wide load/store and shuffles.
-class VPInterleaveRecipe : public VPRecipeBase {
-private:
- const InterleaveGroup<Instruction> *IG;
- std::unique_ptr<VPUser> User;
-
-public:
- VPInterleaveRecipe(const InterleaveGroup<Instruction> *IG, VPValue *Mask)
- : VPRecipeBase(VPInterleaveSC), IG(IG) {
- if (Mask) // Create a VPInstruction to register as a user of the mask.
- User.reset(new VPUser({Mask}));
- }
- ~VPInterleaveRecipe() override = default;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPInterleaveSC;
- }
-
- /// Generate the wide load or store, and shuffles.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-
- const InterleaveGroup<Instruction> *getInterleaveGroup() { return IG; }
-};
-
-/// VPReplicateRecipe replicates a given instruction producing multiple scalar
-/// copies of the original scalar type, one per lane, instead of producing a
-/// single copy of widened type for all lanes. If the instruction is known to be
-/// uniform only one copy, per lane zero, will be generated.
-class VPReplicateRecipe : public VPRecipeBase {
-private:
- /// The instruction being replicated.
- Instruction *Ingredient;
-
- /// Indicator if only a single replica per lane is needed.
- bool IsUniform;
-
- /// Indicator if the replicas are also predicated.
- bool IsPredicated;
-
- /// Indicator if the scalar values should also be packed into a vector.
- bool AlsoPack;
-
-public:
- VPReplicateRecipe(Instruction *I, bool IsUniform, bool IsPredicated = false)
- : VPRecipeBase(VPReplicateSC), Ingredient(I), IsUniform(IsUniform),
- IsPredicated(IsPredicated) {
- // Retain the previous behavior of predicateInstructions(), where an
- // insert-element of a predicated instruction got hoisted into the
- // predicated basic block iff it was its only user. This is achieved by
- // having predicated instructions also pack their values into a vector by
- // default unless they have a replicated user which uses their scalar value.
- AlsoPack = IsPredicated && !I->use_empty();
- }
-
- ~VPReplicateRecipe() override = default;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPReplicateSC;
- }
-
- /// Generate replicas of the desired Ingredient. Replicas will be generated
- /// for all parts and lanes unless a specific part and lane are specified in
- /// the \p State.
- void execute(VPTransformState &State) override;
-
- void setAlsoPack(bool Pack) { AlsoPack = Pack; }
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// A recipe for generating conditional branches on the bits of a mask.
-class VPBranchOnMaskRecipe : public VPRecipeBase {
-private:
- std::unique_ptr<VPUser> User;
-
-public:
- VPBranchOnMaskRecipe(VPValue *BlockInMask) : VPRecipeBase(VPBranchOnMaskSC) {
- if (BlockInMask) // nullptr means all-one mask.
- User.reset(new VPUser({BlockInMask}));
- }
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPBranchOnMaskSC;
- }
-
- /// Generate the extraction of the appropriate bit from the block mask and the
- /// conditional branch.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override {
- O << " +\n" << Indent << "\"BRANCH-ON-MASK ";
- if (User)
- O << *User->getOperand(0);
- else
- O << " All-One";
- O << "\\l\"";
- }
-};
-
-/// VPPredInstPHIRecipe is a recipe for generating the phi nodes needed when
-/// control converges back from a Branch-on-Mask. The phi nodes are needed in
-/// order to merge values that are set under such a branch and feed their uses.
-/// The phi nodes can be scalar or vector depending on the users of the value.
-/// This recipe works in concert with VPBranchOnMaskRecipe.
-class VPPredInstPHIRecipe : public VPRecipeBase {
-private:
- Instruction *PredInst;
-
-public:
- /// Construct a VPPredInstPHIRecipe given \p PredInst whose value needs a phi
- /// nodes after merging back from a Branch-on-Mask.
- VPPredInstPHIRecipe(Instruction *PredInst)
- : VPRecipeBase(VPPredInstPHISC), PredInst(PredInst) {}
- ~VPPredInstPHIRecipe() override = default;
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPPredInstPHISC;
- }
-
- /// Generates phi nodes for live-outs as needed to retain SSA form.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// A Recipe for widening load/store operations.
-/// TODO: We currently execute only per-part unless a specific instance is
-/// provided.
-class VPWidenMemoryInstructionRecipe : public VPRecipeBase {
-private:
- Instruction &Instr;
- std::unique_ptr<VPUser> User;
-
-public:
- VPWidenMemoryInstructionRecipe(Instruction &Instr, VPValue *Mask)
- : VPRecipeBase(VPWidenMemoryInstructionSC), Instr(Instr) {
- if (Mask) // Create a VPInstruction to register as a user of the mask.
- User.reset(new VPUser({Mask}));
- }
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPRecipeBase *V) {
- return V->getVPRecipeID() == VPRecipeBase::VPWidenMemoryInstructionSC;
- }
-
- /// Generate the wide load/store.
- void execute(VPTransformState &State) override;
-
- /// Print the recipe.
- void print(raw_ostream &O, const Twine &Indent) const override;
-};
-
-/// VPBasicBlock serves as the leaf of the Hierarchical Control-Flow Graph. It
-/// holds a sequence of zero or more VPRecipe's each representing a sequence of
-/// output IR instructions.
-class VPBasicBlock : public VPBlockBase {
-public:
- using RecipeListTy = iplist<VPRecipeBase>;
-
-private:
- /// The VPRecipes held in the order of output instructions to generate.
- RecipeListTy Recipes;
-
-public:
- VPBasicBlock(const Twine &Name = "", VPRecipeBase *Recipe = nullptr)
- : VPBlockBase(VPBasicBlockSC, Name.str()) {
- if (Recipe)
- appendRecipe(Recipe);
- }
-
- ~VPBasicBlock() override { Recipes.clear(); }
-
- /// Instruction iterators...
- using iterator = RecipeListTy::iterator;
- using const_iterator = RecipeListTy::const_iterator;
- using reverse_iterator = RecipeListTy::reverse_iterator;
- using const_reverse_iterator = RecipeListTy::const_reverse_iterator;
-
- //===--------------------------------------------------------------------===//
- /// Recipe iterator methods
- ///
- inline iterator begin() { return Recipes.begin(); }
- inline const_iterator begin() const { return Recipes.begin(); }
- inline iterator end() { return Recipes.end(); }
- inline const_iterator end() const { return Recipes.end(); }
-
- inline reverse_iterator rbegin() { return Recipes.rbegin(); }
- inline const_reverse_iterator rbegin() const { return Recipes.rbegin(); }
- inline reverse_iterator rend() { return Recipes.rend(); }
- inline const_reverse_iterator rend() const { return Recipes.rend(); }
-
- inline size_t size() const { return Recipes.size(); }
- inline bool empty() const { return Recipes.empty(); }
- inline const VPRecipeBase &front() const { return Recipes.front(); }
- inline VPRecipeBase &front() { return Recipes.front(); }
- inline const VPRecipeBase &back() const { return Recipes.back(); }
- inline VPRecipeBase &back() { return Recipes.back(); }
-
- /// Returns a reference to the list of recipes.
- RecipeListTy &getRecipeList() { return Recipes; }
-
- /// Returns a pointer to a member of the recipe list.
- static RecipeListTy VPBasicBlock::*getSublistAccess(VPRecipeBase *) {
- return &VPBasicBlock::Recipes;
- }
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPBlockBase *V) {
- return V->getVPBlockID() == VPBlockBase::VPBasicBlockSC;
- }
-
- void insert(VPRecipeBase *Recipe, iterator InsertPt) {
- assert(Recipe && "No recipe to append.");
- assert(!Recipe->Parent && "Recipe already in VPlan");
- Recipe->Parent = this;
- Recipes.insert(InsertPt, Recipe);
- }
-
- /// Augment the existing recipes of a VPBasicBlock with an additional
- /// \p Recipe as the last recipe.
- void appendRecipe(VPRecipeBase *Recipe) { insert(Recipe, end()); }
-
- /// The method which generates the output IR instructions that correspond to
- /// this VPBasicBlock, thereby "executing" the VPlan.
- void execute(struct VPTransformState *State) override;
-
-private:
- /// Create an IR BasicBlock to hold the output instructions generated by this
- /// VPBasicBlock, and return it. Update the CFGState accordingly.
- BasicBlock *createEmptyBasicBlock(VPTransformState::CFGState &CFG);
-};
-
-/// VPRegionBlock represents a collection of VPBasicBlocks and VPRegionBlocks
-/// which form a Single-Entry-Single-Exit subgraph of the output IR CFG.
-/// A VPRegionBlock may indicate that its contents are to be replicated several
-/// times. This is designed to support predicated scalarization, in which a
-/// scalar if-then code structure needs to be generated VF * UF times. Having
-/// this replication indicator helps to keep a single model for multiple
-/// candidate VF's. The actual replication takes place only once the desired VF
-/// and UF have been determined.
-class VPRegionBlock : public VPBlockBase {
-private:
- /// Hold the Single Entry of the SESE region modelled by the VPRegionBlock.
- VPBlockBase *Entry;
-
- /// Hold the Single Exit of the SESE region modelled by the VPRegionBlock.
- VPBlockBase *Exit;
-
- /// An indicator whether this region is to generate multiple replicated
- /// instances of output IR corresponding to its VPBlockBases.
- bool IsReplicator;
-
-public:
- VPRegionBlock(VPBlockBase *Entry, VPBlockBase *Exit,
- const std::string &Name = "", bool IsReplicator = false)
- : VPBlockBase(VPRegionBlockSC, Name), Entry(Entry), Exit(Exit),
- IsReplicator(IsReplicator) {
- assert(Entry->getPredecessors().empty() && "Entry block has predecessors.");
- assert(Exit->getSuccessors().empty() && "Exit block has successors.");
- Entry->setParent(this);
- Exit->setParent(this);
- }
- VPRegionBlock(const std::string &Name = "", bool IsReplicator = false)
- : VPBlockBase(VPRegionBlockSC, Name), Entry(nullptr), Exit(nullptr),
- IsReplicator(IsReplicator) {}
-
- ~VPRegionBlock() override {
- if (Entry)
- deleteCFG(Entry);
- }
-
- /// Method to support type inquiry through isa, cast, and dyn_cast.
- static inline bool classof(const VPBlockBase *V) {
- return V->getVPBlockID() == VPBlockBase::VPRegionBlockSC;
- }
-
- const VPBlockBase *getEntry() const { return Entry; }
- VPBlockBase *getEntry() { return Entry; }
-
- /// Set \p EntryBlock as the entry VPBlockBase of this VPRegionBlock. \p
- /// EntryBlock must have no predecessors.
- void setEntry(VPBlockBase *EntryBlock) {
- assert(EntryBlock->getPredecessors().empty() &&
- "Entry block cannot have predecessors.");
- Entry = EntryBlock;
- EntryBlock->setParent(this);
- }
-
- // FIXME: DominatorTreeBase is doing 'A->getParent()->front()'. 'front' is a
- // specific interface of llvm::Function, instead of using
- // GraphTraints::getEntryNode. We should add a new template parameter to
- // DominatorTreeBase representing the Graph type.
- VPBlockBase &front() const { return *Entry; }
-
- const VPBlockBase *getExit() const { return Exit; }
- VPBlockBase *getExit() { return Exit; }
-
- /// Set \p ExitBlock as the exit VPBlockBase of this VPRegionBlock. \p
- /// ExitBlock must have no successors.
- void setExit(VPBlockBase *ExitBlock) {
- assert(ExitBlock->getSuccessors().empty() &&
- "Exit block cannot have successors.");
- Exit = ExitBlock;
- ExitBlock->setParent(this);
- }
-
- /// An indicator whether this region is to generate multiple replicated
- /// instances of output IR corresponding to its VPBlockBases.
- bool isReplicator() const { return IsReplicator; }
-
- /// The method which generates the output IR instructions that correspond to
- /// this VPRegionBlock, thereby "executing" the VPlan.
- void execute(struct VPTransformState *State) override;
-};
-
-/// VPlan models a candidate for vectorization, encoding various decisions take
-/// to produce efficient output IR, including which branches, basic-blocks and
-/// output IR instructions to generate, and their cost. VPlan holds a
-/// Hierarchical-CFG of VPBasicBlocks and VPRegionBlocks rooted at an Entry
-/// VPBlock.
-class VPlan {
- friend class VPlanPrinter;
-
-private:
- /// Hold the single entry to the Hierarchical CFG of the VPlan.
- VPBlockBase *Entry;
-
- /// Holds the VFs applicable to this VPlan.
- SmallSet<unsigned, 2> VFs;
-
- /// Holds the name of the VPlan, for printing.
- std::string Name;
-
- /// Holds all the external definitions created for this VPlan.
- // TODO: Introduce a specific representation for external definitions in
- // VPlan. External definitions must be immutable and hold a pointer to its
- // underlying IR that will be used to implement its structural comparison
- // (operators '==' and '<').
- SmallPtrSet<VPValue *, 16> VPExternalDefs;
-
- /// Represents the backedge taken count of the original loop, for folding
- /// the tail.
- VPValue *BackedgeTakenCount = nullptr;
-
- /// Holds a mapping between Values and their corresponding VPValue inside
- /// VPlan.
- Value2VPValueTy Value2VPValue;
-
- /// Holds the VPLoopInfo analysis for this VPlan.
- VPLoopInfo VPLInfo;
-
- /// Holds the condition bit values built during VPInstruction to VPRecipe transformation.
- SmallVector<VPValue *, 4> VPCBVs;
-
-public:
- VPlan(VPBlockBase *Entry = nullptr) : Entry(Entry) {}
-
- ~VPlan() {
- if (Entry)
- VPBlockBase::deleteCFG(Entry);
- for (auto &MapEntry : Value2VPValue)
- if (MapEntry.second != BackedgeTakenCount)
- delete MapEntry.second;
- if (BackedgeTakenCount)
- delete BackedgeTakenCount; // Delete once, if in Value2VPValue or not.
- for (VPValue *Def : VPExternalDefs)
- delete Def;
- for (VPValue *CBV : VPCBVs)
- delete CBV;
- }
-
- /// Generate the IR code for this VPlan.
- void execute(struct VPTransformState *State);
-
- VPBlockBase *getEntry() { return Entry; }
- const VPBlockBase *getEntry() const { return Entry; }
-
- VPBlockBase *setEntry(VPBlockBase *Block) { return Entry = Block; }
-
- /// The backedge taken count of the original loop.
- VPValue *getOrCreateBackedgeTakenCount() {
- if (!BackedgeTakenCount)
- BackedgeTakenCount = new VPValue();
- return BackedgeTakenCount;
- }
-
- void addVF(unsigned VF) { VFs.insert(VF); }
-
- bool hasVF(unsigned VF) { return VFs.count(VF); }
-
- const std::string &getName() const { return Name; }
-
- void setName(const Twine &newName) { Name = newName.str(); }
-
- /// Add \p VPVal to the pool of external definitions if it's not already
- /// in the pool.
- void addExternalDef(VPValue *VPVal) {
- VPExternalDefs.insert(VPVal);
- }
-
- /// Add \p CBV to the vector of condition bit values.
- void addCBV(VPValue *CBV) {
- VPCBVs.push_back(CBV);
- }
-
- void addVPValue(Value *V) {
- assert(V && "Trying to add a null Value to VPlan");
- assert(!Value2VPValue.count(V) && "Value already exists in VPlan");
- Value2VPValue[V] = new VPValue();
- }
-
- VPValue *getVPValue(Value *V) {
- assert(V && "Trying to get the VPValue of a null Value");
- assert(Value2VPValue.count(V) && "Value does not exist in VPlan");
- return Value2VPValue[V];
- }
-
- /// Return the VPLoopInfo analysis for this VPlan.
- VPLoopInfo &getVPLoopInfo() { return VPLInfo; }
- const VPLoopInfo &getVPLoopInfo() const { return VPLInfo; }
-
-private:
- /// Add to the given dominator tree the header block and every new basic block
- /// that was created between it and the latch block, inclusive.
- static void updateDominatorTree(DominatorTree *DT,
- BasicBlock *LoopPreHeaderBB,
- BasicBlock *LoopLatchBB);
-};
-
-/// VPlanPrinter prints a given VPlan to a given output stream. The printing is
-/// indented and follows the dot format.
-class VPlanPrinter {
- friend inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan);
- friend inline raw_ostream &operator<<(raw_ostream &OS,
- const struct VPlanIngredient &I);
-
-private:
- raw_ostream &OS;
- VPlan &Plan;
- unsigned Depth;
- unsigned TabWidth = 2;
- std::string Indent;
- unsigned BID = 0;
- SmallDenseMap<const VPBlockBase *, unsigned> BlockID;
-
- VPlanPrinter(raw_ostream &O, VPlan &P) : OS(O), Plan(P) {}
-
- /// Handle indentation.
- void bumpIndent(int b) { Indent = std::string((Depth += b) * TabWidth, ' '); }
-
- /// Print a given \p Block of the Plan.
- void dumpBlock(const VPBlockBase *Block);
-
- /// Print the information related to the CFG edges going out of a given
- /// \p Block, followed by printing the successor blocks themselves.
- void dumpEdges(const VPBlockBase *Block);
-
- /// Print a given \p BasicBlock, including its VPRecipes, followed by printing
- /// its successor blocks.
- void dumpBasicBlock(const VPBasicBlock *BasicBlock);
-
- /// Print a given \p Region of the Plan.
- void dumpRegion(const VPRegionBlock *Region);
-
- unsigned getOrCreateBID(const VPBlockBase *Block) {
- return BlockID.count(Block) ? BlockID[Block] : BlockID[Block] = BID++;
- }
-
- const Twine getOrCreateName(const VPBlockBase *Block);
-
- const Twine getUID(const VPBlockBase *Block);
-
- /// Print the information related to a CFG edge between two VPBlockBases.
- void drawEdge(const VPBlockBase *From, const VPBlockBase *To, bool Hidden,
- const Twine &Label);
-
- void dump();
-
- static void printAsIngredient(raw_ostream &O, Value *V);
-};
-
-struct VPlanIngredient {
- Value *V;
-
- VPlanIngredient(Value *V) : V(V) {}
-};
-
-inline raw_ostream &operator<<(raw_ostream &OS, const VPlanIngredient &I) {
- VPlanPrinter::printAsIngredient(OS, I.V);
- return OS;
-}
-
-inline raw_ostream &operator<<(raw_ostream &OS, VPlan &Plan) {
- VPlanPrinter Printer(OS, Plan);
- Printer.dump();
- return OS;
-}
-
-//===----------------------------------------------------------------------===//
-// GraphTraits specializations for VPlan Hierarchical Control-Flow Graphs //
-//===----------------------------------------------------------------------===//
-
-// The following set of template specializations implement GraphTraits to treat
-// any VPBlockBase as a node in a graph of VPBlockBases. It's important to note
-// that VPBlockBase traits don't recurse into VPRegioBlocks, i.e., if the
-// VPBlockBase is a VPRegionBlock, this specialization provides access to its
-// successors/predecessors but not to the blocks inside the region.
-
-template <> struct GraphTraits<VPBlockBase *> {
- using NodeRef = VPBlockBase *;
- using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
-
- static NodeRef getEntryNode(NodeRef N) { return N; }
-
- static inline ChildIteratorType child_begin(NodeRef N) {
- return N->getSuccessors().begin();
- }
-
- static inline ChildIteratorType child_end(NodeRef N) {
- return N->getSuccessors().end();
- }
-};
-
-template <> struct GraphTraits<const VPBlockBase *> {
- using NodeRef = const VPBlockBase *;
- using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::const_iterator;
-
- static NodeRef getEntryNode(NodeRef N) { return N; }
-
- static inline ChildIteratorType child_begin(NodeRef N) {
- return N->getSuccessors().begin();
- }
-
- static inline ChildIteratorType child_end(NodeRef N) {
- return N->getSuccessors().end();
- }
-};
-
-// Inverse order specialization for VPBasicBlocks. Predecessors are used instead
-// of successors for the inverse traversal.
-template <> struct GraphTraits<Inverse<VPBlockBase *>> {
- using NodeRef = VPBlockBase *;
- using ChildIteratorType = SmallVectorImpl<VPBlockBase *>::iterator;
-
- static NodeRef getEntryNode(Inverse<NodeRef> B) { return B.Graph; }
-
- static inline ChildIteratorType child_begin(NodeRef N) {
- return N->getPredecessors().begin();
- }
-
- static inline ChildIteratorType child_end(NodeRef N) {
- return N->getPredecessors().end();
- }
-};
-
-// The following set of template specializations implement GraphTraits to
-// treat VPRegionBlock as a graph and recurse inside its nodes. It's important
-// to note that the blocks inside the VPRegionBlock are treated as VPBlockBases
-// (i.e., no dyn_cast is performed, VPBlockBases specialization is used), so
-// there won't be automatic recursion into other VPBlockBases that turn to be
-// VPRegionBlocks.
-
-template <>
-struct GraphTraits<VPRegionBlock *> : public GraphTraits<VPBlockBase *> {
- using GraphRef = VPRegionBlock *;
- using nodes_iterator = df_iterator<NodeRef>;
-
- static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
-
- static nodes_iterator nodes_begin(GraphRef N) {
- return nodes_iterator::begin(N->getEntry());
- }
-
- static nodes_iterator nodes_end(GraphRef N) {
- // df_iterator::end() returns an empty iterator so the node used doesn't
- // matter.
- return nodes_iterator::end(N);
- }
-};
-
-template <>
-struct GraphTraits<const VPRegionBlock *>
- : public GraphTraits<const VPBlockBase *> {
- using GraphRef = const VPRegionBlock *;
- using nodes_iterator = df_iterator<NodeRef>;
-
- static NodeRef getEntryNode(GraphRef N) { return N->getEntry(); }
-
- static nodes_iterator nodes_begin(GraphRef N) {
- return nodes_iterator::begin(N->getEntry());
- }
-
- static nodes_iterator nodes_end(GraphRef N) {
- // df_iterator::end() returns an empty iterator so the node used doesn't
- // matter.
- return nodes_iterator::end(N);
- }
-};
-
-template <>
-struct GraphTraits<Inverse<VPRegionBlock *>>
- : public GraphTraits<Inverse<VPBlockBase *>> {
- using GraphRef = VPRegionBlock *;
- using nodes_iterator = df_iterator<NodeRef>;
-
- static NodeRef getEntryNode(Inverse<GraphRef> N) {
- return N.Graph->getExit();
- }
-
- static nodes_iterator nodes_begin(GraphRef N) {
- return nodes_iterator::begin(N->getExit());
- }
-
- static nodes_iterator nodes_end(GraphRef N) {
- // df_iterator::end() returns an empty iterator so the node used doesn't
- // matter.
- return nodes_iterator::end(N);
- }
-};
-
-//===----------------------------------------------------------------------===//
-// VPlan Utilities
-//===----------------------------------------------------------------------===//
-
-/// Class that provides utilities for VPBlockBases in VPlan.
-class VPBlockUtils {
-public:
- VPBlockUtils() = delete;
-
- /// Insert disconnected VPBlockBase \p NewBlock after \p BlockPtr. Add \p
- /// NewBlock as successor of \p BlockPtr and \p BlockPtr as predecessor of \p
- /// NewBlock, and propagate \p BlockPtr parent to \p NewBlock. If \p BlockPtr
- /// has more than one successor, its conditional bit is propagated to \p
- /// NewBlock. \p NewBlock must have neither successors nor predecessors.
- static void insertBlockAfter(VPBlockBase *NewBlock, VPBlockBase *BlockPtr) {
- assert(NewBlock->getSuccessors().empty() &&
- "Can't insert new block with successors.");
- // TODO: move successors from BlockPtr to NewBlock when this functionality
- // is necessary. For now, setBlockSingleSuccessor will assert if BlockPtr
- // already has successors.
- BlockPtr->setOneSuccessor(NewBlock);
- NewBlock->setPredecessors({BlockPtr});
- NewBlock->setParent(BlockPtr->getParent());
- }
-
- /// Insert disconnected VPBlockBases \p IfTrue and \p IfFalse after \p
- /// BlockPtr. Add \p IfTrue and \p IfFalse as succesors of \p BlockPtr and \p
- /// BlockPtr as predecessor of \p IfTrue and \p IfFalse. Propagate \p BlockPtr
- /// parent to \p IfTrue and \p IfFalse. \p Condition is set as the successor
- /// selector. \p BlockPtr must have no successors and \p IfTrue and \p IfFalse
- /// must have neither successors nor predecessors.
- static void insertTwoBlocksAfter(VPBlockBase *IfTrue, VPBlockBase *IfFalse,
- VPValue *Condition, VPBlockBase *BlockPtr) {
- assert(IfTrue->getSuccessors().empty() &&
- "Can't insert IfTrue with successors.");
- assert(IfFalse->getSuccessors().empty() &&
- "Can't insert IfFalse with successors.");
- BlockPtr->setTwoSuccessors(IfTrue, IfFalse, Condition);
- IfTrue->setPredecessors({BlockPtr});
- IfFalse->setPredecessors({BlockPtr});
- IfTrue->setParent(BlockPtr->getParent());
- IfFalse->setParent(BlockPtr->getParent());
- }
-
- /// Connect VPBlockBases \p From and \p To bi-directionally. Append \p To to
- /// the successors of \p From and \p From to the predecessors of \p To. Both
- /// VPBlockBases must have the same parent, which can be null. Both
- /// VPBlockBases can be already connected to other VPBlockBases.
- static void connectBlocks(VPBlockBase *From, VPBlockBase *To) {
- assert((From->getParent() == To->getParent()) &&
- "Can't connect two block with different parents");
- assert(From->getNumSuccessors() < 2 &&
- "Blocks can't have more than two successors.");
- From->appendSuccessor(To);
- To->appendPredecessor(From);
- }
-
- /// Disconnect VPBlockBases \p From and \p To bi-directionally. Remove \p To
- /// from the successors of \p From and \p From from the predecessors of \p To.
- static void disconnectBlocks(VPBlockBase *From, VPBlockBase *To) {
- assert(To && "Successor to disconnect is null.");
- From->removeSuccessor(To);
- To->removePredecessor(From);
- }
-
- /// Returns true if the edge \p FromBlock -> \p ToBlock is a back-edge.
- static bool isBackEdge(const VPBlockBase *FromBlock,
- const VPBlockBase *ToBlock, const VPLoopInfo *VPLI) {
- assert(FromBlock->getParent() == ToBlock->getParent() &&
- FromBlock->getParent() && "Must be in same region");
- const VPLoop *FromLoop = VPLI->getLoopFor(FromBlock);
- const VPLoop *ToLoop = VPLI->getLoopFor(ToBlock);
- if (!FromLoop || !ToLoop || FromLoop != ToLoop)
- return false;
-
- // A back-edge is a branch from the loop latch to its header.
- return ToLoop->isLoopLatch(FromBlock) && ToBlock == ToLoop->getHeader();
- }
-
- /// Returns true if \p Block is a loop latch
- static bool blockIsLoopLatch(const VPBlockBase *Block,
- const VPLoopInfo *VPLInfo) {
- if (const VPLoop *ParentVPL = VPLInfo->getLoopFor(Block))
- return ParentVPL->isLoopLatch(Block);
-
- return false;
- }
-
- /// Count and return the number of succesors of \p PredBlock excluding any
- /// backedges.
- static unsigned countSuccessorsNoBE(VPBlockBase *PredBlock,
- VPLoopInfo *VPLI) {
- unsigned Count = 0;
- for (VPBlockBase *SuccBlock : PredBlock->getSuccessors()) {
- if (!VPBlockUtils::isBackEdge(PredBlock, SuccBlock, VPLI))
- Count++;
- }
- return Count;
- }
-};
-
-class VPInterleavedAccessInfo {
-private:
- DenseMap<VPInstruction *, InterleaveGroup<VPInstruction> *>
- InterleaveGroupMap;
-
- /// Type for mapping of instruction based interleave groups to VPInstruction
- /// interleave groups
- using Old2NewTy = DenseMap<InterleaveGroup<Instruction> *,
- InterleaveGroup<VPInstruction> *>;
-
- /// Recursively \p Region and populate VPlan based interleave groups based on
- /// \p IAI.
- void visitRegion(VPRegionBlock *Region, Old2NewTy &Old2New,
- InterleavedAccessInfo &IAI);
- /// Recursively traverse \p Block and populate VPlan based interleave groups
- /// based on \p IAI.
- void visitBlock(VPBlockBase *Block, Old2NewTy &Old2New,
- InterleavedAccessInfo &IAI);
-
-public:
- VPInterleavedAccessInfo(VPlan &Plan, InterleavedAccessInfo &IAI);
-
- ~VPInterleavedAccessInfo() {
- SmallPtrSet<InterleaveGroup<VPInstruction> *, 4> DelSet;
- // Avoid releasing a pointer twice.
- for (auto &I : InterleaveGroupMap)
- DelSet.insert(I.second);
- for (auto *Ptr : DelSet)
- delete Ptr;
- }
-
- /// Get the interleave group that \p Instr belongs to.
- ///
- /// \returns nullptr if doesn't have such group.
- InterleaveGroup<VPInstruction> *
- getInterleaveGroup(VPInstruction *Instr) const {
- if (InterleaveGroupMap.count(Instr))
- return InterleaveGroupMap.find(Instr)->second;
- return nullptr;
- }
-};
-
-/// Class that maps (parts of) an existing VPlan to trees of combined
-/// VPInstructions.
-class VPlanSlp {
-private:
- enum class OpMode { Failed, Load, Opcode };
-
- /// A DenseMapInfo implementation for using SmallVector<VPValue *, 4> as
- /// DenseMap keys.
- struct BundleDenseMapInfo {
- static SmallVector<VPValue *, 4> getEmptyKey() {
- return {reinterpret_cast<VPValue *>(-1)};
- }
-
- static SmallVector<VPValue *, 4> getTombstoneKey() {
- return {reinterpret_cast<VPValue *>(-2)};
- }
-
- static unsigned getHashValue(const SmallVector<VPValue *, 4> &V) {
- return static_cast<unsigned>(hash_combine_range(V.begin(), V.end()));
- }
-
- static bool isEqual(const SmallVector<VPValue *, 4> &LHS,
- const SmallVector<VPValue *, 4> &RHS) {
- return LHS == RHS;
- }
- };
-
- /// Mapping of values in the original VPlan to a combined VPInstruction.
- DenseMap<SmallVector<VPValue *, 4>, VPInstruction *, BundleDenseMapInfo>
- BundleToCombined;
-
- VPInterleavedAccessInfo &IAI;
-
- /// Basic block to operate on. For now, only instructions in a single BB are
- /// considered.
- const VPBasicBlock &BB;
-
- /// Indicates whether we managed to combine all visited instructions or not.
- bool CompletelySLP = true;
-
- /// Width of the widest combined bundle in bits.
- unsigned WidestBundleBits = 0;
-
- using MultiNodeOpTy =
- typename std::pair<VPInstruction *, SmallVector<VPValue *, 4>>;
-
- // Input operand bundles for the current multi node. Each multi node operand
- // bundle contains values not matching the multi node's opcode. They will
- // be reordered in reorderMultiNodeOps, once we completed building a
- // multi node.
- SmallVector<MultiNodeOpTy, 4> MultiNodeOps;
-
- /// Indicates whether we are building a multi node currently.
- bool MultiNodeActive = false;
-
- /// Check if we can vectorize Operands together.
- bool areVectorizable(ArrayRef<VPValue *> Operands) const;
-
- /// Add combined instruction \p New for the bundle \p Operands.
- void addCombined(ArrayRef<VPValue *> Operands, VPInstruction *New);
-
- /// Indicate we hit a bundle we failed to combine. Returns nullptr for now.
- VPInstruction *markFailed();
-
- /// Reorder operands in the multi node to maximize sequential memory access
- /// and commutative operations.
- SmallVector<MultiNodeOpTy, 4> reorderMultiNodeOps();
-
- /// Choose the best candidate to use for the lane after \p Last. The set of
- /// candidates to choose from are values with an opcode matching \p Last's
- /// or loads consecutive to \p Last.
- std::pair<OpMode, VPValue *> getBest(OpMode Mode, VPValue *Last,
- SmallPtrSetImpl<VPValue *> &Candidates,
- VPInterleavedAccessInfo &IAI);
-
- /// Print bundle \p Values to dbgs().
- void dumpBundle(ArrayRef<VPValue *> Values);
-
-public:
- VPlanSlp(VPInterleavedAccessInfo &IAI, VPBasicBlock &BB) : IAI(IAI), BB(BB) {}
-
- ~VPlanSlp() {
- for (auto &KV : BundleToCombined)
- delete KV.second;
- }
-
- /// Tries to build an SLP tree rooted at \p Operands and returns a
- /// VPInstruction combining \p Operands, if they can be combined.
- VPInstruction *buildGraph(ArrayRef<VPValue *> Operands);
-
- /// Return the width of the widest combined bundle in bits.
- unsigned getWidestBundleBits() const { return WidestBundleBits; }
-
- /// Return true if all visited instruction can be combined.
- bool isCompletelySLP() const { return CompletelySLP; }
-};
-} // end namespace llvm
-
-#endif // LLVM_TRANSFORMS_VECTORIZE_VPLAN_H