aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp')
-rw-r--r--contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp733
1 files changed, 0 insertions, 733 deletions
diff --git a/contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp b/contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
deleted file mode 100644
index 5be13fa745cb..000000000000
--- a/contrib/llvm/lib/Transforms/Instrumentation/ThreadSanitizer.cpp
+++ /dev/null
@@ -1,733 +0,0 @@
-//===-- ThreadSanitizer.cpp - race detector -------------------------------===//
-//
-// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
-// See https://llvm.org/LICENSE.txt for license information.
-// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
-//
-//===----------------------------------------------------------------------===//
-//
-// This file is a part of ThreadSanitizer, a race detector.
-//
-// The tool is under development, for the details about previous versions see
-// http://code.google.com/p/data-race-test
-//
-// The instrumentation phase is quite simple:
-// - Insert calls to run-time library before every memory access.
-// - Optimizations may apply to avoid instrumenting some of the accesses.
-// - Insert calls at function entry/exit.
-// The rest is handled by the run-time library.
-//===----------------------------------------------------------------------===//
-
-#include "llvm/Transforms/Instrumentation/ThreadSanitizer.h"
-#include "llvm/ADT/SmallPtrSet.h"
-#include "llvm/ADT/SmallString.h"
-#include "llvm/ADT/SmallVector.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/StringExtras.h"
-#include "llvm/Analysis/CaptureTracking.h"
-#include "llvm/Analysis/TargetLibraryInfo.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include "llvm/Analysis/ValueTracking.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/IR/Intrinsics.h"
-#include "llvm/IR/LLVMContext.h"
-#include "llvm/IR/Metadata.h"
-#include "llvm/IR/Module.h"
-#include "llvm/IR/Type.h"
-#include "llvm/ProfileData/InstrProf.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/MathExtras.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Instrumentation.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/EscapeEnumerator.h"
-#include "llvm/Transforms/Utils/ModuleUtils.h"
-
-using namespace llvm;
-
-#define DEBUG_TYPE "tsan"
-
-static cl::opt<bool> ClInstrumentMemoryAccesses(
- "tsan-instrument-memory-accesses", cl::init(true),
- cl::desc("Instrument memory accesses"), cl::Hidden);
-static cl::opt<bool> ClInstrumentFuncEntryExit(
- "tsan-instrument-func-entry-exit", cl::init(true),
- cl::desc("Instrument function entry and exit"), cl::Hidden);
-static cl::opt<bool> ClHandleCxxExceptions(
- "tsan-handle-cxx-exceptions", cl::init(true),
- cl::desc("Handle C++ exceptions (insert cleanup blocks for unwinding)"),
- cl::Hidden);
-static cl::opt<bool> ClInstrumentAtomics(
- "tsan-instrument-atomics", cl::init(true),
- cl::desc("Instrument atomics"), cl::Hidden);
-static cl::opt<bool> ClInstrumentMemIntrinsics(
- "tsan-instrument-memintrinsics", cl::init(true),
- cl::desc("Instrument memintrinsics (memset/memcpy/memmove)"), cl::Hidden);
-
-STATISTIC(NumInstrumentedReads, "Number of instrumented reads");
-STATISTIC(NumInstrumentedWrites, "Number of instrumented writes");
-STATISTIC(NumOmittedReadsBeforeWrite,
- "Number of reads ignored due to following writes");
-STATISTIC(NumAccessesWithBadSize, "Number of accesses with bad size");
-STATISTIC(NumInstrumentedVtableWrites, "Number of vtable ptr writes");
-STATISTIC(NumInstrumentedVtableReads, "Number of vtable ptr reads");
-STATISTIC(NumOmittedReadsFromConstantGlobals,
- "Number of reads from constant globals");
-STATISTIC(NumOmittedReadsFromVtable, "Number of vtable reads");
-STATISTIC(NumOmittedNonCaptured, "Number of accesses ignored due to capturing");
-
-static const char *const kTsanModuleCtorName = "tsan.module_ctor";
-static const char *const kTsanInitName = "__tsan_init";
-
-namespace {
-
-/// ThreadSanitizer: instrument the code in module to find races.
-///
-/// Instantiating ThreadSanitizer inserts the tsan runtime library API function
-/// declarations into the module if they don't exist already. Instantiating
-/// ensures the __tsan_init function is in the list of global constructors for
-/// the module.
-struct ThreadSanitizer {
- ThreadSanitizer(Module &M);
- bool sanitizeFunction(Function &F, const TargetLibraryInfo &TLI);
-
-private:
- void initializeCallbacks(Module &M);
- bool instrumentLoadOrStore(Instruction *I, const DataLayout &DL);
- bool instrumentAtomic(Instruction *I, const DataLayout &DL);
- bool instrumentMemIntrinsic(Instruction *I);
- void chooseInstructionsToInstrument(SmallVectorImpl<Instruction *> &Local,
- SmallVectorImpl<Instruction *> &All,
- const DataLayout &DL);
- bool addrPointsToConstantData(Value *Addr);
- int getMemoryAccessFuncIndex(Value *Addr, const DataLayout &DL);
- void InsertRuntimeIgnores(Function &F);
-
- Type *IntptrTy;
- IntegerType *OrdTy;
- // Callbacks to run-time library are computed in doInitialization.
- FunctionCallee TsanFuncEntry;
- FunctionCallee TsanFuncExit;
- FunctionCallee TsanIgnoreBegin;
- FunctionCallee TsanIgnoreEnd;
- // Accesses sizes are powers of two: 1, 2, 4, 8, 16.
- static const size_t kNumberOfAccessSizes = 5;
- FunctionCallee TsanRead[kNumberOfAccessSizes];
- FunctionCallee TsanWrite[kNumberOfAccessSizes];
- FunctionCallee TsanUnalignedRead[kNumberOfAccessSizes];
- FunctionCallee TsanUnalignedWrite[kNumberOfAccessSizes];
- FunctionCallee TsanAtomicLoad[kNumberOfAccessSizes];
- FunctionCallee TsanAtomicStore[kNumberOfAccessSizes];
- FunctionCallee TsanAtomicRMW[AtomicRMWInst::LAST_BINOP + 1]
- [kNumberOfAccessSizes];
- FunctionCallee TsanAtomicCAS[kNumberOfAccessSizes];
- FunctionCallee TsanAtomicThreadFence;
- FunctionCallee TsanAtomicSignalFence;
- FunctionCallee TsanVptrUpdate;
- FunctionCallee TsanVptrLoad;
- FunctionCallee MemmoveFn, MemcpyFn, MemsetFn;
- Function *TsanCtorFunction;
-};
-
-struct ThreadSanitizerLegacyPass : FunctionPass {
- ThreadSanitizerLegacyPass() : FunctionPass(ID) {}
- StringRef getPassName() const override;
- void getAnalysisUsage(AnalysisUsage &AU) const override;
- bool runOnFunction(Function &F) override;
- bool doInitialization(Module &M) override;
- static char ID; // Pass identification, replacement for typeid.
-private:
- Optional<ThreadSanitizer> TSan;
-};
-} // namespace
-
-PreservedAnalyses ThreadSanitizerPass::run(Function &F,
- FunctionAnalysisManager &FAM) {
- ThreadSanitizer TSan(*F.getParent());
- if (TSan.sanitizeFunction(F, FAM.getResult<TargetLibraryAnalysis>(F)))
- return PreservedAnalyses::none();
- return PreservedAnalyses::all();
-}
-
-char ThreadSanitizerLegacyPass::ID = 0;
-INITIALIZE_PASS_BEGIN(ThreadSanitizerLegacyPass, "tsan",
- "ThreadSanitizer: detects data races.", false, false)
-INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
-INITIALIZE_PASS_END(ThreadSanitizerLegacyPass, "tsan",
- "ThreadSanitizer: detects data races.", false, false)
-
-StringRef ThreadSanitizerLegacyPass::getPassName() const {
- return "ThreadSanitizerLegacyPass";
-}
-
-void ThreadSanitizerLegacyPass::getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequired<TargetLibraryInfoWrapperPass>();
-}
-
-bool ThreadSanitizerLegacyPass::doInitialization(Module &M) {
- TSan.emplace(M);
- return true;
-}
-
-bool ThreadSanitizerLegacyPass::runOnFunction(Function &F) {
- auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
- TSan->sanitizeFunction(F, TLI);
- return true;
-}
-
-FunctionPass *llvm::createThreadSanitizerLegacyPassPass() {
- return new ThreadSanitizerLegacyPass();
-}
-
-void ThreadSanitizer::initializeCallbacks(Module &M) {
- IRBuilder<> IRB(M.getContext());
- AttributeList Attr;
- Attr = Attr.addAttribute(M.getContext(), AttributeList::FunctionIndex,
- Attribute::NoUnwind);
- // Initialize the callbacks.
- TsanFuncEntry = M.getOrInsertFunction("__tsan_func_entry", Attr,
- IRB.getVoidTy(), IRB.getInt8PtrTy());
- TsanFuncExit =
- M.getOrInsertFunction("__tsan_func_exit", Attr, IRB.getVoidTy());
- TsanIgnoreBegin = M.getOrInsertFunction("__tsan_ignore_thread_begin", Attr,
- IRB.getVoidTy());
- TsanIgnoreEnd =
- M.getOrInsertFunction("__tsan_ignore_thread_end", Attr, IRB.getVoidTy());
- OrdTy = IRB.getInt32Ty();
- for (size_t i = 0; i < kNumberOfAccessSizes; ++i) {
- const unsigned ByteSize = 1U << i;
- const unsigned BitSize = ByteSize * 8;
- std::string ByteSizeStr = utostr(ByteSize);
- std::string BitSizeStr = utostr(BitSize);
- SmallString<32> ReadName("__tsan_read" + ByteSizeStr);
- TsanRead[i] = M.getOrInsertFunction(ReadName, Attr, IRB.getVoidTy(),
- IRB.getInt8PtrTy());
-
- SmallString<32> WriteName("__tsan_write" + ByteSizeStr);
- TsanWrite[i] = M.getOrInsertFunction(WriteName, Attr, IRB.getVoidTy(),
- IRB.getInt8PtrTy());
-
- SmallString<64> UnalignedReadName("__tsan_unaligned_read" + ByteSizeStr);
- TsanUnalignedRead[i] = M.getOrInsertFunction(
- UnalignedReadName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
-
- SmallString<64> UnalignedWriteName("__tsan_unaligned_write" + ByteSizeStr);
- TsanUnalignedWrite[i] = M.getOrInsertFunction(
- UnalignedWriteName, Attr, IRB.getVoidTy(), IRB.getInt8PtrTy());
-
- Type *Ty = Type::getIntNTy(M.getContext(), BitSize);
- Type *PtrTy = Ty->getPointerTo();
- SmallString<32> AtomicLoadName("__tsan_atomic" + BitSizeStr + "_load");
- TsanAtomicLoad[i] =
- M.getOrInsertFunction(AtomicLoadName, Attr, Ty, PtrTy, OrdTy);
-
- SmallString<32> AtomicStoreName("__tsan_atomic" + BitSizeStr + "_store");
- TsanAtomicStore[i] = M.getOrInsertFunction(
- AtomicStoreName, Attr, IRB.getVoidTy(), PtrTy, Ty, OrdTy);
-
- for (int op = AtomicRMWInst::FIRST_BINOP;
- op <= AtomicRMWInst::LAST_BINOP; ++op) {
- TsanAtomicRMW[op][i] = nullptr;
- const char *NamePart = nullptr;
- if (op == AtomicRMWInst::Xchg)
- NamePart = "_exchange";
- else if (op == AtomicRMWInst::Add)
- NamePart = "_fetch_add";
- else if (op == AtomicRMWInst::Sub)
- NamePart = "_fetch_sub";
- else if (op == AtomicRMWInst::And)
- NamePart = "_fetch_and";
- else if (op == AtomicRMWInst::Or)
- NamePart = "_fetch_or";
- else if (op == AtomicRMWInst::Xor)
- NamePart = "_fetch_xor";
- else if (op == AtomicRMWInst::Nand)
- NamePart = "_fetch_nand";
- else
- continue;
- SmallString<32> RMWName("__tsan_atomic" + itostr(BitSize) + NamePart);
- TsanAtomicRMW[op][i] =
- M.getOrInsertFunction(RMWName, Attr, Ty, PtrTy, Ty, OrdTy);
- }
-
- SmallString<32> AtomicCASName("__tsan_atomic" + BitSizeStr +
- "_compare_exchange_val");
- TsanAtomicCAS[i] = M.getOrInsertFunction(AtomicCASName, Attr, Ty, PtrTy, Ty,
- Ty, OrdTy, OrdTy);
- }
- TsanVptrUpdate =
- M.getOrInsertFunction("__tsan_vptr_update", Attr, IRB.getVoidTy(),
- IRB.getInt8PtrTy(), IRB.getInt8PtrTy());
- TsanVptrLoad = M.getOrInsertFunction("__tsan_vptr_read", Attr,
- IRB.getVoidTy(), IRB.getInt8PtrTy());
- TsanAtomicThreadFence = M.getOrInsertFunction("__tsan_atomic_thread_fence",
- Attr, IRB.getVoidTy(), OrdTy);
- TsanAtomicSignalFence = M.getOrInsertFunction("__tsan_atomic_signal_fence",
- Attr, IRB.getVoidTy(), OrdTy);
-
- MemmoveFn =
- M.getOrInsertFunction("memmove", Attr, IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
- MemcpyFn =
- M.getOrInsertFunction("memcpy", Attr, IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), IRB.getInt8PtrTy(), IntptrTy);
- MemsetFn =
- M.getOrInsertFunction("memset", Attr, IRB.getInt8PtrTy(),
- IRB.getInt8PtrTy(), IRB.getInt32Ty(), IntptrTy);
-}
-
-ThreadSanitizer::ThreadSanitizer(Module &M) {
- const DataLayout &DL = M.getDataLayout();
- IntptrTy = DL.getIntPtrType(M.getContext());
- std::tie(TsanCtorFunction, std::ignore) =
- getOrCreateSanitizerCtorAndInitFunctions(
- M, kTsanModuleCtorName, kTsanInitName, /*InitArgTypes=*/{},
- /*InitArgs=*/{},
- // This callback is invoked when the functions are created the first
- // time. Hook them into the global ctors list in that case:
- [&](Function *Ctor, FunctionCallee) {
- appendToGlobalCtors(M, Ctor, 0);
- });
-}
-
-static bool isVtableAccess(Instruction *I) {
- if (MDNode *Tag = I->getMetadata(LLVMContext::MD_tbaa))
- return Tag->isTBAAVtableAccess();
- return false;
-}
-
-// Do not instrument known races/"benign races" that come from compiler
-// instrumentatin. The user has no way of suppressing them.
-static bool shouldInstrumentReadWriteFromAddress(const Module *M, Value *Addr) {
- // Peel off GEPs and BitCasts.
- Addr = Addr->stripInBoundsOffsets();
-
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
- if (GV->hasSection()) {
- StringRef SectionName = GV->getSection();
- // Check if the global is in the PGO counters section.
- auto OF = Triple(M->getTargetTriple()).getObjectFormat();
- if (SectionName.endswith(
- getInstrProfSectionName(IPSK_cnts, OF, /*AddSegmentInfo=*/false)))
- return false;
- }
-
- // Check if the global is private gcov data.
- if (GV->getName().startswith("__llvm_gcov") ||
- GV->getName().startswith("__llvm_gcda"))
- return false;
- }
-
- // Do not instrument acesses from different address spaces; we cannot deal
- // with them.
- if (Addr) {
- Type *PtrTy = cast<PointerType>(Addr->getType()->getScalarType());
- if (PtrTy->getPointerAddressSpace() != 0)
- return false;
- }
-
- return true;
-}
-
-bool ThreadSanitizer::addrPointsToConstantData(Value *Addr) {
- // If this is a GEP, just analyze its pointer operand.
- if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Addr))
- Addr = GEP->getPointerOperand();
-
- if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Addr)) {
- if (GV->isConstant()) {
- // Reads from constant globals can not race with any writes.
- NumOmittedReadsFromConstantGlobals++;
- return true;
- }
- } else if (LoadInst *L = dyn_cast<LoadInst>(Addr)) {
- if (isVtableAccess(L)) {
- // Reads from a vtable pointer can not race with any writes.
- NumOmittedReadsFromVtable++;
- return true;
- }
- }
- return false;
-}
-
-// Instrumenting some of the accesses may be proven redundant.
-// Currently handled:
-// - read-before-write (within same BB, no calls between)
-// - not captured variables
-//
-// We do not handle some of the patterns that should not survive
-// after the classic compiler optimizations.
-// E.g. two reads from the same temp should be eliminated by CSE,
-// two writes should be eliminated by DSE, etc.
-//
-// 'Local' is a vector of insns within the same BB (no calls between).
-// 'All' is a vector of insns that will be instrumented.
-void ThreadSanitizer::chooseInstructionsToInstrument(
- SmallVectorImpl<Instruction *> &Local, SmallVectorImpl<Instruction *> &All,
- const DataLayout &DL) {
- SmallPtrSet<Value*, 8> WriteTargets;
- // Iterate from the end.
- for (Instruction *I : reverse(Local)) {
- if (StoreInst *Store = dyn_cast<StoreInst>(I)) {
- Value *Addr = Store->getPointerOperand();
- if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
- continue;
- WriteTargets.insert(Addr);
- } else {
- LoadInst *Load = cast<LoadInst>(I);
- Value *Addr = Load->getPointerOperand();
- if (!shouldInstrumentReadWriteFromAddress(I->getModule(), Addr))
- continue;
- if (WriteTargets.count(Addr)) {
- // We will write to this temp, so no reason to analyze the read.
- NumOmittedReadsBeforeWrite++;
- continue;
- }
- if (addrPointsToConstantData(Addr)) {
- // Addr points to some constant data -- it can not race with any writes.
- continue;
- }
- }
- Value *Addr = isa<StoreInst>(*I)
- ? cast<StoreInst>(I)->getPointerOperand()
- : cast<LoadInst>(I)->getPointerOperand();
- if (isa<AllocaInst>(GetUnderlyingObject(Addr, DL)) &&
- !PointerMayBeCaptured(Addr, true, true)) {
- // The variable is addressable but not captured, so it cannot be
- // referenced from a different thread and participate in a data race
- // (see llvm/Analysis/CaptureTracking.h for details).
- NumOmittedNonCaptured++;
- continue;
- }
- All.push_back(I);
- }
- Local.clear();
-}
-
-static bool isAtomic(Instruction *I) {
- // TODO: Ask TTI whether synchronization scope is between threads.
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->isAtomic() && LI->getSyncScopeID() != SyncScope::SingleThread;
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->isAtomic() && SI->getSyncScopeID() != SyncScope::SingleThread;
- if (isa<AtomicRMWInst>(I))
- return true;
- if (isa<AtomicCmpXchgInst>(I))
- return true;
- if (isa<FenceInst>(I))
- return true;
- return false;
-}
-
-void ThreadSanitizer::InsertRuntimeIgnores(Function &F) {
- IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
- IRB.CreateCall(TsanIgnoreBegin);
- EscapeEnumerator EE(F, "tsan_ignore_cleanup", ClHandleCxxExceptions);
- while (IRBuilder<> *AtExit = EE.Next()) {
- AtExit->CreateCall(TsanIgnoreEnd);
- }
-}
-
-bool ThreadSanitizer::sanitizeFunction(Function &F,
- const TargetLibraryInfo &TLI) {
- // This is required to prevent instrumenting call to __tsan_init from within
- // the module constructor.
- if (&F == TsanCtorFunction)
- return false;
- initializeCallbacks(*F.getParent());
- SmallVector<Instruction*, 8> AllLoadsAndStores;
- SmallVector<Instruction*, 8> LocalLoadsAndStores;
- SmallVector<Instruction*, 8> AtomicAccesses;
- SmallVector<Instruction*, 8> MemIntrinCalls;
- bool Res = false;
- bool HasCalls = false;
- bool SanitizeFunction = F.hasFnAttribute(Attribute::SanitizeThread);
- const DataLayout &DL = F.getParent()->getDataLayout();
-
- // Traverse all instructions, collect loads/stores/returns, check for calls.
- for (auto &BB : F) {
- for (auto &Inst : BB) {
- if (isAtomic(&Inst))
- AtomicAccesses.push_back(&Inst);
- else if (isa<LoadInst>(Inst) || isa<StoreInst>(Inst))
- LocalLoadsAndStores.push_back(&Inst);
- else if (isa<CallInst>(Inst) || isa<InvokeInst>(Inst)) {
- if (CallInst *CI = dyn_cast<CallInst>(&Inst))
- maybeMarkSanitizerLibraryCallNoBuiltin(CI, &TLI);
- if (isa<MemIntrinsic>(Inst))
- MemIntrinCalls.push_back(&Inst);
- HasCalls = true;
- chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores,
- DL);
- }
- }
- chooseInstructionsToInstrument(LocalLoadsAndStores, AllLoadsAndStores, DL);
- }
-
- // We have collected all loads and stores.
- // FIXME: many of these accesses do not need to be checked for races
- // (e.g. variables that do not escape, etc).
-
- // Instrument memory accesses only if we want to report bugs in the function.
- if (ClInstrumentMemoryAccesses && SanitizeFunction)
- for (auto Inst : AllLoadsAndStores) {
- Res |= instrumentLoadOrStore(Inst, DL);
- }
-
- // Instrument atomic memory accesses in any case (they can be used to
- // implement synchronization).
- if (ClInstrumentAtomics)
- for (auto Inst : AtomicAccesses) {
- Res |= instrumentAtomic(Inst, DL);
- }
-
- if (ClInstrumentMemIntrinsics && SanitizeFunction)
- for (auto Inst : MemIntrinCalls) {
- Res |= instrumentMemIntrinsic(Inst);
- }
-
- if (F.hasFnAttribute("sanitize_thread_no_checking_at_run_time")) {
- assert(!F.hasFnAttribute(Attribute::SanitizeThread));
- if (HasCalls)
- InsertRuntimeIgnores(F);
- }
-
- // Instrument function entry/exit points if there were instrumented accesses.
- if ((Res || HasCalls) && ClInstrumentFuncEntryExit) {
- IRBuilder<> IRB(F.getEntryBlock().getFirstNonPHI());
- Value *ReturnAddress = IRB.CreateCall(
- Intrinsic::getDeclaration(F.getParent(), Intrinsic::returnaddress),
- IRB.getInt32(0));
- IRB.CreateCall(TsanFuncEntry, ReturnAddress);
-
- EscapeEnumerator EE(F, "tsan_cleanup", ClHandleCxxExceptions);
- while (IRBuilder<> *AtExit = EE.Next()) {
- AtExit->CreateCall(TsanFuncExit, {});
- }
- Res = true;
- }
- return Res;
-}
-
-bool ThreadSanitizer::instrumentLoadOrStore(Instruction *I,
- const DataLayout &DL) {
- IRBuilder<> IRB(I);
- bool IsWrite = isa<StoreInst>(*I);
- Value *Addr = IsWrite
- ? cast<StoreInst>(I)->getPointerOperand()
- : cast<LoadInst>(I)->getPointerOperand();
-
- // swifterror memory addresses are mem2reg promoted by instruction selection.
- // As such they cannot have regular uses like an instrumentation function and
- // it makes no sense to track them as memory.
- if (Addr->isSwiftError())
- return false;
-
- int Idx = getMemoryAccessFuncIndex(Addr, DL);
- if (Idx < 0)
- return false;
- if (IsWrite && isVtableAccess(I)) {
- LLVM_DEBUG(dbgs() << " VPTR : " << *I << "\n");
- Value *StoredValue = cast<StoreInst>(I)->getValueOperand();
- // StoredValue may be a vector type if we are storing several vptrs at once.
- // In this case, just take the first element of the vector since this is
- // enough to find vptr races.
- if (isa<VectorType>(StoredValue->getType()))
- StoredValue = IRB.CreateExtractElement(
- StoredValue, ConstantInt::get(IRB.getInt32Ty(), 0));
- if (StoredValue->getType()->isIntegerTy())
- StoredValue = IRB.CreateIntToPtr(StoredValue, IRB.getInt8PtrTy());
- // Call TsanVptrUpdate.
- IRB.CreateCall(TsanVptrUpdate,
- {IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()),
- IRB.CreatePointerCast(StoredValue, IRB.getInt8PtrTy())});
- NumInstrumentedVtableWrites++;
- return true;
- }
- if (!IsWrite && isVtableAccess(I)) {
- IRB.CreateCall(TsanVptrLoad,
- IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
- NumInstrumentedVtableReads++;
- return true;
- }
- const unsigned Alignment = IsWrite
- ? cast<StoreInst>(I)->getAlignment()
- : cast<LoadInst>(I)->getAlignment();
- Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
- const uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
- FunctionCallee OnAccessFunc = nullptr;
- if (Alignment == 0 || Alignment >= 8 || (Alignment % (TypeSize / 8)) == 0)
- OnAccessFunc = IsWrite ? TsanWrite[Idx] : TsanRead[Idx];
- else
- OnAccessFunc = IsWrite ? TsanUnalignedWrite[Idx] : TsanUnalignedRead[Idx];
- IRB.CreateCall(OnAccessFunc, IRB.CreatePointerCast(Addr, IRB.getInt8PtrTy()));
- if (IsWrite) NumInstrumentedWrites++;
- else NumInstrumentedReads++;
- return true;
-}
-
-static ConstantInt *createOrdering(IRBuilder<> *IRB, AtomicOrdering ord) {
- uint32_t v = 0;
- switch (ord) {
- case AtomicOrdering::NotAtomic:
- llvm_unreachable("unexpected atomic ordering!");
- case AtomicOrdering::Unordered: LLVM_FALLTHROUGH;
- case AtomicOrdering::Monotonic: v = 0; break;
- // Not specified yet:
- // case AtomicOrdering::Consume: v = 1; break;
- case AtomicOrdering::Acquire: v = 2; break;
- case AtomicOrdering::Release: v = 3; break;
- case AtomicOrdering::AcquireRelease: v = 4; break;
- case AtomicOrdering::SequentiallyConsistent: v = 5; break;
- }
- return IRB->getInt32(v);
-}
-
-// If a memset intrinsic gets inlined by the code gen, we will miss races on it.
-// So, we either need to ensure the intrinsic is not inlined, or instrument it.
-// We do not instrument memset/memmove/memcpy intrinsics (too complicated),
-// instead we simply replace them with regular function calls, which are then
-// intercepted by the run-time.
-// Since tsan is running after everyone else, the calls should not be
-// replaced back with intrinsics. If that becomes wrong at some point,
-// we will need to call e.g. __tsan_memset to avoid the intrinsics.
-bool ThreadSanitizer::instrumentMemIntrinsic(Instruction *I) {
- IRBuilder<> IRB(I);
- if (MemSetInst *M = dyn_cast<MemSetInst>(I)) {
- IRB.CreateCall(
- MemsetFn,
- {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
- IRB.CreateIntCast(M->getArgOperand(1), IRB.getInt32Ty(), false),
- IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
- I->eraseFromParent();
- } else if (MemTransferInst *M = dyn_cast<MemTransferInst>(I)) {
- IRB.CreateCall(
- isa<MemCpyInst>(M) ? MemcpyFn : MemmoveFn,
- {IRB.CreatePointerCast(M->getArgOperand(0), IRB.getInt8PtrTy()),
- IRB.CreatePointerCast(M->getArgOperand(1), IRB.getInt8PtrTy()),
- IRB.CreateIntCast(M->getArgOperand(2), IntptrTy, false)});
- I->eraseFromParent();
- }
- return false;
-}
-
-// Both llvm and ThreadSanitizer atomic operations are based on C++11/C1x
-// standards. For background see C++11 standard. A slightly older, publicly
-// available draft of the standard (not entirely up-to-date, but close enough
-// for casual browsing) is available here:
-// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
-// The following page contains more background information:
-// http://www.hpl.hp.com/personal/Hans_Boehm/c++mm/
-
-bool ThreadSanitizer::instrumentAtomic(Instruction *I, const DataLayout &DL) {
- IRBuilder<> IRB(I);
- if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
- Value *Addr = LI->getPointerOperand();
- int Idx = getMemoryAccessFuncIndex(Addr, DL);
- if (Idx < 0)
- return false;
- const unsigned ByteSize = 1U << Idx;
- const unsigned BitSize = ByteSize * 8;
- Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
- Type *PtrTy = Ty->getPointerTo();
- Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
- createOrdering(&IRB, LI->getOrdering())};
- Type *OrigTy = cast<PointerType>(Addr->getType())->getElementType();
- Value *C = IRB.CreateCall(TsanAtomicLoad[Idx], Args);
- Value *Cast = IRB.CreateBitOrPointerCast(C, OrigTy);
- I->replaceAllUsesWith(Cast);
- } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
- Value *Addr = SI->getPointerOperand();
- int Idx = getMemoryAccessFuncIndex(Addr, DL);
- if (Idx < 0)
- return false;
- const unsigned ByteSize = 1U << Idx;
- const unsigned BitSize = ByteSize * 8;
- Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
- Type *PtrTy = Ty->getPointerTo();
- Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
- IRB.CreateBitOrPointerCast(SI->getValueOperand(), Ty),
- createOrdering(&IRB, SI->getOrdering())};
- CallInst *C = CallInst::Create(TsanAtomicStore[Idx], Args);
- ReplaceInstWithInst(I, C);
- } else if (AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(I)) {
- Value *Addr = RMWI->getPointerOperand();
- int Idx = getMemoryAccessFuncIndex(Addr, DL);
- if (Idx < 0)
- return false;
- FunctionCallee F = TsanAtomicRMW[RMWI->getOperation()][Idx];
- if (!F)
- return false;
- const unsigned ByteSize = 1U << Idx;
- const unsigned BitSize = ByteSize * 8;
- Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
- Type *PtrTy = Ty->getPointerTo();
- Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
- IRB.CreateIntCast(RMWI->getValOperand(), Ty, false),
- createOrdering(&IRB, RMWI->getOrdering())};
- CallInst *C = CallInst::Create(F, Args);
- ReplaceInstWithInst(I, C);
- } else if (AtomicCmpXchgInst *CASI = dyn_cast<AtomicCmpXchgInst>(I)) {
- Value *Addr = CASI->getPointerOperand();
- int Idx = getMemoryAccessFuncIndex(Addr, DL);
- if (Idx < 0)
- return false;
- const unsigned ByteSize = 1U << Idx;
- const unsigned BitSize = ByteSize * 8;
- Type *Ty = Type::getIntNTy(IRB.getContext(), BitSize);
- Type *PtrTy = Ty->getPointerTo();
- Value *CmpOperand =
- IRB.CreateBitOrPointerCast(CASI->getCompareOperand(), Ty);
- Value *NewOperand =
- IRB.CreateBitOrPointerCast(CASI->getNewValOperand(), Ty);
- Value *Args[] = {IRB.CreatePointerCast(Addr, PtrTy),
- CmpOperand,
- NewOperand,
- createOrdering(&IRB, CASI->getSuccessOrdering()),
- createOrdering(&IRB, CASI->getFailureOrdering())};
- CallInst *C = IRB.CreateCall(TsanAtomicCAS[Idx], Args);
- Value *Success = IRB.CreateICmpEQ(C, CmpOperand);
- Value *OldVal = C;
- Type *OrigOldValTy = CASI->getNewValOperand()->getType();
- if (Ty != OrigOldValTy) {
- // The value is a pointer, so we need to cast the return value.
- OldVal = IRB.CreateIntToPtr(C, OrigOldValTy);
- }
-
- Value *Res =
- IRB.CreateInsertValue(UndefValue::get(CASI->getType()), OldVal, 0);
- Res = IRB.CreateInsertValue(Res, Success, 1);
-
- I->replaceAllUsesWith(Res);
- I->eraseFromParent();
- } else if (FenceInst *FI = dyn_cast<FenceInst>(I)) {
- Value *Args[] = {createOrdering(&IRB, FI->getOrdering())};
- FunctionCallee F = FI->getSyncScopeID() == SyncScope::SingleThread
- ? TsanAtomicSignalFence
- : TsanAtomicThreadFence;
- CallInst *C = CallInst::Create(F, Args);
- ReplaceInstWithInst(I, C);
- }
- return true;
-}
-
-int ThreadSanitizer::getMemoryAccessFuncIndex(Value *Addr,
- const DataLayout &DL) {
- Type *OrigPtrTy = Addr->getType();
- Type *OrigTy = cast<PointerType>(OrigPtrTy)->getElementType();
- assert(OrigTy->isSized());
- uint32_t TypeSize = DL.getTypeStoreSizeInBits(OrigTy);
- if (TypeSize != 8 && TypeSize != 16 &&
- TypeSize != 32 && TypeSize != 64 && TypeSize != 128) {
- NumAccessesWithBadSize++;
- // Ignore all unusual sizes.
- return -1;
- }
- size_t Idx = countTrailingZeros(TypeSize / 8);
- assert(Idx < kNumberOfAccessSizes);
- return Idx;
-}