aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/examples/ParallelJIT/ParallelJIT.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/examples/ParallelJIT/ParallelJIT.cpp')
-rw-r--r--contrib/llvm/examples/ParallelJIT/ParallelJIT.cpp304
1 files changed, 0 insertions, 304 deletions
diff --git a/contrib/llvm/examples/ParallelJIT/ParallelJIT.cpp b/contrib/llvm/examples/ParallelJIT/ParallelJIT.cpp
deleted file mode 100644
index 9231abf6e31e..000000000000
--- a/contrib/llvm/examples/ParallelJIT/ParallelJIT.cpp
+++ /dev/null
@@ -1,304 +0,0 @@
-//===-- examples/ParallelJIT/ParallelJIT.cpp - Exercise threaded-safe JIT -===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// Parallel JIT
-//
-// This test program creates two LLVM functions then calls them from three
-// separate threads. It requires the pthreads library.
-// The three threads are created and then block waiting on a condition variable.
-// Once all threads are blocked on the conditional variable, the main thread
-// wakes them up. This complicated work is performed so that all three threads
-// call into the JIT at the same time (or the best possible approximation of the
-// same time). This test had assertion errors until I got the locking right.
-
-#include <pthread.h>
-#include "llvm/LLVMContext.h"
-#include "llvm/Module.h"
-#include "llvm/Constants.h"
-#include "llvm/DerivedTypes.h"
-#include "llvm/Instructions.h"
-#include "llvm/ExecutionEngine/JIT.h"
-#include "llvm/ExecutionEngine/Interpreter.h"
-#include "llvm/ExecutionEngine/GenericValue.h"
-#include "llvm/Target/TargetSelect.h"
-#include <iostream>
-using namespace llvm;
-
-static Function* createAdd1(Module *M) {
- // Create the add1 function entry and insert this entry into module M. The
- // function will have a return type of "int" and take an argument of "int".
- // The '0' terminates the list of argument types.
- Function *Add1F =
- cast<Function>(M->getOrInsertFunction("add1",
- Type::getInt32Ty(M->getContext()),
- Type::getInt32Ty(M->getContext()),
- (Type *)0));
-
- // Add a basic block to the function. As before, it automatically inserts
- // because of the last argument.
- BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", Add1F);
-
- // Get pointers to the constant `1'.
- Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
-
- // Get pointers to the integer argument of the add1 function...
- assert(Add1F->arg_begin() != Add1F->arg_end()); // Make sure there's an arg
- Argument *ArgX = Add1F->arg_begin(); // Get the arg
- ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
-
- // Create the add instruction, inserting it into the end of BB.
- Instruction *Add = BinaryOperator::CreateAdd(One, ArgX, "addresult", BB);
-
- // Create the return instruction and add it to the basic block
- ReturnInst::Create(M->getContext(), Add, BB);
-
- // Now, function add1 is ready.
- return Add1F;
-}
-
-static Function *CreateFibFunction(Module *M) {
- // Create the fib function and insert it into module M. This function is said
- // to return an int and take an int parameter.
- Function *FibF =
- cast<Function>(M->getOrInsertFunction("fib",
- Type::getInt32Ty(M->getContext()),
- Type::getInt32Ty(M->getContext()),
- (Type *)0));
-
- // Add a basic block to the function.
- BasicBlock *BB = BasicBlock::Create(M->getContext(), "EntryBlock", FibF);
-
- // Get pointers to the constants.
- Value *One = ConstantInt::get(Type::getInt32Ty(M->getContext()), 1);
- Value *Two = ConstantInt::get(Type::getInt32Ty(M->getContext()), 2);
-
- // Get pointer to the integer argument of the add1 function...
- Argument *ArgX = FibF->arg_begin(); // Get the arg.
- ArgX->setName("AnArg"); // Give it a nice symbolic name for fun.
-
- // Create the true_block.
- BasicBlock *RetBB = BasicBlock::Create(M->getContext(), "return", FibF);
- // Create an exit block.
- BasicBlock* RecurseBB = BasicBlock::Create(M->getContext(), "recurse", FibF);
-
- // Create the "if (arg < 2) goto exitbb"
- Value *CondInst = new ICmpInst(*BB, ICmpInst::ICMP_SLE, ArgX, Two, "cond");
- BranchInst::Create(RetBB, RecurseBB, CondInst, BB);
-
- // Create: ret int 1
- ReturnInst::Create(M->getContext(), One, RetBB);
-
- // create fib(x-1)
- Value *Sub = BinaryOperator::CreateSub(ArgX, One, "arg", RecurseBB);
- Value *CallFibX1 = CallInst::Create(FibF, Sub, "fibx1", RecurseBB);
-
- // create fib(x-2)
- Sub = BinaryOperator::CreateSub(ArgX, Two, "arg", RecurseBB);
- Value *CallFibX2 = CallInst::Create(FibF, Sub, "fibx2", RecurseBB);
-
- // fib(x-1)+fib(x-2)
- Value *Sum =
- BinaryOperator::CreateAdd(CallFibX1, CallFibX2, "addresult", RecurseBB);
-
- // Create the return instruction and add it to the basic block
- ReturnInst::Create(M->getContext(), Sum, RecurseBB);
-
- return FibF;
-}
-
-struct threadParams {
- ExecutionEngine* EE;
- Function* F;
- int value;
-};
-
-// We block the subthreads just before they begin to execute:
-// we want all of them to call into the JIT at the same time,
-// to verify that the locking is working correctly.
-class WaitForThreads
-{
-public:
- WaitForThreads()
- {
- n = 0;
- waitFor = 0;
-
- int result = pthread_cond_init( &condition, NULL );
- assert( result == 0 );
-
- result = pthread_mutex_init( &mutex, NULL );
- assert( result == 0 );
- }
-
- ~WaitForThreads()
- {
- int result = pthread_cond_destroy( &condition );
- assert( result == 0 );
-
- result = pthread_mutex_destroy( &mutex );
- assert( result == 0 );
- }
-
- // All threads will stop here until another thread calls releaseThreads
- void block()
- {
- int result = pthread_mutex_lock( &mutex );
- assert( result == 0 );
- n ++;
- //~ std::cout << "block() n " << n << " waitFor " << waitFor << std::endl;
-
- assert( waitFor == 0 || n <= waitFor );
- if ( waitFor > 0 && n == waitFor )
- {
- // There are enough threads blocked that we can release all of them
- std::cout << "Unblocking threads from block()" << std::endl;
- unblockThreads();
- }
- else
- {
- // We just need to wait until someone unblocks us
- result = pthread_cond_wait( &condition, &mutex );
- assert( result == 0 );
- }
-
- // unlock the mutex before returning
- result = pthread_mutex_unlock( &mutex );
- assert( result == 0 );
- }
-
- // If there are num or more threads blocked, it will signal them all
- // Otherwise, this thread blocks until there are enough OTHER threads
- // blocked
- void releaseThreads( size_t num )
- {
- int result = pthread_mutex_lock( &mutex );
- assert( result == 0 );
-
- if ( n >= num ) {
- std::cout << "Unblocking threads from releaseThreads()" << std::endl;
- unblockThreads();
- }
- else
- {
- waitFor = num;
- pthread_cond_wait( &condition, &mutex );
- }
-
- // unlock the mutex before returning
- result = pthread_mutex_unlock( &mutex );
- assert( result == 0 );
- }
-
-private:
- void unblockThreads()
- {
- // Reset the counters to zero: this way, if any new threads
- // enter while threads are exiting, they will block instead
- // of triggering a new release of threads
- n = 0;
-
- // Reset waitFor to zero: this way, if waitFor threads enter
- // while threads are exiting, they will block instead of
- // triggering a new release of threads
- waitFor = 0;
-
- int result = pthread_cond_broadcast( &condition );
- assert(result == 0); result=result;
- }
-
- size_t n;
- size_t waitFor;
- pthread_cond_t condition;
- pthread_mutex_t mutex;
-};
-
-static WaitForThreads synchronize;
-
-void* callFunc( void* param )
-{
- struct threadParams* p = (struct threadParams*) param;
-
- // Call the `foo' function with no arguments:
- std::vector<GenericValue> Args(1);
- Args[0].IntVal = APInt(32, p->value);
-
- synchronize.block(); // wait until other threads are at this point
- GenericValue gv = p->EE->runFunction(p->F, Args);
-
- return (void*)(intptr_t)gv.IntVal.getZExtValue();
-}
-
-int main() {
- InitializeNativeTarget();
- LLVMContext Context;
-
- // Create some module to put our function into it.
- Module *M = new Module("test", Context);
-
- Function* add1F = createAdd1( M );
- Function* fibF = CreateFibFunction( M );
-
- // Now we create the JIT.
- ExecutionEngine* EE = EngineBuilder(M).create();
-
- //~ std::cout << "We just constructed this LLVM module:\n\n" << *M;
- //~ std::cout << "\n\nRunning foo: " << std::flush;
-
- // Create one thread for add1 and two threads for fib
- struct threadParams add1 = { EE, add1F, 1000 };
- struct threadParams fib1 = { EE, fibF, 39 };
- struct threadParams fib2 = { EE, fibF, 42 };
-
- pthread_t add1Thread;
- int result = pthread_create( &add1Thread, NULL, callFunc, &add1 );
- if ( result != 0 ) {
- std::cerr << "Could not create thread" << std::endl;
- return 1;
- }
-
- pthread_t fibThread1;
- result = pthread_create( &fibThread1, NULL, callFunc, &fib1 );
- if ( result != 0 ) {
- std::cerr << "Could not create thread" << std::endl;
- return 1;
- }
-
- pthread_t fibThread2;
- result = pthread_create( &fibThread2, NULL, callFunc, &fib2 );
- if ( result != 0 ) {
- std::cerr << "Could not create thread" << std::endl;
- return 1;
- }
-
- synchronize.releaseThreads(3); // wait until other threads are at this point
-
- void* returnValue;
- result = pthread_join( add1Thread, &returnValue );
- if ( result != 0 ) {
- std::cerr << "Could not join thread" << std::endl;
- return 1;
- }
- std::cout << "Add1 returned " << intptr_t(returnValue) << std::endl;
-
- result = pthread_join( fibThread1, &returnValue );
- if ( result != 0 ) {
- std::cerr << "Could not join thread" << std::endl;
- return 1;
- }
- std::cout << "Fib1 returned " << intptr_t(returnValue) << std::endl;
-
- result = pthread_join( fibThread2, &returnValue );
- if ( result != 0 ) {
- std::cerr << "Could not join thread" << std::endl;
- return 1;
- }
- std::cout << "Fib2 returned " << intptr_t(returnValue) << std::endl;
-
- return 0;
-}