diff options
Diffstat (limited to 'contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp')
-rw-r--r-- | contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp | 920 |
1 files changed, 0 insertions, 920 deletions
diff --git a/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp b/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp deleted file mode 100644 index 7e6da02d5707..000000000000 --- a/contrib/llvm/lib/Transforms/Utils/LoopSimplify.cpp +++ /dev/null @@ -1,920 +0,0 @@ -//===- LoopSimplify.cpp - Loop Canonicalization Pass ----------------------===// -// -// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. -// See https://llvm.org/LICENSE.txt for license information. -// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception -// -//===----------------------------------------------------------------------===// -// -// This pass performs several transformations to transform natural loops into a -// simpler form, which makes subsequent analyses and transformations simpler and -// more effective. -// -// Loop pre-header insertion guarantees that there is a single, non-critical -// entry edge from outside of the loop to the loop header. This simplifies a -// number of analyses and transformations, such as LICM. -// -// Loop exit-block insertion guarantees that all exit blocks from the loop -// (blocks which are outside of the loop that have predecessors inside of the -// loop) only have predecessors from inside of the loop (and are thus dominated -// by the loop header). This simplifies transformations such as store-sinking -// that are built into LICM. -// -// This pass also guarantees that loops will have exactly one backedge. -// -// Indirectbr instructions introduce several complications. If the loop -// contains or is entered by an indirectbr instruction, it may not be possible -// to transform the loop and make these guarantees. Client code should check -// that these conditions are true before relying on them. -// -// Similar complications arise from callbr instructions, particularly in -// asm-goto where blockaddress expressions are used. -// -// Note that the simplifycfg pass will clean up blocks which are split out but -// end up being unnecessary, so usage of this pass should not pessimize -// generated code. -// -// This pass obviously modifies the CFG, but updates loop information and -// dominator information. -// -//===----------------------------------------------------------------------===// - -#include "llvm/Transforms/Utils/LoopSimplify.h" -#include "llvm/ADT/DepthFirstIterator.h" -#include "llvm/ADT/SetOperations.h" -#include "llvm/ADT/SetVector.h" -#include "llvm/ADT/SmallVector.h" -#include "llvm/ADT/Statistic.h" -#include "llvm/Analysis/AliasAnalysis.h" -#include "llvm/Analysis/AssumptionCache.h" -#include "llvm/Analysis/BasicAliasAnalysis.h" -#include "llvm/Analysis/BranchProbabilityInfo.h" -#include "llvm/Analysis/DependenceAnalysis.h" -#include "llvm/Analysis/GlobalsModRef.h" -#include "llvm/Analysis/InstructionSimplify.h" -#include "llvm/Analysis/LoopInfo.h" -#include "llvm/Analysis/MemorySSA.h" -#include "llvm/Analysis/MemorySSAUpdater.h" -#include "llvm/Analysis/ScalarEvolution.h" -#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h" -#include "llvm/IR/CFG.h" -#include "llvm/IR/Constants.h" -#include "llvm/IR/DataLayout.h" -#include "llvm/IR/Dominators.h" -#include "llvm/IR/Function.h" -#include "llvm/IR/Instructions.h" -#include "llvm/IR/IntrinsicInst.h" -#include "llvm/IR/LLVMContext.h" -#include "llvm/IR/Module.h" -#include "llvm/IR/Type.h" -#include "llvm/Support/Debug.h" -#include "llvm/Support/raw_ostream.h" -#include "llvm/Transforms/Utils.h" -#include "llvm/Transforms/Utils/BasicBlockUtils.h" -#include "llvm/Transforms/Utils/Local.h" -#include "llvm/Transforms/Utils/LoopUtils.h" -using namespace llvm; - -#define DEBUG_TYPE "loop-simplify" - -STATISTIC(NumNested , "Number of nested loops split out"); - -// If the block isn't already, move the new block to right after some 'outside -// block' block. This prevents the preheader from being placed inside the loop -// body, e.g. when the loop hasn't been rotated. -static void placeSplitBlockCarefully(BasicBlock *NewBB, - SmallVectorImpl<BasicBlock *> &SplitPreds, - Loop *L) { - // Check to see if NewBB is already well placed. - Function::iterator BBI = --NewBB->getIterator(); - for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { - if (&*BBI == SplitPreds[i]) - return; - } - - // If it isn't already after an outside block, move it after one. This is - // always good as it makes the uncond branch from the outside block into a - // fall-through. - - // Figure out *which* outside block to put this after. Prefer an outside - // block that neighbors a BB actually in the loop. - BasicBlock *FoundBB = nullptr; - for (unsigned i = 0, e = SplitPreds.size(); i != e; ++i) { - Function::iterator BBI = SplitPreds[i]->getIterator(); - if (++BBI != NewBB->getParent()->end() && L->contains(&*BBI)) { - FoundBB = SplitPreds[i]; - break; - } - } - - // If our heuristic for a *good* bb to place this after doesn't find - // anything, just pick something. It's likely better than leaving it within - // the loop. - if (!FoundBB) - FoundBB = SplitPreds[0]; - NewBB->moveAfter(FoundBB); -} - -/// InsertPreheaderForLoop - Once we discover that a loop doesn't have a -/// preheader, this method is called to insert one. This method has two phases: -/// preheader insertion and analysis updating. -/// -BasicBlock *llvm::InsertPreheaderForLoop(Loop *L, DominatorTree *DT, - LoopInfo *LI, MemorySSAUpdater *MSSAU, - bool PreserveLCSSA) { - BasicBlock *Header = L->getHeader(); - - // Compute the set of predecessors of the loop that are not in the loop. - SmallVector<BasicBlock*, 8> OutsideBlocks; - for (pred_iterator PI = pred_begin(Header), PE = pred_end(Header); - PI != PE; ++PI) { - BasicBlock *P = *PI; - if (!L->contains(P)) { // Coming in from outside the loop? - // If the loop is branched to from an indirect terminator, we won't - // be able to fully transform the loop, because it prohibits - // edge splitting. - if (P->getTerminator()->isIndirectTerminator()) - return nullptr; - - // Keep track of it. - OutsideBlocks.push_back(P); - } - } - - // Split out the loop pre-header. - BasicBlock *PreheaderBB; - PreheaderBB = SplitBlockPredecessors(Header, OutsideBlocks, ".preheader", DT, - LI, MSSAU, PreserveLCSSA); - if (!PreheaderBB) - return nullptr; - - LLVM_DEBUG(dbgs() << "LoopSimplify: Creating pre-header " - << PreheaderBB->getName() << "\n"); - - // Make sure that NewBB is put someplace intelligent, which doesn't mess up - // code layout too horribly. - placeSplitBlockCarefully(PreheaderBB, OutsideBlocks, L); - - return PreheaderBB; -} - -/// Add the specified block, and all of its predecessors, to the specified set, -/// if it's not already in there. Stop predecessor traversal when we reach -/// StopBlock. -static void addBlockAndPredsToSet(BasicBlock *InputBB, BasicBlock *StopBlock, - std::set<BasicBlock*> &Blocks) { - SmallVector<BasicBlock *, 8> Worklist; - Worklist.push_back(InputBB); - do { - BasicBlock *BB = Worklist.pop_back_val(); - if (Blocks.insert(BB).second && BB != StopBlock) - // If BB is not already processed and it is not a stop block then - // insert its predecessor in the work list - for (pred_iterator I = pred_begin(BB), E = pred_end(BB); I != E; ++I) { - BasicBlock *WBB = *I; - Worklist.push_back(WBB); - } - } while (!Worklist.empty()); -} - -/// The first part of loop-nestification is to find a PHI node that tells -/// us how to partition the loops. -static PHINode *findPHIToPartitionLoops(Loop *L, DominatorTree *DT, - AssumptionCache *AC) { - const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); - for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ) { - PHINode *PN = cast<PHINode>(I); - ++I; - if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { - // This is a degenerate PHI already, don't modify it! - PN->replaceAllUsesWith(V); - PN->eraseFromParent(); - continue; - } - - // Scan this PHI node looking for a use of the PHI node by itself. - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) - if (PN->getIncomingValue(i) == PN && - L->contains(PN->getIncomingBlock(i))) - // We found something tasty to remove. - return PN; - } - return nullptr; -} - -/// If this loop has multiple backedges, try to pull one of them out into -/// a nested loop. -/// -/// This is important for code that looks like -/// this: -/// -/// Loop: -/// ... -/// br cond, Loop, Next -/// ... -/// br cond2, Loop, Out -/// -/// To identify this common case, we look at the PHI nodes in the header of the -/// loop. PHI nodes with unchanging values on one backedge correspond to values -/// that change in the "outer" loop, but not in the "inner" loop. -/// -/// If we are able to separate out a loop, return the new outer loop that was -/// created. -/// -static Loop *separateNestedLoop(Loop *L, BasicBlock *Preheader, - DominatorTree *DT, LoopInfo *LI, - ScalarEvolution *SE, bool PreserveLCSSA, - AssumptionCache *AC, MemorySSAUpdater *MSSAU) { - // Don't try to separate loops without a preheader. - if (!Preheader) - return nullptr; - - // The header is not a landing pad; preheader insertion should ensure this. - BasicBlock *Header = L->getHeader(); - assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); - - PHINode *PN = findPHIToPartitionLoops(L, DT, AC); - if (!PN) return nullptr; // No known way to partition. - - // Pull out all predecessors that have varying values in the loop. This - // handles the case when a PHI node has multiple instances of itself as - // arguments. - SmallVector<BasicBlock*, 8> OuterLoopPreds; - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - if (PN->getIncomingValue(i) != PN || - !L->contains(PN->getIncomingBlock(i))) { - // We can't split indirect control flow edges. - if (PN->getIncomingBlock(i)->getTerminator()->isIndirectTerminator()) - return nullptr; - OuterLoopPreds.push_back(PN->getIncomingBlock(i)); - } - } - LLVM_DEBUG(dbgs() << "LoopSimplify: Splitting out a new outer loop\n"); - - // If ScalarEvolution is around and knows anything about values in - // this loop, tell it to forget them, because we're about to - // substantially change it. - if (SE) - SE->forgetLoop(L); - - BasicBlock *NewBB = SplitBlockPredecessors(Header, OuterLoopPreds, ".outer", - DT, LI, MSSAU, PreserveLCSSA); - - // Make sure that NewBB is put someplace intelligent, which doesn't mess up - // code layout too horribly. - placeSplitBlockCarefully(NewBB, OuterLoopPreds, L); - - // Create the new outer loop. - Loop *NewOuter = LI->AllocateLoop(); - - // Change the parent loop to use the outer loop as its child now. - if (Loop *Parent = L->getParentLoop()) - Parent->replaceChildLoopWith(L, NewOuter); - else - LI->changeTopLevelLoop(L, NewOuter); - - // L is now a subloop of our outer loop. - NewOuter->addChildLoop(L); - - for (Loop::block_iterator I = L->block_begin(), E = L->block_end(); - I != E; ++I) - NewOuter->addBlockEntry(*I); - - // Now reset the header in L, which had been moved by - // SplitBlockPredecessors for the outer loop. - L->moveToHeader(Header); - - // Determine which blocks should stay in L and which should be moved out to - // the Outer loop now. - std::set<BasicBlock*> BlocksInL; - for (pred_iterator PI=pred_begin(Header), E = pred_end(Header); PI!=E; ++PI) { - BasicBlock *P = *PI; - if (DT->dominates(Header, P)) - addBlockAndPredsToSet(P, Header, BlocksInL); - } - - // Scan all of the loop children of L, moving them to OuterLoop if they are - // not part of the inner loop. - const std::vector<Loop*> &SubLoops = L->getSubLoops(); - for (size_t I = 0; I != SubLoops.size(); ) - if (BlocksInL.count(SubLoops[I]->getHeader())) - ++I; // Loop remains in L - else - NewOuter->addChildLoop(L->removeChildLoop(SubLoops.begin() + I)); - - SmallVector<BasicBlock *, 8> OuterLoopBlocks; - OuterLoopBlocks.push_back(NewBB); - // Now that we know which blocks are in L and which need to be moved to - // OuterLoop, move any blocks that need it. - for (unsigned i = 0; i != L->getBlocks().size(); ++i) { - BasicBlock *BB = L->getBlocks()[i]; - if (!BlocksInL.count(BB)) { - // Move this block to the parent, updating the exit blocks sets - L->removeBlockFromLoop(BB); - if ((*LI)[BB] == L) { - LI->changeLoopFor(BB, NewOuter); - OuterLoopBlocks.push_back(BB); - } - --i; - } - } - - // Split edges to exit blocks from the inner loop, if they emerged in the - // process of separating the outer one. - formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA); - - if (PreserveLCSSA) { - // Fix LCSSA form for L. Some values, which previously were only used inside - // L, can now be used in NewOuter loop. We need to insert phi-nodes for them - // in corresponding exit blocks. - // We don't need to form LCSSA recursively, because there cannot be uses - // inside a newly created loop of defs from inner loops as those would - // already be a use of an LCSSA phi node. - formLCSSA(*L, *DT, LI, SE); - - assert(NewOuter->isRecursivelyLCSSAForm(*DT, *LI) && - "LCSSA is broken after separating nested loops!"); - } - - return NewOuter; -} - -/// This method is called when the specified loop has more than one -/// backedge in it. -/// -/// If this occurs, revector all of these backedges to target a new basic block -/// and have that block branch to the loop header. This ensures that loops -/// have exactly one backedge. -static BasicBlock *insertUniqueBackedgeBlock(Loop *L, BasicBlock *Preheader, - DominatorTree *DT, LoopInfo *LI, - MemorySSAUpdater *MSSAU) { - assert(L->getNumBackEdges() > 1 && "Must have > 1 backedge!"); - - // Get information about the loop - BasicBlock *Header = L->getHeader(); - Function *F = Header->getParent(); - - // Unique backedge insertion currently depends on having a preheader. - if (!Preheader) - return nullptr; - - // The header is not an EH pad; preheader insertion should ensure this. - assert(!Header->isEHPad() && "Can't insert backedge to EH pad"); - - // Figure out which basic blocks contain back-edges to the loop header. - std::vector<BasicBlock*> BackedgeBlocks; - for (pred_iterator I = pred_begin(Header), E = pred_end(Header); I != E; ++I){ - BasicBlock *P = *I; - - // Indirect edges cannot be split, so we must fail if we find one. - if (P->getTerminator()->isIndirectTerminator()) - return nullptr; - - if (P != Preheader) BackedgeBlocks.push_back(P); - } - - // Create and insert the new backedge block... - BasicBlock *BEBlock = BasicBlock::Create(Header->getContext(), - Header->getName() + ".backedge", F); - BranchInst *BETerminator = BranchInst::Create(Header, BEBlock); - BETerminator->setDebugLoc(Header->getFirstNonPHI()->getDebugLoc()); - - LLVM_DEBUG(dbgs() << "LoopSimplify: Inserting unique backedge block " - << BEBlock->getName() << "\n"); - - // Move the new backedge block to right after the last backedge block. - Function::iterator InsertPos = ++BackedgeBlocks.back()->getIterator(); - F->getBasicBlockList().splice(InsertPos, F->getBasicBlockList(), BEBlock); - - // Now that the block has been inserted into the function, create PHI nodes in - // the backedge block which correspond to any PHI nodes in the header block. - for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { - PHINode *PN = cast<PHINode>(I); - PHINode *NewPN = PHINode::Create(PN->getType(), BackedgeBlocks.size(), - PN->getName()+".be", BETerminator); - - // Loop over the PHI node, moving all entries except the one for the - // preheader over to the new PHI node. - unsigned PreheaderIdx = ~0U; - bool HasUniqueIncomingValue = true; - Value *UniqueValue = nullptr; - for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { - BasicBlock *IBB = PN->getIncomingBlock(i); - Value *IV = PN->getIncomingValue(i); - if (IBB == Preheader) { - PreheaderIdx = i; - } else { - NewPN->addIncoming(IV, IBB); - if (HasUniqueIncomingValue) { - if (!UniqueValue) - UniqueValue = IV; - else if (UniqueValue != IV) - HasUniqueIncomingValue = false; - } - } - } - - // Delete all of the incoming values from the old PN except the preheader's - assert(PreheaderIdx != ~0U && "PHI has no preheader entry??"); - if (PreheaderIdx != 0) { - PN->setIncomingValue(0, PN->getIncomingValue(PreheaderIdx)); - PN->setIncomingBlock(0, PN->getIncomingBlock(PreheaderIdx)); - } - // Nuke all entries except the zero'th. - for (unsigned i = 0, e = PN->getNumIncomingValues()-1; i != e; ++i) - PN->removeIncomingValue(e-i, false); - - // Finally, add the newly constructed PHI node as the entry for the BEBlock. - PN->addIncoming(NewPN, BEBlock); - - // As an optimization, if all incoming values in the new PhiNode (which is a - // subset of the incoming values of the old PHI node) have the same value, - // eliminate the PHI Node. - if (HasUniqueIncomingValue) { - NewPN->replaceAllUsesWith(UniqueValue); - BEBlock->getInstList().erase(NewPN); - } - } - - // Now that all of the PHI nodes have been inserted and adjusted, modify the - // backedge blocks to jump to the BEBlock instead of the header. - // If one of the backedges has llvm.loop metadata attached, we remove - // it from the backedge and add it to BEBlock. - unsigned LoopMDKind = BEBlock->getContext().getMDKindID("llvm.loop"); - MDNode *LoopMD = nullptr; - for (unsigned i = 0, e = BackedgeBlocks.size(); i != e; ++i) { - Instruction *TI = BackedgeBlocks[i]->getTerminator(); - if (!LoopMD) - LoopMD = TI->getMetadata(LoopMDKind); - TI->setMetadata(LoopMDKind, nullptr); - TI->replaceSuccessorWith(Header, BEBlock); - } - BEBlock->getTerminator()->setMetadata(LoopMDKind, LoopMD); - - //===--- Update all analyses which we must preserve now -----------------===// - - // Update Loop Information - we know that this block is now in the current - // loop and all parent loops. - L->addBasicBlockToLoop(BEBlock, *LI); - - // Update dominator information - DT->splitBlock(BEBlock); - - if (MSSAU) - MSSAU->updatePhisWhenInsertingUniqueBackedgeBlock(Header, Preheader, - BEBlock); - - return BEBlock; -} - -/// Simplify one loop and queue further loops for simplification. -static bool simplifyOneLoop(Loop *L, SmallVectorImpl<Loop *> &Worklist, - DominatorTree *DT, LoopInfo *LI, - ScalarEvolution *SE, AssumptionCache *AC, - MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { - bool Changed = false; - if (MSSAU && VerifyMemorySSA) - MSSAU->getMemorySSA()->verifyMemorySSA(); - -ReprocessLoop: - - // Check to see that no blocks (other than the header) in this loop have - // predecessors that are not in the loop. This is not valid for natural - // loops, but can occur if the blocks are unreachable. Since they are - // unreachable we can just shamelessly delete those CFG edges! - for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); - BB != E; ++BB) { - if (*BB == L->getHeader()) continue; - - SmallPtrSet<BasicBlock*, 4> BadPreds; - for (pred_iterator PI = pred_begin(*BB), - PE = pred_end(*BB); PI != PE; ++PI) { - BasicBlock *P = *PI; - if (!L->contains(P)) - BadPreds.insert(P); - } - - // Delete each unique out-of-loop (and thus dead) predecessor. - for (BasicBlock *P : BadPreds) { - - LLVM_DEBUG(dbgs() << "LoopSimplify: Deleting edge from dead predecessor " - << P->getName() << "\n"); - - // Zap the dead pred's terminator and replace it with unreachable. - Instruction *TI = P->getTerminator(); - changeToUnreachable(TI, /*UseLLVMTrap=*/false, PreserveLCSSA, - /*DTU=*/nullptr, MSSAU); - Changed = true; - } - } - - if (MSSAU && VerifyMemorySSA) - MSSAU->getMemorySSA()->verifyMemorySSA(); - - // If there are exiting blocks with branches on undef, resolve the undef in - // the direction which will exit the loop. This will help simplify loop - // trip count computations. - SmallVector<BasicBlock*, 8> ExitingBlocks; - L->getExitingBlocks(ExitingBlocks); - for (BasicBlock *ExitingBlock : ExitingBlocks) - if (BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator())) - if (BI->isConditional()) { - if (UndefValue *Cond = dyn_cast<UndefValue>(BI->getCondition())) { - - LLVM_DEBUG(dbgs() - << "LoopSimplify: Resolving \"br i1 undef\" to exit in " - << ExitingBlock->getName() << "\n"); - - BI->setCondition(ConstantInt::get(Cond->getType(), - !L->contains(BI->getSuccessor(0)))); - - Changed = true; - } - } - - // Does the loop already have a preheader? If so, don't insert one. - BasicBlock *Preheader = L->getLoopPreheader(); - if (!Preheader) { - Preheader = InsertPreheaderForLoop(L, DT, LI, MSSAU, PreserveLCSSA); - if (Preheader) - Changed = true; - } - - // Next, check to make sure that all exit nodes of the loop only have - // predecessors that are inside of the loop. This check guarantees that the - // loop preheader/header will dominate the exit blocks. If the exit block has - // predecessors from outside of the loop, split the edge now. - if (formDedicatedExitBlocks(L, DT, LI, MSSAU, PreserveLCSSA)) - Changed = true; - - if (MSSAU && VerifyMemorySSA) - MSSAU->getMemorySSA()->verifyMemorySSA(); - - // If the header has more than two predecessors at this point (from the - // preheader and from multiple backedges), we must adjust the loop. - BasicBlock *LoopLatch = L->getLoopLatch(); - if (!LoopLatch) { - // If this is really a nested loop, rip it out into a child loop. Don't do - // this for loops with a giant number of backedges, just factor them into a - // common backedge instead. - if (L->getNumBackEdges() < 8) { - if (Loop *OuterL = separateNestedLoop(L, Preheader, DT, LI, SE, - PreserveLCSSA, AC, MSSAU)) { - ++NumNested; - // Enqueue the outer loop as it should be processed next in our - // depth-first nest walk. - Worklist.push_back(OuterL); - - // This is a big restructuring change, reprocess the whole loop. - Changed = true; - // GCC doesn't tail recursion eliminate this. - // FIXME: It isn't clear we can't rely on LLVM to TRE this. - goto ReprocessLoop; - } - } - - // If we either couldn't, or didn't want to, identify nesting of the loops, - // insert a new block that all backedges target, then make it jump to the - // loop header. - LoopLatch = insertUniqueBackedgeBlock(L, Preheader, DT, LI, MSSAU); - if (LoopLatch) - Changed = true; - } - - if (MSSAU && VerifyMemorySSA) - MSSAU->getMemorySSA()->verifyMemorySSA(); - - const DataLayout &DL = L->getHeader()->getModule()->getDataLayout(); - - // Scan over the PHI nodes in the loop header. Since they now have only two - // incoming values (the loop is canonicalized), we may have simplified the PHI - // down to 'X = phi [X, Y]', which should be replaced with 'Y'. - PHINode *PN; - for (BasicBlock::iterator I = L->getHeader()->begin(); - (PN = dyn_cast<PHINode>(I++)); ) - if (Value *V = SimplifyInstruction(PN, {DL, nullptr, DT, AC})) { - if (SE) SE->forgetValue(PN); - if (!PreserveLCSSA || LI->replacementPreservesLCSSAForm(PN, V)) { - PN->replaceAllUsesWith(V); - PN->eraseFromParent(); - } - } - - // If this loop has multiple exits and the exits all go to the same - // block, attempt to merge the exits. This helps several passes, such - // as LoopRotation, which do not support loops with multiple exits. - // SimplifyCFG also does this (and this code uses the same utility - // function), however this code is loop-aware, where SimplifyCFG is - // not. That gives it the advantage of being able to hoist - // loop-invariant instructions out of the way to open up more - // opportunities, and the disadvantage of having the responsibility - // to preserve dominator information. - auto HasUniqueExitBlock = [&]() { - BasicBlock *UniqueExit = nullptr; - for (auto *ExitingBB : ExitingBlocks) - for (auto *SuccBB : successors(ExitingBB)) { - if (L->contains(SuccBB)) - continue; - - if (!UniqueExit) - UniqueExit = SuccBB; - else if (UniqueExit != SuccBB) - return false; - } - - return true; - }; - if (HasUniqueExitBlock()) { - for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { - BasicBlock *ExitingBlock = ExitingBlocks[i]; - if (!ExitingBlock->getSinglePredecessor()) continue; - BranchInst *BI = dyn_cast<BranchInst>(ExitingBlock->getTerminator()); - if (!BI || !BI->isConditional()) continue; - CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition()); - if (!CI || CI->getParent() != ExitingBlock) continue; - - // Attempt to hoist out all instructions except for the - // comparison and the branch. - bool AllInvariant = true; - bool AnyInvariant = false; - for (auto I = ExitingBlock->instructionsWithoutDebug().begin(); &*I != BI; ) { - Instruction *Inst = &*I++; - if (Inst == CI) - continue; - if (!L->makeLoopInvariant( - Inst, AnyInvariant, - Preheader ? Preheader->getTerminator() : nullptr, MSSAU)) { - AllInvariant = false; - break; - } - } - if (AnyInvariant) { - Changed = true; - // The loop disposition of all SCEV expressions that depend on any - // hoisted values have also changed. - if (SE) - SE->forgetLoopDispositions(L); - } - if (!AllInvariant) continue; - - // The block has now been cleared of all instructions except for - // a comparison and a conditional branch. SimplifyCFG may be able - // to fold it now. - if (!FoldBranchToCommonDest(BI, MSSAU)) - continue; - - // Success. The block is now dead, so remove it from the loop, - // update the dominator tree and delete it. - LLVM_DEBUG(dbgs() << "LoopSimplify: Eliminating exiting block " - << ExitingBlock->getName() << "\n"); - - assert(pred_begin(ExitingBlock) == pred_end(ExitingBlock)); - Changed = true; - LI->removeBlock(ExitingBlock); - - DomTreeNode *Node = DT->getNode(ExitingBlock); - const std::vector<DomTreeNodeBase<BasicBlock> *> &Children = - Node->getChildren(); - while (!Children.empty()) { - DomTreeNode *Child = Children.front(); - DT->changeImmediateDominator(Child, Node->getIDom()); - } - DT->eraseNode(ExitingBlock); - if (MSSAU) { - SmallSetVector<BasicBlock *, 8> ExitBlockSet; - ExitBlockSet.insert(ExitingBlock); - MSSAU->removeBlocks(ExitBlockSet); - } - - BI->getSuccessor(0)->removePredecessor( - ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); - BI->getSuccessor(1)->removePredecessor( - ExitingBlock, /* KeepOneInputPHIs */ PreserveLCSSA); - ExitingBlock->eraseFromParent(); - } - } - - // Changing exit conditions for blocks may affect exit counts of this loop and - // any of its paretns, so we must invalidate the entire subtree if we've made - // any changes. - if (Changed && SE) - SE->forgetTopmostLoop(L); - - if (MSSAU && VerifyMemorySSA) - MSSAU->getMemorySSA()->verifyMemorySSA(); - - return Changed; -} - -bool llvm::simplifyLoop(Loop *L, DominatorTree *DT, LoopInfo *LI, - ScalarEvolution *SE, AssumptionCache *AC, - MemorySSAUpdater *MSSAU, bool PreserveLCSSA) { - bool Changed = false; - -#ifndef NDEBUG - // If we're asked to preserve LCSSA, the loop nest needs to start in LCSSA - // form. - if (PreserveLCSSA) { - assert(DT && "DT not available."); - assert(LI && "LI not available."); - assert(L->isRecursivelyLCSSAForm(*DT, *LI) && - "Requested to preserve LCSSA, but it's already broken."); - } -#endif - - // Worklist maintains our depth-first queue of loops in this nest to process. - SmallVector<Loop *, 4> Worklist; - Worklist.push_back(L); - - // Walk the worklist from front to back, pushing newly found sub loops onto - // the back. This will let us process loops from back to front in depth-first - // order. We can use this simple process because loops form a tree. - for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) { - Loop *L2 = Worklist[Idx]; - Worklist.append(L2->begin(), L2->end()); - } - - while (!Worklist.empty()) - Changed |= simplifyOneLoop(Worklist.pop_back_val(), Worklist, DT, LI, SE, - AC, MSSAU, PreserveLCSSA); - - return Changed; -} - -namespace { - struct LoopSimplify : public FunctionPass { - static char ID; // Pass identification, replacement for typeid - LoopSimplify() : FunctionPass(ID) { - initializeLoopSimplifyPass(*PassRegistry::getPassRegistry()); - } - - bool runOnFunction(Function &F) override; - - void getAnalysisUsage(AnalysisUsage &AU) const override { - AU.addRequired<AssumptionCacheTracker>(); - - // We need loop information to identify the loops... - AU.addRequired<DominatorTreeWrapperPass>(); - AU.addPreserved<DominatorTreeWrapperPass>(); - - AU.addRequired<LoopInfoWrapperPass>(); - AU.addPreserved<LoopInfoWrapperPass>(); - - AU.addPreserved<BasicAAWrapperPass>(); - AU.addPreserved<AAResultsWrapperPass>(); - AU.addPreserved<GlobalsAAWrapperPass>(); - AU.addPreserved<ScalarEvolutionWrapperPass>(); - AU.addPreserved<SCEVAAWrapperPass>(); - AU.addPreservedID(LCSSAID); - AU.addPreserved<DependenceAnalysisWrapperPass>(); - AU.addPreservedID(BreakCriticalEdgesID); // No critical edges added. - AU.addPreserved<BranchProbabilityInfoWrapperPass>(); - if (EnableMSSALoopDependency) - AU.addPreserved<MemorySSAWrapperPass>(); - } - - /// verifyAnalysis() - Verify LoopSimplifyForm's guarantees. - void verifyAnalysis() const override; - }; -} - -char LoopSimplify::ID = 0; -INITIALIZE_PASS_BEGIN(LoopSimplify, "loop-simplify", - "Canonicalize natural loops", false, false) -INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker) -INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) -INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass) -INITIALIZE_PASS_END(LoopSimplify, "loop-simplify", - "Canonicalize natural loops", false, false) - -// Publicly exposed interface to pass... -char &llvm::LoopSimplifyID = LoopSimplify::ID; -Pass *llvm::createLoopSimplifyPass() { return new LoopSimplify(); } - -/// runOnFunction - Run down all loops in the CFG (recursively, but we could do -/// it in any convenient order) inserting preheaders... -/// -bool LoopSimplify::runOnFunction(Function &F) { - bool Changed = false; - LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(); - DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree(); - auto *SEWP = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>(); - ScalarEvolution *SE = SEWP ? &SEWP->getSE() : nullptr; - AssumptionCache *AC = - &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F); - MemorySSA *MSSA = nullptr; - std::unique_ptr<MemorySSAUpdater> MSSAU; - if (EnableMSSALoopDependency) { - auto *MSSAAnalysis = getAnalysisIfAvailable<MemorySSAWrapperPass>(); - if (MSSAAnalysis) { - MSSA = &MSSAAnalysis->getMSSA(); - MSSAU = make_unique<MemorySSAUpdater>(MSSA); - } - } - - bool PreserveLCSSA = mustPreserveAnalysisID(LCSSAID); - - // Simplify each loop nest in the function. - for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) - Changed |= simplifyLoop(*I, DT, LI, SE, AC, MSSAU.get(), PreserveLCSSA); - -#ifndef NDEBUG - if (PreserveLCSSA) { - bool InLCSSA = all_of( - *LI, [&](Loop *L) { return L->isRecursivelyLCSSAForm(*DT, *LI); }); - assert(InLCSSA && "LCSSA is broken after loop-simplify."); - } -#endif - return Changed; -} - -PreservedAnalyses LoopSimplifyPass::run(Function &F, - FunctionAnalysisManager &AM) { - bool Changed = false; - LoopInfo *LI = &AM.getResult<LoopAnalysis>(F); - DominatorTree *DT = &AM.getResult<DominatorTreeAnalysis>(F); - ScalarEvolution *SE = AM.getCachedResult<ScalarEvolutionAnalysis>(F); - AssumptionCache *AC = &AM.getResult<AssumptionAnalysis>(F); - - // Note that we don't preserve LCSSA in the new PM, if you need it run LCSSA - // after simplifying the loops. MemorySSA is not preserved either. - for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) - Changed |= - simplifyLoop(*I, DT, LI, SE, AC, nullptr, /*PreserveLCSSA*/ false); - - if (!Changed) - return PreservedAnalyses::all(); - - PreservedAnalyses PA; - PA.preserve<DominatorTreeAnalysis>(); - PA.preserve<LoopAnalysis>(); - PA.preserve<BasicAA>(); - PA.preserve<GlobalsAA>(); - PA.preserve<SCEVAA>(); - PA.preserve<ScalarEvolutionAnalysis>(); - PA.preserve<DependenceAnalysis>(); - // BPI maps conditional terminators to probabilities, LoopSimplify can insert - // blocks, but it does so only by splitting existing blocks and edges. This - // results in the interesting property that all new terminators inserted are - // unconditional branches which do not appear in BPI. All deletions are - // handled via ValueHandle callbacks w/in BPI. - PA.preserve<BranchProbabilityAnalysis>(); - return PA; -} - -// FIXME: Restore this code when we re-enable verification in verifyAnalysis -// below. -#if 0 -static void verifyLoop(Loop *L) { - // Verify subloops. - for (Loop::iterator I = L->begin(), E = L->end(); I != E; ++I) - verifyLoop(*I); - - // It used to be possible to just assert L->isLoopSimplifyForm(), however - // with the introduction of indirectbr, there are now cases where it's - // not possible to transform a loop as necessary. We can at least check - // that there is an indirectbr near any time there's trouble. - - // Indirectbr can interfere with preheader and unique backedge insertion. - if (!L->getLoopPreheader() || !L->getLoopLatch()) { - bool HasIndBrPred = false; - for (pred_iterator PI = pred_begin(L->getHeader()), - PE = pred_end(L->getHeader()); PI != PE; ++PI) - if (isa<IndirectBrInst>((*PI)->getTerminator())) { - HasIndBrPred = true; - break; - } - assert(HasIndBrPred && - "LoopSimplify has no excuse for missing loop header info!"); - (void)HasIndBrPred; - } - - // Indirectbr can interfere with exit block canonicalization. - if (!L->hasDedicatedExits()) { - bool HasIndBrExiting = false; - SmallVector<BasicBlock*, 8> ExitingBlocks; - L->getExitingBlocks(ExitingBlocks); - for (unsigned i = 0, e = ExitingBlocks.size(); i != e; ++i) { - if (isa<IndirectBrInst>((ExitingBlocks[i])->getTerminator())) { - HasIndBrExiting = true; - break; - } - } - - assert(HasIndBrExiting && - "LoopSimplify has no excuse for missing exit block info!"); - (void)HasIndBrExiting; - } -} -#endif - -void LoopSimplify::verifyAnalysis() const { - // FIXME: This routine is being called mid-way through the loop pass manager - // as loop passes destroy this analysis. That's actually fine, but we have no - // way of expressing that here. Once all of the passes that destroy this are - // hoisted out of the loop pass manager we can add back verification here. -#if 0 - for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) - verifyLoop(*I); -#endif -} |