aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Scalar/LICM.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Scalar/LICM.cpp2317
1 files changed, 0 insertions, 2317 deletions
diff --git a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp b/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
deleted file mode 100644
index d9dda4cef2d2..000000000000
--- a/contrib/llvm/lib/Transforms/Scalar/LICM.cpp
+++ /dev/null
@@ -1,2317 +0,0 @@
-//===-- LICM.cpp - Loop Invariant Code Motion Pass ------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass performs loop invariant code motion, attempting to remove as much
-// code from the body of a loop as possible. It does this by either hoisting
-// code into the preheader block, or by sinking code to the exit blocks if it is
-// safe. This pass also promotes must-aliased memory locations in the loop to
-// live in registers, thus hoisting and sinking "invariant" loads and stores.
-//
-// This pass uses alias analysis for two purposes:
-//
-// 1. Moving loop invariant loads and calls out of loops. If we can determine
-// that a load or call inside of a loop never aliases anything stored to,
-// we can hoist it or sink it like any other instruction.
-// 2. Scalar Promotion of Memory - If there is a store instruction inside of
-// the loop, we try to move the store to happen AFTER the loop instead of
-// inside of the loop. This can only happen if a few conditions are true:
-// A. The pointer stored through is loop invariant
-// B. There are no stores or loads in the loop which _may_ alias the
-// pointer. There are no calls in the loop which mod/ref the pointer.
-// If these conditions are true, we can promote the loads and stores in the
-// loop of the pointer to use a temporary alloca'd variable. We then use
-// the SSAUpdater to construct the appropriate SSA form for the value.
-//
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Scalar/LICM.h"
-#include "llvm/ADT/SetOperations.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/AliasAnalysis.h"
-#include "llvm/Analysis/AliasSetTracker.h"
-#include "llvm/Analysis/BasicAliasAnalysis.h"
-#include "llvm/Analysis/CaptureTracking.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/GlobalsModRef.h"
-#include "llvm/Analysis/GuardUtils.h"
-#include "llvm/Analysis/Loads.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopIterator.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Analysis/MemoryBuiltins.h"
-#include "llvm/Analysis/MemorySSA.h"
-#include "llvm/Analysis/MemorySSAUpdater.h"
-#include "llvm/Analysis/OptimizationRemarkEmitter.h"
-#include "llvm/Analysis/ScalarEvolution.h"
-#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/CFG.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DebugInfoMetadata.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/PatternMatch.h"
-#include "llvm/IR/PredIteratorCache.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Transforms/Scalar/LoopPassManager.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Transforms/Utils/LoopUtils.h"
-#include "llvm/Transforms/Utils/SSAUpdater.h"
-#include <algorithm>
-#include <utility>
-using namespace llvm;
-
-#define DEBUG_TYPE "licm"
-
-STATISTIC(NumCreatedBlocks, "Number of blocks created");
-STATISTIC(NumClonedBranches, "Number of branches cloned");
-STATISTIC(NumSunk, "Number of instructions sunk out of loop");
-STATISTIC(NumHoisted, "Number of instructions hoisted out of loop");
-STATISTIC(NumMovedLoads, "Number of load insts hoisted or sunk");
-STATISTIC(NumMovedCalls, "Number of call insts hoisted or sunk");
-STATISTIC(NumPromoted, "Number of memory locations promoted to registers");
-
-/// Memory promotion is enabled by default.
-static cl::opt<bool>
- DisablePromotion("disable-licm-promotion", cl::Hidden, cl::init(false),
- cl::desc("Disable memory promotion in LICM pass"));
-
-static cl::opt<bool> ControlFlowHoisting(
- "licm-control-flow-hoisting", cl::Hidden, cl::init(false),
- cl::desc("Enable control flow (and PHI) hoisting in LICM"));
-
-static cl::opt<uint32_t> MaxNumUsesTraversed(
- "licm-max-num-uses-traversed", cl::Hidden, cl::init(8),
- cl::desc("Max num uses visited for identifying load "
- "invariance in loop using invariant start (default = 8)"));
-
-// Default value of zero implies we use the regular alias set tracker mechanism
-// instead of the cross product using AA to identify aliasing of the memory
-// location we are interested in.
-static cl::opt<int>
-LICMN2Theshold("licm-n2-threshold", cl::Hidden, cl::init(0),
- cl::desc("How many instruction to cross product using AA"));
-
-// Experimental option to allow imprecision in LICM in pathological cases, in
-// exchange for faster compile. This is to be removed if MemorySSA starts to
-// address the same issue. This flag applies only when LICM uses MemorySSA
-// instead on AliasSetTracker. LICM calls MemorySSAWalker's
-// getClobberingMemoryAccess, up to the value of the Cap, getting perfect
-// accuracy. Afterwards, LICM will call into MemorySSA's getDefiningAccess,
-// which may not be precise, since optimizeUses is capped. The result is
-// correct, but we may not get as "far up" as possible to get which access is
-// clobbering the one queried.
-cl::opt<unsigned> llvm::SetLicmMssaOptCap(
- "licm-mssa-optimization-cap", cl::init(100), cl::Hidden,
- cl::desc("Enable imprecision in LICM in pathological cases, in exchange "
- "for faster compile. Caps the MemorySSA clobbering calls."));
-
-// Experimentally, memory promotion carries less importance than sinking and
-// hoisting. Limit when we do promotion when using MemorySSA, in order to save
-// compile time.
-cl::opt<unsigned> llvm::SetLicmMssaNoAccForPromotionCap(
- "licm-mssa-max-acc-promotion", cl::init(250), cl::Hidden,
- cl::desc("[LICM & MemorySSA] When MSSA in LICM is disabled, this has no "
- "effect. When MSSA in LICM is enabled, then this is the maximum "
- "number of accesses allowed to be present in a loop in order to "
- "enable memory promotion."));
-
-static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI);
-static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
- const LoopSafetyInfo *SafetyInfo,
- TargetTransformInfo *TTI, bool &FreeInLoop);
-static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
- BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
-static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
- const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE);
-static bool isSafeToExecuteUnconditionally(Instruction &Inst,
- const DominatorTree *DT,
- const Loop *CurLoop,
- const LoopSafetyInfo *SafetyInfo,
- OptimizationRemarkEmitter *ORE,
- const Instruction *CtxI = nullptr);
-static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
- AliasSetTracker *CurAST, Loop *CurLoop,
- AliasAnalysis *AA);
-static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
- Loop *CurLoop,
- SinkAndHoistLICMFlags &Flags);
-static Instruction *CloneInstructionInExitBlock(
- Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
- const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU);
-
-static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
- AliasSetTracker *AST, MemorySSAUpdater *MSSAU);
-
-static void moveInstructionBefore(Instruction &I, Instruction &Dest,
- ICFLoopSafetyInfo &SafetyInfo,
- MemorySSAUpdater *MSSAU);
-
-namespace {
-struct LoopInvariantCodeMotion {
- using ASTrackerMapTy = DenseMap<Loop *, std::unique_ptr<AliasSetTracker>>;
- bool runOnLoop(Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
- TargetLibraryInfo *TLI, TargetTransformInfo *TTI,
- ScalarEvolution *SE, MemorySSA *MSSA,
- OptimizationRemarkEmitter *ORE, bool DeleteAST);
-
- ASTrackerMapTy &getLoopToAliasSetMap() { return LoopToAliasSetMap; }
- LoopInvariantCodeMotion(unsigned LicmMssaOptCap,
- unsigned LicmMssaNoAccForPromotionCap)
- : LicmMssaOptCap(LicmMssaOptCap),
- LicmMssaNoAccForPromotionCap(LicmMssaNoAccForPromotionCap) {}
-
-private:
- ASTrackerMapTy LoopToAliasSetMap;
- unsigned LicmMssaOptCap;
- unsigned LicmMssaNoAccForPromotionCap;
-
- std::unique_ptr<AliasSetTracker>
- collectAliasInfoForLoop(Loop *L, LoopInfo *LI, AliasAnalysis *AA);
- std::unique_ptr<AliasSetTracker>
- collectAliasInfoForLoopWithMSSA(Loop *L, AliasAnalysis *AA,
- MemorySSAUpdater *MSSAU);
-};
-
-struct LegacyLICMPass : public LoopPass {
- static char ID; // Pass identification, replacement for typeid
- LegacyLICMPass(
- unsigned LicmMssaOptCap = SetLicmMssaOptCap,
- unsigned LicmMssaNoAccForPromotionCap = SetLicmMssaNoAccForPromotionCap)
- : LoopPass(ID), LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap) {
- initializeLegacyLICMPassPass(*PassRegistry::getPassRegistry());
- }
-
- bool runOnLoop(Loop *L, LPPassManager &LPM) override {
- if (skipLoop(L)) {
- // If we have run LICM on a previous loop but now we are skipping
- // (because we've hit the opt-bisect limit), we need to clear the
- // loop alias information.
- LICM.getLoopToAliasSetMap().clear();
- return false;
- }
-
- auto *SE = getAnalysisIfAvailable<ScalarEvolutionWrapperPass>();
- MemorySSA *MSSA = EnableMSSALoopDependency
- ? (&getAnalysis<MemorySSAWrapperPass>().getMSSA())
- : nullptr;
- // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
- // pass. Function analyses need to be preserved across loop transformations
- // but ORE cannot be preserved (see comment before the pass definition).
- OptimizationRemarkEmitter ORE(L->getHeader()->getParent());
- return LICM.runOnLoop(L,
- &getAnalysis<AAResultsWrapperPass>().getAAResults(),
- &getAnalysis<LoopInfoWrapperPass>().getLoopInfo(),
- &getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
- &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
- &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
- *L->getHeader()->getParent()),
- SE ? &SE->getSE() : nullptr, MSSA, &ORE, false);
- }
-
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG...
- ///
- void getAnalysisUsage(AnalysisUsage &AU) const override {
- AU.addPreserved<DominatorTreeWrapperPass>();
- AU.addPreserved<LoopInfoWrapperPass>();
- AU.addRequired<TargetLibraryInfoWrapperPass>();
- if (EnableMSSALoopDependency) {
- AU.addRequired<MemorySSAWrapperPass>();
- AU.addPreserved<MemorySSAWrapperPass>();
- }
- AU.addRequired<TargetTransformInfoWrapperPass>();
- getLoopAnalysisUsage(AU);
- }
-
- using llvm::Pass::doFinalization;
-
- bool doFinalization() override {
- auto &AliasSetMap = LICM.getLoopToAliasSetMap();
- // All loops in the AliasSetMap should be cleaned up already. The only case
- // where we fail to do so is if an outer loop gets deleted before LICM
- // visits it.
- assert(all_of(AliasSetMap,
- [](LoopInvariantCodeMotion::ASTrackerMapTy::value_type &KV) {
- return !KV.first->getParentLoop();
- }) &&
- "Didn't free loop alias sets");
- AliasSetMap.clear();
- return false;
- }
-
-private:
- LoopInvariantCodeMotion LICM;
-
- /// cloneBasicBlockAnalysis - Simple Analysis hook. Clone alias set info.
- void cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
- Loop *L) override;
-
- /// deleteAnalysisValue - Simple Analysis hook. Delete value V from alias
- /// set.
- void deleteAnalysisValue(Value *V, Loop *L) override;
-
- /// Simple Analysis hook. Delete loop L from alias set map.
- void deleteAnalysisLoop(Loop *L) override;
-};
-} // namespace
-
-PreservedAnalyses LICMPass::run(Loop &L, LoopAnalysisManager &AM,
- LoopStandardAnalysisResults &AR, LPMUpdater &) {
- const auto &FAM =
- AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
- Function *F = L.getHeader()->getParent();
-
- auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
- // FIXME: This should probably be optional rather than required.
- if (!ORE)
- report_fatal_error("LICM: OptimizationRemarkEmitterAnalysis not "
- "cached at a higher level");
-
- LoopInvariantCodeMotion LICM(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
- if (!LICM.runOnLoop(&L, &AR.AA, &AR.LI, &AR.DT, &AR.TLI, &AR.TTI, &AR.SE,
- AR.MSSA, ORE, true))
- return PreservedAnalyses::all();
-
- auto PA = getLoopPassPreservedAnalyses();
-
- PA.preserve<DominatorTreeAnalysis>();
- PA.preserve<LoopAnalysis>();
- if (EnableMSSALoopDependency)
- PA.preserve<MemorySSAAnalysis>();
-
- return PA;
-}
-
-char LegacyLICMPass::ID = 0;
-INITIALIZE_PASS_BEGIN(LegacyLICMPass, "licm", "Loop Invariant Code Motion",
- false, false)
-INITIALIZE_PASS_DEPENDENCY(LoopPass)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
-INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
-INITIALIZE_PASS_END(LegacyLICMPass, "licm", "Loop Invariant Code Motion", false,
- false)
-
-Pass *llvm::createLICMPass() { return new LegacyLICMPass(); }
-Pass *llvm::createLICMPass(unsigned LicmMssaOptCap,
- unsigned LicmMssaNoAccForPromotionCap) {
- return new LegacyLICMPass(LicmMssaOptCap, LicmMssaNoAccForPromotionCap);
-}
-
-/// Hoist expressions out of the specified loop. Note, alias info for inner
-/// loop is not preserved so it is not a good idea to run LICM multiple
-/// times on one loop.
-/// We should delete AST for inner loops in the new pass manager to avoid
-/// memory leak.
-///
-bool LoopInvariantCodeMotion::runOnLoop(
- Loop *L, AliasAnalysis *AA, LoopInfo *LI, DominatorTree *DT,
- TargetLibraryInfo *TLI, TargetTransformInfo *TTI, ScalarEvolution *SE,
- MemorySSA *MSSA, OptimizationRemarkEmitter *ORE, bool DeleteAST) {
- bool Changed = false;
-
- assert(L->isLCSSAForm(*DT) && "Loop is not in LCSSA form.");
-
- std::unique_ptr<AliasSetTracker> CurAST;
- std::unique_ptr<MemorySSAUpdater> MSSAU;
- bool NoOfMemAccTooLarge = false;
- unsigned LicmMssaOptCounter = 0;
-
- if (!MSSA) {
- LLVM_DEBUG(dbgs() << "LICM: Using Alias Set Tracker.\n");
- CurAST = collectAliasInfoForLoop(L, LI, AA);
- } else {
- LLVM_DEBUG(dbgs() << "LICM: Using MemorySSA.\n");
- MSSAU = make_unique<MemorySSAUpdater>(MSSA);
-
- unsigned AccessCapCount = 0;
- for (auto *BB : L->getBlocks()) {
- if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
- for (const auto &MA : *Accesses) {
- (void)MA;
- AccessCapCount++;
- if (AccessCapCount > LicmMssaNoAccForPromotionCap) {
- NoOfMemAccTooLarge = true;
- break;
- }
- }
- }
- if (NoOfMemAccTooLarge)
- break;
- }
- }
-
- // Get the preheader block to move instructions into...
- BasicBlock *Preheader = L->getLoopPreheader();
-
- // Compute loop safety information.
- ICFLoopSafetyInfo SafetyInfo(DT);
- SafetyInfo.computeLoopSafetyInfo(L);
-
- // We want to visit all of the instructions in this loop... that are not parts
- // of our subloops (they have already had their invariants hoisted out of
- // their loop, into this loop, so there is no need to process the BODIES of
- // the subloops).
- //
- // Traverse the body of the loop in depth first order on the dominator tree so
- // that we are guaranteed to see definitions before we see uses. This allows
- // us to sink instructions in one pass, without iteration. After sinking
- // instructions, we perform another pass to hoist them out of the loop.
- SinkAndHoistLICMFlags Flags = {NoOfMemAccTooLarge, LicmMssaOptCounter,
- LicmMssaOptCap, LicmMssaNoAccForPromotionCap,
- /*IsSink=*/true};
- if (L->hasDedicatedExits())
- Changed |= sinkRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, TTI, L,
- CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
- Flags.IsSink = false;
- if (Preheader)
- Changed |= hoistRegion(DT->getNode(L->getHeader()), AA, LI, DT, TLI, L,
- CurAST.get(), MSSAU.get(), &SafetyInfo, Flags, ORE);
-
- // Now that all loop invariants have been removed from the loop, promote any
- // memory references to scalars that we can.
- // Don't sink stores from loops without dedicated block exits. Exits
- // containing indirect branches are not transformed by loop simplify,
- // make sure we catch that. An additional load may be generated in the
- // preheader for SSA updater, so also avoid sinking when no preheader
- // is available.
- if (!DisablePromotion && Preheader && L->hasDedicatedExits() &&
- !NoOfMemAccTooLarge) {
- // Figure out the loop exits and their insertion points
- SmallVector<BasicBlock *, 8> ExitBlocks;
- L->getUniqueExitBlocks(ExitBlocks);
-
- // We can't insert into a catchswitch.
- bool HasCatchSwitch = llvm::any_of(ExitBlocks, [](BasicBlock *Exit) {
- return isa<CatchSwitchInst>(Exit->getTerminator());
- });
-
- if (!HasCatchSwitch) {
- SmallVector<Instruction *, 8> InsertPts;
- SmallVector<MemoryAccess *, 8> MSSAInsertPts;
- InsertPts.reserve(ExitBlocks.size());
- if (MSSAU)
- MSSAInsertPts.reserve(ExitBlocks.size());
- for (BasicBlock *ExitBlock : ExitBlocks) {
- InsertPts.push_back(&*ExitBlock->getFirstInsertionPt());
- if (MSSAU)
- MSSAInsertPts.push_back(nullptr);
- }
-
- PredIteratorCache PIC;
-
- bool Promoted = false;
-
- // Build an AST using MSSA.
- if (!CurAST.get())
- CurAST = collectAliasInfoForLoopWithMSSA(L, AA, MSSAU.get());
-
- // Loop over all of the alias sets in the tracker object.
- for (AliasSet &AS : *CurAST) {
- // We can promote this alias set if it has a store, if it is a "Must"
- // alias set, if the pointer is loop invariant, and if we are not
- // eliminating any volatile loads or stores.
- if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
- !L->isLoopInvariant(AS.begin()->getValue()))
- continue;
-
- assert(
- !AS.empty() &&
- "Must alias set should have at least one pointer element in it!");
-
- SmallSetVector<Value *, 8> PointerMustAliases;
- for (const auto &ASI : AS)
- PointerMustAliases.insert(ASI.getValue());
-
- Promoted |= promoteLoopAccessesToScalars(
- PointerMustAliases, ExitBlocks, InsertPts, MSSAInsertPts, PIC, LI,
- DT, TLI, L, CurAST.get(), MSSAU.get(), &SafetyInfo, ORE);
- }
-
- // Once we have promoted values across the loop body we have to
- // recursively reform LCSSA as any nested loop may now have values defined
- // within the loop used in the outer loop.
- // FIXME: This is really heavy handed. It would be a bit better to use an
- // SSAUpdater strategy during promotion that was LCSSA aware and reformed
- // it as it went.
- if (Promoted)
- formLCSSARecursively(*L, *DT, LI, SE);
-
- Changed |= Promoted;
- }
- }
-
- // Check that neither this loop nor its parent have had LCSSA broken. LICM is
- // specifically moving instructions across the loop boundary and so it is
- // especially in need of sanity checking here.
- assert(L->isLCSSAForm(*DT) && "Loop not left in LCSSA form after LICM!");
- assert((!L->getParentLoop() || L->getParentLoop()->isLCSSAForm(*DT)) &&
- "Parent loop not left in LCSSA form after LICM!");
-
- // If this loop is nested inside of another one, save the alias information
- // for when we process the outer loop.
- if (!MSSAU.get() && CurAST.get() && L->getParentLoop() && !DeleteAST)
- LoopToAliasSetMap[L] = std::move(CurAST);
-
- if (MSSAU.get() && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
-
- if (Changed && SE)
- SE->forgetLoopDispositions(L);
- return Changed;
-}
-
-/// Walk the specified region of the CFG (defined by all blocks dominated by
-/// the specified block, and that are in the current loop) in reverse depth
-/// first order w.r.t the DominatorTree. This allows us to visit uses before
-/// definitions, allowing us to sink a loop body in one pass without iteration.
-///
-bool llvm::sinkRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
- DominatorTree *DT, TargetLibraryInfo *TLI,
- TargetTransformInfo *TTI, Loop *CurLoop,
- AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
- ICFLoopSafetyInfo *SafetyInfo,
- SinkAndHoistLICMFlags &Flags,
- OptimizationRemarkEmitter *ORE) {
-
- // Verify inputs.
- assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
- CurLoop != nullptr && SafetyInfo != nullptr &&
- "Unexpected input to sinkRegion.");
- assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
- "Either AliasSetTracker or MemorySSA should be initialized.");
-
- // We want to visit children before parents. We will enque all the parents
- // before their children in the worklist and process the worklist in reverse
- // order.
- SmallVector<DomTreeNode *, 16> Worklist = collectChildrenInLoop(N, CurLoop);
-
- bool Changed = false;
- for (DomTreeNode *DTN : reverse(Worklist)) {
- BasicBlock *BB = DTN->getBlock();
- // Only need to process the contents of this block if it is not part of a
- // subloop (which would already have been processed).
- if (inSubLoop(BB, CurLoop, LI))
- continue;
-
- for (BasicBlock::iterator II = BB->end(); II != BB->begin();) {
- Instruction &I = *--II;
-
- // If the instruction is dead, we would try to sink it because it isn't
- // used in the loop, instead, just delete it.
- if (isInstructionTriviallyDead(&I, TLI)) {
- LLVM_DEBUG(dbgs() << "LICM deleting dead inst: " << I << '\n');
- salvageDebugInfo(I);
- ++II;
- eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
- Changed = true;
- continue;
- }
-
- // Check to see if we can sink this instruction to the exit blocks
- // of the loop. We can do this if the all users of the instruction are
- // outside of the loop. In this case, it doesn't even matter if the
- // operands of the instruction are loop invariant.
- //
- bool FreeInLoop = false;
- if (isNotUsedOrFreeInLoop(I, CurLoop, SafetyInfo, TTI, FreeInLoop) &&
- canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
- ORE) &&
- !I.mayHaveSideEffects()) {
- if (sink(I, LI, DT, CurLoop, SafetyInfo, MSSAU, ORE)) {
- if (!FreeInLoop) {
- ++II;
- eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
- }
- Changed = true;
- }
- }
- }
- }
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- return Changed;
-}
-
-namespace {
-// This is a helper class for hoistRegion to make it able to hoist control flow
-// in order to be able to hoist phis. The way this works is that we initially
-// start hoisting to the loop preheader, and when we see a loop invariant branch
-// we make note of this. When we then come to hoist an instruction that's
-// conditional on such a branch we duplicate the branch and the relevant control
-// flow, then hoist the instruction into the block corresponding to its original
-// block in the duplicated control flow.
-class ControlFlowHoister {
-private:
- // Information about the loop we are hoisting from
- LoopInfo *LI;
- DominatorTree *DT;
- Loop *CurLoop;
- MemorySSAUpdater *MSSAU;
-
- // A map of blocks in the loop to the block their instructions will be hoisted
- // to.
- DenseMap<BasicBlock *, BasicBlock *> HoistDestinationMap;
-
- // The branches that we can hoist, mapped to the block that marks a
- // convergence point of their control flow.
- DenseMap<BranchInst *, BasicBlock *> HoistableBranches;
-
-public:
- ControlFlowHoister(LoopInfo *LI, DominatorTree *DT, Loop *CurLoop,
- MemorySSAUpdater *MSSAU)
- : LI(LI), DT(DT), CurLoop(CurLoop), MSSAU(MSSAU) {}
-
- void registerPossiblyHoistableBranch(BranchInst *BI) {
- // We can only hoist conditional branches with loop invariant operands.
- if (!ControlFlowHoisting || !BI->isConditional() ||
- !CurLoop->hasLoopInvariantOperands(BI))
- return;
-
- // The branch destinations need to be in the loop, and we don't gain
- // anything by duplicating conditional branches with duplicate successors,
- // as it's essentially the same as an unconditional branch.
- BasicBlock *TrueDest = BI->getSuccessor(0);
- BasicBlock *FalseDest = BI->getSuccessor(1);
- if (!CurLoop->contains(TrueDest) || !CurLoop->contains(FalseDest) ||
- TrueDest == FalseDest)
- return;
-
- // We can hoist BI if one branch destination is the successor of the other,
- // or both have common successor which we check by seeing if the
- // intersection of their successors is non-empty.
- // TODO: This could be expanded to allowing branches where both ends
- // eventually converge to a single block.
- SmallPtrSet<BasicBlock *, 4> TrueDestSucc, FalseDestSucc;
- TrueDestSucc.insert(succ_begin(TrueDest), succ_end(TrueDest));
- FalseDestSucc.insert(succ_begin(FalseDest), succ_end(FalseDest));
- BasicBlock *CommonSucc = nullptr;
- if (TrueDestSucc.count(FalseDest)) {
- CommonSucc = FalseDest;
- } else if (FalseDestSucc.count(TrueDest)) {
- CommonSucc = TrueDest;
- } else {
- set_intersect(TrueDestSucc, FalseDestSucc);
- // If there's one common successor use that.
- if (TrueDestSucc.size() == 1)
- CommonSucc = *TrueDestSucc.begin();
- // If there's more than one pick whichever appears first in the block list
- // (we can't use the value returned by TrueDestSucc.begin() as it's
- // unpredicatable which element gets returned).
- else if (!TrueDestSucc.empty()) {
- Function *F = TrueDest->getParent();
- auto IsSucc = [&](BasicBlock &BB) { return TrueDestSucc.count(&BB); };
- auto It = std::find_if(F->begin(), F->end(), IsSucc);
- assert(It != F->end() && "Could not find successor in function");
- CommonSucc = &*It;
- }
- }
- // The common successor has to be dominated by the branch, as otherwise
- // there will be some other path to the successor that will not be
- // controlled by this branch so any phi we hoist would be controlled by the
- // wrong condition. This also takes care of avoiding hoisting of loop back
- // edges.
- // TODO: In some cases this could be relaxed if the successor is dominated
- // by another block that's been hoisted and we can guarantee that the
- // control flow has been replicated exactly.
- if (CommonSucc && DT->dominates(BI, CommonSucc))
- HoistableBranches[BI] = CommonSucc;
- }
-
- bool canHoistPHI(PHINode *PN) {
- // The phi must have loop invariant operands.
- if (!ControlFlowHoisting || !CurLoop->hasLoopInvariantOperands(PN))
- return false;
- // We can hoist phis if the block they are in is the target of hoistable
- // branches which cover all of the predecessors of the block.
- SmallPtrSet<BasicBlock *, 8> PredecessorBlocks;
- BasicBlock *BB = PN->getParent();
- for (BasicBlock *PredBB : predecessors(BB))
- PredecessorBlocks.insert(PredBB);
- // If we have less predecessor blocks than predecessors then the phi will
- // have more than one incoming value for the same block which we can't
- // handle.
- // TODO: This could be handled be erasing some of the duplicate incoming
- // values.
- if (PredecessorBlocks.size() != pred_size(BB))
- return false;
- for (auto &Pair : HoistableBranches) {
- if (Pair.second == BB) {
- // Which blocks are predecessors via this branch depends on if the
- // branch is triangle-like or diamond-like.
- if (Pair.first->getSuccessor(0) == BB) {
- PredecessorBlocks.erase(Pair.first->getParent());
- PredecessorBlocks.erase(Pair.first->getSuccessor(1));
- } else if (Pair.first->getSuccessor(1) == BB) {
- PredecessorBlocks.erase(Pair.first->getParent());
- PredecessorBlocks.erase(Pair.first->getSuccessor(0));
- } else {
- PredecessorBlocks.erase(Pair.first->getSuccessor(0));
- PredecessorBlocks.erase(Pair.first->getSuccessor(1));
- }
- }
- }
- // PredecessorBlocks will now be empty if for every predecessor of BB we
- // found a hoistable branch source.
- return PredecessorBlocks.empty();
- }
-
- BasicBlock *getOrCreateHoistedBlock(BasicBlock *BB) {
- if (!ControlFlowHoisting)
- return CurLoop->getLoopPreheader();
- // If BB has already been hoisted, return that
- if (HoistDestinationMap.count(BB))
- return HoistDestinationMap[BB];
-
- // Check if this block is conditional based on a pending branch
- auto HasBBAsSuccessor =
- [&](DenseMap<BranchInst *, BasicBlock *>::value_type &Pair) {
- return BB != Pair.second && (Pair.first->getSuccessor(0) == BB ||
- Pair.first->getSuccessor(1) == BB);
- };
- auto It = std::find_if(HoistableBranches.begin(), HoistableBranches.end(),
- HasBBAsSuccessor);
-
- // If not involved in a pending branch, hoist to preheader
- BasicBlock *InitialPreheader = CurLoop->getLoopPreheader();
- if (It == HoistableBranches.end()) {
- LLVM_DEBUG(dbgs() << "LICM using " << InitialPreheader->getName()
- << " as hoist destination for " << BB->getName()
- << "\n");
- HoistDestinationMap[BB] = InitialPreheader;
- return InitialPreheader;
- }
- BranchInst *BI = It->first;
- assert(std::find_if(++It, HoistableBranches.end(), HasBBAsSuccessor) ==
- HoistableBranches.end() &&
- "BB is expected to be the target of at most one branch");
-
- LLVMContext &C = BB->getContext();
- BasicBlock *TrueDest = BI->getSuccessor(0);
- BasicBlock *FalseDest = BI->getSuccessor(1);
- BasicBlock *CommonSucc = HoistableBranches[BI];
- BasicBlock *HoistTarget = getOrCreateHoistedBlock(BI->getParent());
-
- // Create hoisted versions of blocks that currently don't have them
- auto CreateHoistedBlock = [&](BasicBlock *Orig) {
- if (HoistDestinationMap.count(Orig))
- return HoistDestinationMap[Orig];
- BasicBlock *New =
- BasicBlock::Create(C, Orig->getName() + ".licm", Orig->getParent());
- HoistDestinationMap[Orig] = New;
- DT->addNewBlock(New, HoistTarget);
- if (CurLoop->getParentLoop())
- CurLoop->getParentLoop()->addBasicBlockToLoop(New, *LI);
- ++NumCreatedBlocks;
- LLVM_DEBUG(dbgs() << "LICM created " << New->getName()
- << " as hoist destination for " << Orig->getName()
- << "\n");
- return New;
- };
- BasicBlock *HoistTrueDest = CreateHoistedBlock(TrueDest);
- BasicBlock *HoistFalseDest = CreateHoistedBlock(FalseDest);
- BasicBlock *HoistCommonSucc = CreateHoistedBlock(CommonSucc);
-
- // Link up these blocks with branches.
- if (!HoistCommonSucc->getTerminator()) {
- // The new common successor we've generated will branch to whatever that
- // hoist target branched to.
- BasicBlock *TargetSucc = HoistTarget->getSingleSuccessor();
- assert(TargetSucc && "Expected hoist target to have a single successor");
- HoistCommonSucc->moveBefore(TargetSucc);
- BranchInst::Create(TargetSucc, HoistCommonSucc);
- }
- if (!HoistTrueDest->getTerminator()) {
- HoistTrueDest->moveBefore(HoistCommonSucc);
- BranchInst::Create(HoistCommonSucc, HoistTrueDest);
- }
- if (!HoistFalseDest->getTerminator()) {
- HoistFalseDest->moveBefore(HoistCommonSucc);
- BranchInst::Create(HoistCommonSucc, HoistFalseDest);
- }
-
- // If BI is being cloned to what was originally the preheader then
- // HoistCommonSucc will now be the new preheader.
- if (HoistTarget == InitialPreheader) {
- // Phis in the loop header now need to use the new preheader.
- InitialPreheader->replaceSuccessorsPhiUsesWith(HoistCommonSucc);
- if (MSSAU)
- MSSAU->wireOldPredecessorsToNewImmediatePredecessor(
- HoistTarget->getSingleSuccessor(), HoistCommonSucc, {HoistTarget});
- // The new preheader dominates the loop header.
- DomTreeNode *PreheaderNode = DT->getNode(HoistCommonSucc);
- DomTreeNode *HeaderNode = DT->getNode(CurLoop->getHeader());
- DT->changeImmediateDominator(HeaderNode, PreheaderNode);
- // The preheader hoist destination is now the new preheader, with the
- // exception of the hoist destination of this branch.
- for (auto &Pair : HoistDestinationMap)
- if (Pair.second == InitialPreheader && Pair.first != BI->getParent())
- Pair.second = HoistCommonSucc;
- }
-
- // Now finally clone BI.
- ReplaceInstWithInst(
- HoistTarget->getTerminator(),
- BranchInst::Create(HoistTrueDest, HoistFalseDest, BI->getCondition()));
- ++NumClonedBranches;
-
- assert(CurLoop->getLoopPreheader() &&
- "Hoisting blocks should not have destroyed preheader");
- return HoistDestinationMap[BB];
- }
-};
-} // namespace
-
-/// Walk the specified region of the CFG (defined by all blocks dominated by
-/// the specified block, and that are in the current loop) in depth first
-/// order w.r.t the DominatorTree. This allows us to visit definitions before
-/// uses, allowing us to hoist a loop body in one pass without iteration.
-///
-bool llvm::hoistRegion(DomTreeNode *N, AliasAnalysis *AA, LoopInfo *LI,
- DominatorTree *DT, TargetLibraryInfo *TLI, Loop *CurLoop,
- AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
- ICFLoopSafetyInfo *SafetyInfo,
- SinkAndHoistLICMFlags &Flags,
- OptimizationRemarkEmitter *ORE) {
- // Verify inputs.
- assert(N != nullptr && AA != nullptr && LI != nullptr && DT != nullptr &&
- CurLoop != nullptr && SafetyInfo != nullptr &&
- "Unexpected input to hoistRegion.");
- assert(((CurAST != nullptr) ^ (MSSAU != nullptr)) &&
- "Either AliasSetTracker or MemorySSA should be initialized.");
-
- ControlFlowHoister CFH(LI, DT, CurLoop, MSSAU);
-
- // Keep track of instructions that have been hoisted, as they may need to be
- // re-hoisted if they end up not dominating all of their uses.
- SmallVector<Instruction *, 16> HoistedInstructions;
-
- // For PHI hoisting to work we need to hoist blocks before their successors.
- // We can do this by iterating through the blocks in the loop in reverse
- // post-order.
- LoopBlocksRPO Worklist(CurLoop);
- Worklist.perform(LI);
- bool Changed = false;
- for (BasicBlock *BB : Worklist) {
- // Only need to process the contents of this block if it is not part of a
- // subloop (which would already have been processed).
- if (inSubLoop(BB, CurLoop, LI))
- continue;
-
- for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E;) {
- Instruction &I = *II++;
- // Try constant folding this instruction. If all the operands are
- // constants, it is technically hoistable, but it would be better to
- // just fold it.
- if (Constant *C = ConstantFoldInstruction(
- &I, I.getModule()->getDataLayout(), TLI)) {
- LLVM_DEBUG(dbgs() << "LICM folding inst: " << I << " --> " << *C
- << '\n');
- if (CurAST)
- CurAST->copyValue(&I, C);
- // FIXME MSSA: Such replacements may make accesses unoptimized (D51960).
- I.replaceAllUsesWith(C);
- if (isInstructionTriviallyDead(&I, TLI))
- eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
- Changed = true;
- continue;
- }
-
- // Try hoisting the instruction out to the preheader. We can only do
- // this if all of the operands of the instruction are loop invariant and
- // if it is safe to hoist the instruction.
- // TODO: It may be safe to hoist if we are hoisting to a conditional block
- // and we have accurately duplicated the control flow from the loop header
- // to that block.
- if (CurLoop->hasLoopInvariantOperands(&I) &&
- canSinkOrHoistInst(I, AA, DT, CurLoop, CurAST, MSSAU, true, &Flags,
- ORE) &&
- isSafeToExecuteUnconditionally(
- I, DT, CurLoop, SafetyInfo, ORE,
- CurLoop->getLoopPreheader()->getTerminator())) {
- hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
- MSSAU, ORE);
- HoistedInstructions.push_back(&I);
- Changed = true;
- continue;
- }
-
- // Attempt to remove floating point division out of the loop by
- // converting it to a reciprocal multiplication.
- if (I.getOpcode() == Instruction::FDiv &&
- CurLoop->isLoopInvariant(I.getOperand(1)) &&
- I.hasAllowReciprocal()) {
- auto Divisor = I.getOperand(1);
- auto One = llvm::ConstantFP::get(Divisor->getType(), 1.0);
- auto ReciprocalDivisor = BinaryOperator::CreateFDiv(One, Divisor);
- ReciprocalDivisor->setFastMathFlags(I.getFastMathFlags());
- SafetyInfo->insertInstructionTo(ReciprocalDivisor, I.getParent());
- ReciprocalDivisor->insertBefore(&I);
-
- auto Product =
- BinaryOperator::CreateFMul(I.getOperand(0), ReciprocalDivisor);
- Product->setFastMathFlags(I.getFastMathFlags());
- SafetyInfo->insertInstructionTo(Product, I.getParent());
- Product->insertAfter(&I);
- I.replaceAllUsesWith(Product);
- eraseInstruction(I, *SafetyInfo, CurAST, MSSAU);
-
- hoist(*ReciprocalDivisor, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB),
- SafetyInfo, MSSAU, ORE);
- HoistedInstructions.push_back(ReciprocalDivisor);
- Changed = true;
- continue;
- }
-
- auto IsInvariantStart = [&](Instruction &I) {
- using namespace PatternMatch;
- return I.use_empty() &&
- match(&I, m_Intrinsic<Intrinsic::invariant_start>());
- };
- auto MustExecuteWithoutWritesBefore = [&](Instruction &I) {
- return SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop) &&
- SafetyInfo->doesNotWriteMemoryBefore(I, CurLoop);
- };
- if ((IsInvariantStart(I) || isGuard(&I)) &&
- CurLoop->hasLoopInvariantOperands(&I) &&
- MustExecuteWithoutWritesBefore(I)) {
- hoist(I, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
- MSSAU, ORE);
- HoistedInstructions.push_back(&I);
- Changed = true;
- continue;
- }
-
- if (PHINode *PN = dyn_cast<PHINode>(&I)) {
- if (CFH.canHoistPHI(PN)) {
- // Redirect incoming blocks first to ensure that we create hoisted
- // versions of those blocks before we hoist the phi.
- for (unsigned int i = 0; i < PN->getNumIncomingValues(); ++i)
- PN->setIncomingBlock(
- i, CFH.getOrCreateHoistedBlock(PN->getIncomingBlock(i)));
- hoist(*PN, DT, CurLoop, CFH.getOrCreateHoistedBlock(BB), SafetyInfo,
- MSSAU, ORE);
- assert(DT->dominates(PN, BB) && "Conditional PHIs not expected");
- Changed = true;
- continue;
- }
- }
-
- // Remember possibly hoistable branches so we can actually hoist them
- // later if needed.
- if (BranchInst *BI = dyn_cast<BranchInst>(&I))
- CFH.registerPossiblyHoistableBranch(BI);
- }
- }
-
- // If we hoisted instructions to a conditional block they may not dominate
- // their uses that weren't hoisted (such as phis where some operands are not
- // loop invariant). If so make them unconditional by moving them to their
- // immediate dominator. We iterate through the instructions in reverse order
- // which ensures that when we rehoist an instruction we rehoist its operands,
- // and also keep track of where in the block we are rehoisting to to make sure
- // that we rehoist instructions before the instructions that use them.
- Instruction *HoistPoint = nullptr;
- if (ControlFlowHoisting) {
- for (Instruction *I : reverse(HoistedInstructions)) {
- if (!llvm::all_of(I->uses(),
- [&](Use &U) { return DT->dominates(I, U); })) {
- BasicBlock *Dominator =
- DT->getNode(I->getParent())->getIDom()->getBlock();
- if (!HoistPoint || !DT->dominates(HoistPoint->getParent(), Dominator)) {
- if (HoistPoint)
- assert(DT->dominates(Dominator, HoistPoint->getParent()) &&
- "New hoist point expected to dominate old hoist point");
- HoistPoint = Dominator->getTerminator();
- }
- LLVM_DEBUG(dbgs() << "LICM rehoisting to "
- << HoistPoint->getParent()->getName()
- << ": " << *I << "\n");
- moveInstructionBefore(*I, *HoistPoint, *SafetyInfo, MSSAU);
- HoistPoint = I;
- Changed = true;
- }
- }
- }
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
-
- // Now that we've finished hoisting make sure that LI and DT are still
- // valid.
-#ifndef NDEBUG
- if (Changed) {
- assert(DT->verify(DominatorTree::VerificationLevel::Fast) &&
- "Dominator tree verification failed");
- LI->verify(*DT);
- }
-#endif
-
- return Changed;
-}
-
-// Return true if LI is invariant within scope of the loop. LI is invariant if
-// CurLoop is dominated by an invariant.start representing the same memory
-// location and size as the memory location LI loads from, and also the
-// invariant.start has no uses.
-static bool isLoadInvariantInLoop(LoadInst *LI, DominatorTree *DT,
- Loop *CurLoop) {
- Value *Addr = LI->getOperand(0);
- const DataLayout &DL = LI->getModule()->getDataLayout();
- const uint32_t LocSizeInBits = DL.getTypeSizeInBits(LI->getType());
-
- // if the type is i8 addrspace(x)*, we know this is the type of
- // llvm.invariant.start operand
- auto *PtrInt8Ty = PointerType::get(Type::getInt8Ty(LI->getContext()),
- LI->getPointerAddressSpace());
- unsigned BitcastsVisited = 0;
- // Look through bitcasts until we reach the i8* type (this is invariant.start
- // operand type).
- while (Addr->getType() != PtrInt8Ty) {
- auto *BC = dyn_cast<BitCastInst>(Addr);
- // Avoid traversing high number of bitcast uses.
- if (++BitcastsVisited > MaxNumUsesTraversed || !BC)
- return false;
- Addr = BC->getOperand(0);
- }
-
- unsigned UsesVisited = 0;
- // Traverse all uses of the load operand value, to see if invariant.start is
- // one of the uses, and whether it dominates the load instruction.
- for (auto *U : Addr->users()) {
- // Avoid traversing for Load operand with high number of users.
- if (++UsesVisited > MaxNumUsesTraversed)
- return false;
- IntrinsicInst *II = dyn_cast<IntrinsicInst>(U);
- // If there are escaping uses of invariant.start instruction, the load maybe
- // non-invariant.
- if (!II || II->getIntrinsicID() != Intrinsic::invariant_start ||
- !II->use_empty())
- continue;
- unsigned InvariantSizeInBits =
- cast<ConstantInt>(II->getArgOperand(0))->getSExtValue() * 8;
- // Confirm the invariant.start location size contains the load operand size
- // in bits. Also, the invariant.start should dominate the load, and we
- // should not hoist the load out of a loop that contains this dominating
- // invariant.start.
- if (LocSizeInBits <= InvariantSizeInBits &&
- DT->properlyDominates(II->getParent(), CurLoop->getHeader()))
- return true;
- }
-
- return false;
-}
-
-namespace {
-/// Return true if-and-only-if we know how to (mechanically) both hoist and
-/// sink a given instruction out of a loop. Does not address legality
-/// concerns such as aliasing or speculation safety.
-bool isHoistableAndSinkableInst(Instruction &I) {
- // Only these instructions are hoistable/sinkable.
- return (isa<LoadInst>(I) || isa<StoreInst>(I) || isa<CallInst>(I) ||
- isa<FenceInst>(I) || isa<BinaryOperator>(I) || isa<CastInst>(I) ||
- isa<SelectInst>(I) || isa<GetElementPtrInst>(I) || isa<CmpInst>(I) ||
- isa<InsertElementInst>(I) || isa<ExtractElementInst>(I) ||
- isa<ShuffleVectorInst>(I) || isa<ExtractValueInst>(I) ||
- isa<InsertValueInst>(I));
-}
-/// Return true if all of the alias sets within this AST are known not to
-/// contain a Mod, or if MSSA knows thare are no MemoryDefs in the loop.
-bool isReadOnly(AliasSetTracker *CurAST, const MemorySSAUpdater *MSSAU,
- const Loop *L) {
- if (CurAST) {
- for (AliasSet &AS : *CurAST) {
- if (!AS.isForwardingAliasSet() && AS.isMod()) {
- return false;
- }
- }
- return true;
- } else { /*MSSAU*/
- for (auto *BB : L->getBlocks())
- if (MSSAU->getMemorySSA()->getBlockDefs(BB))
- return false;
- return true;
- }
-}
-
-/// Return true if I is the only Instruction with a MemoryAccess in L.
-bool isOnlyMemoryAccess(const Instruction *I, const Loop *L,
- const MemorySSAUpdater *MSSAU) {
- for (auto *BB : L->getBlocks())
- if (auto *Accs = MSSAU->getMemorySSA()->getBlockAccesses(BB)) {
- int NotAPhi = 0;
- for (const auto &Acc : *Accs) {
- if (isa<MemoryPhi>(&Acc))
- continue;
- const auto *MUD = cast<MemoryUseOrDef>(&Acc);
- if (MUD->getMemoryInst() != I || NotAPhi++ == 1)
- return false;
- }
- }
- return true;
-}
-}
-
-bool llvm::canSinkOrHoistInst(Instruction &I, AAResults *AA, DominatorTree *DT,
- Loop *CurLoop, AliasSetTracker *CurAST,
- MemorySSAUpdater *MSSAU,
- bool TargetExecutesOncePerLoop,
- SinkAndHoistLICMFlags *Flags,
- OptimizationRemarkEmitter *ORE) {
- // If we don't understand the instruction, bail early.
- if (!isHoistableAndSinkableInst(I))
- return false;
-
- MemorySSA *MSSA = MSSAU ? MSSAU->getMemorySSA() : nullptr;
- if (MSSA)
- assert(Flags != nullptr && "Flags cannot be null.");
-
- // Loads have extra constraints we have to verify before we can hoist them.
- if (LoadInst *LI = dyn_cast<LoadInst>(&I)) {
- if (!LI->isUnordered())
- return false; // Don't sink/hoist volatile or ordered atomic loads!
-
- // Loads from constant memory are always safe to move, even if they end up
- // in the same alias set as something that ends up being modified.
- if (AA->pointsToConstantMemory(LI->getOperand(0)))
- return true;
- if (LI->getMetadata(LLVMContext::MD_invariant_load))
- return true;
-
- if (LI->isAtomic() && !TargetExecutesOncePerLoop)
- return false; // Don't risk duplicating unordered loads
-
- // This checks for an invariant.start dominating the load.
- if (isLoadInvariantInLoop(LI, DT, CurLoop))
- return true;
-
- bool Invalidated;
- if (CurAST)
- Invalidated = pointerInvalidatedByLoop(MemoryLocation::get(LI), CurAST,
- CurLoop, AA);
- else
- Invalidated = pointerInvalidatedByLoopWithMSSA(
- MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(LI)), CurLoop, *Flags);
- // Check loop-invariant address because this may also be a sinkable load
- // whose address is not necessarily loop-invariant.
- if (ORE && Invalidated && CurLoop->isLoopInvariant(LI->getPointerOperand()))
- ORE->emit([&]() {
- return OptimizationRemarkMissed(
- DEBUG_TYPE, "LoadWithLoopInvariantAddressInvalidated", LI)
- << "failed to move load with loop-invariant address "
- "because the loop may invalidate its value";
- });
-
- return !Invalidated;
- } else if (CallInst *CI = dyn_cast<CallInst>(&I)) {
- // Don't sink or hoist dbg info; it's legal, but not useful.
- if (isa<DbgInfoIntrinsic>(I))
- return false;
-
- // Don't sink calls which can throw.
- if (CI->mayThrow())
- return false;
-
- using namespace PatternMatch;
- if (match(CI, m_Intrinsic<Intrinsic::assume>()))
- // Assumes don't actually alias anything or throw
- return true;
-
- // Handle simple cases by querying alias analysis.
- FunctionModRefBehavior Behavior = AA->getModRefBehavior(CI);
- if (Behavior == FMRB_DoesNotAccessMemory)
- return true;
- if (AliasAnalysis::onlyReadsMemory(Behavior)) {
- // A readonly argmemonly function only reads from memory pointed to by
- // it's arguments with arbitrary offsets. If we can prove there are no
- // writes to this memory in the loop, we can hoist or sink.
- if (AliasAnalysis::onlyAccessesArgPointees(Behavior)) {
- // TODO: expand to writeable arguments
- for (Value *Op : CI->arg_operands())
- if (Op->getType()->isPointerTy()) {
- bool Invalidated;
- if (CurAST)
- Invalidated = pointerInvalidatedByLoop(
- MemoryLocation(Op, LocationSize::unknown(), AAMDNodes()),
- CurAST, CurLoop, AA);
- else
- Invalidated = pointerInvalidatedByLoopWithMSSA(
- MSSA, cast<MemoryUse>(MSSA->getMemoryAccess(CI)), CurLoop,
- *Flags);
- if (Invalidated)
- return false;
- }
- return true;
- }
-
- // If this call only reads from memory and there are no writes to memory
- // in the loop, we can hoist or sink the call as appropriate.
- if (isReadOnly(CurAST, MSSAU, CurLoop))
- return true;
- }
-
- // FIXME: This should use mod/ref information to see if we can hoist or
- // sink the call.
-
- return false;
- } else if (auto *FI = dyn_cast<FenceInst>(&I)) {
- // Fences alias (most) everything to provide ordering. For the moment,
- // just give up if there are any other memory operations in the loop.
- if (CurAST) {
- auto Begin = CurAST->begin();
- assert(Begin != CurAST->end() && "must contain FI");
- if (std::next(Begin) != CurAST->end())
- // constant memory for instance, TODO: handle better
- return false;
- auto *UniqueI = Begin->getUniqueInstruction();
- if (!UniqueI)
- // other memory op, give up
- return false;
- (void)FI; // suppress unused variable warning
- assert(UniqueI == FI && "AS must contain FI");
- return true;
- } else // MSSAU
- return isOnlyMemoryAccess(FI, CurLoop, MSSAU);
- } else if (auto *SI = dyn_cast<StoreInst>(&I)) {
- if (!SI->isUnordered())
- return false; // Don't sink/hoist volatile or ordered atomic store!
-
- // We can only hoist a store that we can prove writes a value which is not
- // read or overwritten within the loop. For those cases, we fallback to
- // load store promotion instead. TODO: We can extend this to cases where
- // there is exactly one write to the location and that write dominates an
- // arbitrary number of reads in the loop.
- if (CurAST) {
- auto &AS = CurAST->getAliasSetFor(MemoryLocation::get(SI));
-
- if (AS.isRef() || !AS.isMustAlias())
- // Quick exit test, handled by the full path below as well.
- return false;
- auto *UniqueI = AS.getUniqueInstruction();
- if (!UniqueI)
- // other memory op, give up
- return false;
- assert(UniqueI == SI && "AS must contain SI");
- return true;
- } else { // MSSAU
- if (isOnlyMemoryAccess(SI, CurLoop, MSSAU))
- return true;
- // If there are more accesses than the Promotion cap, give up, we're not
- // walking a list that long.
- if (Flags->NoOfMemAccTooLarge)
- return false;
- // Check store only if there's still "quota" to check clobber.
- if (Flags->LicmMssaOptCounter >= Flags->LicmMssaOptCap)
- return false;
- // If there are interfering Uses (i.e. their defining access is in the
- // loop), or ordered loads (stored as Defs!), don't move this store.
- // Could do better here, but this is conservatively correct.
- // TODO: Cache set of Uses on the first walk in runOnLoop, update when
- // moving accesses. Can also extend to dominating uses.
- auto *SIMD = MSSA->getMemoryAccess(SI);
- for (auto *BB : CurLoop->getBlocks())
- if (auto *Accesses = MSSA->getBlockAccesses(BB)) {
- for (const auto &MA : *Accesses)
- if (const auto *MU = dyn_cast<MemoryUse>(&MA)) {
- auto *MD = MU->getDefiningAccess();
- if (!MSSA->isLiveOnEntryDef(MD) &&
- CurLoop->contains(MD->getBlock()))
- return false;
- // Disable hoisting past potentially interfering loads. Optimized
- // Uses may point to an access outside the loop, as getClobbering
- // checks the previous iteration when walking the backedge.
- // FIXME: More precise: no Uses that alias SI.
- if (!Flags->IsSink && !MSSA->dominates(SIMD, MU))
- return false;
- } else if (const auto *MD = dyn_cast<MemoryDef>(&MA))
- if (auto *LI = dyn_cast<LoadInst>(MD->getMemoryInst())) {
- (void)LI; // Silence warning.
- assert(!LI->isUnordered() && "Expected unordered load");
- return false;
- }
- }
-
- auto *Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(SI);
- Flags->LicmMssaOptCounter++;
- // If there are no clobbering Defs in the loop, store is safe to hoist.
- return MSSA->isLiveOnEntryDef(Source) ||
- !CurLoop->contains(Source->getBlock());
- }
- }
-
- assert(!I.mayReadOrWriteMemory() && "unhandled aliasing");
-
- // We've established mechanical ability and aliasing, it's up to the caller
- // to check fault safety
- return true;
-}
-
-/// Returns true if a PHINode is a trivially replaceable with an
-/// Instruction.
-/// This is true when all incoming values are that instruction.
-/// This pattern occurs most often with LCSSA PHI nodes.
-///
-static bool isTriviallyReplaceablePHI(const PHINode &PN, const Instruction &I) {
- for (const Value *IncValue : PN.incoming_values())
- if (IncValue != &I)
- return false;
-
- return true;
-}
-
-/// Return true if the instruction is free in the loop.
-static bool isFreeInLoop(const Instruction &I, const Loop *CurLoop,
- const TargetTransformInfo *TTI) {
-
- if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(&I)) {
- if (TTI->getUserCost(GEP) != TargetTransformInfo::TCC_Free)
- return false;
- // For a GEP, we cannot simply use getUserCost because currently it
- // optimistically assume that a GEP will fold into addressing mode
- // regardless of its users.
- const BasicBlock *BB = GEP->getParent();
- for (const User *U : GEP->users()) {
- const Instruction *UI = cast<Instruction>(U);
- if (CurLoop->contains(UI) &&
- (BB != UI->getParent() ||
- (!isa<StoreInst>(UI) && !isa<LoadInst>(UI))))
- return false;
- }
- return true;
- } else
- return TTI->getUserCost(&I) == TargetTransformInfo::TCC_Free;
-}
-
-/// Return true if the only users of this instruction are outside of
-/// the loop. If this is true, we can sink the instruction to the exit
-/// blocks of the loop.
-///
-/// We also return true if the instruction could be folded away in lowering.
-/// (e.g., a GEP can be folded into a load as an addressing mode in the loop).
-static bool isNotUsedOrFreeInLoop(const Instruction &I, const Loop *CurLoop,
- const LoopSafetyInfo *SafetyInfo,
- TargetTransformInfo *TTI, bool &FreeInLoop) {
- const auto &BlockColors = SafetyInfo->getBlockColors();
- bool IsFree = isFreeInLoop(I, CurLoop, TTI);
- for (const User *U : I.users()) {
- const Instruction *UI = cast<Instruction>(U);
- if (const PHINode *PN = dyn_cast<PHINode>(UI)) {
- const BasicBlock *BB = PN->getParent();
- // We cannot sink uses in catchswitches.
- if (isa<CatchSwitchInst>(BB->getTerminator()))
- return false;
-
- // We need to sink a callsite to a unique funclet. Avoid sinking if the
- // phi use is too muddled.
- if (isa<CallInst>(I))
- if (!BlockColors.empty() &&
- BlockColors.find(const_cast<BasicBlock *>(BB))->second.size() != 1)
- return false;
- }
-
- if (CurLoop->contains(UI)) {
- if (IsFree) {
- FreeInLoop = true;
- continue;
- }
- return false;
- }
- }
- return true;
-}
-
-static Instruction *CloneInstructionInExitBlock(
- Instruction &I, BasicBlock &ExitBlock, PHINode &PN, const LoopInfo *LI,
- const LoopSafetyInfo *SafetyInfo, MemorySSAUpdater *MSSAU) {
- Instruction *New;
- if (auto *CI = dyn_cast<CallInst>(&I)) {
- const auto &BlockColors = SafetyInfo->getBlockColors();
-
- // Sinking call-sites need to be handled differently from other
- // instructions. The cloned call-site needs a funclet bundle operand
- // appropriate for its location in the CFG.
- SmallVector<OperandBundleDef, 1> OpBundles;
- for (unsigned BundleIdx = 0, BundleEnd = CI->getNumOperandBundles();
- BundleIdx != BundleEnd; ++BundleIdx) {
- OperandBundleUse Bundle = CI->getOperandBundleAt(BundleIdx);
- if (Bundle.getTagID() == LLVMContext::OB_funclet)
- continue;
-
- OpBundles.emplace_back(Bundle);
- }
-
- if (!BlockColors.empty()) {
- const ColorVector &CV = BlockColors.find(&ExitBlock)->second;
- assert(CV.size() == 1 && "non-unique color for exit block!");
- BasicBlock *BBColor = CV.front();
- Instruction *EHPad = BBColor->getFirstNonPHI();
- if (EHPad->isEHPad())
- OpBundles.emplace_back("funclet", EHPad);
- }
-
- New = CallInst::Create(CI, OpBundles);
- } else {
- New = I.clone();
- }
-
- ExitBlock.getInstList().insert(ExitBlock.getFirstInsertionPt(), New);
- if (!I.getName().empty())
- New->setName(I.getName() + ".le");
-
- MemoryAccess *OldMemAcc;
- if (MSSAU && (OldMemAcc = MSSAU->getMemorySSA()->getMemoryAccess(&I))) {
- // Create a new MemoryAccess and let MemorySSA set its defining access.
- MemoryAccess *NewMemAcc = MSSAU->createMemoryAccessInBB(
- New, nullptr, New->getParent(), MemorySSA::Beginning);
- if (NewMemAcc) {
- if (auto *MemDef = dyn_cast<MemoryDef>(NewMemAcc))
- MSSAU->insertDef(MemDef, /*RenameUses=*/true);
- else {
- auto *MemUse = cast<MemoryUse>(NewMemAcc);
- MSSAU->insertUse(MemUse);
- }
- }
- }
-
- // Build LCSSA PHI nodes for any in-loop operands. Note that this is
- // particularly cheap because we can rip off the PHI node that we're
- // replacing for the number and blocks of the predecessors.
- // OPT: If this shows up in a profile, we can instead finish sinking all
- // invariant instructions, and then walk their operands to re-establish
- // LCSSA. That will eliminate creating PHI nodes just to nuke them when
- // sinking bottom-up.
- for (User::op_iterator OI = New->op_begin(), OE = New->op_end(); OI != OE;
- ++OI)
- if (Instruction *OInst = dyn_cast<Instruction>(*OI))
- if (Loop *OLoop = LI->getLoopFor(OInst->getParent()))
- if (!OLoop->contains(&PN)) {
- PHINode *OpPN =
- PHINode::Create(OInst->getType(), PN.getNumIncomingValues(),
- OInst->getName() + ".lcssa", &ExitBlock.front());
- for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
- OpPN->addIncoming(OInst, PN.getIncomingBlock(i));
- *OI = OpPN;
- }
- return New;
-}
-
-static void eraseInstruction(Instruction &I, ICFLoopSafetyInfo &SafetyInfo,
- AliasSetTracker *AST, MemorySSAUpdater *MSSAU) {
- if (AST)
- AST->deleteValue(&I);
- if (MSSAU)
- MSSAU->removeMemoryAccess(&I);
- SafetyInfo.removeInstruction(&I);
- I.eraseFromParent();
-}
-
-static void moveInstructionBefore(Instruction &I, Instruction &Dest,
- ICFLoopSafetyInfo &SafetyInfo,
- MemorySSAUpdater *MSSAU) {
- SafetyInfo.removeInstruction(&I);
- SafetyInfo.insertInstructionTo(&I, Dest.getParent());
- I.moveBefore(&Dest);
- if (MSSAU)
- if (MemoryUseOrDef *OldMemAcc = cast_or_null<MemoryUseOrDef>(
- MSSAU->getMemorySSA()->getMemoryAccess(&I)))
- MSSAU->moveToPlace(OldMemAcc, Dest.getParent(), MemorySSA::End);
-}
-
-static Instruction *sinkThroughTriviallyReplaceablePHI(
- PHINode *TPN, Instruction *I, LoopInfo *LI,
- SmallDenseMap<BasicBlock *, Instruction *, 32> &SunkCopies,
- const LoopSafetyInfo *SafetyInfo, const Loop *CurLoop,
- MemorySSAUpdater *MSSAU) {
- assert(isTriviallyReplaceablePHI(*TPN, *I) &&
- "Expect only trivially replaceable PHI");
- BasicBlock *ExitBlock = TPN->getParent();
- Instruction *New;
- auto It = SunkCopies.find(ExitBlock);
- if (It != SunkCopies.end())
- New = It->second;
- else
- New = SunkCopies[ExitBlock] = CloneInstructionInExitBlock(
- *I, *ExitBlock, *TPN, LI, SafetyInfo, MSSAU);
- return New;
-}
-
-static bool canSplitPredecessors(PHINode *PN, LoopSafetyInfo *SafetyInfo) {
- BasicBlock *BB = PN->getParent();
- if (!BB->canSplitPredecessors())
- return false;
- // It's not impossible to split EHPad blocks, but if BlockColors already exist
- // it require updating BlockColors for all offspring blocks accordingly. By
- // skipping such corner case, we can make updating BlockColors after splitting
- // predecessor fairly simple.
- if (!SafetyInfo->getBlockColors().empty() && BB->getFirstNonPHI()->isEHPad())
- return false;
- for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
- BasicBlock *BBPred = *PI;
- if (isa<IndirectBrInst>(BBPred->getTerminator()))
- return false;
- }
- return true;
-}
-
-static void splitPredecessorsOfLoopExit(PHINode *PN, DominatorTree *DT,
- LoopInfo *LI, const Loop *CurLoop,
- LoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater *MSSAU) {
-#ifndef NDEBUG
- SmallVector<BasicBlock *, 32> ExitBlocks;
- CurLoop->getUniqueExitBlocks(ExitBlocks);
- SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
-#endif
- BasicBlock *ExitBB = PN->getParent();
- assert(ExitBlockSet.count(ExitBB) && "Expect the PHI is in an exit block.");
-
- // Split predecessors of the loop exit to make instructions in the loop are
- // exposed to exit blocks through trivially replaceable PHIs while keeping the
- // loop in the canonical form where each predecessor of each exit block should
- // be contained within the loop. For example, this will convert the loop below
- // from
- //
- // LB1:
- // %v1 =
- // br %LE, %LB2
- // LB2:
- // %v2 =
- // br %LE, %LB1
- // LE:
- // %p = phi [%v1, %LB1], [%v2, %LB2] <-- non-trivially replaceable
- //
- // to
- //
- // LB1:
- // %v1 =
- // br %LE.split, %LB2
- // LB2:
- // %v2 =
- // br %LE.split2, %LB1
- // LE.split:
- // %p1 = phi [%v1, %LB1] <-- trivially replaceable
- // br %LE
- // LE.split2:
- // %p2 = phi [%v2, %LB2] <-- trivially replaceable
- // br %LE
- // LE:
- // %p = phi [%p1, %LE.split], [%p2, %LE.split2]
- //
- const auto &BlockColors = SafetyInfo->getBlockColors();
- SmallSetVector<BasicBlock *, 8> PredBBs(pred_begin(ExitBB), pred_end(ExitBB));
- while (!PredBBs.empty()) {
- BasicBlock *PredBB = *PredBBs.begin();
- assert(CurLoop->contains(PredBB) &&
- "Expect all predecessors are in the loop");
- if (PN->getBasicBlockIndex(PredBB) >= 0) {
- BasicBlock *NewPred = SplitBlockPredecessors(
- ExitBB, PredBB, ".split.loop.exit", DT, LI, MSSAU, true);
- // Since we do not allow splitting EH-block with BlockColors in
- // canSplitPredecessors(), we can simply assign predecessor's color to
- // the new block.
- if (!BlockColors.empty())
- // Grab a reference to the ColorVector to be inserted before getting the
- // reference to the vector we are copying because inserting the new
- // element in BlockColors might cause the map to be reallocated.
- SafetyInfo->copyColors(NewPred, PredBB);
- }
- PredBBs.remove(PredBB);
- }
-}
-
-/// When an instruction is found to only be used outside of the loop, this
-/// function moves it to the exit blocks and patches up SSA form as needed.
-/// This method is guaranteed to remove the original instruction from its
-/// position, and may either delete it or move it to outside of the loop.
-///
-static bool sink(Instruction &I, LoopInfo *LI, DominatorTree *DT,
- const Loop *CurLoop, ICFLoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
- LLVM_DEBUG(dbgs() << "LICM sinking instruction: " << I << "\n");
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "InstSunk", &I)
- << "sinking " << ore::NV("Inst", &I);
- });
- bool Changed = false;
- if (isa<LoadInst>(I))
- ++NumMovedLoads;
- else if (isa<CallInst>(I))
- ++NumMovedCalls;
- ++NumSunk;
-
- // Iterate over users to be ready for actual sinking. Replace users via
- // unreachable blocks with undef and make all user PHIs trivially replaceable.
- SmallPtrSet<Instruction *, 8> VisitedUsers;
- for (Value::user_iterator UI = I.user_begin(), UE = I.user_end(); UI != UE;) {
- auto *User = cast<Instruction>(*UI);
- Use &U = UI.getUse();
- ++UI;
-
- if (VisitedUsers.count(User) || CurLoop->contains(User))
- continue;
-
- if (!DT->isReachableFromEntry(User->getParent())) {
- U = UndefValue::get(I.getType());
- Changed = true;
- continue;
- }
-
- // The user must be a PHI node.
- PHINode *PN = cast<PHINode>(User);
-
- // Surprisingly, instructions can be used outside of loops without any
- // exits. This can only happen in PHI nodes if the incoming block is
- // unreachable.
- BasicBlock *BB = PN->getIncomingBlock(U);
- if (!DT->isReachableFromEntry(BB)) {
- U = UndefValue::get(I.getType());
- Changed = true;
- continue;
- }
-
- VisitedUsers.insert(PN);
- if (isTriviallyReplaceablePHI(*PN, I))
- continue;
-
- if (!canSplitPredecessors(PN, SafetyInfo))
- return Changed;
-
- // Split predecessors of the PHI so that we can make users trivially
- // replaceable.
- splitPredecessorsOfLoopExit(PN, DT, LI, CurLoop, SafetyInfo, MSSAU);
-
- // Should rebuild the iterators, as they may be invalidated by
- // splitPredecessorsOfLoopExit().
- UI = I.user_begin();
- UE = I.user_end();
- }
-
- if (VisitedUsers.empty())
- return Changed;
-
-#ifndef NDEBUG
- SmallVector<BasicBlock *, 32> ExitBlocks;
- CurLoop->getUniqueExitBlocks(ExitBlocks);
- SmallPtrSet<BasicBlock *, 32> ExitBlockSet(ExitBlocks.begin(),
- ExitBlocks.end());
-#endif
-
- // Clones of this instruction. Don't create more than one per exit block!
- SmallDenseMap<BasicBlock *, Instruction *, 32> SunkCopies;
-
- // If this instruction is only used outside of the loop, then all users are
- // PHI nodes in exit blocks due to LCSSA form. Just RAUW them with clones of
- // the instruction.
- SmallSetVector<User*, 8> Users(I.user_begin(), I.user_end());
- for (auto *UI : Users) {
- auto *User = cast<Instruction>(UI);
-
- if (CurLoop->contains(User))
- continue;
-
- PHINode *PN = cast<PHINode>(User);
- assert(ExitBlockSet.count(PN->getParent()) &&
- "The LCSSA PHI is not in an exit block!");
- // The PHI must be trivially replaceable.
- Instruction *New = sinkThroughTriviallyReplaceablePHI(
- PN, &I, LI, SunkCopies, SafetyInfo, CurLoop, MSSAU);
- PN->replaceAllUsesWith(New);
- eraseInstruction(*PN, *SafetyInfo, nullptr, nullptr);
- Changed = true;
- }
- return Changed;
-}
-
-/// When an instruction is found to only use loop invariant operands that
-/// is safe to hoist, this instruction is called to do the dirty work.
-///
-static void hoist(Instruction &I, const DominatorTree *DT, const Loop *CurLoop,
- BasicBlock *Dest, ICFLoopSafetyInfo *SafetyInfo,
- MemorySSAUpdater *MSSAU, OptimizationRemarkEmitter *ORE) {
- LLVM_DEBUG(dbgs() << "LICM hoisting to " << Dest->getName() << ": " << I
- << "\n");
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "Hoisted", &I) << "hoisting "
- << ore::NV("Inst", &I);
- });
-
- // Metadata can be dependent on conditions we are hoisting above.
- // Conservatively strip all metadata on the instruction unless we were
- // guaranteed to execute I if we entered the loop, in which case the metadata
- // is valid in the loop preheader.
- if (I.hasMetadataOtherThanDebugLoc() &&
- // The check on hasMetadataOtherThanDebugLoc is to prevent us from burning
- // time in isGuaranteedToExecute if we don't actually have anything to
- // drop. It is a compile time optimization, not required for correctness.
- !SafetyInfo->isGuaranteedToExecute(I, DT, CurLoop))
- I.dropUnknownNonDebugMetadata();
-
- if (isa<PHINode>(I))
- // Move the new node to the end of the phi list in the destination block.
- moveInstructionBefore(I, *Dest->getFirstNonPHI(), *SafetyInfo, MSSAU);
- else
- // Move the new node to the destination block, before its terminator.
- moveInstructionBefore(I, *Dest->getTerminator(), *SafetyInfo, MSSAU);
-
- // Apply line 0 debug locations when we are moving instructions to different
- // basic blocks because we want to avoid jumpy line tables.
- if (const DebugLoc &DL = I.getDebugLoc())
- I.setDebugLoc(DebugLoc::get(0, 0, DL.getScope(), DL.getInlinedAt()));
-
- if (isa<LoadInst>(I))
- ++NumMovedLoads;
- else if (isa<CallInst>(I))
- ++NumMovedCalls;
- ++NumHoisted;
-}
-
-/// Only sink or hoist an instruction if it is not a trapping instruction,
-/// or if the instruction is known not to trap when moved to the preheader.
-/// or if it is a trapping instruction and is guaranteed to execute.
-static bool isSafeToExecuteUnconditionally(Instruction &Inst,
- const DominatorTree *DT,
- const Loop *CurLoop,
- const LoopSafetyInfo *SafetyInfo,
- OptimizationRemarkEmitter *ORE,
- const Instruction *CtxI) {
- if (isSafeToSpeculativelyExecute(&Inst, CtxI, DT))
- return true;
-
- bool GuaranteedToExecute =
- SafetyInfo->isGuaranteedToExecute(Inst, DT, CurLoop);
-
- if (!GuaranteedToExecute) {
- auto *LI = dyn_cast<LoadInst>(&Inst);
- if (LI && CurLoop->isLoopInvariant(LI->getPointerOperand()))
- ORE->emit([&]() {
- return OptimizationRemarkMissed(
- DEBUG_TYPE, "LoadWithLoopInvariantAddressCondExecuted", LI)
- << "failed to hoist load with loop-invariant address "
- "because load is conditionally executed";
- });
- }
-
- return GuaranteedToExecute;
-}
-
-namespace {
-class LoopPromoter : public LoadAndStorePromoter {
- Value *SomePtr; // Designated pointer to store to.
- const SmallSetVector<Value *, 8> &PointerMustAliases;
- SmallVectorImpl<BasicBlock *> &LoopExitBlocks;
- SmallVectorImpl<Instruction *> &LoopInsertPts;
- SmallVectorImpl<MemoryAccess *> &MSSAInsertPts;
- PredIteratorCache &PredCache;
- AliasSetTracker &AST;
- MemorySSAUpdater *MSSAU;
- LoopInfo &LI;
- DebugLoc DL;
- int Alignment;
- bool UnorderedAtomic;
- AAMDNodes AATags;
- ICFLoopSafetyInfo &SafetyInfo;
-
- Value *maybeInsertLCSSAPHI(Value *V, BasicBlock *BB) const {
- if (Instruction *I = dyn_cast<Instruction>(V))
- if (Loop *L = LI.getLoopFor(I->getParent()))
- if (!L->contains(BB)) {
- // We need to create an LCSSA PHI node for the incoming value and
- // store that.
- PHINode *PN = PHINode::Create(I->getType(), PredCache.size(BB),
- I->getName() + ".lcssa", &BB->front());
- for (BasicBlock *Pred : PredCache.get(BB))
- PN->addIncoming(I, Pred);
- return PN;
- }
- return V;
- }
-
-public:
- LoopPromoter(Value *SP, ArrayRef<const Instruction *> Insts, SSAUpdater &S,
- const SmallSetVector<Value *, 8> &PMA,
- SmallVectorImpl<BasicBlock *> &LEB,
- SmallVectorImpl<Instruction *> &LIP,
- SmallVectorImpl<MemoryAccess *> &MSSAIP, PredIteratorCache &PIC,
- AliasSetTracker &ast, MemorySSAUpdater *MSSAU, LoopInfo &li,
- DebugLoc dl, int alignment, bool UnorderedAtomic,
- const AAMDNodes &AATags, ICFLoopSafetyInfo &SafetyInfo)
- : LoadAndStorePromoter(Insts, S), SomePtr(SP), PointerMustAliases(PMA),
- LoopExitBlocks(LEB), LoopInsertPts(LIP), MSSAInsertPts(MSSAIP),
- PredCache(PIC), AST(ast), MSSAU(MSSAU), LI(li), DL(std::move(dl)),
- Alignment(alignment), UnorderedAtomic(UnorderedAtomic), AATags(AATags),
- SafetyInfo(SafetyInfo) {}
-
- bool isInstInList(Instruction *I,
- const SmallVectorImpl<Instruction *> &) const override {
- Value *Ptr;
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- Ptr = LI->getOperand(0);
- else
- Ptr = cast<StoreInst>(I)->getPointerOperand();
- return PointerMustAliases.count(Ptr);
- }
-
- void doExtraRewritesBeforeFinalDeletion() override {
- // Insert stores after in the loop exit blocks. Each exit block gets a
- // store of the live-out values that feed them. Since we've already told
- // the SSA updater about the defs in the loop and the preheader
- // definition, it is all set and we can start using it.
- for (unsigned i = 0, e = LoopExitBlocks.size(); i != e; ++i) {
- BasicBlock *ExitBlock = LoopExitBlocks[i];
- Value *LiveInValue = SSA.GetValueInMiddleOfBlock(ExitBlock);
- LiveInValue = maybeInsertLCSSAPHI(LiveInValue, ExitBlock);
- Value *Ptr = maybeInsertLCSSAPHI(SomePtr, ExitBlock);
- Instruction *InsertPos = LoopInsertPts[i];
- StoreInst *NewSI = new StoreInst(LiveInValue, Ptr, InsertPos);
- if (UnorderedAtomic)
- NewSI->setOrdering(AtomicOrdering::Unordered);
- NewSI->setAlignment(Alignment);
- NewSI->setDebugLoc(DL);
- if (AATags)
- NewSI->setAAMetadata(AATags);
-
- if (MSSAU) {
- MemoryAccess *MSSAInsertPoint = MSSAInsertPts[i];
- MemoryAccess *NewMemAcc;
- if (!MSSAInsertPoint) {
- NewMemAcc = MSSAU->createMemoryAccessInBB(
- NewSI, nullptr, NewSI->getParent(), MemorySSA::Beginning);
- } else {
- NewMemAcc =
- MSSAU->createMemoryAccessAfter(NewSI, nullptr, MSSAInsertPoint);
- }
- MSSAInsertPts[i] = NewMemAcc;
- MSSAU->insertDef(cast<MemoryDef>(NewMemAcc), true);
- // FIXME: true for safety, false may still be correct.
- }
- }
- }
-
- void replaceLoadWithValue(LoadInst *LI, Value *V) const override {
- // Update alias analysis.
- AST.copyValue(LI, V);
- }
- void instructionDeleted(Instruction *I) const override {
- SafetyInfo.removeInstruction(I);
- AST.deleteValue(I);
- if (MSSAU)
- MSSAU->removeMemoryAccess(I);
- }
-};
-
-
-/// Return true iff we can prove that a caller of this function can not inspect
-/// the contents of the provided object in a well defined program.
-bool isKnownNonEscaping(Value *Object, const TargetLibraryInfo *TLI) {
- if (isa<AllocaInst>(Object))
- // Since the alloca goes out of scope, we know the caller can't retain a
- // reference to it and be well defined. Thus, we don't need to check for
- // capture.
- return true;
-
- // For all other objects we need to know that the caller can't possibly
- // have gotten a reference to the object. There are two components of
- // that:
- // 1) Object can't be escaped by this function. This is what
- // PointerMayBeCaptured checks.
- // 2) Object can't have been captured at definition site. For this, we
- // need to know the return value is noalias. At the moment, we use a
- // weaker condition and handle only AllocLikeFunctions (which are
- // known to be noalias). TODO
- return isAllocLikeFn(Object, TLI) &&
- !PointerMayBeCaptured(Object, true, true);
-}
-
-} // namespace
-
-/// Try to promote memory values to scalars by sinking stores out of the
-/// loop and moving loads to before the loop. We do this by looping over
-/// the stores in the loop, looking for stores to Must pointers which are
-/// loop invariant.
-///
-bool llvm::promoteLoopAccessesToScalars(
- const SmallSetVector<Value *, 8> &PointerMustAliases,
- SmallVectorImpl<BasicBlock *> &ExitBlocks,
- SmallVectorImpl<Instruction *> &InsertPts,
- SmallVectorImpl<MemoryAccess *> &MSSAInsertPts, PredIteratorCache &PIC,
- LoopInfo *LI, DominatorTree *DT, const TargetLibraryInfo *TLI,
- Loop *CurLoop, AliasSetTracker *CurAST, MemorySSAUpdater *MSSAU,
- ICFLoopSafetyInfo *SafetyInfo, OptimizationRemarkEmitter *ORE) {
- // Verify inputs.
- assert(LI != nullptr && DT != nullptr && CurLoop != nullptr &&
- CurAST != nullptr && SafetyInfo != nullptr &&
- "Unexpected Input to promoteLoopAccessesToScalars");
-
- Value *SomePtr = *PointerMustAliases.begin();
- BasicBlock *Preheader = CurLoop->getLoopPreheader();
-
- // It is not safe to promote a load/store from the loop if the load/store is
- // conditional. For example, turning:
- //
- // for () { if (c) *P += 1; }
- //
- // into:
- //
- // tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
- //
- // is not safe, because *P may only be valid to access if 'c' is true.
- //
- // The safety property divides into two parts:
- // p1) The memory may not be dereferenceable on entry to the loop. In this
- // case, we can't insert the required load in the preheader.
- // p2) The memory model does not allow us to insert a store along any dynamic
- // path which did not originally have one.
- //
- // If at least one store is guaranteed to execute, both properties are
- // satisfied, and promotion is legal.
- //
- // This, however, is not a necessary condition. Even if no store/load is
- // guaranteed to execute, we can still establish these properties.
- // We can establish (p1) by proving that hoisting the load into the preheader
- // is safe (i.e. proving dereferenceability on all paths through the loop). We
- // can use any access within the alias set to prove dereferenceability,
- // since they're all must alias.
- //
- // There are two ways establish (p2):
- // a) Prove the location is thread-local. In this case the memory model
- // requirement does not apply, and stores are safe to insert.
- // b) Prove a store dominates every exit block. In this case, if an exit
- // blocks is reached, the original dynamic path would have taken us through
- // the store, so inserting a store into the exit block is safe. Note that this
- // is different from the store being guaranteed to execute. For instance,
- // if an exception is thrown on the first iteration of the loop, the original
- // store is never executed, but the exit blocks are not executed either.
-
- bool DereferenceableInPH = false;
- bool SafeToInsertStore = false;
-
- SmallVector<Instruction *, 64> LoopUses;
-
- // We start with an alignment of one and try to find instructions that allow
- // us to prove better alignment.
- unsigned Alignment = 1;
- // Keep track of which types of access we see
- bool SawUnorderedAtomic = false;
- bool SawNotAtomic = false;
- AAMDNodes AATags;
-
- const DataLayout &MDL = Preheader->getModule()->getDataLayout();
-
- bool IsKnownThreadLocalObject = false;
- if (SafetyInfo->anyBlockMayThrow()) {
- // If a loop can throw, we have to insert a store along each unwind edge.
- // That said, we can't actually make the unwind edge explicit. Therefore,
- // we have to prove that the store is dead along the unwind edge. We do
- // this by proving that the caller can't have a reference to the object
- // after return and thus can't possibly load from the object.
- Value *Object = GetUnderlyingObject(SomePtr, MDL);
- if (!isKnownNonEscaping(Object, TLI))
- return false;
- // Subtlety: Alloca's aren't visible to callers, but *are* potentially
- // visible to other threads if captured and used during their lifetimes.
- IsKnownThreadLocalObject = !isa<AllocaInst>(Object);
- }
-
- // Check that all of the pointers in the alias set have the same type. We
- // cannot (yet) promote a memory location that is loaded and stored in
- // different sizes. While we are at it, collect alignment and AA info.
- for (Value *ASIV : PointerMustAliases) {
- // Check that all of the pointers in the alias set have the same type. We
- // cannot (yet) promote a memory location that is loaded and stored in
- // different sizes.
- if (SomePtr->getType() != ASIV->getType())
- return false;
-
- for (User *U : ASIV->users()) {
- // Ignore instructions that are outside the loop.
- Instruction *UI = dyn_cast<Instruction>(U);
- if (!UI || !CurLoop->contains(UI))
- continue;
-
- // If there is an non-load/store instruction in the loop, we can't promote
- // it.
- if (LoadInst *Load = dyn_cast<LoadInst>(UI)) {
- if (!Load->isUnordered())
- return false;
-
- SawUnorderedAtomic |= Load->isAtomic();
- SawNotAtomic |= !Load->isAtomic();
-
- unsigned InstAlignment = Load->getAlignment();
- if (!InstAlignment)
- InstAlignment =
- MDL.getABITypeAlignment(Load->getType());
-
- // Note that proving a load safe to speculate requires proving
- // sufficient alignment at the target location. Proving it guaranteed
- // to execute does as well. Thus we can increase our guaranteed
- // alignment as well.
- if (!DereferenceableInPH || (InstAlignment > Alignment))
- if (isSafeToExecuteUnconditionally(*Load, DT, CurLoop, SafetyInfo,
- ORE, Preheader->getTerminator())) {
- DereferenceableInPH = true;
- Alignment = std::max(Alignment, InstAlignment);
- }
- } else if (const StoreInst *Store = dyn_cast<StoreInst>(UI)) {
- // Stores *of* the pointer are not interesting, only stores *to* the
- // pointer.
- if (UI->getOperand(1) != ASIV)
- continue;
- if (!Store->isUnordered())
- return false;
-
- SawUnorderedAtomic |= Store->isAtomic();
- SawNotAtomic |= !Store->isAtomic();
-
- // If the store is guaranteed to execute, both properties are satisfied.
- // We may want to check if a store is guaranteed to execute even if we
- // already know that promotion is safe, since it may have higher
- // alignment than any other guaranteed stores, in which case we can
- // raise the alignment on the promoted store.
- unsigned InstAlignment = Store->getAlignment();
- if (!InstAlignment)
- InstAlignment =
- MDL.getABITypeAlignment(Store->getValueOperand()->getType());
-
- if (!DereferenceableInPH || !SafeToInsertStore ||
- (InstAlignment > Alignment)) {
- if (SafetyInfo->isGuaranteedToExecute(*UI, DT, CurLoop)) {
- DereferenceableInPH = true;
- SafeToInsertStore = true;
- Alignment = std::max(Alignment, InstAlignment);
- }
- }
-
- // If a store dominates all exit blocks, it is safe to sink.
- // As explained above, if an exit block was executed, a dominating
- // store must have been executed at least once, so we are not
- // introducing stores on paths that did not have them.
- // Note that this only looks at explicit exit blocks. If we ever
- // start sinking stores into unwind edges (see above), this will break.
- if (!SafeToInsertStore)
- SafeToInsertStore = llvm::all_of(ExitBlocks, [&](BasicBlock *Exit) {
- return DT->dominates(Store->getParent(), Exit);
- });
-
- // If the store is not guaranteed to execute, we may still get
- // deref info through it.
- if (!DereferenceableInPH) {
- DereferenceableInPH = isDereferenceableAndAlignedPointer(
- Store->getPointerOperand(), Store->getValueOperand()->getType(),
- Store->getAlignment(), MDL, Preheader->getTerminator(), DT);
- }
- } else
- return false; // Not a load or store.
-
- // Merge the AA tags.
- if (LoopUses.empty()) {
- // On the first load/store, just take its AA tags.
- UI->getAAMetadata(AATags);
- } else if (AATags) {
- UI->getAAMetadata(AATags, /* Merge = */ true);
- }
-
- LoopUses.push_back(UI);
- }
- }
-
- // If we found both an unordered atomic instruction and a non-atomic memory
- // access, bail. We can't blindly promote non-atomic to atomic since we
- // might not be able to lower the result. We can't downgrade since that
- // would violate memory model. Also, align 0 is an error for atomics.
- if (SawUnorderedAtomic && SawNotAtomic)
- return false;
-
- // If we're inserting an atomic load in the preheader, we must be able to
- // lower it. We're only guaranteed to be able to lower naturally aligned
- // atomics.
- auto *SomePtrElemType = SomePtr->getType()->getPointerElementType();
- if (SawUnorderedAtomic &&
- Alignment < MDL.getTypeStoreSize(SomePtrElemType))
- return false;
-
- // If we couldn't prove we can hoist the load, bail.
- if (!DereferenceableInPH)
- return false;
-
- // We know we can hoist the load, but don't have a guaranteed store.
- // Check whether the location is thread-local. If it is, then we can insert
- // stores along paths which originally didn't have them without violating the
- // memory model.
- if (!SafeToInsertStore) {
- if (IsKnownThreadLocalObject)
- SafeToInsertStore = true;
- else {
- Value *Object = GetUnderlyingObject(SomePtr, MDL);
- SafeToInsertStore =
- (isAllocLikeFn(Object, TLI) || isa<AllocaInst>(Object)) &&
- !PointerMayBeCaptured(Object, true, true);
- }
- }
-
- // If we've still failed to prove we can sink the store, give up.
- if (!SafeToInsertStore)
- return false;
-
- // Otherwise, this is safe to promote, lets do it!
- LLVM_DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " << *SomePtr
- << '\n');
- ORE->emit([&]() {
- return OptimizationRemark(DEBUG_TYPE, "PromoteLoopAccessesToScalar",
- LoopUses[0])
- << "Moving accesses to memory location out of the loop";
- });
- ++NumPromoted;
-
- // Grab a debug location for the inserted loads/stores; given that the
- // inserted loads/stores have little relation to the original loads/stores,
- // this code just arbitrarily picks a location from one, since any debug
- // location is better than none.
- DebugLoc DL = LoopUses[0]->getDebugLoc();
-
- // We use the SSAUpdater interface to insert phi nodes as required.
- SmallVector<PHINode *, 16> NewPHIs;
- SSAUpdater SSA(&NewPHIs);
- LoopPromoter Promoter(SomePtr, LoopUses, SSA, PointerMustAliases, ExitBlocks,
- InsertPts, MSSAInsertPts, PIC, *CurAST, MSSAU, *LI, DL,
- Alignment, SawUnorderedAtomic, AATags, *SafetyInfo);
-
- // Set up the preheader to have a definition of the value. It is the live-out
- // value from the preheader that uses in the loop will use.
- LoadInst *PreheaderLoad = new LoadInst(
- SomePtr->getType()->getPointerElementType(), SomePtr,
- SomePtr->getName() + ".promoted", Preheader->getTerminator());
- if (SawUnorderedAtomic)
- PreheaderLoad->setOrdering(AtomicOrdering::Unordered);
- PreheaderLoad->setAlignment(Alignment);
- PreheaderLoad->setDebugLoc(DL);
- if (AATags)
- PreheaderLoad->setAAMetadata(AATags);
- SSA.AddAvailableValue(Preheader, PreheaderLoad);
-
- MemoryAccess *PreheaderLoadMemoryAccess;
- if (MSSAU) {
- PreheaderLoadMemoryAccess = MSSAU->createMemoryAccessInBB(
- PreheaderLoad, nullptr, PreheaderLoad->getParent(), MemorySSA::End);
- MemoryUse *NewMemUse = cast<MemoryUse>(PreheaderLoadMemoryAccess);
- MSSAU->insertUse(NewMemUse);
- }
-
- // Rewrite all the loads in the loop and remember all the definitions from
- // stores in the loop.
- Promoter.run(LoopUses);
-
- if (MSSAU && VerifyMemorySSA)
- MSSAU->getMemorySSA()->verifyMemorySSA();
- // If the SSAUpdater didn't use the load in the preheader, just zap it now.
- if (PreheaderLoad->use_empty())
- eraseInstruction(*PreheaderLoad, *SafetyInfo, CurAST, MSSAU);
-
- return true;
-}
-
-/// Returns an owning pointer to an alias set which incorporates aliasing info
-/// from L and all subloops of L.
-/// FIXME: In new pass manager, there is no helper function to handle loop
-/// analysis such as cloneBasicBlockAnalysis, so the AST needs to be recomputed
-/// from scratch for every loop. Hook up with the helper functions when
-/// available in the new pass manager to avoid redundant computation.
-std::unique_ptr<AliasSetTracker>
-LoopInvariantCodeMotion::collectAliasInfoForLoop(Loop *L, LoopInfo *LI,
- AliasAnalysis *AA) {
- std::unique_ptr<AliasSetTracker> CurAST;
- SmallVector<Loop *, 4> RecomputeLoops;
- for (Loop *InnerL : L->getSubLoops()) {
- auto MapI = LoopToAliasSetMap.find(InnerL);
- // If the AST for this inner loop is missing it may have been merged into
- // some other loop's AST and then that loop unrolled, and so we need to
- // recompute it.
- if (MapI == LoopToAliasSetMap.end()) {
- RecomputeLoops.push_back(InnerL);
- continue;
- }
- std::unique_ptr<AliasSetTracker> InnerAST = std::move(MapI->second);
-
- if (CurAST) {
- // What if InnerLoop was modified by other passes ?
- // Once we've incorporated the inner loop's AST into ours, we don't need
- // the subloop's anymore.
- CurAST->add(*InnerAST);
- } else {
- CurAST = std::move(InnerAST);
- }
- LoopToAliasSetMap.erase(MapI);
- }
- if (!CurAST)
- CurAST = make_unique<AliasSetTracker>(*AA);
-
- // Add everything from the sub loops that are no longer directly available.
- for (Loop *InnerL : RecomputeLoops)
- for (BasicBlock *BB : InnerL->blocks())
- CurAST->add(*BB);
-
- // And merge in this loop (without anything from inner loops).
- for (BasicBlock *BB : L->blocks())
- if (LI->getLoopFor(BB) == L)
- CurAST->add(*BB);
-
- return CurAST;
-}
-
-std::unique_ptr<AliasSetTracker>
-LoopInvariantCodeMotion::collectAliasInfoForLoopWithMSSA(
- Loop *L, AliasAnalysis *AA, MemorySSAUpdater *MSSAU) {
- auto *MSSA = MSSAU->getMemorySSA();
- auto CurAST = make_unique<AliasSetTracker>(*AA, MSSA, L);
- CurAST->addAllInstructionsInLoopUsingMSSA();
- return CurAST;
-}
-
-/// Simple analysis hook. Clone alias set info.
-///
-void LegacyLICMPass::cloneBasicBlockAnalysis(BasicBlock *From, BasicBlock *To,
- Loop *L) {
- auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
- if (ASTIt == LICM.getLoopToAliasSetMap().end())
- return;
-
- ASTIt->second->copyValue(From, To);
-}
-
-/// Simple Analysis hook. Delete value V from alias set
-///
-void LegacyLICMPass::deleteAnalysisValue(Value *V, Loop *L) {
- auto ASTIt = LICM.getLoopToAliasSetMap().find(L);
- if (ASTIt == LICM.getLoopToAliasSetMap().end())
- return;
-
- ASTIt->second->deleteValue(V);
-}
-
-/// Simple Analysis hook. Delete value L from alias set map.
-///
-void LegacyLICMPass::deleteAnalysisLoop(Loop *L) {
- if (!LICM.getLoopToAliasSetMap().count(L))
- return;
-
- LICM.getLoopToAliasSetMap().erase(L);
-}
-
-static bool pointerInvalidatedByLoop(MemoryLocation MemLoc,
- AliasSetTracker *CurAST, Loop *CurLoop,
- AliasAnalysis *AA) {
- // First check to see if any of the basic blocks in CurLoop invalidate *V.
- bool isInvalidatedAccordingToAST = CurAST->getAliasSetFor(MemLoc).isMod();
-
- if (!isInvalidatedAccordingToAST || !LICMN2Theshold)
- return isInvalidatedAccordingToAST;
-
- // Check with a diagnostic analysis if we can refine the information above.
- // This is to identify the limitations of using the AST.
- // The alias set mechanism used by LICM has a major weakness in that it
- // combines all things which may alias into a single set *before* asking
- // modref questions. As a result, a single readonly call within a loop will
- // collapse all loads and stores into a single alias set and report
- // invalidation if the loop contains any store. For example, readonly calls
- // with deopt states have this form and create a general alias set with all
- // loads and stores. In order to get any LICM in loops containing possible
- // deopt states we need a more precise invalidation of checking the mod ref
- // info of each instruction within the loop and LI. This has a complexity of
- // O(N^2), so currently, it is used only as a diagnostic tool since the
- // default value of LICMN2Threshold is zero.
-
- // Don't look at nested loops.
- if (CurLoop->begin() != CurLoop->end())
- return true;
-
- int N = 0;
- for (BasicBlock *BB : CurLoop->getBlocks())
- for (Instruction &I : *BB) {
- if (N >= LICMN2Theshold) {
- LLVM_DEBUG(dbgs() << "Alasing N2 threshold exhausted for "
- << *(MemLoc.Ptr) << "\n");
- return true;
- }
- N++;
- auto Res = AA->getModRefInfo(&I, MemLoc);
- if (isModSet(Res)) {
- LLVM_DEBUG(dbgs() << "Aliasing failed on " << I << " for "
- << *(MemLoc.Ptr) << "\n");
- return true;
- }
- }
- LLVM_DEBUG(dbgs() << "Aliasing okay for " << *(MemLoc.Ptr) << "\n");
- return false;
-}
-
-static bool pointerInvalidatedByLoopWithMSSA(MemorySSA *MSSA, MemoryUse *MU,
- Loop *CurLoop,
- SinkAndHoistLICMFlags &Flags) {
- // For hoisting, use the walker to determine safety
- if (!Flags.IsSink) {
- MemoryAccess *Source;
- // See declaration of SetLicmMssaOptCap for usage details.
- if (Flags.LicmMssaOptCounter >= Flags.LicmMssaOptCap)
- Source = MU->getDefiningAccess();
- else {
- Source = MSSA->getSkipSelfWalker()->getClobberingMemoryAccess(MU);
- Flags.LicmMssaOptCounter++;
- }
- return !MSSA->isLiveOnEntryDef(Source) &&
- CurLoop->contains(Source->getBlock());
- }
-
- // For sinking, we'd need to check all Defs below this use. The getClobbering
- // call will look on the backedge of the loop, but will check aliasing with
- // the instructions on the previous iteration.
- // For example:
- // for (i ... )
- // load a[i] ( Use (LoE)
- // store a[i] ( 1 = Def (2), with 2 = Phi for the loop.
- // i++;
- // The load sees no clobbering inside the loop, as the backedge alias check
- // does phi translation, and will check aliasing against store a[i-1].
- // However sinking the load outside the loop, below the store is incorrect.
-
- // For now, only sink if there are no Defs in the loop, and the existing ones
- // precede the use and are in the same block.
- // FIXME: Increase precision: Safe to sink if Use post dominates the Def;
- // needs PostDominatorTreeAnalysis.
- // FIXME: More precise: no Defs that alias this Use.
- if (Flags.NoOfMemAccTooLarge)
- return true;
- for (auto *BB : CurLoop->getBlocks())
- if (auto *Accesses = MSSA->getBlockDefs(BB))
- for (const auto &MA : *Accesses)
- if (const auto *MD = dyn_cast<MemoryDef>(&MA))
- if (MU->getBlock() != MD->getBlock() ||
- !MSSA->locallyDominates(MD, MU))
- return true;
- return false;
-}
-
-/// Little predicate that returns true if the specified basic block is in
-/// a subloop of the current one, not the current one itself.
-///
-static bool inSubLoop(BasicBlock *BB, Loop *CurLoop, LoopInfo *LI) {
- assert(CurLoop->contains(BB) && "Only valid if BB is IN the loop");
- return LI->getLoopFor(BB) != CurLoop;
-}