aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp1073
1 files changed, 1073 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp b/contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp
new file mode 100644
index 000000000000..3cb3d3544838
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/CGVTables.cpp
@@ -0,0 +1,1073 @@
+//===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with C++ code generation of virtual tables.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "clang/AST/CXXInheritance.h"
+#include "clang/AST/RecordLayout.h"
+#include "clang/Basic/CodeGenOptions.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/CodeGen/ConstantInitBuilder.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Support/Format.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include <algorithm>
+#include <cstdio>
+
+using namespace clang;
+using namespace CodeGen;
+
+CodeGenVTables::CodeGenVTables(CodeGenModule &CGM)
+ : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {}
+
+llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy,
+ GlobalDecl GD) {
+ return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true,
+ /*DontDefer=*/true, /*IsThunk=*/true);
+}
+
+static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk,
+ llvm::Function *ThunkFn, bool ForVTable,
+ GlobalDecl GD) {
+ CGM.setFunctionLinkage(GD, ThunkFn);
+ CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD,
+ !Thunk.Return.isEmpty());
+
+ // Set the right visibility.
+ CGM.setGVProperties(ThunkFn, GD);
+
+ if (!CGM.getCXXABI().exportThunk()) {
+ ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
+ ThunkFn->setDSOLocal(true);
+ }
+
+ if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker())
+ ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName()));
+}
+
+#ifndef NDEBUG
+static bool similar(const ABIArgInfo &infoL, CanQualType typeL,
+ const ABIArgInfo &infoR, CanQualType typeR) {
+ return (infoL.getKind() == infoR.getKind() &&
+ (typeL == typeR ||
+ (isa<PointerType>(typeL) && isa<PointerType>(typeR)) ||
+ (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR))));
+}
+#endif
+
+static RValue PerformReturnAdjustment(CodeGenFunction &CGF,
+ QualType ResultType, RValue RV,
+ const ThunkInfo &Thunk) {
+ // Emit the return adjustment.
+ bool NullCheckValue = !ResultType->isReferenceType();
+
+ llvm::BasicBlock *AdjustNull = nullptr;
+ llvm::BasicBlock *AdjustNotNull = nullptr;
+ llvm::BasicBlock *AdjustEnd = nullptr;
+
+ llvm::Value *ReturnValue = RV.getScalarVal();
+
+ if (NullCheckValue) {
+ AdjustNull = CGF.createBasicBlock("adjust.null");
+ AdjustNotNull = CGF.createBasicBlock("adjust.notnull");
+ AdjustEnd = CGF.createBasicBlock("adjust.end");
+
+ llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue);
+ CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull);
+ CGF.EmitBlock(AdjustNotNull);
+ }
+
+ auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl();
+ auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl);
+ ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF,
+ Address(ReturnValue, ClassAlign),
+ Thunk.Return);
+
+ if (NullCheckValue) {
+ CGF.Builder.CreateBr(AdjustEnd);
+ CGF.EmitBlock(AdjustNull);
+ CGF.Builder.CreateBr(AdjustEnd);
+ CGF.EmitBlock(AdjustEnd);
+
+ llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2);
+ PHI->addIncoming(ReturnValue, AdjustNotNull);
+ PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()),
+ AdjustNull);
+ ReturnValue = PHI;
+ }
+
+ return RValue::get(ReturnValue);
+}
+
+/// This function clones a function's DISubprogram node and enters it into
+/// a value map with the intent that the map can be utilized by the cloner
+/// to short-circuit Metadata node mapping.
+/// Furthermore, the function resolves any DILocalVariable nodes referenced
+/// by dbg.value intrinsics so they can be properly mapped during cloning.
+static void resolveTopLevelMetadata(llvm::Function *Fn,
+ llvm::ValueToValueMapTy &VMap) {
+ // Clone the DISubprogram node and put it into the Value map.
+ auto *DIS = Fn->getSubprogram();
+ if (!DIS)
+ return;
+ auto *NewDIS = DIS->replaceWithDistinct(DIS->clone());
+ VMap.MD()[DIS].reset(NewDIS);
+
+ // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes
+ // they are referencing.
+ for (auto &BB : Fn->getBasicBlockList()) {
+ for (auto &I : BB) {
+ if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) {
+ auto *DILocal = DII->getVariable();
+ if (!DILocal->isResolved())
+ DILocal->resolve();
+ }
+ }
+ }
+}
+
+// This function does roughly the same thing as GenerateThunk, but in a
+// very different way, so that va_start and va_end work correctly.
+// FIXME: This function assumes "this" is the first non-sret LLVM argument of
+// a function, and that there is an alloca built in the entry block
+// for all accesses to "this".
+// FIXME: This function assumes there is only one "ret" statement per function.
+// FIXME: Cloning isn't correct in the presence of indirect goto!
+// FIXME: This implementation of thunks bloats codesize by duplicating the
+// function definition. There are alternatives:
+// 1. Add some sort of stub support to LLVM for cases where we can
+// do a this adjustment, then a sibcall.
+// 2. We could transform the definition to take a va_list instead of an
+// actual variable argument list, then have the thunks (including a
+// no-op thunk for the regular definition) call va_start/va_end.
+// There's a bit of per-call overhead for this solution, but it's
+// better for codesize if the definition is long.
+llvm::Function *
+CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo,
+ GlobalDecl GD, const ThunkInfo &Thunk) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+ QualType ResultType = FPT->getReturnType();
+
+ // Get the original function
+ assert(FnInfo.isVariadic());
+ llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo);
+ llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
+ llvm::Function *BaseFn = cast<llvm::Function>(Callee);
+
+ // Clone to thunk.
+ llvm::ValueToValueMapTy VMap;
+
+ // We are cloning a function while some Metadata nodes are still unresolved.
+ // Ensure that the value mapper does not encounter any of them.
+ resolveTopLevelMetadata(BaseFn, VMap);
+ llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap);
+ Fn->replaceAllUsesWith(NewFn);
+ NewFn->takeName(Fn);
+ Fn->eraseFromParent();
+ Fn = NewFn;
+
+ // "Initialize" CGF (minimally).
+ CurFn = Fn;
+
+ // Get the "this" value
+ llvm::Function::arg_iterator AI = Fn->arg_begin();
+ if (CGM.ReturnTypeUsesSRet(FnInfo))
+ ++AI;
+
+ // Find the first store of "this", which will be to the alloca associated
+ // with "this".
+ Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent()));
+ llvm::BasicBlock *EntryBB = &Fn->front();
+ llvm::BasicBlock::iterator ThisStore =
+ std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) {
+ return isa<llvm::StoreInst>(I) &&
+ I.getOperand(0) == ThisPtr.getPointer();
+ });
+ assert(ThisStore != EntryBB->end() &&
+ "Store of this should be in entry block?");
+ // Adjust "this", if necessary.
+ Builder.SetInsertPoint(&*ThisStore);
+ llvm::Value *AdjustedThisPtr =
+ CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This);
+ ThisStore->setOperand(0, AdjustedThisPtr);
+
+ if (!Thunk.Return.isEmpty()) {
+ // Fix up the returned value, if necessary.
+ for (llvm::BasicBlock &BB : *Fn) {
+ llvm::Instruction *T = BB.getTerminator();
+ if (isa<llvm::ReturnInst>(T)) {
+ RValue RV = RValue::get(T->getOperand(0));
+ T->eraseFromParent();
+ Builder.SetInsertPoint(&BB);
+ RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk);
+ Builder.CreateRet(RV.getScalarVal());
+ break;
+ }
+ }
+ }
+
+ return Fn;
+}
+
+void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD,
+ const CGFunctionInfo &FnInfo,
+ bool IsUnprototyped) {
+ assert(!CurGD.getDecl() && "CurGD was already set!");
+ CurGD = GD;
+ CurFuncIsThunk = true;
+
+ // Build FunctionArgs.
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ QualType ThisType = MD->getThisType();
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+ QualType ResultType;
+ if (IsUnprototyped)
+ ResultType = CGM.getContext().VoidTy;
+ else if (CGM.getCXXABI().HasThisReturn(GD))
+ ResultType = ThisType;
+ else if (CGM.getCXXABI().hasMostDerivedReturn(GD))
+ ResultType = CGM.getContext().VoidPtrTy;
+ else
+ ResultType = FPT->getReturnType();
+ FunctionArgList FunctionArgs;
+
+ // Create the implicit 'this' parameter declaration.
+ CGM.getCXXABI().buildThisParam(*this, FunctionArgs);
+
+ // Add the rest of the parameters, if we have a prototype to work with.
+ if (!IsUnprototyped) {
+ FunctionArgs.append(MD->param_begin(), MD->param_end());
+
+ if (isa<CXXDestructorDecl>(MD))
+ CGM.getCXXABI().addImplicitStructorParams(*this, ResultType,
+ FunctionArgs);
+ }
+
+ // Start defining the function.
+ auto NL = ApplyDebugLocation::CreateEmpty(*this);
+ StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs,
+ MD->getLocation());
+ // Create a scope with an artificial location for the body of this function.
+ auto AL = ApplyDebugLocation::CreateArtificial(*this);
+
+ // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves.
+ CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
+ CXXThisValue = CXXABIThisValue;
+ CurCodeDecl = MD;
+ CurFuncDecl = MD;
+}
+
+void CodeGenFunction::FinishThunk() {
+ // Clear these to restore the invariants expected by
+ // StartFunction/FinishFunction.
+ CurCodeDecl = nullptr;
+ CurFuncDecl = nullptr;
+
+ FinishFunction();
+}
+
+void CodeGenFunction::EmitCallAndReturnForThunk(llvm::FunctionCallee Callee,
+ const ThunkInfo *Thunk,
+ bool IsUnprototyped) {
+ assert(isa<CXXMethodDecl>(CurGD.getDecl()) &&
+ "Please use a new CGF for this thunk");
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl());
+
+ // Adjust the 'this' pointer if necessary
+ llvm::Value *AdjustedThisPtr =
+ Thunk ? CGM.getCXXABI().performThisAdjustment(
+ *this, LoadCXXThisAddress(), Thunk->This)
+ : LoadCXXThis();
+
+ if (CurFnInfo->usesInAlloca() || IsUnprototyped) {
+ // We don't handle return adjusting thunks, because they require us to call
+ // the copy constructor. For now, fall through and pretend the return
+ // adjustment was empty so we don't crash.
+ if (Thunk && !Thunk->Return.isEmpty()) {
+ if (IsUnprototyped)
+ CGM.ErrorUnsupported(
+ MD, "return-adjusting thunk with incomplete parameter type");
+ else
+ CGM.ErrorUnsupported(
+ MD, "non-trivial argument copy for return-adjusting thunk");
+ }
+ EmitMustTailThunk(CurGD, AdjustedThisPtr, Callee);
+ return;
+ }
+
+ // Start building CallArgs.
+ CallArgList CallArgs;
+ QualType ThisType = MD->getThisType();
+ CallArgs.add(RValue::get(AdjustedThisPtr), ThisType);
+
+ if (isa<CXXDestructorDecl>(MD))
+ CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs);
+
+#ifndef NDEBUG
+ unsigned PrefixArgs = CallArgs.size() - 1;
+#endif
+ // Add the rest of the arguments.
+ for (const ParmVarDecl *PD : MD->parameters())
+ EmitDelegateCallArg(CallArgs, PD, SourceLocation());
+
+ const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>();
+
+#ifndef NDEBUG
+ const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall(
+ CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1), PrefixArgs);
+ assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() &&
+ CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() &&
+ CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention());
+ assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types
+ similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(),
+ CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType()));
+ assert(CallFnInfo.arg_size() == CurFnInfo->arg_size());
+ for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i)
+ assert(similar(CallFnInfo.arg_begin()[i].info,
+ CallFnInfo.arg_begin()[i].type,
+ CurFnInfo->arg_begin()[i].info,
+ CurFnInfo->arg_begin()[i].type));
+#endif
+
+ // Determine whether we have a return value slot to use.
+ QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD)
+ ? ThisType
+ : CGM.getCXXABI().hasMostDerivedReturn(CurGD)
+ ? CGM.getContext().VoidPtrTy
+ : FPT->getReturnType();
+ ReturnValueSlot Slot;
+ if (!ResultType->isVoidType() &&
+ CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect)
+ Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified());
+
+ // Now emit our call.
+ llvm::CallBase *CallOrInvoke;
+ RValue RV = EmitCall(*CurFnInfo, CGCallee::forDirect(Callee, CurGD), Slot,
+ CallArgs, &CallOrInvoke);
+
+ // Consider return adjustment if we have ThunkInfo.
+ if (Thunk && !Thunk->Return.isEmpty())
+ RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk);
+ else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke))
+ Call->setTailCallKind(llvm::CallInst::TCK_Tail);
+
+ // Emit return.
+ if (!ResultType->isVoidType() && Slot.isNull())
+ CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType);
+
+ // Disable the final ARC autorelease.
+ AutoreleaseResult = false;
+
+ FinishThunk();
+}
+
+void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD,
+ llvm::Value *AdjustedThisPtr,
+ llvm::FunctionCallee Callee) {
+ // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery
+ // to translate AST arguments into LLVM IR arguments. For thunks, we know
+ // that the caller prototype more or less matches the callee prototype with
+ // the exception of 'this'.
+ SmallVector<llvm::Value *, 8> Args;
+ for (llvm::Argument &A : CurFn->args())
+ Args.push_back(&A);
+
+ // Set the adjusted 'this' pointer.
+ const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info;
+ if (ThisAI.isDirect()) {
+ const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo();
+ int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0;
+ llvm::Type *ThisType = Args[ThisArgNo]->getType();
+ if (ThisType != AdjustedThisPtr->getType())
+ AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
+ Args[ThisArgNo] = AdjustedThisPtr;
+ } else {
+ assert(ThisAI.isInAlloca() && "this is passed directly or inalloca");
+ Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl);
+ llvm::Type *ThisType = ThisAddr.getElementType();
+ if (ThisType != AdjustedThisPtr->getType())
+ AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType);
+ Builder.CreateStore(AdjustedThisPtr, ThisAddr);
+ }
+
+ // Emit the musttail call manually. Even if the prologue pushed cleanups, we
+ // don't actually want to run them.
+ llvm::CallInst *Call = Builder.CreateCall(Callee, Args);
+ Call->setTailCallKind(llvm::CallInst::TCK_MustTail);
+
+ // Apply the standard set of call attributes.
+ unsigned CallingConv;
+ llvm::AttributeList Attrs;
+ CGM.ConstructAttributeList(Callee.getCallee()->getName(), *CurFnInfo, GD,
+ Attrs, CallingConv, /*AttrOnCallSite=*/true);
+ Call->setAttributes(Attrs);
+ Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv));
+
+ if (Call->getType()->isVoidTy())
+ Builder.CreateRetVoid();
+ else
+ Builder.CreateRet(Call);
+
+ // Finish the function to maintain CodeGenFunction invariants.
+ // FIXME: Don't emit unreachable code.
+ EmitBlock(createBasicBlock());
+ FinishFunction();
+}
+
+void CodeGenFunction::generateThunk(llvm::Function *Fn,
+ const CGFunctionInfo &FnInfo, GlobalDecl GD,
+ const ThunkInfo &Thunk,
+ bool IsUnprototyped) {
+ StartThunk(Fn, GD, FnInfo, IsUnprototyped);
+ // Create a scope with an artificial location for the body of this function.
+ auto AL = ApplyDebugLocation::CreateArtificial(*this);
+
+ // Get our callee. Use a placeholder type if this method is unprototyped so
+ // that CodeGenModule doesn't try to set attributes.
+ llvm::Type *Ty;
+ if (IsUnprototyped)
+ Ty = llvm::StructType::get(getLLVMContext());
+ else
+ Ty = CGM.getTypes().GetFunctionType(FnInfo);
+
+ llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true);
+
+ // Fix up the function type for an unprototyped musttail call.
+ if (IsUnprototyped)
+ Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType());
+
+ // Make the call and return the result.
+ EmitCallAndReturnForThunk(llvm::FunctionCallee(Fn->getFunctionType(), Callee),
+ &Thunk, IsUnprototyped);
+}
+
+static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD,
+ bool IsUnprototyped, bool ForVTable) {
+ // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to
+ // provide thunks for us.
+ if (CGM.getTarget().getCXXABI().isMicrosoft())
+ return true;
+
+ // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide
+ // definitions of the main method. Therefore, emitting thunks with the vtable
+ // is purely an optimization. Emit the thunk if optimizations are enabled and
+ // all of the parameter types are complete.
+ if (ForVTable)
+ return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped;
+
+ // Always emit thunks along with the method definition.
+ return true;
+}
+
+llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD,
+ const ThunkInfo &TI,
+ bool ForVTable) {
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+
+ // First, get a declaration. Compute the mangled name. Don't worry about
+ // getting the function prototype right, since we may only need this
+ // declaration to fill in a vtable slot.
+ SmallString<256> Name;
+ MangleContext &MCtx = CGM.getCXXABI().getMangleContext();
+ llvm::raw_svector_ostream Out(Name);
+ if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD))
+ MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out);
+ else
+ MCtx.mangleThunk(MD, TI, Out);
+ llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
+ llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD);
+
+ // If we don't need to emit a definition, return this declaration as is.
+ bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible(
+ MD->getType()->castAs<FunctionType>());
+ if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable))
+ return Thunk;
+
+ // Arrange a function prototype appropriate for a function definition. In some
+ // cases in the MS ABI, we may need to build an unprototyped musttail thunk.
+ const CGFunctionInfo &FnInfo =
+ IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD)
+ : CGM.getTypes().arrangeGlobalDeclaration(GD);
+ llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo);
+
+ // If the type of the underlying GlobalValue is wrong, we'll have to replace
+ // it. It should be a declaration.
+ llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts());
+ if (ThunkFn->getFunctionType() != ThunkFnTy) {
+ llvm::GlobalValue *OldThunkFn = ThunkFn;
+
+ assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration");
+
+ // Remove the name from the old thunk function and get a new thunk.
+ OldThunkFn->setName(StringRef());
+ ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage,
+ Name.str(), &CGM.getModule());
+ CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn);
+
+ // If needed, replace the old thunk with a bitcast.
+ if (!OldThunkFn->use_empty()) {
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType());
+ OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl);
+ }
+
+ // Remove the old thunk.
+ OldThunkFn->eraseFromParent();
+ }
+
+ bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions();
+ bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions;
+
+ if (!ThunkFn->isDeclaration()) {
+ if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) {
+ // There is already a thunk emitted for this function, do nothing.
+ return ThunkFn;
+ }
+
+ setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
+ return ThunkFn;
+ }
+
+ // If this will be unprototyped, add the "thunk" attribute so that LLVM knows
+ // that the return type is meaningless. These thunks can be used to call
+ // functions with differing return types, and the caller is required to cast
+ // the prototype appropriately to extract the correct value.
+ if (IsUnprototyped)
+ ThunkFn->addFnAttr("thunk");
+
+ CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn);
+
+ if (!IsUnprototyped && ThunkFn->isVarArg()) {
+ // Varargs thunks are special; we can't just generate a call because
+ // we can't copy the varargs. Our implementation is rather
+ // expensive/sucky at the moment, so don't generate the thunk unless
+ // we have to.
+ // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly.
+ if (UseAvailableExternallyLinkage)
+ return ThunkFn;
+ ThunkFn = CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD,
+ TI);
+ } else {
+ // Normal thunk body generation.
+ CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped);
+ }
+
+ setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD);
+ return ThunkFn;
+}
+
+void CodeGenVTables::EmitThunks(GlobalDecl GD) {
+ const CXXMethodDecl *MD =
+ cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl();
+
+ // We don't need to generate thunks for the base destructor.
+ if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base)
+ return;
+
+ const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector =
+ VTContext->getThunkInfo(GD);
+
+ if (!ThunkInfoVector)
+ return;
+
+ for (const ThunkInfo& Thunk : *ThunkInfoVector)
+ maybeEmitThunk(GD, Thunk, /*ForVTable=*/false);
+}
+
+void CodeGenVTables::addVTableComponent(
+ ConstantArrayBuilder &builder, const VTableLayout &layout,
+ unsigned idx, llvm::Constant *rtti, unsigned &nextVTableThunkIndex) {
+ auto &component = layout.vtable_components()[idx];
+
+ auto addOffsetConstant = [&](CharUnits offset) {
+ builder.add(llvm::ConstantExpr::getIntToPtr(
+ llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()),
+ CGM.Int8PtrTy));
+ };
+
+ switch (component.getKind()) {
+ case VTableComponent::CK_VCallOffset:
+ return addOffsetConstant(component.getVCallOffset());
+
+ case VTableComponent::CK_VBaseOffset:
+ return addOffsetConstant(component.getVBaseOffset());
+
+ case VTableComponent::CK_OffsetToTop:
+ return addOffsetConstant(component.getOffsetToTop());
+
+ case VTableComponent::CK_RTTI:
+ return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy));
+
+ case VTableComponent::CK_FunctionPointer:
+ case VTableComponent::CK_CompleteDtorPointer:
+ case VTableComponent::CK_DeletingDtorPointer: {
+ GlobalDecl GD;
+
+ // Get the right global decl.
+ switch (component.getKind()) {
+ default:
+ llvm_unreachable("Unexpected vtable component kind");
+ case VTableComponent::CK_FunctionPointer:
+ GD = component.getFunctionDecl();
+ break;
+ case VTableComponent::CK_CompleteDtorPointer:
+ GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete);
+ break;
+ case VTableComponent::CK_DeletingDtorPointer:
+ GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting);
+ break;
+ }
+
+ if (CGM.getLangOpts().CUDA) {
+ // Emit NULL for methods we can't codegen on this
+ // side. Otherwise we'd end up with vtable with unresolved
+ // references.
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl());
+ // OK on device side: functions w/ __device__ attribute
+ // OK on host side: anything except __device__-only functions.
+ bool CanEmitMethod =
+ CGM.getLangOpts().CUDAIsDevice
+ ? MD->hasAttr<CUDADeviceAttr>()
+ : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>());
+ if (!CanEmitMethod)
+ return builder.addNullPointer(CGM.Int8PtrTy);
+ // Method is acceptable, continue processing as usual.
+ }
+
+ auto getSpecialVirtualFn = [&](StringRef name) {
+ llvm::FunctionType *fnTy =
+ llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false);
+ llvm::Constant *fn = cast<llvm::Constant>(
+ CGM.CreateRuntimeFunction(fnTy, name).getCallee());
+ if (auto f = dyn_cast<llvm::Function>(fn))
+ f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy);
+ };
+
+ llvm::Constant *fnPtr;
+
+ // Pure virtual member functions.
+ if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) {
+ if (!PureVirtualFn)
+ PureVirtualFn =
+ getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName());
+ fnPtr = PureVirtualFn;
+
+ // Deleted virtual member functions.
+ } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) {
+ if (!DeletedVirtualFn)
+ DeletedVirtualFn =
+ getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName());
+ fnPtr = DeletedVirtualFn;
+
+ // Thunks.
+ } else if (nextVTableThunkIndex < layout.vtable_thunks().size() &&
+ layout.vtable_thunks()[nextVTableThunkIndex].first == idx) {
+ auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second;
+
+ nextVTableThunkIndex++;
+ fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true);
+
+ // Otherwise we can use the method definition directly.
+ } else {
+ llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD);
+ fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true);
+ }
+
+ fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy);
+ builder.add(fnPtr);
+ return;
+ }
+
+ case VTableComponent::CK_UnusedFunctionPointer:
+ return builder.addNullPointer(CGM.Int8PtrTy);
+ }
+
+ llvm_unreachable("Unexpected vtable component kind");
+}
+
+llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) {
+ SmallVector<llvm::Type *, 4> tys;
+ for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) {
+ tys.push_back(llvm::ArrayType::get(CGM.Int8PtrTy, layout.getVTableSize(i)));
+ }
+
+ return llvm::StructType::get(CGM.getLLVMContext(), tys);
+}
+
+void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder,
+ const VTableLayout &layout,
+ llvm::Constant *rtti) {
+ unsigned nextVTableThunkIndex = 0;
+ for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) {
+ auto vtableElem = builder.beginArray(CGM.Int8PtrTy);
+ size_t thisIndex = layout.getVTableOffset(i);
+ size_t nextIndex = thisIndex + layout.getVTableSize(i);
+ for (unsigned i = thisIndex; i != nextIndex; ++i) {
+ addVTableComponent(vtableElem, layout, i, rtti, nextVTableThunkIndex);
+ }
+ vtableElem.finishAndAddTo(builder);
+ }
+}
+
+llvm::GlobalVariable *
+CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD,
+ const BaseSubobject &Base,
+ bool BaseIsVirtual,
+ llvm::GlobalVariable::LinkageTypes Linkage,
+ VTableAddressPointsMapTy& AddressPoints) {
+ if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
+ DI->completeClassData(Base.getBase());
+
+ std::unique_ptr<VTableLayout> VTLayout(
+ getItaniumVTableContext().createConstructionVTableLayout(
+ Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD));
+
+ // Add the address points.
+ AddressPoints = VTLayout->getAddressPoints();
+
+ // Get the mangled construction vtable name.
+ SmallString<256> OutName;
+ llvm::raw_svector_ostream Out(OutName);
+ cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext())
+ .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(),
+ Base.getBase(), Out);
+ StringRef Name = OutName.str();
+
+ llvm::Type *VTType = getVTableType(*VTLayout);
+
+ // Construction vtable symbols are not part of the Itanium ABI, so we cannot
+ // guarantee that they actually will be available externally. Instead, when
+ // emitting an available_externally VTT, we provide references to an internal
+ // linkage construction vtable. The ABI only requires complete-object vtables
+ // to be the same for all instances of a type, not construction vtables.
+ if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage)
+ Linkage = llvm::GlobalVariable::InternalLinkage;
+
+ unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType);
+
+ // Create the variable that will hold the construction vtable.
+ llvm::GlobalVariable *VTable =
+ CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align);
+
+ // V-tables are always unnamed_addr.
+ VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+
+ llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor(
+ CGM.getContext().getTagDeclType(Base.getBase()));
+
+ // Create and set the initializer.
+ ConstantInitBuilder builder(CGM);
+ auto components = builder.beginStruct();
+ createVTableInitializer(components, *VTLayout, RTTI);
+ components.finishAndSetAsInitializer(VTable);
+
+ // Set properties only after the initializer has been set to ensure that the
+ // GV is treated as definition and not declaration.
+ assert(!VTable->isDeclaration() && "Shouldn't set properties on declaration");
+ CGM.setGVProperties(VTable, RD);
+
+ CGM.EmitVTableTypeMetadata(VTable, *VTLayout.get());
+
+ return VTable;
+}
+
+static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM,
+ const CXXRecordDecl *RD) {
+ return CGM.getCodeGenOpts().OptimizationLevel > 0 &&
+ CGM.getCXXABI().canSpeculativelyEmitVTable(RD);
+}
+
+/// Compute the required linkage of the vtable for the given class.
+///
+/// Note that we only call this at the end of the translation unit.
+llvm::GlobalVariable::LinkageTypes
+CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) {
+ if (!RD->isExternallyVisible())
+ return llvm::GlobalVariable::InternalLinkage;
+
+ // We're at the end of the translation unit, so the current key
+ // function is fully correct.
+ const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD);
+ if (keyFunction && !RD->hasAttr<DLLImportAttr>()) {
+ // If this class has a key function, use that to determine the
+ // linkage of the vtable.
+ const FunctionDecl *def = nullptr;
+ if (keyFunction->hasBody(def))
+ keyFunction = cast<CXXMethodDecl>(def);
+
+ switch (keyFunction->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ assert((def || CodeGenOpts.OptimizationLevel > 0 ||
+ CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) &&
+ "Shouldn't query vtable linkage without key function, "
+ "optimizations, or debug info");
+ if (!def && CodeGenOpts.OptimizationLevel > 0)
+ return llvm::GlobalVariable::AvailableExternallyLinkage;
+
+ if (keyFunction->isInlined())
+ return !Context.getLangOpts().AppleKext ?
+ llvm::GlobalVariable::LinkOnceODRLinkage :
+ llvm::Function::InternalLinkage;
+
+ return llvm::GlobalVariable::ExternalLinkage;
+
+ case TSK_ImplicitInstantiation:
+ return !Context.getLangOpts().AppleKext ?
+ llvm::GlobalVariable::LinkOnceODRLinkage :
+ llvm::Function::InternalLinkage;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return !Context.getLangOpts().AppleKext ?
+ llvm::GlobalVariable::WeakODRLinkage :
+ llvm::Function::InternalLinkage;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ llvm_unreachable("Should not have been asked to emit this");
+ }
+ }
+
+ // -fapple-kext mode does not support weak linkage, so we must use
+ // internal linkage.
+ if (Context.getLangOpts().AppleKext)
+ return llvm::Function::InternalLinkage;
+
+ llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage =
+ llvm::GlobalValue::LinkOnceODRLinkage;
+ llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage =
+ llvm::GlobalValue::WeakODRLinkage;
+ if (RD->hasAttr<DLLExportAttr>()) {
+ // Cannot discard exported vtables.
+ DiscardableODRLinkage = NonDiscardableODRLinkage;
+ } else if (RD->hasAttr<DLLImportAttr>()) {
+ // Imported vtables are available externally.
+ DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
+ NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage;
+ }
+
+ switch (RD->getTemplateSpecializationKind()) {
+ case TSK_Undeclared:
+ case TSK_ExplicitSpecialization:
+ case TSK_ImplicitInstantiation:
+ return DiscardableODRLinkage;
+
+ case TSK_ExplicitInstantiationDeclaration:
+ // Explicit instantiations in MSVC do not provide vtables, so we must emit
+ // our own.
+ if (getTarget().getCXXABI().isMicrosoft())
+ return DiscardableODRLinkage;
+ return shouldEmitAvailableExternallyVTable(*this, RD)
+ ? llvm::GlobalVariable::AvailableExternallyLinkage
+ : llvm::GlobalVariable::ExternalLinkage;
+
+ case TSK_ExplicitInstantiationDefinition:
+ return NonDiscardableODRLinkage;
+ }
+
+ llvm_unreachable("Invalid TemplateSpecializationKind!");
+}
+
+/// This is a callback from Sema to tell us that a particular vtable is
+/// required to be emitted in this translation unit.
+///
+/// This is only called for vtables that _must_ be emitted (mainly due to key
+/// functions). For weak vtables, CodeGen tracks when they are needed and
+/// emits them as-needed.
+void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) {
+ VTables.GenerateClassData(theClass);
+}
+
+void
+CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) {
+ if (CGDebugInfo *DI = CGM.getModuleDebugInfo())
+ DI->completeClassData(RD);
+
+ if (RD->getNumVBases())
+ CGM.getCXXABI().emitVirtualInheritanceTables(RD);
+
+ CGM.getCXXABI().emitVTableDefinitions(*this, RD);
+}
+
+/// At this point in the translation unit, does it appear that can we
+/// rely on the vtable being defined elsewhere in the program?
+///
+/// The response is really only definitive when called at the end of
+/// the translation unit.
+///
+/// The only semantic restriction here is that the object file should
+/// not contain a vtable definition when that vtable is defined
+/// strongly elsewhere. Otherwise, we'd just like to avoid emitting
+/// vtables when unnecessary.
+bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) {
+ assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable.");
+
+ // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't
+ // emit them even if there is an explicit template instantiation.
+ if (CGM.getTarget().getCXXABI().isMicrosoft())
+ return false;
+
+ // If we have an explicit instantiation declaration (and not a
+ // definition), the vtable is defined elsewhere.
+ TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind();
+ if (TSK == TSK_ExplicitInstantiationDeclaration)
+ return true;
+
+ // Otherwise, if the class is an instantiated template, the
+ // vtable must be defined here.
+ if (TSK == TSK_ImplicitInstantiation ||
+ TSK == TSK_ExplicitInstantiationDefinition)
+ return false;
+
+ // Otherwise, if the class doesn't have a key function (possibly
+ // anymore), the vtable must be defined here.
+ const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD);
+ if (!keyFunction)
+ return false;
+
+ // Otherwise, if we don't have a definition of the key function, the
+ // vtable must be defined somewhere else.
+ return !keyFunction->hasBody();
+}
+
+/// Given that we're currently at the end of the translation unit, and
+/// we've emitted a reference to the vtable for this class, should
+/// we define that vtable?
+static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM,
+ const CXXRecordDecl *RD) {
+ // If vtable is internal then it has to be done.
+ if (!CGM.getVTables().isVTableExternal(RD))
+ return true;
+
+ // If it's external then maybe we will need it as available_externally.
+ return shouldEmitAvailableExternallyVTable(CGM, RD);
+}
+
+/// Given that at some point we emitted a reference to one or more
+/// vtables, and that we are now at the end of the translation unit,
+/// decide whether we should emit them.
+void CodeGenModule::EmitDeferredVTables() {
+#ifndef NDEBUG
+ // Remember the size of DeferredVTables, because we're going to assume
+ // that this entire operation doesn't modify it.
+ size_t savedSize = DeferredVTables.size();
+#endif
+
+ for (const CXXRecordDecl *RD : DeferredVTables)
+ if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD))
+ VTables.GenerateClassData(RD);
+ else if (shouldOpportunisticallyEmitVTables())
+ OpportunisticVTables.push_back(RD);
+
+ assert(savedSize == DeferredVTables.size() &&
+ "deferred extra vtables during vtable emission?");
+ DeferredVTables.clear();
+}
+
+bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) {
+ LinkageInfo LV = RD->getLinkageAndVisibility();
+ if (!isExternallyVisible(LV.getLinkage()))
+ return true;
+
+ if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>())
+ return false;
+
+ if (getTriple().isOSBinFormatCOFF()) {
+ if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>())
+ return false;
+ } else {
+ if (LV.getVisibility() != HiddenVisibility)
+ return false;
+ }
+
+ if (getCodeGenOpts().LTOVisibilityPublicStd) {
+ const DeclContext *DC = RD;
+ while (1) {
+ auto *D = cast<Decl>(DC);
+ DC = DC->getParent();
+ if (isa<TranslationUnitDecl>(DC->getRedeclContext())) {
+ if (auto *ND = dyn_cast<NamespaceDecl>(D))
+ if (const IdentifierInfo *II = ND->getIdentifier())
+ if (II->isStr("std") || II->isStr("stdext"))
+ return false;
+ break;
+ }
+ }
+ }
+
+ return true;
+}
+
+void CodeGenModule::EmitVTableTypeMetadata(llvm::GlobalVariable *VTable,
+ const VTableLayout &VTLayout) {
+ if (!getCodeGenOpts().LTOUnit)
+ return;
+
+ CharUnits PointerWidth =
+ Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0));
+
+ typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint;
+ std::vector<AddressPoint> AddressPoints;
+ for (auto &&AP : VTLayout.getAddressPoints())
+ AddressPoints.push_back(std::make_pair(
+ AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) +
+ AP.second.AddressPointIndex));
+
+ // Sort the address points for determinism.
+ llvm::sort(AddressPoints, [this](const AddressPoint &AP1,
+ const AddressPoint &AP2) {
+ if (&AP1 == &AP2)
+ return false;
+
+ std::string S1;
+ llvm::raw_string_ostream O1(S1);
+ getCXXABI().getMangleContext().mangleTypeName(
+ QualType(AP1.first->getTypeForDecl(), 0), O1);
+ O1.flush();
+
+ std::string S2;
+ llvm::raw_string_ostream O2(S2);
+ getCXXABI().getMangleContext().mangleTypeName(
+ QualType(AP2.first->getTypeForDecl(), 0), O2);
+ O2.flush();
+
+ if (S1 < S2)
+ return true;
+ if (S1 != S2)
+ return false;
+
+ return AP1.second < AP2.second;
+ });
+
+ ArrayRef<VTableComponent> Comps = VTLayout.vtable_components();
+ for (auto AP : AddressPoints) {
+ // Create type metadata for the address point.
+ AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first);
+
+ // The class associated with each address point could also potentially be
+ // used for indirect calls via a member function pointer, so we need to
+ // annotate the address of each function pointer with the appropriate member
+ // function pointer type.
+ for (unsigned I = 0; I != Comps.size(); ++I) {
+ if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer)
+ continue;
+ llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType(
+ Context.getMemberPointerType(
+ Comps[I].getFunctionDecl()->getType(),
+ Context.getRecordType(AP.first).getTypePtr()));
+ VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD);
+ }
+ }
+}