aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm-project/clang/lib/CodeGen/CGBuiltin.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm-project/clang/lib/CodeGen/CGBuiltin.cpp')
-rw-r--r--contrib/llvm-project/clang/lib/CodeGen/CGBuiltin.cpp14346
1 files changed, 14346 insertions, 0 deletions
diff --git a/contrib/llvm-project/clang/lib/CodeGen/CGBuiltin.cpp b/contrib/llvm-project/clang/lib/CodeGen/CGBuiltin.cpp
new file mode 100644
index 000000000000..cadce507412b
--- /dev/null
+++ b/contrib/llvm-project/clang/lib/CodeGen/CGBuiltin.cpp
@@ -0,0 +1,14346 @@
+//===---- CGBuiltin.cpp - Emit LLVM Code for builtins ---------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Builtin calls as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGCXXABI.h"
+#include "CGObjCRuntime.h"
+#include "CGOpenCLRuntime.h"
+#include "CGRecordLayout.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "ConstantEmitter.h"
+#include "PatternInit.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/OSLog.h"
+#include "clang/Basic/TargetBuiltins.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "llvm/ADT/SmallPtrSet.h"
+#include "llvm/ADT/StringExtras.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/MDBuilder.h"
+#include "llvm/Support/ConvertUTF.h"
+#include "llvm/Support/ScopedPrinter.h"
+#include "llvm/Support/TargetParser.h"
+#include <sstream>
+
+using namespace clang;
+using namespace CodeGen;
+using namespace llvm;
+
+static
+int64_t clamp(int64_t Value, int64_t Low, int64_t High) {
+ return std::min(High, std::max(Low, Value));
+}
+
+static void initializeAlloca(CodeGenFunction &CGF, AllocaInst *AI, Value *Size, unsigned AlignmentInBytes) {
+ ConstantInt *Byte;
+ switch (CGF.getLangOpts().getTrivialAutoVarInit()) {
+ case LangOptions::TrivialAutoVarInitKind::Uninitialized:
+ // Nothing to initialize.
+ return;
+ case LangOptions::TrivialAutoVarInitKind::Zero:
+ Byte = CGF.Builder.getInt8(0x00);
+ break;
+ case LangOptions::TrivialAutoVarInitKind::Pattern: {
+ llvm::Type *Int8 = llvm::IntegerType::getInt8Ty(CGF.CGM.getLLVMContext());
+ Byte = llvm::dyn_cast<llvm::ConstantInt>(
+ initializationPatternFor(CGF.CGM, Int8));
+ break;
+ }
+ }
+ CGF.Builder.CreateMemSet(AI, Byte, Size, AlignmentInBytes);
+}
+
+/// getBuiltinLibFunction - Given a builtin id for a function like
+/// "__builtin_fabsf", return a Function* for "fabsf".
+llvm::Constant *CodeGenModule::getBuiltinLibFunction(const FunctionDecl *FD,
+ unsigned BuiltinID) {
+ assert(Context.BuiltinInfo.isLibFunction(BuiltinID));
+
+ // Get the name, skip over the __builtin_ prefix (if necessary).
+ StringRef Name;
+ GlobalDecl D(FD);
+
+ // If the builtin has been declared explicitly with an assembler label,
+ // use the mangled name. This differs from the plain label on platforms
+ // that prefix labels.
+ if (FD->hasAttr<AsmLabelAttr>())
+ Name = getMangledName(D);
+ else
+ Name = Context.BuiltinInfo.getName(BuiltinID) + 10;
+
+ llvm::FunctionType *Ty =
+ cast<llvm::FunctionType>(getTypes().ConvertType(FD->getType()));
+
+ return GetOrCreateLLVMFunction(Name, Ty, D, /*ForVTable=*/false);
+}
+
+/// Emit the conversions required to turn the given value into an
+/// integer of the given size.
+static Value *EmitToInt(CodeGenFunction &CGF, llvm::Value *V,
+ QualType T, llvm::IntegerType *IntType) {
+ V = CGF.EmitToMemory(V, T);
+
+ if (V->getType()->isPointerTy())
+ return CGF.Builder.CreatePtrToInt(V, IntType);
+
+ assert(V->getType() == IntType);
+ return V;
+}
+
+static Value *EmitFromInt(CodeGenFunction &CGF, llvm::Value *V,
+ QualType T, llvm::Type *ResultType) {
+ V = CGF.EmitFromMemory(V, T);
+
+ if (ResultType->isPointerTy())
+ return CGF.Builder.CreateIntToPtr(V, ResultType);
+
+ assert(V->getType() == ResultType);
+ return V;
+}
+
+/// Utility to insert an atomic instruction based on Intrinsic::ID
+/// and the expression node.
+static Value *MakeBinaryAtomicValue(
+ CodeGenFunction &CGF, llvm::AtomicRMWInst::BinOp Kind, const CallExpr *E,
+ AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
+ QualType T = E->getType();
+ assert(E->getArg(0)->getType()->isPointerType());
+ assert(CGF.getContext().hasSameUnqualifiedType(T,
+ E->getArg(0)->getType()->getPointeeType()));
+ assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
+
+ llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
+ unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
+
+ llvm::IntegerType *IntType =
+ llvm::IntegerType::get(CGF.getLLVMContext(),
+ CGF.getContext().getTypeSize(T));
+ llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
+
+ llvm::Value *Args[2];
+ Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
+ Args[1] = CGF.EmitScalarExpr(E->getArg(1));
+ llvm::Type *ValueType = Args[1]->getType();
+ Args[1] = EmitToInt(CGF, Args[1], T, IntType);
+
+ llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
+ Kind, Args[0], Args[1], Ordering);
+ return EmitFromInt(CGF, Result, T, ValueType);
+}
+
+static Value *EmitNontemporalStore(CodeGenFunction &CGF, const CallExpr *E) {
+ Value *Val = CGF.EmitScalarExpr(E->getArg(0));
+ Value *Address = CGF.EmitScalarExpr(E->getArg(1));
+
+ // Convert the type of the pointer to a pointer to the stored type.
+ Val = CGF.EmitToMemory(Val, E->getArg(0)->getType());
+ Value *BC = CGF.Builder.CreateBitCast(
+ Address, llvm::PointerType::getUnqual(Val->getType()), "cast");
+ LValue LV = CGF.MakeNaturalAlignAddrLValue(BC, E->getArg(0)->getType());
+ LV.setNontemporal(true);
+ CGF.EmitStoreOfScalar(Val, LV, false);
+ return nullptr;
+}
+
+static Value *EmitNontemporalLoad(CodeGenFunction &CGF, const CallExpr *E) {
+ Value *Address = CGF.EmitScalarExpr(E->getArg(0));
+
+ LValue LV = CGF.MakeNaturalAlignAddrLValue(Address, E->getType());
+ LV.setNontemporal(true);
+ return CGF.EmitLoadOfScalar(LV, E->getExprLoc());
+}
+
+static RValue EmitBinaryAtomic(CodeGenFunction &CGF,
+ llvm::AtomicRMWInst::BinOp Kind,
+ const CallExpr *E) {
+ return RValue::get(MakeBinaryAtomicValue(CGF, Kind, E));
+}
+
+/// Utility to insert an atomic instruction based Intrinsic::ID and
+/// the expression node, where the return value is the result of the
+/// operation.
+static RValue EmitBinaryAtomicPost(CodeGenFunction &CGF,
+ llvm::AtomicRMWInst::BinOp Kind,
+ const CallExpr *E,
+ Instruction::BinaryOps Op,
+ bool Invert = false) {
+ QualType T = E->getType();
+ assert(E->getArg(0)->getType()->isPointerType());
+ assert(CGF.getContext().hasSameUnqualifiedType(T,
+ E->getArg(0)->getType()->getPointeeType()));
+ assert(CGF.getContext().hasSameUnqualifiedType(T, E->getArg(1)->getType()));
+
+ llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
+ unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
+
+ llvm::IntegerType *IntType =
+ llvm::IntegerType::get(CGF.getLLVMContext(),
+ CGF.getContext().getTypeSize(T));
+ llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
+
+ llvm::Value *Args[2];
+ Args[1] = CGF.EmitScalarExpr(E->getArg(1));
+ llvm::Type *ValueType = Args[1]->getType();
+ Args[1] = EmitToInt(CGF, Args[1], T, IntType);
+ Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
+
+ llvm::Value *Result = CGF.Builder.CreateAtomicRMW(
+ Kind, Args[0], Args[1], llvm::AtomicOrdering::SequentiallyConsistent);
+ Result = CGF.Builder.CreateBinOp(Op, Result, Args[1]);
+ if (Invert)
+ Result = CGF.Builder.CreateBinOp(llvm::Instruction::Xor, Result,
+ llvm::ConstantInt::get(IntType, -1));
+ Result = EmitFromInt(CGF, Result, T, ValueType);
+ return RValue::get(Result);
+}
+
+/// Utility to insert an atomic cmpxchg instruction.
+///
+/// @param CGF The current codegen function.
+/// @param E Builtin call expression to convert to cmpxchg.
+/// arg0 - address to operate on
+/// arg1 - value to compare with
+/// arg2 - new value
+/// @param ReturnBool Specifies whether to return success flag of
+/// cmpxchg result or the old value.
+///
+/// @returns result of cmpxchg, according to ReturnBool
+///
+/// Note: In order to lower Microsoft's _InterlockedCompareExchange* intrinsics
+/// invoke the function EmitAtomicCmpXchgForMSIntrin.
+static Value *MakeAtomicCmpXchgValue(CodeGenFunction &CGF, const CallExpr *E,
+ bool ReturnBool) {
+ QualType T = ReturnBool ? E->getArg(1)->getType() : E->getType();
+ llvm::Value *DestPtr = CGF.EmitScalarExpr(E->getArg(0));
+ unsigned AddrSpace = DestPtr->getType()->getPointerAddressSpace();
+
+ llvm::IntegerType *IntType = llvm::IntegerType::get(
+ CGF.getLLVMContext(), CGF.getContext().getTypeSize(T));
+ llvm::Type *IntPtrType = IntType->getPointerTo(AddrSpace);
+
+ Value *Args[3];
+ Args[0] = CGF.Builder.CreateBitCast(DestPtr, IntPtrType);
+ Args[1] = CGF.EmitScalarExpr(E->getArg(1));
+ llvm::Type *ValueType = Args[1]->getType();
+ Args[1] = EmitToInt(CGF, Args[1], T, IntType);
+ Args[2] = EmitToInt(CGF, CGF.EmitScalarExpr(E->getArg(2)), T, IntType);
+
+ Value *Pair = CGF.Builder.CreateAtomicCmpXchg(
+ Args[0], Args[1], Args[2], llvm::AtomicOrdering::SequentiallyConsistent,
+ llvm::AtomicOrdering::SequentiallyConsistent);
+ if (ReturnBool)
+ // Extract boolean success flag and zext it to int.
+ return CGF.Builder.CreateZExt(CGF.Builder.CreateExtractValue(Pair, 1),
+ CGF.ConvertType(E->getType()));
+ else
+ // Extract old value and emit it using the same type as compare value.
+ return EmitFromInt(CGF, CGF.Builder.CreateExtractValue(Pair, 0), T,
+ ValueType);
+}
+
+/// This function should be invoked to emit atomic cmpxchg for Microsoft's
+/// _InterlockedCompareExchange* intrinsics which have the following signature:
+/// T _InterlockedCompareExchange(T volatile *Destination,
+/// T Exchange,
+/// T Comparand);
+///
+/// Whereas the llvm 'cmpxchg' instruction has the following syntax:
+/// cmpxchg *Destination, Comparand, Exchange.
+/// So we need to swap Comparand and Exchange when invoking
+/// CreateAtomicCmpXchg. That is the reason we could not use the above utility
+/// function MakeAtomicCmpXchgValue since it expects the arguments to be
+/// already swapped.
+
+static
+Value *EmitAtomicCmpXchgForMSIntrin(CodeGenFunction &CGF, const CallExpr *E,
+ AtomicOrdering SuccessOrdering = AtomicOrdering::SequentiallyConsistent) {
+ assert(E->getArg(0)->getType()->isPointerType());
+ assert(CGF.getContext().hasSameUnqualifiedType(
+ E->getType(), E->getArg(0)->getType()->getPointeeType()));
+ assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
+ E->getArg(1)->getType()));
+ assert(CGF.getContext().hasSameUnqualifiedType(E->getType(),
+ E->getArg(2)->getType()));
+
+ auto *Destination = CGF.EmitScalarExpr(E->getArg(0));
+ auto *Comparand = CGF.EmitScalarExpr(E->getArg(2));
+ auto *Exchange = CGF.EmitScalarExpr(E->getArg(1));
+
+ // For Release ordering, the failure ordering should be Monotonic.
+ auto FailureOrdering = SuccessOrdering == AtomicOrdering::Release ?
+ AtomicOrdering::Monotonic :
+ SuccessOrdering;
+
+ auto *Result = CGF.Builder.CreateAtomicCmpXchg(
+ Destination, Comparand, Exchange,
+ SuccessOrdering, FailureOrdering);
+ Result->setVolatile(true);
+ return CGF.Builder.CreateExtractValue(Result, 0);
+}
+
+static Value *EmitAtomicIncrementValue(CodeGenFunction &CGF, const CallExpr *E,
+ AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
+ assert(E->getArg(0)->getType()->isPointerType());
+
+ auto *IntTy = CGF.ConvertType(E->getType());
+ auto *Result = CGF.Builder.CreateAtomicRMW(
+ AtomicRMWInst::Add,
+ CGF.EmitScalarExpr(E->getArg(0)),
+ ConstantInt::get(IntTy, 1),
+ Ordering);
+ return CGF.Builder.CreateAdd(Result, ConstantInt::get(IntTy, 1));
+}
+
+static Value *EmitAtomicDecrementValue(CodeGenFunction &CGF, const CallExpr *E,
+ AtomicOrdering Ordering = AtomicOrdering::SequentiallyConsistent) {
+ assert(E->getArg(0)->getType()->isPointerType());
+
+ auto *IntTy = CGF.ConvertType(E->getType());
+ auto *Result = CGF.Builder.CreateAtomicRMW(
+ AtomicRMWInst::Sub,
+ CGF.EmitScalarExpr(E->getArg(0)),
+ ConstantInt::get(IntTy, 1),
+ Ordering);
+ return CGF.Builder.CreateSub(Result, ConstantInt::get(IntTy, 1));
+}
+
+// Build a plain volatile load.
+static Value *EmitISOVolatileLoad(CodeGenFunction &CGF, const CallExpr *E) {
+ Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
+ QualType ElTy = E->getArg(0)->getType()->getPointeeType();
+ CharUnits LoadSize = CGF.getContext().getTypeSizeInChars(ElTy);
+ llvm::Type *ITy =
+ llvm::IntegerType::get(CGF.getLLVMContext(), LoadSize.getQuantity() * 8);
+ Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
+ llvm::LoadInst *Load = CGF.Builder.CreateAlignedLoad(Ptr, LoadSize);
+ Load->setVolatile(true);
+ return Load;
+}
+
+// Build a plain volatile store.
+static Value *EmitISOVolatileStore(CodeGenFunction &CGF, const CallExpr *E) {
+ Value *Ptr = CGF.EmitScalarExpr(E->getArg(0));
+ Value *Value = CGF.EmitScalarExpr(E->getArg(1));
+ QualType ElTy = E->getArg(0)->getType()->getPointeeType();
+ CharUnits StoreSize = CGF.getContext().getTypeSizeInChars(ElTy);
+ llvm::Type *ITy =
+ llvm::IntegerType::get(CGF.getLLVMContext(), StoreSize.getQuantity() * 8);
+ Ptr = CGF.Builder.CreateBitCast(Ptr, ITy->getPointerTo());
+ llvm::StoreInst *Store =
+ CGF.Builder.CreateAlignedStore(Value, Ptr, StoreSize);
+ Store->setVolatile(true);
+ return Store;
+}
+
+// Emit a simple mangled intrinsic that has 1 argument and a return type
+// matching the argument type.
+static Value *emitUnaryBuiltin(CodeGenFunction &CGF,
+ const CallExpr *E,
+ unsigned IntrinsicID) {
+ llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
+
+ Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
+ return CGF.Builder.CreateCall(F, Src0);
+}
+
+// Emit an intrinsic that has 2 operands of the same type as its result.
+static Value *emitBinaryBuiltin(CodeGenFunction &CGF,
+ const CallExpr *E,
+ unsigned IntrinsicID) {
+ llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
+ llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
+
+ Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
+ return CGF.Builder.CreateCall(F, { Src0, Src1 });
+}
+
+// Emit an intrinsic that has 3 operands of the same type as its result.
+static Value *emitTernaryBuiltin(CodeGenFunction &CGF,
+ const CallExpr *E,
+ unsigned IntrinsicID) {
+ llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
+ llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
+ llvm::Value *Src2 = CGF.EmitScalarExpr(E->getArg(2));
+
+ Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
+ return CGF.Builder.CreateCall(F, { Src0, Src1, Src2 });
+}
+
+// Emit an intrinsic that has 1 float or double operand, and 1 integer.
+static Value *emitFPIntBuiltin(CodeGenFunction &CGF,
+ const CallExpr *E,
+ unsigned IntrinsicID) {
+ llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
+ llvm::Value *Src1 = CGF.EmitScalarExpr(E->getArg(1));
+
+ Function *F = CGF.CGM.getIntrinsic(IntrinsicID, Src0->getType());
+ return CGF.Builder.CreateCall(F, {Src0, Src1});
+}
+
+// Emit an intrinsic that has overloaded integer result and fp operand.
+static Value *emitFPToIntRoundBuiltin(CodeGenFunction &CGF,
+ const CallExpr *E,
+ unsigned IntrinsicID) {
+ llvm::Type *ResultType = CGF.ConvertType(E->getType());
+ llvm::Value *Src0 = CGF.EmitScalarExpr(E->getArg(0));
+
+ Function *F = CGF.CGM.getIntrinsic(IntrinsicID,
+ {ResultType, Src0->getType()});
+ return CGF.Builder.CreateCall(F, Src0);
+}
+
+/// EmitFAbs - Emit a call to @llvm.fabs().
+static Value *EmitFAbs(CodeGenFunction &CGF, Value *V) {
+ Function *F = CGF.CGM.getIntrinsic(Intrinsic::fabs, V->getType());
+ llvm::CallInst *Call = CGF.Builder.CreateCall(F, V);
+ Call->setDoesNotAccessMemory();
+ return Call;
+}
+
+/// Emit the computation of the sign bit for a floating point value. Returns
+/// the i1 sign bit value.
+static Value *EmitSignBit(CodeGenFunction &CGF, Value *V) {
+ LLVMContext &C = CGF.CGM.getLLVMContext();
+
+ llvm::Type *Ty = V->getType();
+ int Width = Ty->getPrimitiveSizeInBits();
+ llvm::Type *IntTy = llvm::IntegerType::get(C, Width);
+ V = CGF.Builder.CreateBitCast(V, IntTy);
+ if (Ty->isPPC_FP128Ty()) {
+ // We want the sign bit of the higher-order double. The bitcast we just
+ // did works as if the double-double was stored to memory and then
+ // read as an i128. The "store" will put the higher-order double in the
+ // lower address in both little- and big-Endian modes, but the "load"
+ // will treat those bits as a different part of the i128: the low bits in
+ // little-Endian, the high bits in big-Endian. Therefore, on big-Endian
+ // we need to shift the high bits down to the low before truncating.
+ Width >>= 1;
+ if (CGF.getTarget().isBigEndian()) {
+ Value *ShiftCst = llvm::ConstantInt::get(IntTy, Width);
+ V = CGF.Builder.CreateLShr(V, ShiftCst);
+ }
+ // We are truncating value in order to extract the higher-order
+ // double, which we will be using to extract the sign from.
+ IntTy = llvm::IntegerType::get(C, Width);
+ V = CGF.Builder.CreateTrunc(V, IntTy);
+ }
+ Value *Zero = llvm::Constant::getNullValue(IntTy);
+ return CGF.Builder.CreateICmpSLT(V, Zero);
+}
+
+static RValue emitLibraryCall(CodeGenFunction &CGF, const FunctionDecl *FD,
+ const CallExpr *E, llvm::Constant *calleeValue) {
+ CGCallee callee = CGCallee::forDirect(calleeValue, GlobalDecl(FD));
+ return CGF.EmitCall(E->getCallee()->getType(), callee, E, ReturnValueSlot());
+}
+
+/// Emit a call to llvm.{sadd,uadd,ssub,usub,smul,umul}.with.overflow.*
+/// depending on IntrinsicID.
+///
+/// \arg CGF The current codegen function.
+/// \arg IntrinsicID The ID for the Intrinsic we wish to generate.
+/// \arg X The first argument to the llvm.*.with.overflow.*.
+/// \arg Y The second argument to the llvm.*.with.overflow.*.
+/// \arg Carry The carry returned by the llvm.*.with.overflow.*.
+/// \returns The result (i.e. sum/product) returned by the intrinsic.
+static llvm::Value *EmitOverflowIntrinsic(CodeGenFunction &CGF,
+ const llvm::Intrinsic::ID IntrinsicID,
+ llvm::Value *X, llvm::Value *Y,
+ llvm::Value *&Carry) {
+ // Make sure we have integers of the same width.
+ assert(X->getType() == Y->getType() &&
+ "Arguments must be the same type. (Did you forget to make sure both "
+ "arguments have the same integer width?)");
+
+ Function *Callee = CGF.CGM.getIntrinsic(IntrinsicID, X->getType());
+ llvm::Value *Tmp = CGF.Builder.CreateCall(Callee, {X, Y});
+ Carry = CGF.Builder.CreateExtractValue(Tmp, 1);
+ return CGF.Builder.CreateExtractValue(Tmp, 0);
+}
+
+static Value *emitRangedBuiltin(CodeGenFunction &CGF,
+ unsigned IntrinsicID,
+ int low, int high) {
+ llvm::MDBuilder MDHelper(CGF.getLLVMContext());
+ llvm::MDNode *RNode = MDHelper.createRange(APInt(32, low), APInt(32, high));
+ Function *F = CGF.CGM.getIntrinsic(IntrinsicID, {});
+ llvm::Instruction *Call = CGF.Builder.CreateCall(F);
+ Call->setMetadata(llvm::LLVMContext::MD_range, RNode);
+ return Call;
+}
+
+namespace {
+ struct WidthAndSignedness {
+ unsigned Width;
+ bool Signed;
+ };
+}
+
+static WidthAndSignedness
+getIntegerWidthAndSignedness(const clang::ASTContext &context,
+ const clang::QualType Type) {
+ assert(Type->isIntegerType() && "Given type is not an integer.");
+ unsigned Width = Type->isBooleanType() ? 1 : context.getTypeInfo(Type).Width;
+ bool Signed = Type->isSignedIntegerType();
+ return {Width, Signed};
+}
+
+// Given one or more integer types, this function produces an integer type that
+// encompasses them: any value in one of the given types could be expressed in
+// the encompassing type.
+static struct WidthAndSignedness
+EncompassingIntegerType(ArrayRef<struct WidthAndSignedness> Types) {
+ assert(Types.size() > 0 && "Empty list of types.");
+
+ // If any of the given types is signed, we must return a signed type.
+ bool Signed = false;
+ for (const auto &Type : Types) {
+ Signed |= Type.Signed;
+ }
+
+ // The encompassing type must have a width greater than or equal to the width
+ // of the specified types. Additionally, if the encompassing type is signed,
+ // its width must be strictly greater than the width of any unsigned types
+ // given.
+ unsigned Width = 0;
+ for (const auto &Type : Types) {
+ unsigned MinWidth = Type.Width + (Signed && !Type.Signed);
+ if (Width < MinWidth) {
+ Width = MinWidth;
+ }
+ }
+
+ return {Width, Signed};
+}
+
+Value *CodeGenFunction::EmitVAStartEnd(Value *ArgValue, bool IsStart) {
+ llvm::Type *DestType = Int8PtrTy;
+ if (ArgValue->getType() != DestType)
+ ArgValue =
+ Builder.CreateBitCast(ArgValue, DestType, ArgValue->getName().data());
+
+ Intrinsic::ID inst = IsStart ? Intrinsic::vastart : Intrinsic::vaend;
+ return Builder.CreateCall(CGM.getIntrinsic(inst), ArgValue);
+}
+
+/// Checks if using the result of __builtin_object_size(p, @p From) in place of
+/// __builtin_object_size(p, @p To) is correct
+static bool areBOSTypesCompatible(int From, int To) {
+ // Note: Our __builtin_object_size implementation currently treats Type=0 and
+ // Type=2 identically. Encoding this implementation detail here may make
+ // improving __builtin_object_size difficult in the future, so it's omitted.
+ return From == To || (From == 0 && To == 1) || (From == 3 && To == 2);
+}
+
+static llvm::Value *
+getDefaultBuiltinObjectSizeResult(unsigned Type, llvm::IntegerType *ResType) {
+ return ConstantInt::get(ResType, (Type & 2) ? 0 : -1, /*isSigned=*/true);
+}
+
+llvm::Value *
+CodeGenFunction::evaluateOrEmitBuiltinObjectSize(const Expr *E, unsigned Type,
+ llvm::IntegerType *ResType,
+ llvm::Value *EmittedE,
+ bool IsDynamic) {
+ uint64_t ObjectSize;
+ if (!E->tryEvaluateObjectSize(ObjectSize, getContext(), Type))
+ return emitBuiltinObjectSize(E, Type, ResType, EmittedE, IsDynamic);
+ return ConstantInt::get(ResType, ObjectSize, /*isSigned=*/true);
+}
+
+/// Returns a Value corresponding to the size of the given expression.
+/// This Value may be either of the following:
+/// - A llvm::Argument (if E is a param with the pass_object_size attribute on
+/// it)
+/// - A call to the @llvm.objectsize intrinsic
+///
+/// EmittedE is the result of emitting `E` as a scalar expr. If it's non-null
+/// and we wouldn't otherwise try to reference a pass_object_size parameter,
+/// we'll call @llvm.objectsize on EmittedE, rather than emitting E.
+llvm::Value *
+CodeGenFunction::emitBuiltinObjectSize(const Expr *E, unsigned Type,
+ llvm::IntegerType *ResType,
+ llvm::Value *EmittedE, bool IsDynamic) {
+ // We need to reference an argument if the pointer is a parameter with the
+ // pass_object_size attribute.
+ if (auto *D = dyn_cast<DeclRefExpr>(E->IgnoreParenImpCasts())) {
+ auto *Param = dyn_cast<ParmVarDecl>(D->getDecl());
+ auto *PS = D->getDecl()->getAttr<PassObjectSizeAttr>();
+ if (Param != nullptr && PS != nullptr &&
+ areBOSTypesCompatible(PS->getType(), Type)) {
+ auto Iter = SizeArguments.find(Param);
+ assert(Iter != SizeArguments.end());
+
+ const ImplicitParamDecl *D = Iter->second;
+ auto DIter = LocalDeclMap.find(D);
+ assert(DIter != LocalDeclMap.end());
+
+ return EmitLoadOfScalar(DIter->second, /*Volatile=*/false,
+ getContext().getSizeType(), E->getBeginLoc());
+ }
+ }
+
+ // LLVM can't handle Type=3 appropriately, and __builtin_object_size shouldn't
+ // evaluate E for side-effects. In either case, we shouldn't lower to
+ // @llvm.objectsize.
+ if (Type == 3 || (!EmittedE && E->HasSideEffects(getContext())))
+ return getDefaultBuiltinObjectSizeResult(Type, ResType);
+
+ Value *Ptr = EmittedE ? EmittedE : EmitScalarExpr(E);
+ assert(Ptr->getType()->isPointerTy() &&
+ "Non-pointer passed to __builtin_object_size?");
+
+ Function *F =
+ CGM.getIntrinsic(Intrinsic::objectsize, {ResType, Ptr->getType()});
+
+ // LLVM only supports 0 and 2, make sure that we pass along that as a boolean.
+ Value *Min = Builder.getInt1((Type & 2) != 0);
+ // For GCC compatibility, __builtin_object_size treat NULL as unknown size.
+ Value *NullIsUnknown = Builder.getTrue();
+ Value *Dynamic = Builder.getInt1(IsDynamic);
+ return Builder.CreateCall(F, {Ptr, Min, NullIsUnknown, Dynamic});
+}
+
+namespace {
+/// A struct to generically describe a bit test intrinsic.
+struct BitTest {
+ enum ActionKind : uint8_t { TestOnly, Complement, Reset, Set };
+ enum InterlockingKind : uint8_t {
+ Unlocked,
+ Sequential,
+ Acquire,
+ Release,
+ NoFence
+ };
+
+ ActionKind Action;
+ InterlockingKind Interlocking;
+ bool Is64Bit;
+
+ static BitTest decodeBitTestBuiltin(unsigned BuiltinID);
+};
+} // namespace
+
+BitTest BitTest::decodeBitTestBuiltin(unsigned BuiltinID) {
+ switch (BuiltinID) {
+ // Main portable variants.
+ case Builtin::BI_bittest:
+ return {TestOnly, Unlocked, false};
+ case Builtin::BI_bittestandcomplement:
+ return {Complement, Unlocked, false};
+ case Builtin::BI_bittestandreset:
+ return {Reset, Unlocked, false};
+ case Builtin::BI_bittestandset:
+ return {Set, Unlocked, false};
+ case Builtin::BI_interlockedbittestandreset:
+ return {Reset, Sequential, false};
+ case Builtin::BI_interlockedbittestandset:
+ return {Set, Sequential, false};
+
+ // X86-specific 64-bit variants.
+ case Builtin::BI_bittest64:
+ return {TestOnly, Unlocked, true};
+ case Builtin::BI_bittestandcomplement64:
+ return {Complement, Unlocked, true};
+ case Builtin::BI_bittestandreset64:
+ return {Reset, Unlocked, true};
+ case Builtin::BI_bittestandset64:
+ return {Set, Unlocked, true};
+ case Builtin::BI_interlockedbittestandreset64:
+ return {Reset, Sequential, true};
+ case Builtin::BI_interlockedbittestandset64:
+ return {Set, Sequential, true};
+
+ // ARM/AArch64-specific ordering variants.
+ case Builtin::BI_interlockedbittestandset_acq:
+ return {Set, Acquire, false};
+ case Builtin::BI_interlockedbittestandset_rel:
+ return {Set, Release, false};
+ case Builtin::BI_interlockedbittestandset_nf:
+ return {Set, NoFence, false};
+ case Builtin::BI_interlockedbittestandreset_acq:
+ return {Reset, Acquire, false};
+ case Builtin::BI_interlockedbittestandreset_rel:
+ return {Reset, Release, false};
+ case Builtin::BI_interlockedbittestandreset_nf:
+ return {Reset, NoFence, false};
+ }
+ llvm_unreachable("expected only bittest intrinsics");
+}
+
+static char bitActionToX86BTCode(BitTest::ActionKind A) {
+ switch (A) {
+ case BitTest::TestOnly: return '\0';
+ case BitTest::Complement: return 'c';
+ case BitTest::Reset: return 'r';
+ case BitTest::Set: return 's';
+ }
+ llvm_unreachable("invalid action");
+}
+
+static llvm::Value *EmitX86BitTestIntrinsic(CodeGenFunction &CGF,
+ BitTest BT,
+ const CallExpr *E, Value *BitBase,
+ Value *BitPos) {
+ char Action = bitActionToX86BTCode(BT.Action);
+ char SizeSuffix = BT.Is64Bit ? 'q' : 'l';
+
+ // Build the assembly.
+ SmallString<64> Asm;
+ raw_svector_ostream AsmOS(Asm);
+ if (BT.Interlocking != BitTest::Unlocked)
+ AsmOS << "lock ";
+ AsmOS << "bt";
+ if (Action)
+ AsmOS << Action;
+ AsmOS << SizeSuffix << " $2, ($1)\n\tsetc ${0:b}";
+
+ // Build the constraints. FIXME: We should support immediates when possible.
+ std::string Constraints = "=r,r,r,~{cc},~{flags},~{fpsr}";
+ llvm::IntegerType *IntType = llvm::IntegerType::get(
+ CGF.getLLVMContext(),
+ CGF.getContext().getTypeSize(E->getArg(1)->getType()));
+ llvm::Type *IntPtrType = IntType->getPointerTo();
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(CGF.Int8Ty, {IntPtrType, IntType}, false);
+
+ llvm::InlineAsm *IA =
+ llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
+ return CGF.Builder.CreateCall(IA, {BitBase, BitPos});
+}
+
+static llvm::AtomicOrdering
+getBitTestAtomicOrdering(BitTest::InterlockingKind I) {
+ switch (I) {
+ case BitTest::Unlocked: return llvm::AtomicOrdering::NotAtomic;
+ case BitTest::Sequential: return llvm::AtomicOrdering::SequentiallyConsistent;
+ case BitTest::Acquire: return llvm::AtomicOrdering::Acquire;
+ case BitTest::Release: return llvm::AtomicOrdering::Release;
+ case BitTest::NoFence: return llvm::AtomicOrdering::Monotonic;
+ }
+ llvm_unreachable("invalid interlocking");
+}
+
+/// Emit a _bittest* intrinsic. These intrinsics take a pointer to an array of
+/// bits and a bit position and read and optionally modify the bit at that
+/// position. The position index can be arbitrarily large, i.e. it can be larger
+/// than 31 or 63, so we need an indexed load in the general case.
+static llvm::Value *EmitBitTestIntrinsic(CodeGenFunction &CGF,
+ unsigned BuiltinID,
+ const CallExpr *E) {
+ Value *BitBase = CGF.EmitScalarExpr(E->getArg(0));
+ Value *BitPos = CGF.EmitScalarExpr(E->getArg(1));
+
+ BitTest BT = BitTest::decodeBitTestBuiltin(BuiltinID);
+
+ // X86 has special BT, BTC, BTR, and BTS instructions that handle the array
+ // indexing operation internally. Use them if possible.
+ llvm::Triple::ArchType Arch = CGF.getTarget().getTriple().getArch();
+ if (Arch == llvm::Triple::x86 || Arch == llvm::Triple::x86_64)
+ return EmitX86BitTestIntrinsic(CGF, BT, E, BitBase, BitPos);
+
+ // Otherwise, use generic code to load one byte and test the bit. Use all but
+ // the bottom three bits as the array index, and the bottom three bits to form
+ // a mask.
+ // Bit = BitBaseI8[BitPos >> 3] & (1 << (BitPos & 0x7)) != 0;
+ Value *ByteIndex = CGF.Builder.CreateAShr(
+ BitPos, llvm::ConstantInt::get(BitPos->getType(), 3), "bittest.byteidx");
+ Value *BitBaseI8 = CGF.Builder.CreatePointerCast(BitBase, CGF.Int8PtrTy);
+ Address ByteAddr(CGF.Builder.CreateInBoundsGEP(CGF.Int8Ty, BitBaseI8,
+ ByteIndex, "bittest.byteaddr"),
+ CharUnits::One());
+ Value *PosLow =
+ CGF.Builder.CreateAnd(CGF.Builder.CreateTrunc(BitPos, CGF.Int8Ty),
+ llvm::ConstantInt::get(CGF.Int8Ty, 0x7));
+
+ // The updating instructions will need a mask.
+ Value *Mask = nullptr;
+ if (BT.Action != BitTest::TestOnly) {
+ Mask = CGF.Builder.CreateShl(llvm::ConstantInt::get(CGF.Int8Ty, 1), PosLow,
+ "bittest.mask");
+ }
+
+ // Check the action and ordering of the interlocked intrinsics.
+ llvm::AtomicOrdering Ordering = getBitTestAtomicOrdering(BT.Interlocking);
+
+ Value *OldByte = nullptr;
+ if (Ordering != llvm::AtomicOrdering::NotAtomic) {
+ // Emit a combined atomicrmw load/store operation for the interlocked
+ // intrinsics.
+ llvm::AtomicRMWInst::BinOp RMWOp = llvm::AtomicRMWInst::Or;
+ if (BT.Action == BitTest::Reset) {
+ Mask = CGF.Builder.CreateNot(Mask);
+ RMWOp = llvm::AtomicRMWInst::And;
+ }
+ OldByte = CGF.Builder.CreateAtomicRMW(RMWOp, ByteAddr.getPointer(), Mask,
+ Ordering);
+ } else {
+ // Emit a plain load for the non-interlocked intrinsics.
+ OldByte = CGF.Builder.CreateLoad(ByteAddr, "bittest.byte");
+ Value *NewByte = nullptr;
+ switch (BT.Action) {
+ case BitTest::TestOnly:
+ // Don't store anything.
+ break;
+ case BitTest::Complement:
+ NewByte = CGF.Builder.CreateXor(OldByte, Mask);
+ break;
+ case BitTest::Reset:
+ NewByte = CGF.Builder.CreateAnd(OldByte, CGF.Builder.CreateNot(Mask));
+ break;
+ case BitTest::Set:
+ NewByte = CGF.Builder.CreateOr(OldByte, Mask);
+ break;
+ }
+ if (NewByte)
+ CGF.Builder.CreateStore(NewByte, ByteAddr);
+ }
+
+ // However we loaded the old byte, either by plain load or atomicrmw, shift
+ // the bit into the low position and mask it to 0 or 1.
+ Value *ShiftedByte = CGF.Builder.CreateLShr(OldByte, PosLow, "bittest.shr");
+ return CGF.Builder.CreateAnd(
+ ShiftedByte, llvm::ConstantInt::get(CGF.Int8Ty, 1), "bittest.res");
+}
+
+namespace {
+enum class MSVCSetJmpKind {
+ _setjmpex,
+ _setjmp3,
+ _setjmp
+};
+}
+
+/// MSVC handles setjmp a bit differently on different platforms. On every
+/// architecture except 32-bit x86, the frame address is passed. On x86, extra
+/// parameters can be passed as variadic arguments, but we always pass none.
+static RValue EmitMSVCRTSetJmp(CodeGenFunction &CGF, MSVCSetJmpKind SJKind,
+ const CallExpr *E) {
+ llvm::Value *Arg1 = nullptr;
+ llvm::Type *Arg1Ty = nullptr;
+ StringRef Name;
+ bool IsVarArg = false;
+ if (SJKind == MSVCSetJmpKind::_setjmp3) {
+ Name = "_setjmp3";
+ Arg1Ty = CGF.Int32Ty;
+ Arg1 = llvm::ConstantInt::get(CGF.IntTy, 0);
+ IsVarArg = true;
+ } else {
+ Name = SJKind == MSVCSetJmpKind::_setjmp ? "_setjmp" : "_setjmpex";
+ Arg1Ty = CGF.Int8PtrTy;
+ if (CGF.getTarget().getTriple().getArch() == llvm::Triple::aarch64) {
+ Arg1 = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::sponentry));
+ } else
+ Arg1 = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(Intrinsic::frameaddress),
+ llvm::ConstantInt::get(CGF.Int32Ty, 0));
+ }
+
+ // Mark the call site and declaration with ReturnsTwice.
+ llvm::Type *ArgTypes[2] = {CGF.Int8PtrTy, Arg1Ty};
+ llvm::AttributeList ReturnsTwiceAttr = llvm::AttributeList::get(
+ CGF.getLLVMContext(), llvm::AttributeList::FunctionIndex,
+ llvm::Attribute::ReturnsTwice);
+ llvm::FunctionCallee SetJmpFn = CGF.CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(CGF.IntTy, ArgTypes, IsVarArg), Name,
+ ReturnsTwiceAttr, /*Local=*/true);
+
+ llvm::Value *Buf = CGF.Builder.CreateBitOrPointerCast(
+ CGF.EmitScalarExpr(E->getArg(0)), CGF.Int8PtrTy);
+ llvm::Value *Args[] = {Buf, Arg1};
+ llvm::CallBase *CB = CGF.EmitRuntimeCallOrInvoke(SetJmpFn, Args);
+ CB->setAttributes(ReturnsTwiceAttr);
+ return RValue::get(CB);
+}
+
+// Many of MSVC builtins are on x64, ARM and AArch64; to avoid repeating code,
+// we handle them here.
+enum class CodeGenFunction::MSVCIntrin {
+ _BitScanForward,
+ _BitScanReverse,
+ _InterlockedAnd,
+ _InterlockedDecrement,
+ _InterlockedExchange,
+ _InterlockedExchangeAdd,
+ _InterlockedExchangeSub,
+ _InterlockedIncrement,
+ _InterlockedOr,
+ _InterlockedXor,
+ _InterlockedExchangeAdd_acq,
+ _InterlockedExchangeAdd_rel,
+ _InterlockedExchangeAdd_nf,
+ _InterlockedExchange_acq,
+ _InterlockedExchange_rel,
+ _InterlockedExchange_nf,
+ _InterlockedCompareExchange_acq,
+ _InterlockedCompareExchange_rel,
+ _InterlockedCompareExchange_nf,
+ _InterlockedOr_acq,
+ _InterlockedOr_rel,
+ _InterlockedOr_nf,
+ _InterlockedXor_acq,
+ _InterlockedXor_rel,
+ _InterlockedXor_nf,
+ _InterlockedAnd_acq,
+ _InterlockedAnd_rel,
+ _InterlockedAnd_nf,
+ _InterlockedIncrement_acq,
+ _InterlockedIncrement_rel,
+ _InterlockedIncrement_nf,
+ _InterlockedDecrement_acq,
+ _InterlockedDecrement_rel,
+ _InterlockedDecrement_nf,
+ __fastfail,
+};
+
+Value *CodeGenFunction::EmitMSVCBuiltinExpr(MSVCIntrin BuiltinID,
+ const CallExpr *E) {
+ switch (BuiltinID) {
+ case MSVCIntrin::_BitScanForward:
+ case MSVCIntrin::_BitScanReverse: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(1));
+
+ llvm::Type *ArgType = ArgValue->getType();
+ llvm::Type *IndexType =
+ EmitScalarExpr(E->getArg(0))->getType()->getPointerElementType();
+ llvm::Type *ResultType = ConvertType(E->getType());
+
+ Value *ArgZero = llvm::Constant::getNullValue(ArgType);
+ Value *ResZero = llvm::Constant::getNullValue(ResultType);
+ Value *ResOne = llvm::ConstantInt::get(ResultType, 1);
+
+ BasicBlock *Begin = Builder.GetInsertBlock();
+ BasicBlock *End = createBasicBlock("bitscan_end", this->CurFn);
+ Builder.SetInsertPoint(End);
+ PHINode *Result = Builder.CreatePHI(ResultType, 2, "bitscan_result");
+
+ Builder.SetInsertPoint(Begin);
+ Value *IsZero = Builder.CreateICmpEQ(ArgValue, ArgZero);
+ BasicBlock *NotZero = createBasicBlock("bitscan_not_zero", this->CurFn);
+ Builder.CreateCondBr(IsZero, End, NotZero);
+ Result->addIncoming(ResZero, Begin);
+
+ Builder.SetInsertPoint(NotZero);
+ Address IndexAddress = EmitPointerWithAlignment(E->getArg(0));
+
+ if (BuiltinID == MSVCIntrin::_BitScanForward) {
+ Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
+ Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
+ ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
+ Builder.CreateStore(ZeroCount, IndexAddress, false);
+ } else {
+ unsigned ArgWidth = cast<llvm::IntegerType>(ArgType)->getBitWidth();
+ Value *ArgTypeLastIndex = llvm::ConstantInt::get(IndexType, ArgWidth - 1);
+
+ Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
+ Value *ZeroCount = Builder.CreateCall(F, {ArgValue, Builder.getTrue()});
+ ZeroCount = Builder.CreateIntCast(ZeroCount, IndexType, false);
+ Value *Index = Builder.CreateNSWSub(ArgTypeLastIndex, ZeroCount);
+ Builder.CreateStore(Index, IndexAddress, false);
+ }
+ Builder.CreateBr(End);
+ Result->addIncoming(ResOne, NotZero);
+
+ Builder.SetInsertPoint(End);
+ return Result;
+ }
+ case MSVCIntrin::_InterlockedAnd:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E);
+ case MSVCIntrin::_InterlockedExchange:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E);
+ case MSVCIntrin::_InterlockedExchangeAdd:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E);
+ case MSVCIntrin::_InterlockedExchangeSub:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Sub, E);
+ case MSVCIntrin::_InterlockedOr:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E);
+ case MSVCIntrin::_InterlockedXor:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E);
+ case MSVCIntrin::_InterlockedExchangeAdd_acq:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
+ AtomicOrdering::Acquire);
+ case MSVCIntrin::_InterlockedExchangeAdd_rel:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
+ AtomicOrdering::Release);
+ case MSVCIntrin::_InterlockedExchangeAdd_nf:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Add, E,
+ AtomicOrdering::Monotonic);
+ case MSVCIntrin::_InterlockedExchange_acq:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
+ AtomicOrdering::Acquire);
+ case MSVCIntrin::_InterlockedExchange_rel:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
+ AtomicOrdering::Release);
+ case MSVCIntrin::_InterlockedExchange_nf:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xchg, E,
+ AtomicOrdering::Monotonic);
+ case MSVCIntrin::_InterlockedCompareExchange_acq:
+ return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Acquire);
+ case MSVCIntrin::_InterlockedCompareExchange_rel:
+ return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Release);
+ case MSVCIntrin::_InterlockedCompareExchange_nf:
+ return EmitAtomicCmpXchgForMSIntrin(*this, E, AtomicOrdering::Monotonic);
+ case MSVCIntrin::_InterlockedOr_acq:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
+ AtomicOrdering::Acquire);
+ case MSVCIntrin::_InterlockedOr_rel:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
+ AtomicOrdering::Release);
+ case MSVCIntrin::_InterlockedOr_nf:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Or, E,
+ AtomicOrdering::Monotonic);
+ case MSVCIntrin::_InterlockedXor_acq:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
+ AtomicOrdering::Acquire);
+ case MSVCIntrin::_InterlockedXor_rel:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
+ AtomicOrdering::Release);
+ case MSVCIntrin::_InterlockedXor_nf:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::Xor, E,
+ AtomicOrdering::Monotonic);
+ case MSVCIntrin::_InterlockedAnd_acq:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
+ AtomicOrdering::Acquire);
+ case MSVCIntrin::_InterlockedAnd_rel:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
+ AtomicOrdering::Release);
+ case MSVCIntrin::_InterlockedAnd_nf:
+ return MakeBinaryAtomicValue(*this, AtomicRMWInst::And, E,
+ AtomicOrdering::Monotonic);
+ case MSVCIntrin::_InterlockedIncrement_acq:
+ return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Acquire);
+ case MSVCIntrin::_InterlockedIncrement_rel:
+ return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Release);
+ case MSVCIntrin::_InterlockedIncrement_nf:
+ return EmitAtomicIncrementValue(*this, E, AtomicOrdering::Monotonic);
+ case MSVCIntrin::_InterlockedDecrement_acq:
+ return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Acquire);
+ case MSVCIntrin::_InterlockedDecrement_rel:
+ return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Release);
+ case MSVCIntrin::_InterlockedDecrement_nf:
+ return EmitAtomicDecrementValue(*this, E, AtomicOrdering::Monotonic);
+
+ case MSVCIntrin::_InterlockedDecrement:
+ return EmitAtomicDecrementValue(*this, E);
+ case MSVCIntrin::_InterlockedIncrement:
+ return EmitAtomicIncrementValue(*this, E);
+
+ case MSVCIntrin::__fastfail: {
+ // Request immediate process termination from the kernel. The instruction
+ // sequences to do this are documented on MSDN:
+ // https://msdn.microsoft.com/en-us/library/dn774154.aspx
+ llvm::Triple::ArchType ISA = getTarget().getTriple().getArch();
+ StringRef Asm, Constraints;
+ switch (ISA) {
+ default:
+ ErrorUnsupported(E, "__fastfail call for this architecture");
+ break;
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ Asm = "int $$0x29";
+ Constraints = "{cx}";
+ break;
+ case llvm::Triple::thumb:
+ Asm = "udf #251";
+ Constraints = "{r0}";
+ break;
+ case llvm::Triple::aarch64:
+ Asm = "brk #0xF003";
+ Constraints = "{w0}";
+ }
+ llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, {Int32Ty}, false);
+ llvm::InlineAsm *IA =
+ llvm::InlineAsm::get(FTy, Asm, Constraints, /*hasSideEffects=*/true);
+ llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
+ getLLVMContext(), llvm::AttributeList::FunctionIndex,
+ llvm::Attribute::NoReturn);
+ llvm::CallInst *CI = Builder.CreateCall(IA, EmitScalarExpr(E->getArg(0)));
+ CI->setAttributes(NoReturnAttr);
+ return CI;
+ }
+ }
+ llvm_unreachable("Incorrect MSVC intrinsic!");
+}
+
+namespace {
+// ARC cleanup for __builtin_os_log_format
+struct CallObjCArcUse final : EHScopeStack::Cleanup {
+ CallObjCArcUse(llvm::Value *object) : object(object) {}
+ llvm::Value *object;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitARCIntrinsicUse(object);
+ }
+};
+}
+
+Value *CodeGenFunction::EmitCheckedArgForBuiltin(const Expr *E,
+ BuiltinCheckKind Kind) {
+ assert((Kind == BCK_CLZPassedZero || Kind == BCK_CTZPassedZero)
+ && "Unsupported builtin check kind");
+
+ Value *ArgValue = EmitScalarExpr(E);
+ if (!SanOpts.has(SanitizerKind::Builtin) || !getTarget().isCLZForZeroUndef())
+ return ArgValue;
+
+ SanitizerScope SanScope(this);
+ Value *Cond = Builder.CreateICmpNE(
+ ArgValue, llvm::Constant::getNullValue(ArgValue->getType()));
+ EmitCheck(std::make_pair(Cond, SanitizerKind::Builtin),
+ SanitizerHandler::InvalidBuiltin,
+ {EmitCheckSourceLocation(E->getExprLoc()),
+ llvm::ConstantInt::get(Builder.getInt8Ty(), Kind)},
+ None);
+ return ArgValue;
+}
+
+/// Get the argument type for arguments to os_log_helper.
+static CanQualType getOSLogArgType(ASTContext &C, int Size) {
+ QualType UnsignedTy = C.getIntTypeForBitwidth(Size * 8, /*Signed=*/false);
+ return C.getCanonicalType(UnsignedTy);
+}
+
+llvm::Function *CodeGenFunction::generateBuiltinOSLogHelperFunction(
+ const analyze_os_log::OSLogBufferLayout &Layout,
+ CharUnits BufferAlignment) {
+ ASTContext &Ctx = getContext();
+
+ llvm::SmallString<64> Name;
+ {
+ raw_svector_ostream OS(Name);
+ OS << "__os_log_helper";
+ OS << "_" << BufferAlignment.getQuantity();
+ OS << "_" << int(Layout.getSummaryByte());
+ OS << "_" << int(Layout.getNumArgsByte());
+ for (const auto &Item : Layout.Items)
+ OS << "_" << int(Item.getSizeByte()) << "_"
+ << int(Item.getDescriptorByte());
+ }
+
+ if (llvm::Function *F = CGM.getModule().getFunction(Name))
+ return F;
+
+ llvm::SmallVector<QualType, 4> ArgTys;
+ FunctionArgList Args;
+ Args.push_back(ImplicitParamDecl::Create(
+ Ctx, nullptr, SourceLocation(), &Ctx.Idents.get("buffer"), Ctx.VoidPtrTy,
+ ImplicitParamDecl::Other));
+ ArgTys.emplace_back(Ctx.VoidPtrTy);
+
+ for (unsigned int I = 0, E = Layout.Items.size(); I < E; ++I) {
+ char Size = Layout.Items[I].getSizeByte();
+ if (!Size)
+ continue;
+
+ QualType ArgTy = getOSLogArgType(Ctx, Size);
+ Args.push_back(ImplicitParamDecl::Create(
+ Ctx, nullptr, SourceLocation(),
+ &Ctx.Idents.get(std::string("arg") + llvm::to_string(I)), ArgTy,
+ ImplicitParamDecl::Other));
+ ArgTys.emplace_back(ArgTy);
+ }
+
+ QualType ReturnTy = Ctx.VoidTy;
+ QualType FuncionTy = Ctx.getFunctionType(ReturnTy, ArgTys, {});
+
+ // The helper function has linkonce_odr linkage to enable the linker to merge
+ // identical functions. To ensure the merging always happens, 'noinline' is
+ // attached to the function when compiling with -Oz.
+ const CGFunctionInfo &FI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(ReturnTy, Args);
+ llvm::FunctionType *FuncTy = CGM.getTypes().GetFunctionType(FI);
+ llvm::Function *Fn = llvm::Function::Create(
+ FuncTy, llvm::GlobalValue::LinkOnceODRLinkage, Name, &CGM.getModule());
+ Fn->setVisibility(llvm::GlobalValue::HiddenVisibility);
+ CGM.SetLLVMFunctionAttributes(GlobalDecl(), FI, Fn);
+ CGM.SetLLVMFunctionAttributesForDefinition(nullptr, Fn);
+ Fn->setDoesNotThrow();
+
+ // Attach 'noinline' at -Oz.
+ if (CGM.getCodeGenOpts().OptimizeSize == 2)
+ Fn->addFnAttr(llvm::Attribute::NoInline);
+
+ auto NL = ApplyDebugLocation::CreateEmpty(*this);
+ IdentifierInfo *II = &Ctx.Idents.get(Name);
+ FunctionDecl *FD = FunctionDecl::Create(
+ Ctx, Ctx.getTranslationUnitDecl(), SourceLocation(), SourceLocation(), II,
+ FuncionTy, nullptr, SC_PrivateExtern, false, false);
+
+ StartFunction(FD, ReturnTy, Fn, FI, Args);
+
+ // Create a scope with an artificial location for the body of this function.
+ auto AL = ApplyDebugLocation::CreateArtificial(*this);
+
+ CharUnits Offset;
+ Address BufAddr(Builder.CreateLoad(GetAddrOfLocalVar(Args[0]), "buf"),
+ BufferAlignment);
+ Builder.CreateStore(Builder.getInt8(Layout.getSummaryByte()),
+ Builder.CreateConstByteGEP(BufAddr, Offset++, "summary"));
+ Builder.CreateStore(Builder.getInt8(Layout.getNumArgsByte()),
+ Builder.CreateConstByteGEP(BufAddr, Offset++, "numArgs"));
+
+ unsigned I = 1;
+ for (const auto &Item : Layout.Items) {
+ Builder.CreateStore(
+ Builder.getInt8(Item.getDescriptorByte()),
+ Builder.CreateConstByteGEP(BufAddr, Offset++, "argDescriptor"));
+ Builder.CreateStore(
+ Builder.getInt8(Item.getSizeByte()),
+ Builder.CreateConstByteGEP(BufAddr, Offset++, "argSize"));
+
+ CharUnits Size = Item.size();
+ if (!Size.getQuantity())
+ continue;
+
+ Address Arg = GetAddrOfLocalVar(Args[I]);
+ Address Addr = Builder.CreateConstByteGEP(BufAddr, Offset, "argData");
+ Addr = Builder.CreateBitCast(Addr, Arg.getPointer()->getType(),
+ "argDataCast");
+ Builder.CreateStore(Builder.CreateLoad(Arg), Addr);
+ Offset += Size;
+ ++I;
+ }
+
+ FinishFunction();
+
+ return Fn;
+}
+
+RValue CodeGenFunction::emitBuiltinOSLogFormat(const CallExpr &E) {
+ assert(E.getNumArgs() >= 2 &&
+ "__builtin_os_log_format takes at least 2 arguments");
+ ASTContext &Ctx = getContext();
+ analyze_os_log::OSLogBufferLayout Layout;
+ analyze_os_log::computeOSLogBufferLayout(Ctx, &E, Layout);
+ Address BufAddr = EmitPointerWithAlignment(E.getArg(0));
+ llvm::SmallVector<llvm::Value *, 4> RetainableOperands;
+
+ // Ignore argument 1, the format string. It is not currently used.
+ CallArgList Args;
+ Args.add(RValue::get(BufAddr.getPointer()), Ctx.VoidPtrTy);
+
+ for (const auto &Item : Layout.Items) {
+ int Size = Item.getSizeByte();
+ if (!Size)
+ continue;
+
+ llvm::Value *ArgVal;
+
+ if (Item.getKind() == analyze_os_log::OSLogBufferItem::MaskKind) {
+ uint64_t Val = 0;
+ for (unsigned I = 0, E = Item.getMaskType().size(); I < E; ++I)
+ Val |= ((uint64_t)Item.getMaskType()[I]) << I * 8;
+ ArgVal = llvm::Constant::getIntegerValue(Int64Ty, llvm::APInt(64, Val));
+ } else if (const Expr *TheExpr = Item.getExpr()) {
+ ArgVal = EmitScalarExpr(TheExpr, /*Ignore*/ false);
+
+ // Check if this is a retainable type.
+ if (TheExpr->getType()->isObjCRetainableType()) {
+ assert(getEvaluationKind(TheExpr->getType()) == TEK_Scalar &&
+ "Only scalar can be a ObjC retainable type");
+ // Check if the object is constant, if not, save it in
+ // RetainableOperands.
+ if (!isa<Constant>(ArgVal))
+ RetainableOperands.push_back(ArgVal);
+ }
+ } else {
+ ArgVal = Builder.getInt32(Item.getConstValue().getQuantity());
+ }
+
+ unsigned ArgValSize =
+ CGM.getDataLayout().getTypeSizeInBits(ArgVal->getType());
+ llvm::IntegerType *IntTy = llvm::Type::getIntNTy(getLLVMContext(),
+ ArgValSize);
+ ArgVal = Builder.CreateBitOrPointerCast(ArgVal, IntTy);
+ CanQualType ArgTy = getOSLogArgType(Ctx, Size);
+ // If ArgVal has type x86_fp80, zero-extend ArgVal.
+ ArgVal = Builder.CreateZExtOrBitCast(ArgVal, ConvertType(ArgTy));
+ Args.add(RValue::get(ArgVal), ArgTy);
+ }
+
+ const CGFunctionInfo &FI =
+ CGM.getTypes().arrangeBuiltinFunctionCall(Ctx.VoidTy, Args);
+ llvm::Function *F = CodeGenFunction(CGM).generateBuiltinOSLogHelperFunction(
+ Layout, BufAddr.getAlignment());
+ EmitCall(FI, CGCallee::forDirect(F), ReturnValueSlot(), Args);
+
+ // Push a clang.arc.use cleanup for each object in RetainableOperands. The
+ // cleanup will cause the use to appear after the final log call, keeping
+ // the object valid while it’s held in the log buffer. Note that if there’s
+ // a release cleanup on the object, it will already be active; since
+ // cleanups are emitted in reverse order, the use will occur before the
+ // object is released.
+ if (!RetainableOperands.empty() && getLangOpts().ObjCAutoRefCount &&
+ CGM.getCodeGenOpts().OptimizationLevel != 0)
+ for (llvm::Value *Object : RetainableOperands)
+ pushFullExprCleanup<CallObjCArcUse>(getARCCleanupKind(), Object);
+
+ return RValue::get(BufAddr.getPointer());
+}
+
+/// Determine if a binop is a checked mixed-sign multiply we can specialize.
+static bool isSpecialMixedSignMultiply(unsigned BuiltinID,
+ WidthAndSignedness Op1Info,
+ WidthAndSignedness Op2Info,
+ WidthAndSignedness ResultInfo) {
+ return BuiltinID == Builtin::BI__builtin_mul_overflow &&
+ std::max(Op1Info.Width, Op2Info.Width) >= ResultInfo.Width &&
+ Op1Info.Signed != Op2Info.Signed;
+}
+
+/// Emit a checked mixed-sign multiply. This is a cheaper specialization of
+/// the generic checked-binop irgen.
+static RValue
+EmitCheckedMixedSignMultiply(CodeGenFunction &CGF, const clang::Expr *Op1,
+ WidthAndSignedness Op1Info, const clang::Expr *Op2,
+ WidthAndSignedness Op2Info,
+ const clang::Expr *ResultArg, QualType ResultQTy,
+ WidthAndSignedness ResultInfo) {
+ assert(isSpecialMixedSignMultiply(Builtin::BI__builtin_mul_overflow, Op1Info,
+ Op2Info, ResultInfo) &&
+ "Not a mixed-sign multipliction we can specialize");
+
+ // Emit the signed and unsigned operands.
+ const clang::Expr *SignedOp = Op1Info.Signed ? Op1 : Op2;
+ const clang::Expr *UnsignedOp = Op1Info.Signed ? Op2 : Op1;
+ llvm::Value *Signed = CGF.EmitScalarExpr(SignedOp);
+ llvm::Value *Unsigned = CGF.EmitScalarExpr(UnsignedOp);
+ unsigned SignedOpWidth = Op1Info.Signed ? Op1Info.Width : Op2Info.Width;
+ unsigned UnsignedOpWidth = Op1Info.Signed ? Op2Info.Width : Op1Info.Width;
+
+ // One of the operands may be smaller than the other. If so, [s|z]ext it.
+ if (SignedOpWidth < UnsignedOpWidth)
+ Signed = CGF.Builder.CreateSExt(Signed, Unsigned->getType(), "op.sext");
+ if (UnsignedOpWidth < SignedOpWidth)
+ Unsigned = CGF.Builder.CreateZExt(Unsigned, Signed->getType(), "op.zext");
+
+ llvm::Type *OpTy = Signed->getType();
+ llvm::Value *Zero = llvm::Constant::getNullValue(OpTy);
+ Address ResultPtr = CGF.EmitPointerWithAlignment(ResultArg);
+ llvm::Type *ResTy = ResultPtr.getElementType();
+ unsigned OpWidth = std::max(Op1Info.Width, Op2Info.Width);
+
+ // Take the absolute value of the signed operand.
+ llvm::Value *IsNegative = CGF.Builder.CreateICmpSLT(Signed, Zero);
+ llvm::Value *AbsOfNegative = CGF.Builder.CreateSub(Zero, Signed);
+ llvm::Value *AbsSigned =
+ CGF.Builder.CreateSelect(IsNegative, AbsOfNegative, Signed);
+
+ // Perform a checked unsigned multiplication.
+ llvm::Value *UnsignedOverflow;
+ llvm::Value *UnsignedResult =
+ EmitOverflowIntrinsic(CGF, llvm::Intrinsic::umul_with_overflow, AbsSigned,
+ Unsigned, UnsignedOverflow);
+
+ llvm::Value *Overflow, *Result;
+ if (ResultInfo.Signed) {
+ // Signed overflow occurs if the result is greater than INT_MAX or lesser
+ // than INT_MIN, i.e when |Result| > (INT_MAX + IsNegative).
+ auto IntMax =
+ llvm::APInt::getSignedMaxValue(ResultInfo.Width).zextOrSelf(OpWidth);
+ llvm::Value *MaxResult =
+ CGF.Builder.CreateAdd(llvm::ConstantInt::get(OpTy, IntMax),
+ CGF.Builder.CreateZExt(IsNegative, OpTy));
+ llvm::Value *SignedOverflow =
+ CGF.Builder.CreateICmpUGT(UnsignedResult, MaxResult);
+ Overflow = CGF.Builder.CreateOr(UnsignedOverflow, SignedOverflow);
+
+ // Prepare the signed result (possibly by negating it).
+ llvm::Value *NegativeResult = CGF.Builder.CreateNeg(UnsignedResult);
+ llvm::Value *SignedResult =
+ CGF.Builder.CreateSelect(IsNegative, NegativeResult, UnsignedResult);
+ Result = CGF.Builder.CreateTrunc(SignedResult, ResTy);
+ } else {
+ // Unsigned overflow occurs if the result is < 0 or greater than UINT_MAX.
+ llvm::Value *Underflow = CGF.Builder.CreateAnd(
+ IsNegative, CGF.Builder.CreateIsNotNull(UnsignedResult));
+ Overflow = CGF.Builder.CreateOr(UnsignedOverflow, Underflow);
+ if (ResultInfo.Width < OpWidth) {
+ auto IntMax =
+ llvm::APInt::getMaxValue(ResultInfo.Width).zext(OpWidth);
+ llvm::Value *TruncOverflow = CGF.Builder.CreateICmpUGT(
+ UnsignedResult, llvm::ConstantInt::get(OpTy, IntMax));
+ Overflow = CGF.Builder.CreateOr(Overflow, TruncOverflow);
+ }
+
+ // Negate the product if it would be negative in infinite precision.
+ Result = CGF.Builder.CreateSelect(
+ IsNegative, CGF.Builder.CreateNeg(UnsignedResult), UnsignedResult);
+
+ Result = CGF.Builder.CreateTrunc(Result, ResTy);
+ }
+ assert(Overflow && Result && "Missing overflow or result");
+
+ bool isVolatile =
+ ResultArg->getType()->getPointeeType().isVolatileQualified();
+ CGF.Builder.CreateStore(CGF.EmitToMemory(Result, ResultQTy), ResultPtr,
+ isVolatile);
+ return RValue::get(Overflow);
+}
+
+static llvm::Value *dumpRecord(CodeGenFunction &CGF, QualType RType,
+ Value *&RecordPtr, CharUnits Align,
+ llvm::FunctionCallee Func, int Lvl) {
+ const auto *RT = RType->getAs<RecordType>();
+ ASTContext &Context = CGF.getContext();
+ RecordDecl *RD = RT->getDecl()->getDefinition();
+ std::string Pad = std::string(Lvl * 4, ' ');
+
+ Value *GString =
+ CGF.Builder.CreateGlobalStringPtr(RType.getAsString() + " {\n");
+ Value *Res = CGF.Builder.CreateCall(Func, {GString});
+
+ static llvm::DenseMap<QualType, const char *> Types;
+ if (Types.empty()) {
+ Types[Context.CharTy] = "%c";
+ Types[Context.BoolTy] = "%d";
+ Types[Context.SignedCharTy] = "%hhd";
+ Types[Context.UnsignedCharTy] = "%hhu";
+ Types[Context.IntTy] = "%d";
+ Types[Context.UnsignedIntTy] = "%u";
+ Types[Context.LongTy] = "%ld";
+ Types[Context.UnsignedLongTy] = "%lu";
+ Types[Context.LongLongTy] = "%lld";
+ Types[Context.UnsignedLongLongTy] = "%llu";
+ Types[Context.ShortTy] = "%hd";
+ Types[Context.UnsignedShortTy] = "%hu";
+ Types[Context.VoidPtrTy] = "%p";
+ Types[Context.FloatTy] = "%f";
+ Types[Context.DoubleTy] = "%f";
+ Types[Context.LongDoubleTy] = "%Lf";
+ Types[Context.getPointerType(Context.CharTy)] = "%s";
+ Types[Context.getPointerType(Context.getConstType(Context.CharTy))] = "%s";
+ }
+
+ for (const auto *FD : RD->fields()) {
+ Value *FieldPtr = RecordPtr;
+ if (RD->isUnion())
+ FieldPtr = CGF.Builder.CreatePointerCast(
+ FieldPtr, CGF.ConvertType(Context.getPointerType(FD->getType())));
+ else
+ FieldPtr = CGF.Builder.CreateStructGEP(CGF.ConvertType(RType), FieldPtr,
+ FD->getFieldIndex());
+
+ GString = CGF.Builder.CreateGlobalStringPtr(
+ llvm::Twine(Pad)
+ .concat(FD->getType().getAsString())
+ .concat(llvm::Twine(' '))
+ .concat(FD->getNameAsString())
+ .concat(" : ")
+ .str());
+ Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
+ Res = CGF.Builder.CreateAdd(Res, TmpRes);
+
+ QualType CanonicalType =
+ FD->getType().getUnqualifiedType().getCanonicalType();
+
+ // We check whether we are in a recursive type
+ if (CanonicalType->isRecordType()) {
+ Value *TmpRes =
+ dumpRecord(CGF, CanonicalType, FieldPtr, Align, Func, Lvl + 1);
+ Res = CGF.Builder.CreateAdd(TmpRes, Res);
+ continue;
+ }
+
+ // We try to determine the best format to print the current field
+ llvm::Twine Format = Types.find(CanonicalType) == Types.end()
+ ? Types[Context.VoidPtrTy]
+ : Types[CanonicalType];
+
+ Address FieldAddress = Address(FieldPtr, Align);
+ FieldPtr = CGF.Builder.CreateLoad(FieldAddress);
+
+ // FIXME Need to handle bitfield here
+ GString = CGF.Builder.CreateGlobalStringPtr(
+ Format.concat(llvm::Twine('\n')).str());
+ TmpRes = CGF.Builder.CreateCall(Func, {GString, FieldPtr});
+ Res = CGF.Builder.CreateAdd(Res, TmpRes);
+ }
+
+ GString = CGF.Builder.CreateGlobalStringPtr(Pad + "}\n");
+ Value *TmpRes = CGF.Builder.CreateCall(Func, {GString});
+ Res = CGF.Builder.CreateAdd(Res, TmpRes);
+ return Res;
+}
+
+static bool
+TypeRequiresBuiltinLaunderImp(const ASTContext &Ctx, QualType Ty,
+ llvm::SmallPtrSetImpl<const Decl *> &Seen) {
+ if (const auto *Arr = Ctx.getAsArrayType(Ty))
+ Ty = Ctx.getBaseElementType(Arr);
+
+ const auto *Record = Ty->getAsCXXRecordDecl();
+ if (!Record)
+ return false;
+
+ // We've already checked this type, or are in the process of checking it.
+ if (!Seen.insert(Record).second)
+ return false;
+
+ assert(Record->hasDefinition() &&
+ "Incomplete types should already be diagnosed");
+
+ if (Record->isDynamicClass())
+ return true;
+
+ for (FieldDecl *F : Record->fields()) {
+ if (TypeRequiresBuiltinLaunderImp(Ctx, F->getType(), Seen))
+ return true;
+ }
+ return false;
+}
+
+/// Determine if the specified type requires laundering by checking if it is a
+/// dynamic class type or contains a subobject which is a dynamic class type.
+static bool TypeRequiresBuiltinLaunder(CodeGenModule &CGM, QualType Ty) {
+ if (!CGM.getCodeGenOpts().StrictVTablePointers)
+ return false;
+ llvm::SmallPtrSet<const Decl *, 16> Seen;
+ return TypeRequiresBuiltinLaunderImp(CGM.getContext(), Ty, Seen);
+}
+
+RValue CodeGenFunction::emitRotate(const CallExpr *E, bool IsRotateRight) {
+ llvm::Value *Src = EmitScalarExpr(E->getArg(0));
+ llvm::Value *ShiftAmt = EmitScalarExpr(E->getArg(1));
+
+ // The builtin's shift arg may have a different type than the source arg and
+ // result, but the LLVM intrinsic uses the same type for all values.
+ llvm::Type *Ty = Src->getType();
+ ShiftAmt = Builder.CreateIntCast(ShiftAmt, Ty, false);
+
+ // Rotate is a special case of LLVM funnel shift - 1st 2 args are the same.
+ unsigned IID = IsRotateRight ? Intrinsic::fshr : Intrinsic::fshl;
+ Function *F = CGM.getIntrinsic(IID, Ty);
+ return RValue::get(Builder.CreateCall(F, { Src, Src, ShiftAmt }));
+}
+
+RValue CodeGenFunction::EmitBuiltinExpr(const GlobalDecl GD, unsigned BuiltinID,
+ const CallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ const FunctionDecl *FD = GD.getDecl()->getAsFunction();
+ // See if we can constant fold this builtin. If so, don't emit it at all.
+ Expr::EvalResult Result;
+ if (E->EvaluateAsRValue(Result, CGM.getContext()) &&
+ !Result.hasSideEffects()) {
+ if (Result.Val.isInt())
+ return RValue::get(llvm::ConstantInt::get(getLLVMContext(),
+ Result.Val.getInt()));
+ if (Result.Val.isFloat())
+ return RValue::get(llvm::ConstantFP::get(getLLVMContext(),
+ Result.Val.getFloat()));
+ }
+
+ // There are LLVM math intrinsics/instructions corresponding to math library
+ // functions except the LLVM op will never set errno while the math library
+ // might. Also, math builtins have the same semantics as their math library
+ // twins. Thus, we can transform math library and builtin calls to their
+ // LLVM counterparts if the call is marked 'const' (known to never set errno).
+ if (FD->hasAttr<ConstAttr>()) {
+ switch (BuiltinID) {
+ case Builtin::BIceil:
+ case Builtin::BIceilf:
+ case Builtin::BIceill:
+ case Builtin::BI__builtin_ceil:
+ case Builtin::BI__builtin_ceilf:
+ case Builtin::BI__builtin_ceill:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::ceil));
+
+ case Builtin::BIcopysign:
+ case Builtin::BIcopysignf:
+ case Builtin::BIcopysignl:
+ case Builtin::BI__builtin_copysign:
+ case Builtin::BI__builtin_copysignf:
+ case Builtin::BI__builtin_copysignl:
+ case Builtin::BI__builtin_copysignf128:
+ return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::copysign));
+
+ case Builtin::BIcos:
+ case Builtin::BIcosf:
+ case Builtin::BIcosl:
+ case Builtin::BI__builtin_cos:
+ case Builtin::BI__builtin_cosf:
+ case Builtin::BI__builtin_cosl:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::cos));
+
+ case Builtin::BIexp:
+ case Builtin::BIexpf:
+ case Builtin::BIexpl:
+ case Builtin::BI__builtin_exp:
+ case Builtin::BI__builtin_expf:
+ case Builtin::BI__builtin_expl:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp));
+
+ case Builtin::BIexp2:
+ case Builtin::BIexp2f:
+ case Builtin::BIexp2l:
+ case Builtin::BI__builtin_exp2:
+ case Builtin::BI__builtin_exp2f:
+ case Builtin::BI__builtin_exp2l:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::exp2));
+
+ case Builtin::BIfabs:
+ case Builtin::BIfabsf:
+ case Builtin::BIfabsl:
+ case Builtin::BI__builtin_fabs:
+ case Builtin::BI__builtin_fabsf:
+ case Builtin::BI__builtin_fabsl:
+ case Builtin::BI__builtin_fabsf128:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::fabs));
+
+ case Builtin::BIfloor:
+ case Builtin::BIfloorf:
+ case Builtin::BIfloorl:
+ case Builtin::BI__builtin_floor:
+ case Builtin::BI__builtin_floorf:
+ case Builtin::BI__builtin_floorl:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::floor));
+
+ case Builtin::BIfma:
+ case Builtin::BIfmaf:
+ case Builtin::BIfmal:
+ case Builtin::BI__builtin_fma:
+ case Builtin::BI__builtin_fmaf:
+ case Builtin::BI__builtin_fmal:
+ return RValue::get(emitTernaryBuiltin(*this, E, Intrinsic::fma));
+
+ case Builtin::BIfmax:
+ case Builtin::BIfmaxf:
+ case Builtin::BIfmaxl:
+ case Builtin::BI__builtin_fmax:
+ case Builtin::BI__builtin_fmaxf:
+ case Builtin::BI__builtin_fmaxl:
+ return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::maxnum));
+
+ case Builtin::BIfmin:
+ case Builtin::BIfminf:
+ case Builtin::BIfminl:
+ case Builtin::BI__builtin_fmin:
+ case Builtin::BI__builtin_fminf:
+ case Builtin::BI__builtin_fminl:
+ return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::minnum));
+
+ // fmod() is a special-case. It maps to the frem instruction rather than an
+ // LLVM intrinsic.
+ case Builtin::BIfmod:
+ case Builtin::BIfmodf:
+ case Builtin::BIfmodl:
+ case Builtin::BI__builtin_fmod:
+ case Builtin::BI__builtin_fmodf:
+ case Builtin::BI__builtin_fmodl: {
+ Value *Arg1 = EmitScalarExpr(E->getArg(0));
+ Value *Arg2 = EmitScalarExpr(E->getArg(1));
+ return RValue::get(Builder.CreateFRem(Arg1, Arg2, "fmod"));
+ }
+
+ case Builtin::BIlog:
+ case Builtin::BIlogf:
+ case Builtin::BIlogl:
+ case Builtin::BI__builtin_log:
+ case Builtin::BI__builtin_logf:
+ case Builtin::BI__builtin_logl:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log));
+
+ case Builtin::BIlog10:
+ case Builtin::BIlog10f:
+ case Builtin::BIlog10l:
+ case Builtin::BI__builtin_log10:
+ case Builtin::BI__builtin_log10f:
+ case Builtin::BI__builtin_log10l:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log10));
+
+ case Builtin::BIlog2:
+ case Builtin::BIlog2f:
+ case Builtin::BIlog2l:
+ case Builtin::BI__builtin_log2:
+ case Builtin::BI__builtin_log2f:
+ case Builtin::BI__builtin_log2l:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::log2));
+
+ case Builtin::BInearbyint:
+ case Builtin::BInearbyintf:
+ case Builtin::BInearbyintl:
+ case Builtin::BI__builtin_nearbyint:
+ case Builtin::BI__builtin_nearbyintf:
+ case Builtin::BI__builtin_nearbyintl:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::nearbyint));
+
+ case Builtin::BIpow:
+ case Builtin::BIpowf:
+ case Builtin::BIpowl:
+ case Builtin::BI__builtin_pow:
+ case Builtin::BI__builtin_powf:
+ case Builtin::BI__builtin_powl:
+ return RValue::get(emitBinaryBuiltin(*this, E, Intrinsic::pow));
+
+ case Builtin::BIrint:
+ case Builtin::BIrintf:
+ case Builtin::BIrintl:
+ case Builtin::BI__builtin_rint:
+ case Builtin::BI__builtin_rintf:
+ case Builtin::BI__builtin_rintl:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::rint));
+
+ case Builtin::BIround:
+ case Builtin::BIroundf:
+ case Builtin::BIroundl:
+ case Builtin::BI__builtin_round:
+ case Builtin::BI__builtin_roundf:
+ case Builtin::BI__builtin_roundl:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::round));
+
+ case Builtin::BIsin:
+ case Builtin::BIsinf:
+ case Builtin::BIsinl:
+ case Builtin::BI__builtin_sin:
+ case Builtin::BI__builtin_sinf:
+ case Builtin::BI__builtin_sinl:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sin));
+
+ case Builtin::BIsqrt:
+ case Builtin::BIsqrtf:
+ case Builtin::BIsqrtl:
+ case Builtin::BI__builtin_sqrt:
+ case Builtin::BI__builtin_sqrtf:
+ case Builtin::BI__builtin_sqrtl:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::sqrt));
+
+ case Builtin::BItrunc:
+ case Builtin::BItruncf:
+ case Builtin::BItruncl:
+ case Builtin::BI__builtin_trunc:
+ case Builtin::BI__builtin_truncf:
+ case Builtin::BI__builtin_truncl:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::trunc));
+
+ case Builtin::BIlround:
+ case Builtin::BIlroundf:
+ case Builtin::BIlroundl:
+ case Builtin::BI__builtin_lround:
+ case Builtin::BI__builtin_lroundf:
+ case Builtin::BI__builtin_lroundl:
+ return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lround));
+
+ case Builtin::BIllround:
+ case Builtin::BIllroundf:
+ case Builtin::BIllroundl:
+ case Builtin::BI__builtin_llround:
+ case Builtin::BI__builtin_llroundf:
+ case Builtin::BI__builtin_llroundl:
+ return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llround));
+
+ case Builtin::BIlrint:
+ case Builtin::BIlrintf:
+ case Builtin::BIlrintl:
+ case Builtin::BI__builtin_lrint:
+ case Builtin::BI__builtin_lrintf:
+ case Builtin::BI__builtin_lrintl:
+ return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::lrint));
+
+ case Builtin::BIllrint:
+ case Builtin::BIllrintf:
+ case Builtin::BIllrintl:
+ case Builtin::BI__builtin_llrint:
+ case Builtin::BI__builtin_llrintf:
+ case Builtin::BI__builtin_llrintl:
+ return RValue::get(emitFPToIntRoundBuiltin(*this, E, Intrinsic::llrint));
+
+ default:
+ break;
+ }
+ }
+
+ switch (BuiltinID) {
+ default: break;
+ case Builtin::BI__builtin___CFStringMakeConstantString:
+ case Builtin::BI__builtin___NSStringMakeConstantString:
+ return RValue::get(ConstantEmitter(*this).emitAbstract(E, E->getType()));
+ case Builtin::BI__builtin_stdarg_start:
+ case Builtin::BI__builtin_va_start:
+ case Builtin::BI__va_start:
+ case Builtin::BI__builtin_va_end:
+ return RValue::get(
+ EmitVAStartEnd(BuiltinID == Builtin::BI__va_start
+ ? EmitScalarExpr(E->getArg(0))
+ : EmitVAListRef(E->getArg(0)).getPointer(),
+ BuiltinID != Builtin::BI__builtin_va_end));
+ case Builtin::BI__builtin_va_copy: {
+ Value *DstPtr = EmitVAListRef(E->getArg(0)).getPointer();
+ Value *SrcPtr = EmitVAListRef(E->getArg(1)).getPointer();
+
+ llvm::Type *Type = Int8PtrTy;
+
+ DstPtr = Builder.CreateBitCast(DstPtr, Type);
+ SrcPtr = Builder.CreateBitCast(SrcPtr, Type);
+ return RValue::get(Builder.CreateCall(CGM.getIntrinsic(Intrinsic::vacopy),
+ {DstPtr, SrcPtr}));
+ }
+ case Builtin::BI__builtin_abs:
+ case Builtin::BI__builtin_labs:
+ case Builtin::BI__builtin_llabs: {
+ // X < 0 ? -X : X
+ // The negation has 'nsw' because abs of INT_MIN is undefined.
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+ Value *NegOp = Builder.CreateNSWNeg(ArgValue, "neg");
+ Constant *Zero = llvm::Constant::getNullValue(ArgValue->getType());
+ Value *CmpResult = Builder.CreateICmpSLT(ArgValue, Zero, "abscond");
+ Value *Result = Builder.CreateSelect(CmpResult, NegOp, ArgValue, "abs");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_conj:
+ case Builtin::BI__builtin_conjf:
+ case Builtin::BI__builtin_conjl: {
+ ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
+ Value *Real = ComplexVal.first;
+ Value *Imag = ComplexVal.second;
+ Value *Zero =
+ Imag->getType()->isFPOrFPVectorTy()
+ ? llvm::ConstantFP::getZeroValueForNegation(Imag->getType())
+ : llvm::Constant::getNullValue(Imag->getType());
+
+ Imag = Builder.CreateFSub(Zero, Imag, "sub");
+ return RValue::getComplex(std::make_pair(Real, Imag));
+ }
+ case Builtin::BI__builtin_creal:
+ case Builtin::BI__builtin_crealf:
+ case Builtin::BI__builtin_creall:
+ case Builtin::BIcreal:
+ case Builtin::BIcrealf:
+ case Builtin::BIcreall: {
+ ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
+ return RValue::get(ComplexVal.first);
+ }
+
+ case Builtin::BI__builtin_dump_struct: {
+ llvm::Type *LLVMIntTy = getTypes().ConvertType(getContext().IntTy);
+ llvm::FunctionType *LLVMFuncType = llvm::FunctionType::get(
+ LLVMIntTy, {llvm::Type::getInt8PtrTy(getLLVMContext())}, true);
+
+ Value *Func = EmitScalarExpr(E->getArg(1)->IgnoreImpCasts());
+ CharUnits Arg0Align = EmitPointerWithAlignment(E->getArg(0)).getAlignment();
+
+ const Expr *Arg0 = E->getArg(0)->IgnoreImpCasts();
+ QualType Arg0Type = Arg0->getType()->getPointeeType();
+
+ Value *RecordPtr = EmitScalarExpr(Arg0);
+ Value *Res = dumpRecord(*this, Arg0Type, RecordPtr, Arg0Align,
+ {LLVMFuncType, Func}, 0);
+ return RValue::get(Res);
+ }
+
+ case Builtin::BI__builtin_preserve_access_index: {
+ // Only enabled preserved access index region when debuginfo
+ // is available as debuginfo is needed to preserve user-level
+ // access pattern.
+ if (!getDebugInfo()) {
+ CGM.Error(E->getExprLoc(), "using builtin_preserve_access_index() without -g");
+ return RValue::get(EmitScalarExpr(E->getArg(0)));
+ }
+
+ // Nested builtin_preserve_access_index() not supported
+ if (IsInPreservedAIRegion) {
+ CGM.Error(E->getExprLoc(), "nested builtin_preserve_access_index() not supported");
+ return RValue::get(EmitScalarExpr(E->getArg(0)));
+ }
+
+ IsInPreservedAIRegion = true;
+ Value *Res = EmitScalarExpr(E->getArg(0));
+ IsInPreservedAIRegion = false;
+ return RValue::get(Res);
+ }
+
+ case Builtin::BI__builtin_cimag:
+ case Builtin::BI__builtin_cimagf:
+ case Builtin::BI__builtin_cimagl:
+ case Builtin::BIcimag:
+ case Builtin::BIcimagf:
+ case Builtin::BIcimagl: {
+ ComplexPairTy ComplexVal = EmitComplexExpr(E->getArg(0));
+ return RValue::get(ComplexVal.second);
+ }
+
+ case Builtin::BI__builtin_clrsb:
+ case Builtin::BI__builtin_clrsbl:
+ case Builtin::BI__builtin_clrsbll: {
+ // clrsb(x) -> clz(x < 0 ? ~x : x) - 1 or
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ llvm::Type *ArgType = ArgValue->getType();
+ Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Zero = llvm::Constant::getNullValue(ArgType);
+ Value *IsNeg = Builder.CreateICmpSLT(ArgValue, Zero, "isneg");
+ Value *Inverse = Builder.CreateNot(ArgValue, "not");
+ Value *Tmp = Builder.CreateSelect(IsNeg, Inverse, ArgValue);
+ Value *Ctlz = Builder.CreateCall(F, {Tmp, Builder.getFalse()});
+ Value *Result = Builder.CreateSub(Ctlz, llvm::ConstantInt::get(ArgType, 1));
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_ctzs:
+ case Builtin::BI__builtin_ctz:
+ case Builtin::BI__builtin_ctzl:
+ case Builtin::BI__builtin_ctzll: {
+ Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CTZPassedZero);
+
+ llvm::Type *ArgType = ArgValue->getType();
+ Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
+ Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_clzs:
+ case Builtin::BI__builtin_clz:
+ case Builtin::BI__builtin_clzl:
+ case Builtin::BI__builtin_clzll: {
+ Value *ArgValue = EmitCheckedArgForBuiltin(E->getArg(0), BCK_CLZPassedZero);
+
+ llvm::Type *ArgType = ArgValue->getType();
+ Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *ZeroUndef = Builder.getInt1(getTarget().isCLZForZeroUndef());
+ Value *Result = Builder.CreateCall(F, {ArgValue, ZeroUndef});
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_ffs:
+ case Builtin::BI__builtin_ffsl:
+ case Builtin::BI__builtin_ffsll: {
+ // ffs(x) -> x ? cttz(x) + 1 : 0
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ llvm::Type *ArgType = ArgValue->getType();
+ Function *F = CGM.getIntrinsic(Intrinsic::cttz, ArgType);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Tmp =
+ Builder.CreateAdd(Builder.CreateCall(F, {ArgValue, Builder.getTrue()}),
+ llvm::ConstantInt::get(ArgType, 1));
+ Value *Zero = llvm::Constant::getNullValue(ArgType);
+ Value *IsZero = Builder.CreateICmpEQ(ArgValue, Zero, "iszero");
+ Value *Result = Builder.CreateSelect(IsZero, Zero, Tmp, "ffs");
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_parity:
+ case Builtin::BI__builtin_parityl:
+ case Builtin::BI__builtin_parityll: {
+ // parity(x) -> ctpop(x) & 1
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ llvm::Type *ArgType = ArgValue->getType();
+ Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Tmp = Builder.CreateCall(F, ArgValue);
+ Value *Result = Builder.CreateAnd(Tmp, llvm::ConstantInt::get(ArgType, 1));
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__lzcnt16:
+ case Builtin::BI__lzcnt:
+ case Builtin::BI__lzcnt64: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ llvm::Type *ArgType = ArgValue->getType();
+ Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ArgType);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Result = Builder.CreateCall(F, {ArgValue, Builder.getFalse()});
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__popcnt16:
+ case Builtin::BI__popcnt:
+ case Builtin::BI__popcnt64:
+ case Builtin::BI__builtin_popcount:
+ case Builtin::BI__builtin_popcountl:
+ case Builtin::BI__builtin_popcountll: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+
+ llvm::Type *ArgType = ArgValue->getType();
+ Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ArgType);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Result = Builder.CreateCall(F, ArgValue);
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_unpredictable: {
+ // Always return the argument of __builtin_unpredictable. LLVM does not
+ // handle this builtin. Metadata for this builtin should be added directly
+ // to instructions such as branches or switches that use it.
+ return RValue::get(EmitScalarExpr(E->getArg(0)));
+ }
+ case Builtin::BI__builtin_expect: {
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+ llvm::Type *ArgType = ArgValue->getType();
+
+ Value *ExpectedValue = EmitScalarExpr(E->getArg(1));
+ // Don't generate llvm.expect on -O0 as the backend won't use it for
+ // anything.
+ // Note, we still IRGen ExpectedValue because it could have side-effects.
+ if (CGM.getCodeGenOpts().OptimizationLevel == 0)
+ return RValue::get(ArgValue);
+
+ Function *FnExpect = CGM.getIntrinsic(Intrinsic::expect, ArgType);
+ Value *Result =
+ Builder.CreateCall(FnExpect, {ArgValue, ExpectedValue}, "expval");
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_assume_aligned: {
+ const Expr *Ptr = E->getArg(0);
+ Value *PtrValue = EmitScalarExpr(Ptr);
+ Value *OffsetValue =
+ (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) : nullptr;
+
+ Value *AlignmentValue = EmitScalarExpr(E->getArg(1));
+ ConstantInt *AlignmentCI = cast<ConstantInt>(AlignmentValue);
+ unsigned Alignment = (unsigned)AlignmentCI->getZExtValue();
+
+ EmitAlignmentAssumption(PtrValue, Ptr,
+ /*The expr loc is sufficient.*/ SourceLocation(),
+ Alignment, OffsetValue);
+ return RValue::get(PtrValue);
+ }
+ case Builtin::BI__assume:
+ case Builtin::BI__builtin_assume: {
+ if (E->getArg(0)->HasSideEffects(getContext()))
+ return RValue::get(nullptr);
+
+ Value *ArgValue = EmitScalarExpr(E->getArg(0));
+ Function *FnAssume = CGM.getIntrinsic(Intrinsic::assume);
+ return RValue::get(Builder.CreateCall(FnAssume, ArgValue));
+ }
+ case Builtin::BI__builtin_bswap16:
+ case Builtin::BI__builtin_bswap32:
+ case Builtin::BI__builtin_bswap64: {
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bswap));
+ }
+ case Builtin::BI__builtin_bitreverse8:
+ case Builtin::BI__builtin_bitreverse16:
+ case Builtin::BI__builtin_bitreverse32:
+ case Builtin::BI__builtin_bitreverse64: {
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::bitreverse));
+ }
+ case Builtin::BI__builtin_rotateleft8:
+ case Builtin::BI__builtin_rotateleft16:
+ case Builtin::BI__builtin_rotateleft32:
+ case Builtin::BI__builtin_rotateleft64:
+ case Builtin::BI_rotl8: // Microsoft variants of rotate left
+ case Builtin::BI_rotl16:
+ case Builtin::BI_rotl:
+ case Builtin::BI_lrotl:
+ case Builtin::BI_rotl64:
+ return emitRotate(E, false);
+
+ case Builtin::BI__builtin_rotateright8:
+ case Builtin::BI__builtin_rotateright16:
+ case Builtin::BI__builtin_rotateright32:
+ case Builtin::BI__builtin_rotateright64:
+ case Builtin::BI_rotr8: // Microsoft variants of rotate right
+ case Builtin::BI_rotr16:
+ case Builtin::BI_rotr:
+ case Builtin::BI_lrotr:
+ case Builtin::BI_rotr64:
+ return emitRotate(E, true);
+
+ case Builtin::BI__builtin_constant_p: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ if (CGM.getCodeGenOpts().OptimizationLevel == 0)
+ // At -O0, we don't perform inlining, so we don't need to delay the
+ // processing.
+ return RValue::get(ConstantInt::get(ResultType, 0));
+
+ const Expr *Arg = E->getArg(0);
+ QualType ArgType = Arg->getType();
+ // FIXME: The allowance for Obj-C pointers and block pointers is historical
+ // and likely a mistake.
+ if (!ArgType->isIntegralOrEnumerationType() && !ArgType->isFloatingType() &&
+ !ArgType->isObjCObjectPointerType() && !ArgType->isBlockPointerType())
+ // Per the GCC documentation, only numeric constants are recognized after
+ // inlining.
+ return RValue::get(ConstantInt::get(ResultType, 0));
+
+ if (Arg->HasSideEffects(getContext()))
+ // The argument is unevaluated, so be conservative if it might have
+ // side-effects.
+ return RValue::get(ConstantInt::get(ResultType, 0));
+
+ Value *ArgValue = EmitScalarExpr(Arg);
+ if (ArgType->isObjCObjectPointerType()) {
+ // Convert Objective-C objects to id because we cannot distinguish between
+ // LLVM types for Obj-C classes as they are opaque.
+ ArgType = CGM.getContext().getObjCIdType();
+ ArgValue = Builder.CreateBitCast(ArgValue, ConvertType(ArgType));
+ }
+ Function *F =
+ CGM.getIntrinsic(Intrinsic::is_constant, ConvertType(ArgType));
+ Value *Result = Builder.CreateCall(F, ArgValue);
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/false);
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_dynamic_object_size:
+ case Builtin::BI__builtin_object_size: {
+ unsigned Type =
+ E->getArg(1)->EvaluateKnownConstInt(getContext()).getZExtValue();
+ auto *ResType = cast<llvm::IntegerType>(ConvertType(E->getType()));
+
+ // We pass this builtin onto the optimizer so that it can figure out the
+ // object size in more complex cases.
+ bool IsDynamic = BuiltinID == Builtin::BI__builtin_dynamic_object_size;
+ return RValue::get(emitBuiltinObjectSize(E->getArg(0), Type, ResType,
+ /*EmittedE=*/nullptr, IsDynamic));
+ }
+ case Builtin::BI__builtin_prefetch: {
+ Value *Locality, *RW, *Address = EmitScalarExpr(E->getArg(0));
+ // FIXME: Technically these constants should of type 'int', yes?
+ RW = (E->getNumArgs() > 1) ? EmitScalarExpr(E->getArg(1)) :
+ llvm::ConstantInt::get(Int32Ty, 0);
+ Locality = (E->getNumArgs() > 2) ? EmitScalarExpr(E->getArg(2)) :
+ llvm::ConstantInt::get(Int32Ty, 3);
+ Value *Data = llvm::ConstantInt::get(Int32Ty, 1);
+ Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
+ return RValue::get(Builder.CreateCall(F, {Address, RW, Locality, Data}));
+ }
+ case Builtin::BI__builtin_readcyclecounter: {
+ Function *F = CGM.getIntrinsic(Intrinsic::readcyclecounter);
+ return RValue::get(Builder.CreateCall(F));
+ }
+ case Builtin::BI__builtin___clear_cache: {
+ Value *Begin = EmitScalarExpr(E->getArg(0));
+ Value *End = EmitScalarExpr(E->getArg(1));
+ Function *F = CGM.getIntrinsic(Intrinsic::clear_cache);
+ return RValue::get(Builder.CreateCall(F, {Begin, End}));
+ }
+ case Builtin::BI__builtin_trap:
+ return RValue::get(EmitTrapCall(Intrinsic::trap));
+ case Builtin::BI__debugbreak:
+ return RValue::get(EmitTrapCall(Intrinsic::debugtrap));
+ case Builtin::BI__builtin_unreachable: {
+ EmitUnreachable(E->getExprLoc());
+
+ // We do need to preserve an insertion point.
+ EmitBlock(createBasicBlock("unreachable.cont"));
+
+ return RValue::get(nullptr);
+ }
+
+ case Builtin::BI__builtin_powi:
+ case Builtin::BI__builtin_powif:
+ case Builtin::BI__builtin_powil: {
+ Value *Base = EmitScalarExpr(E->getArg(0));
+ Value *Exponent = EmitScalarExpr(E->getArg(1));
+ llvm::Type *ArgType = Base->getType();
+ Function *F = CGM.getIntrinsic(Intrinsic::powi, ArgType);
+ return RValue::get(Builder.CreateCall(F, {Base, Exponent}));
+ }
+
+ case Builtin::BI__builtin_isgreater:
+ case Builtin::BI__builtin_isgreaterequal:
+ case Builtin::BI__builtin_isless:
+ case Builtin::BI__builtin_islessequal:
+ case Builtin::BI__builtin_islessgreater:
+ case Builtin::BI__builtin_isunordered: {
+ // Ordered comparisons: we know the arguments to these are matching scalar
+ // floating point values.
+ Value *LHS = EmitScalarExpr(E->getArg(0));
+ Value *RHS = EmitScalarExpr(E->getArg(1));
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unknown ordered comparison");
+ case Builtin::BI__builtin_isgreater:
+ LHS = Builder.CreateFCmpOGT(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_isgreaterequal:
+ LHS = Builder.CreateFCmpOGE(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_isless:
+ LHS = Builder.CreateFCmpOLT(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_islessequal:
+ LHS = Builder.CreateFCmpOLE(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_islessgreater:
+ LHS = Builder.CreateFCmpONE(LHS, RHS, "cmp");
+ break;
+ case Builtin::BI__builtin_isunordered:
+ LHS = Builder.CreateFCmpUNO(LHS, RHS, "cmp");
+ break;
+ }
+ // ZExt bool to int type.
+ return RValue::get(Builder.CreateZExt(LHS, ConvertType(E->getType())));
+ }
+ case Builtin::BI__builtin_isnan: {
+ Value *V = EmitScalarExpr(E->getArg(0));
+ V = Builder.CreateFCmpUNO(V, V, "cmp");
+ return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
+ }
+
+ case Builtin::BIfinite:
+ case Builtin::BI__finite:
+ case Builtin::BIfinitef:
+ case Builtin::BI__finitef:
+ case Builtin::BIfinitel:
+ case Builtin::BI__finitel:
+ case Builtin::BI__builtin_isinf:
+ case Builtin::BI__builtin_isfinite: {
+ // isinf(x) --> fabs(x) == infinity
+ // isfinite(x) --> fabs(x) != infinity
+ // x != NaN via the ordered compare in either case.
+ Value *V = EmitScalarExpr(E->getArg(0));
+ Value *Fabs = EmitFAbs(*this, V);
+ Constant *Infinity = ConstantFP::getInfinity(V->getType());
+ CmpInst::Predicate Pred = (BuiltinID == Builtin::BI__builtin_isinf)
+ ? CmpInst::FCMP_OEQ
+ : CmpInst::FCMP_ONE;
+ Value *FCmp = Builder.CreateFCmp(Pred, Fabs, Infinity, "cmpinf");
+ return RValue::get(Builder.CreateZExt(FCmp, ConvertType(E->getType())));
+ }
+
+ case Builtin::BI__builtin_isinf_sign: {
+ // isinf_sign(x) -> fabs(x) == infinity ? (signbit(x) ? -1 : 1) : 0
+ Value *Arg = EmitScalarExpr(E->getArg(0));
+ Value *AbsArg = EmitFAbs(*this, Arg);
+ Value *IsInf = Builder.CreateFCmpOEQ(
+ AbsArg, ConstantFP::getInfinity(Arg->getType()), "isinf");
+ Value *IsNeg = EmitSignBit(*this, Arg);
+
+ llvm::Type *IntTy = ConvertType(E->getType());
+ Value *Zero = Constant::getNullValue(IntTy);
+ Value *One = ConstantInt::get(IntTy, 1);
+ Value *NegativeOne = ConstantInt::get(IntTy, -1);
+ Value *SignResult = Builder.CreateSelect(IsNeg, NegativeOne, One);
+ Value *Result = Builder.CreateSelect(IsInf, SignResult, Zero);
+ return RValue::get(Result);
+ }
+
+ case Builtin::BI__builtin_isnormal: {
+ // isnormal(x) --> x == x && fabsf(x) < infinity && fabsf(x) >= float_min
+ Value *V = EmitScalarExpr(E->getArg(0));
+ Value *Eq = Builder.CreateFCmpOEQ(V, V, "iseq");
+
+ Value *Abs = EmitFAbs(*this, V);
+ Value *IsLessThanInf =
+ Builder.CreateFCmpULT(Abs, ConstantFP::getInfinity(V->getType()),"isinf");
+ APFloat Smallest = APFloat::getSmallestNormalized(
+ getContext().getFloatTypeSemantics(E->getArg(0)->getType()));
+ Value *IsNormal =
+ Builder.CreateFCmpUGE(Abs, ConstantFP::get(V->getContext(), Smallest),
+ "isnormal");
+ V = Builder.CreateAnd(Eq, IsLessThanInf, "and");
+ V = Builder.CreateAnd(V, IsNormal, "and");
+ return RValue::get(Builder.CreateZExt(V, ConvertType(E->getType())));
+ }
+
+ case Builtin::BI__builtin_flt_rounds: {
+ Function *F = CGM.getIntrinsic(Intrinsic::flt_rounds);
+
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Result = Builder.CreateCall(F);
+ if (Result->getType() != ResultType)
+ Result = Builder.CreateIntCast(Result, ResultType, /*isSigned*/true,
+ "cast");
+ return RValue::get(Result);
+ }
+
+ case Builtin::BI__builtin_fpclassify: {
+ Value *V = EmitScalarExpr(E->getArg(5));
+ llvm::Type *Ty = ConvertType(E->getArg(5)->getType());
+
+ // Create Result
+ BasicBlock *Begin = Builder.GetInsertBlock();
+ BasicBlock *End = createBasicBlock("fpclassify_end", this->CurFn);
+ Builder.SetInsertPoint(End);
+ PHINode *Result =
+ Builder.CreatePHI(ConvertType(E->getArg(0)->getType()), 4,
+ "fpclassify_result");
+
+ // if (V==0) return FP_ZERO
+ Builder.SetInsertPoint(Begin);
+ Value *IsZero = Builder.CreateFCmpOEQ(V, Constant::getNullValue(Ty),
+ "iszero");
+ Value *ZeroLiteral = EmitScalarExpr(E->getArg(4));
+ BasicBlock *NotZero = createBasicBlock("fpclassify_not_zero", this->CurFn);
+ Builder.CreateCondBr(IsZero, End, NotZero);
+ Result->addIncoming(ZeroLiteral, Begin);
+
+ // if (V != V) return FP_NAN
+ Builder.SetInsertPoint(NotZero);
+ Value *IsNan = Builder.CreateFCmpUNO(V, V, "cmp");
+ Value *NanLiteral = EmitScalarExpr(E->getArg(0));
+ BasicBlock *NotNan = createBasicBlock("fpclassify_not_nan", this->CurFn);
+ Builder.CreateCondBr(IsNan, End, NotNan);
+ Result->addIncoming(NanLiteral, NotZero);
+
+ // if (fabs(V) == infinity) return FP_INFINITY
+ Builder.SetInsertPoint(NotNan);
+ Value *VAbs = EmitFAbs(*this, V);
+ Value *IsInf =
+ Builder.CreateFCmpOEQ(VAbs, ConstantFP::getInfinity(V->getType()),
+ "isinf");
+ Value *InfLiteral = EmitScalarExpr(E->getArg(1));
+ BasicBlock *NotInf = createBasicBlock("fpclassify_not_inf", this->CurFn);
+ Builder.CreateCondBr(IsInf, End, NotInf);
+ Result->addIncoming(InfLiteral, NotNan);
+
+ // if (fabs(V) >= MIN_NORMAL) return FP_NORMAL else FP_SUBNORMAL
+ Builder.SetInsertPoint(NotInf);
+ APFloat Smallest = APFloat::getSmallestNormalized(
+ getContext().getFloatTypeSemantics(E->getArg(5)->getType()));
+ Value *IsNormal =
+ Builder.CreateFCmpUGE(VAbs, ConstantFP::get(V->getContext(), Smallest),
+ "isnormal");
+ Value *NormalResult =
+ Builder.CreateSelect(IsNormal, EmitScalarExpr(E->getArg(2)),
+ EmitScalarExpr(E->getArg(3)));
+ Builder.CreateBr(End);
+ Result->addIncoming(NormalResult, NotInf);
+
+ // return Result
+ Builder.SetInsertPoint(End);
+ return RValue::get(Result);
+ }
+
+ case Builtin::BIalloca:
+ case Builtin::BI_alloca:
+ case Builtin::BI__builtin_alloca: {
+ Value *Size = EmitScalarExpr(E->getArg(0));
+ const TargetInfo &TI = getContext().getTargetInfo();
+ // The alignment of the alloca should correspond to __BIGGEST_ALIGNMENT__.
+ unsigned SuitableAlignmentInBytes =
+ CGM.getContext()
+ .toCharUnitsFromBits(TI.getSuitableAlign())
+ .getQuantity();
+ AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
+ AI->setAlignment(SuitableAlignmentInBytes);
+ initializeAlloca(*this, AI, Size, SuitableAlignmentInBytes);
+ return RValue::get(AI);
+ }
+
+ case Builtin::BI__builtin_alloca_with_align: {
+ Value *Size = EmitScalarExpr(E->getArg(0));
+ Value *AlignmentInBitsValue = EmitScalarExpr(E->getArg(1));
+ auto *AlignmentInBitsCI = cast<ConstantInt>(AlignmentInBitsValue);
+ unsigned AlignmentInBits = AlignmentInBitsCI->getZExtValue();
+ unsigned AlignmentInBytes =
+ CGM.getContext().toCharUnitsFromBits(AlignmentInBits).getQuantity();
+ AllocaInst *AI = Builder.CreateAlloca(Builder.getInt8Ty(), Size);
+ AI->setAlignment(AlignmentInBytes);
+ initializeAlloca(*this, AI, Size, AlignmentInBytes);
+ return RValue::get(AI);
+ }
+
+ case Builtin::BIbzero:
+ case Builtin::BI__builtin_bzero: {
+ Address Dest = EmitPointerWithAlignment(E->getArg(0));
+ Value *SizeVal = EmitScalarExpr(E->getArg(1));
+ EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
+ E->getArg(0)->getExprLoc(), FD, 0);
+ Builder.CreateMemSet(Dest, Builder.getInt8(0), SizeVal, false);
+ return RValue::get(nullptr);
+ }
+ case Builtin::BImemcpy:
+ case Builtin::BI__builtin_memcpy: {
+ Address Dest = EmitPointerWithAlignment(E->getArg(0));
+ Address Src = EmitPointerWithAlignment(E->getArg(1));
+ Value *SizeVal = EmitScalarExpr(E->getArg(2));
+ EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
+ E->getArg(0)->getExprLoc(), FD, 0);
+ EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
+ E->getArg(1)->getExprLoc(), FD, 1);
+ Builder.CreateMemCpy(Dest, Src, SizeVal, false);
+ return RValue::get(Dest.getPointer());
+ }
+
+ case Builtin::BI__builtin_char_memchr:
+ BuiltinID = Builtin::BI__builtin_memchr;
+ break;
+
+ case Builtin::BI__builtin___memcpy_chk: {
+ // fold __builtin_memcpy_chk(x, y, cst1, cst2) to memcpy iff cst1<=cst2.
+ Expr::EvalResult SizeResult, DstSizeResult;
+ if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
+ !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
+ break;
+ llvm::APSInt Size = SizeResult.Val.getInt();
+ llvm::APSInt DstSize = DstSizeResult.Val.getInt();
+ if (Size.ugt(DstSize))
+ break;
+ Address Dest = EmitPointerWithAlignment(E->getArg(0));
+ Address Src = EmitPointerWithAlignment(E->getArg(1));
+ Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
+ Builder.CreateMemCpy(Dest, Src, SizeVal, false);
+ return RValue::get(Dest.getPointer());
+ }
+
+ case Builtin::BI__builtin_objc_memmove_collectable: {
+ Address DestAddr = EmitPointerWithAlignment(E->getArg(0));
+ Address SrcAddr = EmitPointerWithAlignment(E->getArg(1));
+ Value *SizeVal = EmitScalarExpr(E->getArg(2));
+ CGM.getObjCRuntime().EmitGCMemmoveCollectable(*this,
+ DestAddr, SrcAddr, SizeVal);
+ return RValue::get(DestAddr.getPointer());
+ }
+
+ case Builtin::BI__builtin___memmove_chk: {
+ // fold __builtin_memmove_chk(x, y, cst1, cst2) to memmove iff cst1<=cst2.
+ Expr::EvalResult SizeResult, DstSizeResult;
+ if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
+ !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
+ break;
+ llvm::APSInt Size = SizeResult.Val.getInt();
+ llvm::APSInt DstSize = DstSizeResult.Val.getInt();
+ if (Size.ugt(DstSize))
+ break;
+ Address Dest = EmitPointerWithAlignment(E->getArg(0));
+ Address Src = EmitPointerWithAlignment(E->getArg(1));
+ Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
+ Builder.CreateMemMove(Dest, Src, SizeVal, false);
+ return RValue::get(Dest.getPointer());
+ }
+
+ case Builtin::BImemmove:
+ case Builtin::BI__builtin_memmove: {
+ Address Dest = EmitPointerWithAlignment(E->getArg(0));
+ Address Src = EmitPointerWithAlignment(E->getArg(1));
+ Value *SizeVal = EmitScalarExpr(E->getArg(2));
+ EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
+ E->getArg(0)->getExprLoc(), FD, 0);
+ EmitNonNullArgCheck(RValue::get(Src.getPointer()), E->getArg(1)->getType(),
+ E->getArg(1)->getExprLoc(), FD, 1);
+ Builder.CreateMemMove(Dest, Src, SizeVal, false);
+ return RValue::get(Dest.getPointer());
+ }
+ case Builtin::BImemset:
+ case Builtin::BI__builtin_memset: {
+ Address Dest = EmitPointerWithAlignment(E->getArg(0));
+ Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
+ Builder.getInt8Ty());
+ Value *SizeVal = EmitScalarExpr(E->getArg(2));
+ EmitNonNullArgCheck(RValue::get(Dest.getPointer()), E->getArg(0)->getType(),
+ E->getArg(0)->getExprLoc(), FD, 0);
+ Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
+ return RValue::get(Dest.getPointer());
+ }
+ case Builtin::BI__builtin___memset_chk: {
+ // fold __builtin_memset_chk(x, y, cst1, cst2) to memset iff cst1<=cst2.
+ Expr::EvalResult SizeResult, DstSizeResult;
+ if (!E->getArg(2)->EvaluateAsInt(SizeResult, CGM.getContext()) ||
+ !E->getArg(3)->EvaluateAsInt(DstSizeResult, CGM.getContext()))
+ break;
+ llvm::APSInt Size = SizeResult.Val.getInt();
+ llvm::APSInt DstSize = DstSizeResult.Val.getInt();
+ if (Size.ugt(DstSize))
+ break;
+ Address Dest = EmitPointerWithAlignment(E->getArg(0));
+ Value *ByteVal = Builder.CreateTrunc(EmitScalarExpr(E->getArg(1)),
+ Builder.getInt8Ty());
+ Value *SizeVal = llvm::ConstantInt::get(Builder.getContext(), Size);
+ Builder.CreateMemSet(Dest, ByteVal, SizeVal, false);
+ return RValue::get(Dest.getPointer());
+ }
+ case Builtin::BI__builtin_wmemcmp: {
+ // The MSVC runtime library does not provide a definition of wmemcmp, so we
+ // need an inline implementation.
+ if (!getTarget().getTriple().isOSMSVCRT())
+ break;
+
+ llvm::Type *WCharTy = ConvertType(getContext().WCharTy);
+
+ Value *Dst = EmitScalarExpr(E->getArg(0));
+ Value *Src = EmitScalarExpr(E->getArg(1));
+ Value *Size = EmitScalarExpr(E->getArg(2));
+
+ BasicBlock *Entry = Builder.GetInsertBlock();
+ BasicBlock *CmpGT = createBasicBlock("wmemcmp.gt");
+ BasicBlock *CmpLT = createBasicBlock("wmemcmp.lt");
+ BasicBlock *Next = createBasicBlock("wmemcmp.next");
+ BasicBlock *Exit = createBasicBlock("wmemcmp.exit");
+ Value *SizeEq0 = Builder.CreateICmpEQ(Size, ConstantInt::get(SizeTy, 0));
+ Builder.CreateCondBr(SizeEq0, Exit, CmpGT);
+
+ EmitBlock(CmpGT);
+ PHINode *DstPhi = Builder.CreatePHI(Dst->getType(), 2);
+ DstPhi->addIncoming(Dst, Entry);
+ PHINode *SrcPhi = Builder.CreatePHI(Src->getType(), 2);
+ SrcPhi->addIncoming(Src, Entry);
+ PHINode *SizePhi = Builder.CreatePHI(SizeTy, 2);
+ SizePhi->addIncoming(Size, Entry);
+ CharUnits WCharAlign =
+ getContext().getTypeAlignInChars(getContext().WCharTy);
+ Value *DstCh = Builder.CreateAlignedLoad(WCharTy, DstPhi, WCharAlign);
+ Value *SrcCh = Builder.CreateAlignedLoad(WCharTy, SrcPhi, WCharAlign);
+ Value *DstGtSrc = Builder.CreateICmpUGT(DstCh, SrcCh);
+ Builder.CreateCondBr(DstGtSrc, Exit, CmpLT);
+
+ EmitBlock(CmpLT);
+ Value *DstLtSrc = Builder.CreateICmpULT(DstCh, SrcCh);
+ Builder.CreateCondBr(DstLtSrc, Exit, Next);
+
+ EmitBlock(Next);
+ Value *NextDst = Builder.CreateConstInBoundsGEP1_32(WCharTy, DstPhi, 1);
+ Value *NextSrc = Builder.CreateConstInBoundsGEP1_32(WCharTy, SrcPhi, 1);
+ Value *NextSize = Builder.CreateSub(SizePhi, ConstantInt::get(SizeTy, 1));
+ Value *NextSizeEq0 =
+ Builder.CreateICmpEQ(NextSize, ConstantInt::get(SizeTy, 0));
+ Builder.CreateCondBr(NextSizeEq0, Exit, CmpGT);
+ DstPhi->addIncoming(NextDst, Next);
+ SrcPhi->addIncoming(NextSrc, Next);
+ SizePhi->addIncoming(NextSize, Next);
+
+ EmitBlock(Exit);
+ PHINode *Ret = Builder.CreatePHI(IntTy, 4);
+ Ret->addIncoming(ConstantInt::get(IntTy, 0), Entry);
+ Ret->addIncoming(ConstantInt::get(IntTy, 1), CmpGT);
+ Ret->addIncoming(ConstantInt::get(IntTy, -1), CmpLT);
+ Ret->addIncoming(ConstantInt::get(IntTy, 0), Next);
+ return RValue::get(Ret);
+ }
+ case Builtin::BI__builtin_dwarf_cfa: {
+ // The offset in bytes from the first argument to the CFA.
+ //
+ // Why on earth is this in the frontend? Is there any reason at
+ // all that the backend can't reasonably determine this while
+ // lowering llvm.eh.dwarf.cfa()?
+ //
+ // TODO: If there's a satisfactory reason, add a target hook for
+ // this instead of hard-coding 0, which is correct for most targets.
+ int32_t Offset = 0;
+
+ Function *F = CGM.getIntrinsic(Intrinsic::eh_dwarf_cfa);
+ return RValue::get(Builder.CreateCall(F,
+ llvm::ConstantInt::get(Int32Ty, Offset)));
+ }
+ case Builtin::BI__builtin_return_address: {
+ Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
+ getContext().UnsignedIntTy);
+ Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
+ return RValue::get(Builder.CreateCall(F, Depth));
+ }
+ case Builtin::BI_ReturnAddress: {
+ Function *F = CGM.getIntrinsic(Intrinsic::returnaddress);
+ return RValue::get(Builder.CreateCall(F, Builder.getInt32(0)));
+ }
+ case Builtin::BI__builtin_frame_address: {
+ Value *Depth = ConstantEmitter(*this).emitAbstract(E->getArg(0),
+ getContext().UnsignedIntTy);
+ Function *F = CGM.getIntrinsic(Intrinsic::frameaddress);
+ return RValue::get(Builder.CreateCall(F, Depth));
+ }
+ case Builtin::BI__builtin_extract_return_addr: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *Result = getTargetHooks().decodeReturnAddress(*this, Address);
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_frob_return_addr: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *Result = getTargetHooks().encodeReturnAddress(*this, Address);
+ return RValue::get(Result);
+ }
+ case Builtin::BI__builtin_dwarf_sp_column: {
+ llvm::IntegerType *Ty
+ = cast<llvm::IntegerType>(ConvertType(E->getType()));
+ int Column = getTargetHooks().getDwarfEHStackPointer(CGM);
+ if (Column == -1) {
+ CGM.ErrorUnsupported(E, "__builtin_dwarf_sp_column");
+ return RValue::get(llvm::UndefValue::get(Ty));
+ }
+ return RValue::get(llvm::ConstantInt::get(Ty, Column, true));
+ }
+ case Builtin::BI__builtin_init_dwarf_reg_size_table: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ if (getTargetHooks().initDwarfEHRegSizeTable(*this, Address))
+ CGM.ErrorUnsupported(E, "__builtin_init_dwarf_reg_size_table");
+ return RValue::get(llvm::UndefValue::get(ConvertType(E->getType())));
+ }
+ case Builtin::BI__builtin_eh_return: {
+ Value *Int = EmitScalarExpr(E->getArg(0));
+ Value *Ptr = EmitScalarExpr(E->getArg(1));
+
+ llvm::IntegerType *IntTy = cast<llvm::IntegerType>(Int->getType());
+ assert((IntTy->getBitWidth() == 32 || IntTy->getBitWidth() == 64) &&
+ "LLVM's __builtin_eh_return only supports 32- and 64-bit variants");
+ Function *F =
+ CGM.getIntrinsic(IntTy->getBitWidth() == 32 ? Intrinsic::eh_return_i32
+ : Intrinsic::eh_return_i64);
+ Builder.CreateCall(F, {Int, Ptr});
+ Builder.CreateUnreachable();
+
+ // We do need to preserve an insertion point.
+ EmitBlock(createBasicBlock("builtin_eh_return.cont"));
+
+ return RValue::get(nullptr);
+ }
+ case Builtin::BI__builtin_unwind_init: {
+ Function *F = CGM.getIntrinsic(Intrinsic::eh_unwind_init);
+ return RValue::get(Builder.CreateCall(F));
+ }
+ case Builtin::BI__builtin_extend_pointer: {
+ // Extends a pointer to the size of an _Unwind_Word, which is
+ // uint64_t on all platforms. Generally this gets poked into a
+ // register and eventually used as an address, so if the
+ // addressing registers are wider than pointers and the platform
+ // doesn't implicitly ignore high-order bits when doing
+ // addressing, we need to make sure we zext / sext based on
+ // the platform's expectations.
+ //
+ // See: http://gcc.gnu.org/ml/gcc-bugs/2002-02/msg00237.html
+
+ // Cast the pointer to intptr_t.
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ Value *Result = Builder.CreatePtrToInt(Ptr, IntPtrTy, "extend.cast");
+
+ // If that's 64 bits, we're done.
+ if (IntPtrTy->getBitWidth() == 64)
+ return RValue::get(Result);
+
+ // Otherwise, ask the codegen data what to do.
+ if (getTargetHooks().extendPointerWithSExt())
+ return RValue::get(Builder.CreateSExt(Result, Int64Ty, "extend.sext"));
+ else
+ return RValue::get(Builder.CreateZExt(Result, Int64Ty, "extend.zext"));
+ }
+ case Builtin::BI__builtin_setjmp: {
+ // Buffer is a void**.
+ Address Buf = EmitPointerWithAlignment(E->getArg(0));
+
+ // Store the frame pointer to the setjmp buffer.
+ Value *FrameAddr =
+ Builder.CreateCall(CGM.getIntrinsic(Intrinsic::frameaddress),
+ ConstantInt::get(Int32Ty, 0));
+ Builder.CreateStore(FrameAddr, Buf);
+
+ // Store the stack pointer to the setjmp buffer.
+ Value *StackAddr =
+ Builder.CreateCall(CGM.getIntrinsic(Intrinsic::stacksave));
+ Address StackSaveSlot = Builder.CreateConstInBoundsGEP(Buf, 2);
+ Builder.CreateStore(StackAddr, StackSaveSlot);
+
+ // Call LLVM's EH setjmp, which is lightweight.
+ Function *F = CGM.getIntrinsic(Intrinsic::eh_sjlj_setjmp);
+ Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
+ return RValue::get(Builder.CreateCall(F, Buf.getPointer()));
+ }
+ case Builtin::BI__builtin_longjmp: {
+ Value *Buf = EmitScalarExpr(E->getArg(0));
+ Buf = Builder.CreateBitCast(Buf, Int8PtrTy);
+
+ // Call LLVM's EH longjmp, which is lightweight.
+ Builder.CreateCall(CGM.getIntrinsic(Intrinsic::eh_sjlj_longjmp), Buf);
+
+ // longjmp doesn't return; mark this as unreachable.
+ Builder.CreateUnreachable();
+
+ // We do need to preserve an insertion point.
+ EmitBlock(createBasicBlock("longjmp.cont"));
+
+ return RValue::get(nullptr);
+ }
+ case Builtin::BI__builtin_launder: {
+ const Expr *Arg = E->getArg(0);
+ QualType ArgTy = Arg->getType()->getPointeeType();
+ Value *Ptr = EmitScalarExpr(Arg);
+ if (TypeRequiresBuiltinLaunder(CGM, ArgTy))
+ Ptr = Builder.CreateLaunderInvariantGroup(Ptr);
+
+ return RValue::get(Ptr);
+ }
+ case Builtin::BI__sync_fetch_and_add:
+ case Builtin::BI__sync_fetch_and_sub:
+ case Builtin::BI__sync_fetch_and_or:
+ case Builtin::BI__sync_fetch_and_and:
+ case Builtin::BI__sync_fetch_and_xor:
+ case Builtin::BI__sync_fetch_and_nand:
+ case Builtin::BI__sync_add_and_fetch:
+ case Builtin::BI__sync_sub_and_fetch:
+ case Builtin::BI__sync_and_and_fetch:
+ case Builtin::BI__sync_or_and_fetch:
+ case Builtin::BI__sync_xor_and_fetch:
+ case Builtin::BI__sync_nand_and_fetch:
+ case Builtin::BI__sync_val_compare_and_swap:
+ case Builtin::BI__sync_bool_compare_and_swap:
+ case Builtin::BI__sync_lock_test_and_set:
+ case Builtin::BI__sync_lock_release:
+ case Builtin::BI__sync_swap:
+ llvm_unreachable("Shouldn't make it through sema");
+ case Builtin::BI__sync_fetch_and_add_1:
+ case Builtin::BI__sync_fetch_and_add_2:
+ case Builtin::BI__sync_fetch_and_add_4:
+ case Builtin::BI__sync_fetch_and_add_8:
+ case Builtin::BI__sync_fetch_and_add_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Add, E);
+ case Builtin::BI__sync_fetch_and_sub_1:
+ case Builtin::BI__sync_fetch_and_sub_2:
+ case Builtin::BI__sync_fetch_and_sub_4:
+ case Builtin::BI__sync_fetch_and_sub_8:
+ case Builtin::BI__sync_fetch_and_sub_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Sub, E);
+ case Builtin::BI__sync_fetch_and_or_1:
+ case Builtin::BI__sync_fetch_and_or_2:
+ case Builtin::BI__sync_fetch_and_or_4:
+ case Builtin::BI__sync_fetch_and_or_8:
+ case Builtin::BI__sync_fetch_and_or_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Or, E);
+ case Builtin::BI__sync_fetch_and_and_1:
+ case Builtin::BI__sync_fetch_and_and_2:
+ case Builtin::BI__sync_fetch_and_and_4:
+ case Builtin::BI__sync_fetch_and_and_8:
+ case Builtin::BI__sync_fetch_and_and_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::And, E);
+ case Builtin::BI__sync_fetch_and_xor_1:
+ case Builtin::BI__sync_fetch_and_xor_2:
+ case Builtin::BI__sync_fetch_and_xor_4:
+ case Builtin::BI__sync_fetch_and_xor_8:
+ case Builtin::BI__sync_fetch_and_xor_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xor, E);
+ case Builtin::BI__sync_fetch_and_nand_1:
+ case Builtin::BI__sync_fetch_and_nand_2:
+ case Builtin::BI__sync_fetch_and_nand_4:
+ case Builtin::BI__sync_fetch_and_nand_8:
+ case Builtin::BI__sync_fetch_and_nand_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Nand, E);
+
+ // Clang extensions: not overloaded yet.
+ case Builtin::BI__sync_fetch_and_min:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Min, E);
+ case Builtin::BI__sync_fetch_and_max:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Max, E);
+ case Builtin::BI__sync_fetch_and_umin:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMin, E);
+ case Builtin::BI__sync_fetch_and_umax:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::UMax, E);
+
+ case Builtin::BI__sync_add_and_fetch_1:
+ case Builtin::BI__sync_add_and_fetch_2:
+ case Builtin::BI__sync_add_and_fetch_4:
+ case Builtin::BI__sync_add_and_fetch_8:
+ case Builtin::BI__sync_add_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Add, E,
+ llvm::Instruction::Add);
+ case Builtin::BI__sync_sub_and_fetch_1:
+ case Builtin::BI__sync_sub_and_fetch_2:
+ case Builtin::BI__sync_sub_and_fetch_4:
+ case Builtin::BI__sync_sub_and_fetch_8:
+ case Builtin::BI__sync_sub_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Sub, E,
+ llvm::Instruction::Sub);
+ case Builtin::BI__sync_and_and_fetch_1:
+ case Builtin::BI__sync_and_and_fetch_2:
+ case Builtin::BI__sync_and_and_fetch_4:
+ case Builtin::BI__sync_and_and_fetch_8:
+ case Builtin::BI__sync_and_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::And, E,
+ llvm::Instruction::And);
+ case Builtin::BI__sync_or_and_fetch_1:
+ case Builtin::BI__sync_or_and_fetch_2:
+ case Builtin::BI__sync_or_and_fetch_4:
+ case Builtin::BI__sync_or_and_fetch_8:
+ case Builtin::BI__sync_or_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Or, E,
+ llvm::Instruction::Or);
+ case Builtin::BI__sync_xor_and_fetch_1:
+ case Builtin::BI__sync_xor_and_fetch_2:
+ case Builtin::BI__sync_xor_and_fetch_4:
+ case Builtin::BI__sync_xor_and_fetch_8:
+ case Builtin::BI__sync_xor_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Xor, E,
+ llvm::Instruction::Xor);
+ case Builtin::BI__sync_nand_and_fetch_1:
+ case Builtin::BI__sync_nand_and_fetch_2:
+ case Builtin::BI__sync_nand_and_fetch_4:
+ case Builtin::BI__sync_nand_and_fetch_8:
+ case Builtin::BI__sync_nand_and_fetch_16:
+ return EmitBinaryAtomicPost(*this, llvm::AtomicRMWInst::Nand, E,
+ llvm::Instruction::And, true);
+
+ case Builtin::BI__sync_val_compare_and_swap_1:
+ case Builtin::BI__sync_val_compare_and_swap_2:
+ case Builtin::BI__sync_val_compare_and_swap_4:
+ case Builtin::BI__sync_val_compare_and_swap_8:
+ case Builtin::BI__sync_val_compare_and_swap_16:
+ return RValue::get(MakeAtomicCmpXchgValue(*this, E, false));
+
+ case Builtin::BI__sync_bool_compare_and_swap_1:
+ case Builtin::BI__sync_bool_compare_and_swap_2:
+ case Builtin::BI__sync_bool_compare_and_swap_4:
+ case Builtin::BI__sync_bool_compare_and_swap_8:
+ case Builtin::BI__sync_bool_compare_and_swap_16:
+ return RValue::get(MakeAtomicCmpXchgValue(*this, E, true));
+
+ case Builtin::BI__sync_swap_1:
+ case Builtin::BI__sync_swap_2:
+ case Builtin::BI__sync_swap_4:
+ case Builtin::BI__sync_swap_8:
+ case Builtin::BI__sync_swap_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
+
+ case Builtin::BI__sync_lock_test_and_set_1:
+ case Builtin::BI__sync_lock_test_and_set_2:
+ case Builtin::BI__sync_lock_test_and_set_4:
+ case Builtin::BI__sync_lock_test_and_set_8:
+ case Builtin::BI__sync_lock_test_and_set_16:
+ return EmitBinaryAtomic(*this, llvm::AtomicRMWInst::Xchg, E);
+
+ case Builtin::BI__sync_lock_release_1:
+ case Builtin::BI__sync_lock_release_2:
+ case Builtin::BI__sync_lock_release_4:
+ case Builtin::BI__sync_lock_release_8:
+ case Builtin::BI__sync_lock_release_16: {
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ QualType ElTy = E->getArg(0)->getType()->getPointeeType();
+ CharUnits StoreSize = getContext().getTypeSizeInChars(ElTy);
+ llvm::Type *ITy = llvm::IntegerType::get(getLLVMContext(),
+ StoreSize.getQuantity() * 8);
+ Ptr = Builder.CreateBitCast(Ptr, ITy->getPointerTo());
+ llvm::StoreInst *Store =
+ Builder.CreateAlignedStore(llvm::Constant::getNullValue(ITy), Ptr,
+ StoreSize);
+ Store->setAtomic(llvm::AtomicOrdering::Release);
+ return RValue::get(nullptr);
+ }
+
+ case Builtin::BI__sync_synchronize: {
+ // We assume this is supposed to correspond to a C++0x-style
+ // sequentially-consistent fence (i.e. this is only usable for
+ // synchronization, not device I/O or anything like that). This intrinsic
+ // is really badly designed in the sense that in theory, there isn't
+ // any way to safely use it... but in practice, it mostly works
+ // to use it with non-atomic loads and stores to get acquire/release
+ // semantics.
+ Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent);
+ return RValue::get(nullptr);
+ }
+
+ case Builtin::BI__builtin_nontemporal_load:
+ return RValue::get(EmitNontemporalLoad(*this, E));
+ case Builtin::BI__builtin_nontemporal_store:
+ return RValue::get(EmitNontemporalStore(*this, E));
+ case Builtin::BI__c11_atomic_is_lock_free:
+ case Builtin::BI__atomic_is_lock_free: {
+ // Call "bool __atomic_is_lock_free(size_t size, void *ptr)". For the
+ // __c11 builtin, ptr is 0 (indicating a properly-aligned object), since
+ // _Atomic(T) is always properly-aligned.
+ const char *LibCallName = "__atomic_is_lock_free";
+ CallArgList Args;
+ Args.add(RValue::get(EmitScalarExpr(E->getArg(0))),
+ getContext().getSizeType());
+ if (BuiltinID == Builtin::BI__atomic_is_lock_free)
+ Args.add(RValue::get(EmitScalarExpr(E->getArg(1))),
+ getContext().VoidPtrTy);
+ else
+ Args.add(RValue::get(llvm::Constant::getNullValue(VoidPtrTy)),
+ getContext().VoidPtrTy);
+ const CGFunctionInfo &FuncInfo =
+ CGM.getTypes().arrangeBuiltinFunctionCall(E->getType(), Args);
+ llvm::FunctionType *FTy = CGM.getTypes().GetFunctionType(FuncInfo);
+ llvm::FunctionCallee Func = CGM.CreateRuntimeFunction(FTy, LibCallName);
+ return EmitCall(FuncInfo, CGCallee::forDirect(Func),
+ ReturnValueSlot(), Args);
+ }
+
+ case Builtin::BI__atomic_test_and_set: {
+ // Look at the argument type to determine whether this is a volatile
+ // operation. The parameter type is always volatile.
+ QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
+ bool Volatile =
+ PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
+
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ unsigned AddrSpace = Ptr->getType()->getPointerAddressSpace();
+ Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
+ Value *NewVal = Builder.getInt8(1);
+ Value *Order = EmitScalarExpr(E->getArg(1));
+ if (isa<llvm::ConstantInt>(Order)) {
+ int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
+ AtomicRMWInst *Result = nullptr;
+ switch (ord) {
+ case 0: // memory_order_relaxed
+ default: // invalid order
+ Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
+ llvm::AtomicOrdering::Monotonic);
+ break;
+ case 1: // memory_order_consume
+ case 2: // memory_order_acquire
+ Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
+ llvm::AtomicOrdering::Acquire);
+ break;
+ case 3: // memory_order_release
+ Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
+ llvm::AtomicOrdering::Release);
+ break;
+ case 4: // memory_order_acq_rel
+
+ Result = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
+ llvm::AtomicOrdering::AcquireRelease);
+ break;
+ case 5: // memory_order_seq_cst
+ Result = Builder.CreateAtomicRMW(
+ llvm::AtomicRMWInst::Xchg, Ptr, NewVal,
+ llvm::AtomicOrdering::SequentiallyConsistent);
+ break;
+ }
+ Result->setVolatile(Volatile);
+ return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
+ }
+
+ llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
+
+ llvm::BasicBlock *BBs[5] = {
+ createBasicBlock("monotonic", CurFn),
+ createBasicBlock("acquire", CurFn),
+ createBasicBlock("release", CurFn),
+ createBasicBlock("acqrel", CurFn),
+ createBasicBlock("seqcst", CurFn)
+ };
+ llvm::AtomicOrdering Orders[5] = {
+ llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Acquire,
+ llvm::AtomicOrdering::Release, llvm::AtomicOrdering::AcquireRelease,
+ llvm::AtomicOrdering::SequentiallyConsistent};
+
+ Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
+ llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
+
+ Builder.SetInsertPoint(ContBB);
+ PHINode *Result = Builder.CreatePHI(Int8Ty, 5, "was_set");
+
+ for (unsigned i = 0; i < 5; ++i) {
+ Builder.SetInsertPoint(BBs[i]);
+ AtomicRMWInst *RMW = Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
+ Ptr, NewVal, Orders[i]);
+ RMW->setVolatile(Volatile);
+ Result->addIncoming(RMW, BBs[i]);
+ Builder.CreateBr(ContBB);
+ }
+
+ SI->addCase(Builder.getInt32(0), BBs[0]);
+ SI->addCase(Builder.getInt32(1), BBs[1]);
+ SI->addCase(Builder.getInt32(2), BBs[1]);
+ SI->addCase(Builder.getInt32(3), BBs[2]);
+ SI->addCase(Builder.getInt32(4), BBs[3]);
+ SI->addCase(Builder.getInt32(5), BBs[4]);
+
+ Builder.SetInsertPoint(ContBB);
+ return RValue::get(Builder.CreateIsNotNull(Result, "tobool"));
+ }
+
+ case Builtin::BI__atomic_clear: {
+ QualType PtrTy = E->getArg(0)->IgnoreImpCasts()->getType();
+ bool Volatile =
+ PtrTy->castAs<PointerType>()->getPointeeType().isVolatileQualified();
+
+ Address Ptr = EmitPointerWithAlignment(E->getArg(0));
+ unsigned AddrSpace = Ptr.getPointer()->getType()->getPointerAddressSpace();
+ Ptr = Builder.CreateBitCast(Ptr, Int8Ty->getPointerTo(AddrSpace));
+ Value *NewVal = Builder.getInt8(0);
+ Value *Order = EmitScalarExpr(E->getArg(1));
+ if (isa<llvm::ConstantInt>(Order)) {
+ int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
+ StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
+ switch (ord) {
+ case 0: // memory_order_relaxed
+ default: // invalid order
+ Store->setOrdering(llvm::AtomicOrdering::Monotonic);
+ break;
+ case 3: // memory_order_release
+ Store->setOrdering(llvm::AtomicOrdering::Release);
+ break;
+ case 5: // memory_order_seq_cst
+ Store->setOrdering(llvm::AtomicOrdering::SequentiallyConsistent);
+ break;
+ }
+ return RValue::get(nullptr);
+ }
+
+ llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
+
+ llvm::BasicBlock *BBs[3] = {
+ createBasicBlock("monotonic", CurFn),
+ createBasicBlock("release", CurFn),
+ createBasicBlock("seqcst", CurFn)
+ };
+ llvm::AtomicOrdering Orders[3] = {
+ llvm::AtomicOrdering::Monotonic, llvm::AtomicOrdering::Release,
+ llvm::AtomicOrdering::SequentiallyConsistent};
+
+ Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
+ llvm::SwitchInst *SI = Builder.CreateSwitch(Order, BBs[0]);
+
+ for (unsigned i = 0; i < 3; ++i) {
+ Builder.SetInsertPoint(BBs[i]);
+ StoreInst *Store = Builder.CreateStore(NewVal, Ptr, Volatile);
+ Store->setOrdering(Orders[i]);
+ Builder.CreateBr(ContBB);
+ }
+
+ SI->addCase(Builder.getInt32(0), BBs[0]);
+ SI->addCase(Builder.getInt32(3), BBs[1]);
+ SI->addCase(Builder.getInt32(5), BBs[2]);
+
+ Builder.SetInsertPoint(ContBB);
+ return RValue::get(nullptr);
+ }
+
+ case Builtin::BI__atomic_thread_fence:
+ case Builtin::BI__atomic_signal_fence:
+ case Builtin::BI__c11_atomic_thread_fence:
+ case Builtin::BI__c11_atomic_signal_fence: {
+ llvm::SyncScope::ID SSID;
+ if (BuiltinID == Builtin::BI__atomic_signal_fence ||
+ BuiltinID == Builtin::BI__c11_atomic_signal_fence)
+ SSID = llvm::SyncScope::SingleThread;
+ else
+ SSID = llvm::SyncScope::System;
+ Value *Order = EmitScalarExpr(E->getArg(0));
+ if (isa<llvm::ConstantInt>(Order)) {
+ int ord = cast<llvm::ConstantInt>(Order)->getZExtValue();
+ switch (ord) {
+ case 0: // memory_order_relaxed
+ default: // invalid order
+ break;
+ case 1: // memory_order_consume
+ case 2: // memory_order_acquire
+ Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
+ break;
+ case 3: // memory_order_release
+ Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
+ break;
+ case 4: // memory_order_acq_rel
+ Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
+ break;
+ case 5: // memory_order_seq_cst
+ Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
+ break;
+ }
+ return RValue::get(nullptr);
+ }
+
+ llvm::BasicBlock *AcquireBB, *ReleaseBB, *AcqRelBB, *SeqCstBB;
+ AcquireBB = createBasicBlock("acquire", CurFn);
+ ReleaseBB = createBasicBlock("release", CurFn);
+ AcqRelBB = createBasicBlock("acqrel", CurFn);
+ SeqCstBB = createBasicBlock("seqcst", CurFn);
+ llvm::BasicBlock *ContBB = createBasicBlock("atomic.continue", CurFn);
+
+ Order = Builder.CreateIntCast(Order, Builder.getInt32Ty(), false);
+ llvm::SwitchInst *SI = Builder.CreateSwitch(Order, ContBB);
+
+ Builder.SetInsertPoint(AcquireBB);
+ Builder.CreateFence(llvm::AtomicOrdering::Acquire, SSID);
+ Builder.CreateBr(ContBB);
+ SI->addCase(Builder.getInt32(1), AcquireBB);
+ SI->addCase(Builder.getInt32(2), AcquireBB);
+
+ Builder.SetInsertPoint(ReleaseBB);
+ Builder.CreateFence(llvm::AtomicOrdering::Release, SSID);
+ Builder.CreateBr(ContBB);
+ SI->addCase(Builder.getInt32(3), ReleaseBB);
+
+ Builder.SetInsertPoint(AcqRelBB);
+ Builder.CreateFence(llvm::AtomicOrdering::AcquireRelease, SSID);
+ Builder.CreateBr(ContBB);
+ SI->addCase(Builder.getInt32(4), AcqRelBB);
+
+ Builder.SetInsertPoint(SeqCstBB);
+ Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent, SSID);
+ Builder.CreateBr(ContBB);
+ SI->addCase(Builder.getInt32(5), SeqCstBB);
+
+ Builder.SetInsertPoint(ContBB);
+ return RValue::get(nullptr);
+ }
+
+ case Builtin::BI__builtin_signbit:
+ case Builtin::BI__builtin_signbitf:
+ case Builtin::BI__builtin_signbitl: {
+ return RValue::get(
+ Builder.CreateZExt(EmitSignBit(*this, EmitScalarExpr(E->getArg(0))),
+ ConvertType(E->getType())));
+ }
+ case Builtin::BI__annotation: {
+ // Re-encode each wide string to UTF8 and make an MDString.
+ SmallVector<Metadata *, 1> Strings;
+ for (const Expr *Arg : E->arguments()) {
+ const auto *Str = cast<StringLiteral>(Arg->IgnoreParenCasts());
+ assert(Str->getCharByteWidth() == 2);
+ StringRef WideBytes = Str->getBytes();
+ std::string StrUtf8;
+ if (!convertUTF16ToUTF8String(
+ makeArrayRef(WideBytes.data(), WideBytes.size()), StrUtf8)) {
+ CGM.ErrorUnsupported(E, "non-UTF16 __annotation argument");
+ continue;
+ }
+ Strings.push_back(llvm::MDString::get(getLLVMContext(), StrUtf8));
+ }
+
+ // Build and MDTuple of MDStrings and emit the intrinsic call.
+ llvm::Function *F =
+ CGM.getIntrinsic(llvm::Intrinsic::codeview_annotation, {});
+ MDTuple *StrTuple = MDTuple::get(getLLVMContext(), Strings);
+ Builder.CreateCall(F, MetadataAsValue::get(getLLVMContext(), StrTuple));
+ return RValue::getIgnored();
+ }
+ case Builtin::BI__builtin_annotation: {
+ llvm::Value *AnnVal = EmitScalarExpr(E->getArg(0));
+ llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::annotation,
+ AnnVal->getType());
+
+ // Get the annotation string, go through casts. Sema requires this to be a
+ // non-wide string literal, potentially casted, so the cast<> is safe.
+ const Expr *AnnotationStrExpr = E->getArg(1)->IgnoreParenCasts();
+ StringRef Str = cast<StringLiteral>(AnnotationStrExpr)->getString();
+ return RValue::get(EmitAnnotationCall(F, AnnVal, Str, E->getExprLoc()));
+ }
+ case Builtin::BI__builtin_addcb:
+ case Builtin::BI__builtin_addcs:
+ case Builtin::BI__builtin_addc:
+ case Builtin::BI__builtin_addcl:
+ case Builtin::BI__builtin_addcll:
+ case Builtin::BI__builtin_subcb:
+ case Builtin::BI__builtin_subcs:
+ case Builtin::BI__builtin_subc:
+ case Builtin::BI__builtin_subcl:
+ case Builtin::BI__builtin_subcll: {
+
+ // We translate all of these builtins from expressions of the form:
+ // int x = ..., y = ..., carryin = ..., carryout, result;
+ // result = __builtin_addc(x, y, carryin, &carryout);
+ //
+ // to LLVM IR of the form:
+ //
+ // %tmp1 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %x, i32 %y)
+ // %tmpsum1 = extractvalue {i32, i1} %tmp1, 0
+ // %carry1 = extractvalue {i32, i1} %tmp1, 1
+ // %tmp2 = call {i32, i1} @llvm.uadd.with.overflow.i32(i32 %tmpsum1,
+ // i32 %carryin)
+ // %result = extractvalue {i32, i1} %tmp2, 0
+ // %carry2 = extractvalue {i32, i1} %tmp2, 1
+ // %tmp3 = or i1 %carry1, %carry2
+ // %tmp4 = zext i1 %tmp3 to i32
+ // store i32 %tmp4, i32* %carryout
+
+ // Scalarize our inputs.
+ llvm::Value *X = EmitScalarExpr(E->getArg(0));
+ llvm::Value *Y = EmitScalarExpr(E->getArg(1));
+ llvm::Value *Carryin = EmitScalarExpr(E->getArg(2));
+ Address CarryOutPtr = EmitPointerWithAlignment(E->getArg(3));
+
+ // Decide if we are lowering to a uadd.with.overflow or usub.with.overflow.
+ llvm::Intrinsic::ID IntrinsicId;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unknown multiprecision builtin id.");
+ case Builtin::BI__builtin_addcb:
+ case Builtin::BI__builtin_addcs:
+ case Builtin::BI__builtin_addc:
+ case Builtin::BI__builtin_addcl:
+ case Builtin::BI__builtin_addcll:
+ IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
+ break;
+ case Builtin::BI__builtin_subcb:
+ case Builtin::BI__builtin_subcs:
+ case Builtin::BI__builtin_subc:
+ case Builtin::BI__builtin_subcl:
+ case Builtin::BI__builtin_subcll:
+ IntrinsicId = llvm::Intrinsic::usub_with_overflow;
+ break;
+ }
+
+ // Construct our resulting LLVM IR expression.
+ llvm::Value *Carry1;
+ llvm::Value *Sum1 = EmitOverflowIntrinsic(*this, IntrinsicId,
+ X, Y, Carry1);
+ llvm::Value *Carry2;
+ llvm::Value *Sum2 = EmitOverflowIntrinsic(*this, IntrinsicId,
+ Sum1, Carryin, Carry2);
+ llvm::Value *CarryOut = Builder.CreateZExt(Builder.CreateOr(Carry1, Carry2),
+ X->getType());
+ Builder.CreateStore(CarryOut, CarryOutPtr);
+ return RValue::get(Sum2);
+ }
+
+ case Builtin::BI__builtin_add_overflow:
+ case Builtin::BI__builtin_sub_overflow:
+ case Builtin::BI__builtin_mul_overflow: {
+ const clang::Expr *LeftArg = E->getArg(0);
+ const clang::Expr *RightArg = E->getArg(1);
+ const clang::Expr *ResultArg = E->getArg(2);
+
+ clang::QualType ResultQTy =
+ ResultArg->getType()->castAs<PointerType>()->getPointeeType();
+
+ WidthAndSignedness LeftInfo =
+ getIntegerWidthAndSignedness(CGM.getContext(), LeftArg->getType());
+ WidthAndSignedness RightInfo =
+ getIntegerWidthAndSignedness(CGM.getContext(), RightArg->getType());
+ WidthAndSignedness ResultInfo =
+ getIntegerWidthAndSignedness(CGM.getContext(), ResultQTy);
+
+ // Handle mixed-sign multiplication as a special case, because adding
+ // runtime or backend support for our generic irgen would be too expensive.
+ if (isSpecialMixedSignMultiply(BuiltinID, LeftInfo, RightInfo, ResultInfo))
+ return EmitCheckedMixedSignMultiply(*this, LeftArg, LeftInfo, RightArg,
+ RightInfo, ResultArg, ResultQTy,
+ ResultInfo);
+
+ WidthAndSignedness EncompassingInfo =
+ EncompassingIntegerType({LeftInfo, RightInfo, ResultInfo});
+
+ llvm::Type *EncompassingLLVMTy =
+ llvm::IntegerType::get(CGM.getLLVMContext(), EncompassingInfo.Width);
+
+ llvm::Type *ResultLLVMTy = CGM.getTypes().ConvertType(ResultQTy);
+
+ llvm::Intrinsic::ID IntrinsicId;
+ switch (BuiltinID) {
+ default:
+ llvm_unreachable("Unknown overflow builtin id.");
+ case Builtin::BI__builtin_add_overflow:
+ IntrinsicId = EncompassingInfo.Signed
+ ? llvm::Intrinsic::sadd_with_overflow
+ : llvm::Intrinsic::uadd_with_overflow;
+ break;
+ case Builtin::BI__builtin_sub_overflow:
+ IntrinsicId = EncompassingInfo.Signed
+ ? llvm::Intrinsic::ssub_with_overflow
+ : llvm::Intrinsic::usub_with_overflow;
+ break;
+ case Builtin::BI__builtin_mul_overflow:
+ IntrinsicId = EncompassingInfo.Signed
+ ? llvm::Intrinsic::smul_with_overflow
+ : llvm::Intrinsic::umul_with_overflow;
+ break;
+ }
+
+ llvm::Value *Left = EmitScalarExpr(LeftArg);
+ llvm::Value *Right = EmitScalarExpr(RightArg);
+ Address ResultPtr = EmitPointerWithAlignment(ResultArg);
+
+ // Extend each operand to the encompassing type.
+ Left = Builder.CreateIntCast(Left, EncompassingLLVMTy, LeftInfo.Signed);
+ Right = Builder.CreateIntCast(Right, EncompassingLLVMTy, RightInfo.Signed);
+
+ // Perform the operation on the extended values.
+ llvm::Value *Overflow, *Result;
+ Result = EmitOverflowIntrinsic(*this, IntrinsicId, Left, Right, Overflow);
+
+ if (EncompassingInfo.Width > ResultInfo.Width) {
+ // The encompassing type is wider than the result type, so we need to
+ // truncate it.
+ llvm::Value *ResultTrunc = Builder.CreateTrunc(Result, ResultLLVMTy);
+
+ // To see if the truncation caused an overflow, we will extend
+ // the result and then compare it to the original result.
+ llvm::Value *ResultTruncExt = Builder.CreateIntCast(
+ ResultTrunc, EncompassingLLVMTy, ResultInfo.Signed);
+ llvm::Value *TruncationOverflow =
+ Builder.CreateICmpNE(Result, ResultTruncExt);
+
+ Overflow = Builder.CreateOr(Overflow, TruncationOverflow);
+ Result = ResultTrunc;
+ }
+
+ // Finally, store the result using the pointer.
+ bool isVolatile =
+ ResultArg->getType()->getPointeeType().isVolatileQualified();
+ Builder.CreateStore(EmitToMemory(Result, ResultQTy), ResultPtr, isVolatile);
+
+ return RValue::get(Overflow);
+ }
+
+ case Builtin::BI__builtin_uadd_overflow:
+ case Builtin::BI__builtin_uaddl_overflow:
+ case Builtin::BI__builtin_uaddll_overflow:
+ case Builtin::BI__builtin_usub_overflow:
+ case Builtin::BI__builtin_usubl_overflow:
+ case Builtin::BI__builtin_usubll_overflow:
+ case Builtin::BI__builtin_umul_overflow:
+ case Builtin::BI__builtin_umull_overflow:
+ case Builtin::BI__builtin_umulll_overflow:
+ case Builtin::BI__builtin_sadd_overflow:
+ case Builtin::BI__builtin_saddl_overflow:
+ case Builtin::BI__builtin_saddll_overflow:
+ case Builtin::BI__builtin_ssub_overflow:
+ case Builtin::BI__builtin_ssubl_overflow:
+ case Builtin::BI__builtin_ssubll_overflow:
+ case Builtin::BI__builtin_smul_overflow:
+ case Builtin::BI__builtin_smull_overflow:
+ case Builtin::BI__builtin_smulll_overflow: {
+
+ // We translate all of these builtins directly to the relevant llvm IR node.
+
+ // Scalarize our inputs.
+ llvm::Value *X = EmitScalarExpr(E->getArg(0));
+ llvm::Value *Y = EmitScalarExpr(E->getArg(1));
+ Address SumOutPtr = EmitPointerWithAlignment(E->getArg(2));
+
+ // Decide which of the overflow intrinsics we are lowering to:
+ llvm::Intrinsic::ID IntrinsicId;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unknown overflow builtin id.");
+ case Builtin::BI__builtin_uadd_overflow:
+ case Builtin::BI__builtin_uaddl_overflow:
+ case Builtin::BI__builtin_uaddll_overflow:
+ IntrinsicId = llvm::Intrinsic::uadd_with_overflow;
+ break;
+ case Builtin::BI__builtin_usub_overflow:
+ case Builtin::BI__builtin_usubl_overflow:
+ case Builtin::BI__builtin_usubll_overflow:
+ IntrinsicId = llvm::Intrinsic::usub_with_overflow;
+ break;
+ case Builtin::BI__builtin_umul_overflow:
+ case Builtin::BI__builtin_umull_overflow:
+ case Builtin::BI__builtin_umulll_overflow:
+ IntrinsicId = llvm::Intrinsic::umul_with_overflow;
+ break;
+ case Builtin::BI__builtin_sadd_overflow:
+ case Builtin::BI__builtin_saddl_overflow:
+ case Builtin::BI__builtin_saddll_overflow:
+ IntrinsicId = llvm::Intrinsic::sadd_with_overflow;
+ break;
+ case Builtin::BI__builtin_ssub_overflow:
+ case Builtin::BI__builtin_ssubl_overflow:
+ case Builtin::BI__builtin_ssubll_overflow:
+ IntrinsicId = llvm::Intrinsic::ssub_with_overflow;
+ break;
+ case Builtin::BI__builtin_smul_overflow:
+ case Builtin::BI__builtin_smull_overflow:
+ case Builtin::BI__builtin_smulll_overflow:
+ IntrinsicId = llvm::Intrinsic::smul_with_overflow;
+ break;
+ }
+
+
+ llvm::Value *Carry;
+ llvm::Value *Sum = EmitOverflowIntrinsic(*this, IntrinsicId, X, Y, Carry);
+ Builder.CreateStore(Sum, SumOutPtr);
+
+ return RValue::get(Carry);
+ }
+ case Builtin::BI__builtin_addressof:
+ return RValue::get(EmitLValue(E->getArg(0)).getPointer());
+ case Builtin::BI__builtin_operator_new:
+ return EmitBuiltinNewDeleteCall(
+ E->getCallee()->getType()->castAs<FunctionProtoType>(), E, false);
+ case Builtin::BI__builtin_operator_delete:
+ return EmitBuiltinNewDeleteCall(
+ E->getCallee()->getType()->castAs<FunctionProtoType>(), E, true);
+
+ case Builtin::BI__noop:
+ // __noop always evaluates to an integer literal zero.
+ return RValue::get(ConstantInt::get(IntTy, 0));
+ case Builtin::BI__builtin_call_with_static_chain: {
+ const CallExpr *Call = cast<CallExpr>(E->getArg(0));
+ const Expr *Chain = E->getArg(1);
+ return EmitCall(Call->getCallee()->getType(),
+ EmitCallee(Call->getCallee()), Call, ReturnValue,
+ EmitScalarExpr(Chain));
+ }
+ case Builtin::BI_InterlockedExchange8:
+ case Builtin::BI_InterlockedExchange16:
+ case Builtin::BI_InterlockedExchange:
+ case Builtin::BI_InterlockedExchangePointer:
+ return RValue::get(
+ EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E));
+ case Builtin::BI_InterlockedCompareExchangePointer:
+ case Builtin::BI_InterlockedCompareExchangePointer_nf: {
+ llvm::Type *RTy;
+ llvm::IntegerType *IntType =
+ IntegerType::get(getLLVMContext(),
+ getContext().getTypeSize(E->getType()));
+ llvm::Type *IntPtrType = IntType->getPointerTo();
+
+ llvm::Value *Destination =
+ Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), IntPtrType);
+
+ llvm::Value *Exchange = EmitScalarExpr(E->getArg(1));
+ RTy = Exchange->getType();
+ Exchange = Builder.CreatePtrToInt(Exchange, IntType);
+
+ llvm::Value *Comparand =
+ Builder.CreatePtrToInt(EmitScalarExpr(E->getArg(2)), IntType);
+
+ auto Ordering =
+ BuiltinID == Builtin::BI_InterlockedCompareExchangePointer_nf ?
+ AtomicOrdering::Monotonic : AtomicOrdering::SequentiallyConsistent;
+
+ auto Result = Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
+ Ordering, Ordering);
+ Result->setVolatile(true);
+
+ return RValue::get(Builder.CreateIntToPtr(Builder.CreateExtractValue(Result,
+ 0),
+ RTy));
+ }
+ case Builtin::BI_InterlockedCompareExchange8:
+ case Builtin::BI_InterlockedCompareExchange16:
+ case Builtin::BI_InterlockedCompareExchange:
+ case Builtin::BI_InterlockedCompareExchange64:
+ return RValue::get(EmitAtomicCmpXchgForMSIntrin(*this, E));
+ case Builtin::BI_InterlockedIncrement16:
+ case Builtin::BI_InterlockedIncrement:
+ return RValue::get(
+ EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E));
+ case Builtin::BI_InterlockedDecrement16:
+ case Builtin::BI_InterlockedDecrement:
+ return RValue::get(
+ EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E));
+ case Builtin::BI_InterlockedAnd8:
+ case Builtin::BI_InterlockedAnd16:
+ case Builtin::BI_InterlockedAnd:
+ return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E));
+ case Builtin::BI_InterlockedExchangeAdd8:
+ case Builtin::BI_InterlockedExchangeAdd16:
+ case Builtin::BI_InterlockedExchangeAdd:
+ return RValue::get(
+ EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E));
+ case Builtin::BI_InterlockedExchangeSub8:
+ case Builtin::BI_InterlockedExchangeSub16:
+ case Builtin::BI_InterlockedExchangeSub:
+ return RValue::get(
+ EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E));
+ case Builtin::BI_InterlockedOr8:
+ case Builtin::BI_InterlockedOr16:
+ case Builtin::BI_InterlockedOr:
+ return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E));
+ case Builtin::BI_InterlockedXor8:
+ case Builtin::BI_InterlockedXor16:
+ case Builtin::BI_InterlockedXor:
+ return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E));
+
+ case Builtin::BI_bittest64:
+ case Builtin::BI_bittest:
+ case Builtin::BI_bittestandcomplement64:
+ case Builtin::BI_bittestandcomplement:
+ case Builtin::BI_bittestandreset64:
+ case Builtin::BI_bittestandreset:
+ case Builtin::BI_bittestandset64:
+ case Builtin::BI_bittestandset:
+ case Builtin::BI_interlockedbittestandreset:
+ case Builtin::BI_interlockedbittestandreset64:
+ case Builtin::BI_interlockedbittestandset64:
+ case Builtin::BI_interlockedbittestandset:
+ case Builtin::BI_interlockedbittestandset_acq:
+ case Builtin::BI_interlockedbittestandset_rel:
+ case Builtin::BI_interlockedbittestandset_nf:
+ case Builtin::BI_interlockedbittestandreset_acq:
+ case Builtin::BI_interlockedbittestandreset_rel:
+ case Builtin::BI_interlockedbittestandreset_nf:
+ return RValue::get(EmitBitTestIntrinsic(*this, BuiltinID, E));
+
+ // These builtins exist to emit regular volatile loads and stores not
+ // affected by the -fms-volatile setting.
+ case Builtin::BI__iso_volatile_load8:
+ case Builtin::BI__iso_volatile_load16:
+ case Builtin::BI__iso_volatile_load32:
+ case Builtin::BI__iso_volatile_load64:
+ return RValue::get(EmitISOVolatileLoad(*this, E));
+ case Builtin::BI__iso_volatile_store8:
+ case Builtin::BI__iso_volatile_store16:
+ case Builtin::BI__iso_volatile_store32:
+ case Builtin::BI__iso_volatile_store64:
+ return RValue::get(EmitISOVolatileStore(*this, E));
+
+ case Builtin::BI__exception_code:
+ case Builtin::BI_exception_code:
+ return RValue::get(EmitSEHExceptionCode());
+ case Builtin::BI__exception_info:
+ case Builtin::BI_exception_info:
+ return RValue::get(EmitSEHExceptionInfo());
+ case Builtin::BI__abnormal_termination:
+ case Builtin::BI_abnormal_termination:
+ return RValue::get(EmitSEHAbnormalTermination());
+ case Builtin::BI_setjmpex:
+ if (getTarget().getTriple().isOSMSVCRT())
+ return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
+ break;
+ case Builtin::BI_setjmp:
+ if (getTarget().getTriple().isOSMSVCRT()) {
+ if (getTarget().getTriple().getArch() == llvm::Triple::x86)
+ return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp3, E);
+ else if (getTarget().getTriple().getArch() == llvm::Triple::aarch64)
+ return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmpex, E);
+ return EmitMSVCRTSetJmp(*this, MSVCSetJmpKind::_setjmp, E);
+ }
+ break;
+
+ case Builtin::BI__GetExceptionInfo: {
+ if (llvm::GlobalVariable *GV =
+ CGM.getCXXABI().getThrowInfo(FD->getParamDecl(0)->getType()))
+ return RValue::get(llvm::ConstantExpr::getBitCast(GV, CGM.Int8PtrTy));
+ break;
+ }
+
+ case Builtin::BI__fastfail:
+ return RValue::get(EmitMSVCBuiltinExpr(MSVCIntrin::__fastfail, E));
+
+ case Builtin::BI__builtin_coro_size: {
+ auto & Context = getContext();
+ auto SizeTy = Context.getSizeType();
+ auto T = Builder.getIntNTy(Context.getTypeSize(SizeTy));
+ Function *F = CGM.getIntrinsic(Intrinsic::coro_size, T);
+ return RValue::get(Builder.CreateCall(F));
+ }
+
+ case Builtin::BI__builtin_coro_id:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_id);
+ case Builtin::BI__builtin_coro_promise:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_promise);
+ case Builtin::BI__builtin_coro_resume:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_resume);
+ case Builtin::BI__builtin_coro_frame:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_frame);
+ case Builtin::BI__builtin_coro_noop:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_noop);
+ case Builtin::BI__builtin_coro_free:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_free);
+ case Builtin::BI__builtin_coro_destroy:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_destroy);
+ case Builtin::BI__builtin_coro_done:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_done);
+ case Builtin::BI__builtin_coro_alloc:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_alloc);
+ case Builtin::BI__builtin_coro_begin:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_begin);
+ case Builtin::BI__builtin_coro_end:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_end);
+ case Builtin::BI__builtin_coro_suspend:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_suspend);
+ case Builtin::BI__builtin_coro_param:
+ return EmitCoroutineIntrinsic(E, Intrinsic::coro_param);
+
+ // OpenCL v2.0 s6.13.16.2, Built-in pipe read and write functions
+ case Builtin::BIread_pipe:
+ case Builtin::BIwrite_pipe: {
+ Value *Arg0 = EmitScalarExpr(E->getArg(0)),
+ *Arg1 = EmitScalarExpr(E->getArg(1));
+ CGOpenCLRuntime OpenCLRT(CGM);
+ Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
+ Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
+
+ // Type of the generic packet parameter.
+ unsigned GenericAS =
+ getContext().getTargetAddressSpace(LangAS::opencl_generic);
+ llvm::Type *I8PTy = llvm::PointerType::get(
+ llvm::Type::getInt8Ty(getLLVMContext()), GenericAS);
+
+ // Testing which overloaded version we should generate the call for.
+ if (2U == E->getNumArgs()) {
+ const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_2"
+ : "__write_pipe_2";
+ // Creating a generic function type to be able to call with any builtin or
+ // user defined type.
+ llvm::Type *ArgTys[] = {Arg0->getType(), I8PTy, Int32Ty, Int32Ty};
+ llvm::FunctionType *FTy = llvm::FunctionType::get(
+ Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
+ Value *BCast = Builder.CreatePointerCast(Arg1, I8PTy);
+ return RValue::get(
+ Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
+ {Arg0, BCast, PacketSize, PacketAlign}));
+ } else {
+ assert(4 == E->getNumArgs() &&
+ "Illegal number of parameters to pipe function");
+ const char *Name = (BuiltinID == Builtin::BIread_pipe) ? "__read_pipe_4"
+ : "__write_pipe_4";
+
+ llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, I8PTy,
+ Int32Ty, Int32Ty};
+ Value *Arg2 = EmitScalarExpr(E->getArg(2)),
+ *Arg3 = EmitScalarExpr(E->getArg(3));
+ llvm::FunctionType *FTy = llvm::FunctionType::get(
+ Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
+ Value *BCast = Builder.CreatePointerCast(Arg3, I8PTy);
+ // We know the third argument is an integer type, but we may need to cast
+ // it to i32.
+ if (Arg2->getType() != Int32Ty)
+ Arg2 = Builder.CreateZExtOrTrunc(Arg2, Int32Ty);
+ return RValue::get(Builder.CreateCall(
+ CGM.CreateRuntimeFunction(FTy, Name),
+ {Arg0, Arg1, Arg2, BCast, PacketSize, PacketAlign}));
+ }
+ }
+ // OpenCL v2.0 s6.13.16 ,s9.17.3.5 - Built-in pipe reserve read and write
+ // functions
+ case Builtin::BIreserve_read_pipe:
+ case Builtin::BIreserve_write_pipe:
+ case Builtin::BIwork_group_reserve_read_pipe:
+ case Builtin::BIwork_group_reserve_write_pipe:
+ case Builtin::BIsub_group_reserve_read_pipe:
+ case Builtin::BIsub_group_reserve_write_pipe: {
+ // Composing the mangled name for the function.
+ const char *Name;
+ if (BuiltinID == Builtin::BIreserve_read_pipe)
+ Name = "__reserve_read_pipe";
+ else if (BuiltinID == Builtin::BIreserve_write_pipe)
+ Name = "__reserve_write_pipe";
+ else if (BuiltinID == Builtin::BIwork_group_reserve_read_pipe)
+ Name = "__work_group_reserve_read_pipe";
+ else if (BuiltinID == Builtin::BIwork_group_reserve_write_pipe)
+ Name = "__work_group_reserve_write_pipe";
+ else if (BuiltinID == Builtin::BIsub_group_reserve_read_pipe)
+ Name = "__sub_group_reserve_read_pipe";
+ else
+ Name = "__sub_group_reserve_write_pipe";
+
+ Value *Arg0 = EmitScalarExpr(E->getArg(0)),
+ *Arg1 = EmitScalarExpr(E->getArg(1));
+ llvm::Type *ReservedIDTy = ConvertType(getContext().OCLReserveIDTy);
+ CGOpenCLRuntime OpenCLRT(CGM);
+ Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
+ Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
+
+ // Building the generic function prototype.
+ llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty, Int32Ty};
+ llvm::FunctionType *FTy = llvm::FunctionType::get(
+ ReservedIDTy, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
+ // We know the second argument is an integer type, but we may need to cast
+ // it to i32.
+ if (Arg1->getType() != Int32Ty)
+ Arg1 = Builder.CreateZExtOrTrunc(Arg1, Int32Ty);
+ return RValue::get(
+ Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
+ {Arg0, Arg1, PacketSize, PacketAlign}));
+ }
+ // OpenCL v2.0 s6.13.16, s9.17.3.5 - Built-in pipe commit read and write
+ // functions
+ case Builtin::BIcommit_read_pipe:
+ case Builtin::BIcommit_write_pipe:
+ case Builtin::BIwork_group_commit_read_pipe:
+ case Builtin::BIwork_group_commit_write_pipe:
+ case Builtin::BIsub_group_commit_read_pipe:
+ case Builtin::BIsub_group_commit_write_pipe: {
+ const char *Name;
+ if (BuiltinID == Builtin::BIcommit_read_pipe)
+ Name = "__commit_read_pipe";
+ else if (BuiltinID == Builtin::BIcommit_write_pipe)
+ Name = "__commit_write_pipe";
+ else if (BuiltinID == Builtin::BIwork_group_commit_read_pipe)
+ Name = "__work_group_commit_read_pipe";
+ else if (BuiltinID == Builtin::BIwork_group_commit_write_pipe)
+ Name = "__work_group_commit_write_pipe";
+ else if (BuiltinID == Builtin::BIsub_group_commit_read_pipe)
+ Name = "__sub_group_commit_read_pipe";
+ else
+ Name = "__sub_group_commit_write_pipe";
+
+ Value *Arg0 = EmitScalarExpr(E->getArg(0)),
+ *Arg1 = EmitScalarExpr(E->getArg(1));
+ CGOpenCLRuntime OpenCLRT(CGM);
+ Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
+ Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
+
+ // Building the generic function prototype.
+ llvm::Type *ArgTys[] = {Arg0->getType(), Arg1->getType(), Int32Ty, Int32Ty};
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(llvm::Type::getVoidTy(getLLVMContext()),
+ llvm::ArrayRef<llvm::Type *>(ArgTys), false);
+
+ return RValue::get(
+ Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
+ {Arg0, Arg1, PacketSize, PacketAlign}));
+ }
+ // OpenCL v2.0 s6.13.16.4 Built-in pipe query functions
+ case Builtin::BIget_pipe_num_packets:
+ case Builtin::BIget_pipe_max_packets: {
+ const char *BaseName;
+ const PipeType *PipeTy = E->getArg(0)->getType()->getAs<PipeType>();
+ if (BuiltinID == Builtin::BIget_pipe_num_packets)
+ BaseName = "__get_pipe_num_packets";
+ else
+ BaseName = "__get_pipe_max_packets";
+ auto Name = std::string(BaseName) +
+ std::string(PipeTy->isReadOnly() ? "_ro" : "_wo");
+
+ // Building the generic function prototype.
+ Value *Arg0 = EmitScalarExpr(E->getArg(0));
+ CGOpenCLRuntime OpenCLRT(CGM);
+ Value *PacketSize = OpenCLRT.getPipeElemSize(E->getArg(0));
+ Value *PacketAlign = OpenCLRT.getPipeElemAlign(E->getArg(0));
+ llvm::Type *ArgTys[] = {Arg0->getType(), Int32Ty, Int32Ty};
+ llvm::FunctionType *FTy = llvm::FunctionType::get(
+ Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
+
+ return RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
+ {Arg0, PacketSize, PacketAlign}));
+ }
+
+ // OpenCL v2.0 s6.13.9 - Address space qualifier functions.
+ case Builtin::BIto_global:
+ case Builtin::BIto_local:
+ case Builtin::BIto_private: {
+ auto Arg0 = EmitScalarExpr(E->getArg(0));
+ auto NewArgT = llvm::PointerType::get(Int8Ty,
+ CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
+ auto NewRetT = llvm::PointerType::get(Int8Ty,
+ CGM.getContext().getTargetAddressSpace(
+ E->getType()->getPointeeType().getAddressSpace()));
+ auto FTy = llvm::FunctionType::get(NewRetT, {NewArgT}, false);
+ llvm::Value *NewArg;
+ if (Arg0->getType()->getPointerAddressSpace() !=
+ NewArgT->getPointerAddressSpace())
+ NewArg = Builder.CreateAddrSpaceCast(Arg0, NewArgT);
+ else
+ NewArg = Builder.CreateBitOrPointerCast(Arg0, NewArgT);
+ auto NewName = std::string("__") + E->getDirectCallee()->getName().str();
+ auto NewCall =
+ Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, NewName), {NewArg});
+ return RValue::get(Builder.CreateBitOrPointerCast(NewCall,
+ ConvertType(E->getType())));
+ }
+
+ // OpenCL v2.0, s6.13.17 - Enqueue kernel function.
+ // It contains four different overload formats specified in Table 6.13.17.1.
+ case Builtin::BIenqueue_kernel: {
+ StringRef Name; // Generated function call name
+ unsigned NumArgs = E->getNumArgs();
+
+ llvm::Type *QueueTy = ConvertType(getContext().OCLQueueTy);
+ llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
+ getContext().getTargetAddressSpace(LangAS::opencl_generic));
+
+ llvm::Value *Queue = EmitScalarExpr(E->getArg(0));
+ llvm::Value *Flags = EmitScalarExpr(E->getArg(1));
+ LValue NDRangeL = EmitAggExprToLValue(E->getArg(2));
+ llvm::Value *Range = NDRangeL.getAddress().getPointer();
+ llvm::Type *RangeTy = NDRangeL.getAddress().getType();
+
+ if (NumArgs == 4) {
+ // The most basic form of the call with parameters:
+ // queue_t, kernel_enqueue_flags_t, ndrange_t, block(void)
+ Name = "__enqueue_kernel_basic";
+ llvm::Type *ArgTys[] = {QueueTy, Int32Ty, RangeTy, GenericVoidPtrTy,
+ GenericVoidPtrTy};
+ llvm::FunctionType *FTy = llvm::FunctionType::get(
+ Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
+
+ auto Info =
+ CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
+ llvm::Value *Kernel =
+ Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
+ llvm::Value *Block =
+ Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
+
+ AttrBuilder B;
+ B.addByValAttr(NDRangeL.getAddress().getElementType());
+ llvm::AttributeList ByValAttrSet =
+ llvm::AttributeList::get(CGM.getModule().getContext(), 3U, B);
+
+ auto RTCall =
+ Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name, ByValAttrSet),
+ {Queue, Flags, Range, Kernel, Block});
+ RTCall->setAttributes(ByValAttrSet);
+ return RValue::get(RTCall);
+ }
+ assert(NumArgs >= 5 && "Invalid enqueue_kernel signature");
+
+ // Create a temporary array to hold the sizes of local pointer arguments
+ // for the block. \p First is the position of the first size argument.
+ auto CreateArrayForSizeVar = [=](unsigned First)
+ -> std::tuple<llvm::Value *, llvm::Value *, llvm::Value *> {
+ llvm::APInt ArraySize(32, NumArgs - First);
+ QualType SizeArrayTy = getContext().getConstantArrayType(
+ getContext().getSizeType(), ArraySize, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ auto Tmp = CreateMemTemp(SizeArrayTy, "block_sizes");
+ llvm::Value *TmpPtr = Tmp.getPointer();
+ llvm::Value *TmpSize = EmitLifetimeStart(
+ CGM.getDataLayout().getTypeAllocSize(Tmp.getElementType()), TmpPtr);
+ llvm::Value *ElemPtr;
+ // Each of the following arguments specifies the size of the corresponding
+ // argument passed to the enqueued block.
+ auto *Zero = llvm::ConstantInt::get(IntTy, 0);
+ for (unsigned I = First; I < NumArgs; ++I) {
+ auto *Index = llvm::ConstantInt::get(IntTy, I - First);
+ auto *GEP = Builder.CreateGEP(TmpPtr, {Zero, Index});
+ if (I == First)
+ ElemPtr = GEP;
+ auto *V =
+ Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(I)), SizeTy);
+ Builder.CreateAlignedStore(
+ V, GEP, CGM.getDataLayout().getPrefTypeAlignment(SizeTy));
+ }
+ return std::tie(ElemPtr, TmpSize, TmpPtr);
+ };
+
+ // Could have events and/or varargs.
+ if (E->getArg(3)->getType()->isBlockPointerType()) {
+ // No events passed, but has variadic arguments.
+ Name = "__enqueue_kernel_varargs";
+ auto Info =
+ CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(3));
+ llvm::Value *Kernel =
+ Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
+ auto *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
+ llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
+ std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(4);
+
+ // Create a vector of the arguments, as well as a constant value to
+ // express to the runtime the number of variadic arguments.
+ std::vector<llvm::Value *> Args = {
+ Queue, Flags, Range,
+ Kernel, Block, ConstantInt::get(IntTy, NumArgs - 4),
+ ElemPtr};
+ std::vector<llvm::Type *> ArgTys = {
+ QueueTy, IntTy, RangeTy, GenericVoidPtrTy,
+ GenericVoidPtrTy, IntTy, ElemPtr->getType()};
+
+ llvm::FunctionType *FTy = llvm::FunctionType::get(
+ Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
+ auto Call =
+ RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
+ llvm::ArrayRef<llvm::Value *>(Args)));
+ if (TmpSize)
+ EmitLifetimeEnd(TmpSize, TmpPtr);
+ return Call;
+ }
+ // Any calls now have event arguments passed.
+ if (NumArgs >= 7) {
+ llvm::Type *EventTy = ConvertType(getContext().OCLClkEventTy);
+ llvm::PointerType *EventPtrTy = EventTy->getPointerTo(
+ CGM.getContext().getTargetAddressSpace(LangAS::opencl_generic));
+
+ llvm::Value *NumEvents =
+ Builder.CreateZExtOrTrunc(EmitScalarExpr(E->getArg(3)), Int32Ty);
+
+ // Since SemaOpenCLBuiltinEnqueueKernel allows fifth and sixth arguments
+ // to be a null pointer constant (including `0` literal), we can take it
+ // into account and emit null pointer directly.
+ llvm::Value *EventWaitList = nullptr;
+ if (E->getArg(4)->isNullPointerConstant(
+ getContext(), Expr::NPC_ValueDependentIsNotNull)) {
+ EventWaitList = llvm::ConstantPointerNull::get(EventPtrTy);
+ } else {
+ EventWaitList = E->getArg(4)->getType()->isArrayType()
+ ? EmitArrayToPointerDecay(E->getArg(4)).getPointer()
+ : EmitScalarExpr(E->getArg(4));
+ // Convert to generic address space.
+ EventWaitList = Builder.CreatePointerCast(EventWaitList, EventPtrTy);
+ }
+ llvm::Value *EventRet = nullptr;
+ if (E->getArg(5)->isNullPointerConstant(
+ getContext(), Expr::NPC_ValueDependentIsNotNull)) {
+ EventRet = llvm::ConstantPointerNull::get(EventPtrTy);
+ } else {
+ EventRet =
+ Builder.CreatePointerCast(EmitScalarExpr(E->getArg(5)), EventPtrTy);
+ }
+
+ auto Info =
+ CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(6));
+ llvm::Value *Kernel =
+ Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
+ llvm::Value *Block =
+ Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
+
+ std::vector<llvm::Type *> ArgTys = {
+ QueueTy, Int32Ty, RangeTy, Int32Ty,
+ EventPtrTy, EventPtrTy, GenericVoidPtrTy, GenericVoidPtrTy};
+
+ std::vector<llvm::Value *> Args = {Queue, Flags, Range,
+ NumEvents, EventWaitList, EventRet,
+ Kernel, Block};
+
+ if (NumArgs == 7) {
+ // Has events but no variadics.
+ Name = "__enqueue_kernel_basic_events";
+ llvm::FunctionType *FTy = llvm::FunctionType::get(
+ Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
+ return RValue::get(
+ Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
+ llvm::ArrayRef<llvm::Value *>(Args)));
+ }
+ // Has event info and variadics
+ // Pass the number of variadics to the runtime function too.
+ Args.push_back(ConstantInt::get(Int32Ty, NumArgs - 7));
+ ArgTys.push_back(Int32Ty);
+ Name = "__enqueue_kernel_events_varargs";
+
+ llvm::Value *ElemPtr, *TmpSize, *TmpPtr;
+ std::tie(ElemPtr, TmpSize, TmpPtr) = CreateArrayForSizeVar(7);
+ Args.push_back(ElemPtr);
+ ArgTys.push_back(ElemPtr->getType());
+
+ llvm::FunctionType *FTy = llvm::FunctionType::get(
+ Int32Ty, llvm::ArrayRef<llvm::Type *>(ArgTys), false);
+ auto Call =
+ RValue::get(Builder.CreateCall(CGM.CreateRuntimeFunction(FTy, Name),
+ llvm::ArrayRef<llvm::Value *>(Args)));
+ if (TmpSize)
+ EmitLifetimeEnd(TmpSize, TmpPtr);
+ return Call;
+ }
+ LLVM_FALLTHROUGH;
+ }
+ // OpenCL v2.0 s6.13.17.6 - Kernel query functions need bitcast of block
+ // parameter.
+ case Builtin::BIget_kernel_work_group_size: {
+ llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
+ getContext().getTargetAddressSpace(LangAS::opencl_generic));
+ auto Info =
+ CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
+ Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
+ Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
+ return RValue::get(Builder.CreateCall(
+ CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
+ false),
+ "__get_kernel_work_group_size_impl"),
+ {Kernel, Arg}));
+ }
+ case Builtin::BIget_kernel_preferred_work_group_size_multiple: {
+ llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
+ getContext().getTargetAddressSpace(LangAS::opencl_generic));
+ auto Info =
+ CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(0));
+ Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
+ Value *Arg = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
+ return RValue::get(Builder.CreateCall(
+ CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(IntTy, {GenericVoidPtrTy, GenericVoidPtrTy},
+ false),
+ "__get_kernel_preferred_work_group_size_multiple_impl"),
+ {Kernel, Arg}));
+ }
+ case Builtin::BIget_kernel_max_sub_group_size_for_ndrange:
+ case Builtin::BIget_kernel_sub_group_count_for_ndrange: {
+ llvm::Type *GenericVoidPtrTy = Builder.getInt8PtrTy(
+ getContext().getTargetAddressSpace(LangAS::opencl_generic));
+ LValue NDRangeL = EmitAggExprToLValue(E->getArg(0));
+ llvm::Value *NDRange = NDRangeL.getAddress().getPointer();
+ auto Info =
+ CGM.getOpenCLRuntime().emitOpenCLEnqueuedBlock(*this, E->getArg(1));
+ Value *Kernel = Builder.CreatePointerCast(Info.Kernel, GenericVoidPtrTy);
+ Value *Block = Builder.CreatePointerCast(Info.BlockArg, GenericVoidPtrTy);
+ const char *Name =
+ BuiltinID == Builtin::BIget_kernel_max_sub_group_size_for_ndrange
+ ? "__get_kernel_max_sub_group_size_for_ndrange_impl"
+ : "__get_kernel_sub_group_count_for_ndrange_impl";
+ return RValue::get(Builder.CreateCall(
+ CGM.CreateRuntimeFunction(
+ llvm::FunctionType::get(
+ IntTy, {NDRange->getType(), GenericVoidPtrTy, GenericVoidPtrTy},
+ false),
+ Name),
+ {NDRange, Kernel, Block}));
+ }
+
+ case Builtin::BI__builtin_store_half:
+ case Builtin::BI__builtin_store_halff: {
+ Value *Val = EmitScalarExpr(E->getArg(0));
+ Address Address = EmitPointerWithAlignment(E->getArg(1));
+ Value *HalfVal = Builder.CreateFPTrunc(Val, Builder.getHalfTy());
+ return RValue::get(Builder.CreateStore(HalfVal, Address));
+ }
+ case Builtin::BI__builtin_load_half: {
+ Address Address = EmitPointerWithAlignment(E->getArg(0));
+ Value *HalfVal = Builder.CreateLoad(Address);
+ return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getDoubleTy()));
+ }
+ case Builtin::BI__builtin_load_halff: {
+ Address Address = EmitPointerWithAlignment(E->getArg(0));
+ Value *HalfVal = Builder.CreateLoad(Address);
+ return RValue::get(Builder.CreateFPExt(HalfVal, Builder.getFloatTy()));
+ }
+ case Builtin::BIprintf:
+ if (getTarget().getTriple().isNVPTX())
+ return EmitNVPTXDevicePrintfCallExpr(E, ReturnValue);
+ break;
+ case Builtin::BI__builtin_canonicalize:
+ case Builtin::BI__builtin_canonicalizef:
+ case Builtin::BI__builtin_canonicalizel:
+ return RValue::get(emitUnaryBuiltin(*this, E, Intrinsic::canonicalize));
+
+ case Builtin::BI__builtin_thread_pointer: {
+ if (!getContext().getTargetInfo().isTLSSupported())
+ CGM.ErrorUnsupported(E, "__builtin_thread_pointer");
+ // Fall through - it's already mapped to the intrinsic by GCCBuiltin.
+ break;
+ }
+ case Builtin::BI__builtin_os_log_format:
+ return emitBuiltinOSLogFormat(*E);
+
+ case Builtin::BI__xray_customevent: {
+ if (!ShouldXRayInstrumentFunction())
+ return RValue::getIgnored();
+
+ if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
+ XRayInstrKind::Custom))
+ return RValue::getIgnored();
+
+ if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
+ if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayCustomEvents())
+ return RValue::getIgnored();
+
+ Function *F = CGM.getIntrinsic(Intrinsic::xray_customevent);
+ auto FTy = F->getFunctionType();
+ auto Arg0 = E->getArg(0);
+ auto Arg0Val = EmitScalarExpr(Arg0);
+ auto Arg0Ty = Arg0->getType();
+ auto PTy0 = FTy->getParamType(0);
+ if (PTy0 != Arg0Val->getType()) {
+ if (Arg0Ty->isArrayType())
+ Arg0Val = EmitArrayToPointerDecay(Arg0).getPointer();
+ else
+ Arg0Val = Builder.CreatePointerCast(Arg0Val, PTy0);
+ }
+ auto Arg1 = EmitScalarExpr(E->getArg(1));
+ auto PTy1 = FTy->getParamType(1);
+ if (PTy1 != Arg1->getType())
+ Arg1 = Builder.CreateTruncOrBitCast(Arg1, PTy1);
+ return RValue::get(Builder.CreateCall(F, {Arg0Val, Arg1}));
+ }
+
+ case Builtin::BI__xray_typedevent: {
+ // TODO: There should be a way to always emit events even if the current
+ // function is not instrumented. Losing events in a stream can cripple
+ // a trace.
+ if (!ShouldXRayInstrumentFunction())
+ return RValue::getIgnored();
+
+ if (!CGM.getCodeGenOpts().XRayInstrumentationBundle.has(
+ XRayInstrKind::Typed))
+ return RValue::getIgnored();
+
+ if (const auto *XRayAttr = CurFuncDecl->getAttr<XRayInstrumentAttr>())
+ if (XRayAttr->neverXRayInstrument() && !AlwaysEmitXRayTypedEvents())
+ return RValue::getIgnored();
+
+ Function *F = CGM.getIntrinsic(Intrinsic::xray_typedevent);
+ auto FTy = F->getFunctionType();
+ auto Arg0 = EmitScalarExpr(E->getArg(0));
+ auto PTy0 = FTy->getParamType(0);
+ if (PTy0 != Arg0->getType())
+ Arg0 = Builder.CreateTruncOrBitCast(Arg0, PTy0);
+ auto Arg1 = E->getArg(1);
+ auto Arg1Val = EmitScalarExpr(Arg1);
+ auto Arg1Ty = Arg1->getType();
+ auto PTy1 = FTy->getParamType(1);
+ if (PTy1 != Arg1Val->getType()) {
+ if (Arg1Ty->isArrayType())
+ Arg1Val = EmitArrayToPointerDecay(Arg1).getPointer();
+ else
+ Arg1Val = Builder.CreatePointerCast(Arg1Val, PTy1);
+ }
+ auto Arg2 = EmitScalarExpr(E->getArg(2));
+ auto PTy2 = FTy->getParamType(2);
+ if (PTy2 != Arg2->getType())
+ Arg2 = Builder.CreateTruncOrBitCast(Arg2, PTy2);
+ return RValue::get(Builder.CreateCall(F, {Arg0, Arg1Val, Arg2}));
+ }
+
+ case Builtin::BI__builtin_ms_va_start:
+ case Builtin::BI__builtin_ms_va_end:
+ return RValue::get(
+ EmitVAStartEnd(EmitMSVAListRef(E->getArg(0)).getPointer(),
+ BuiltinID == Builtin::BI__builtin_ms_va_start));
+
+ case Builtin::BI__builtin_ms_va_copy: {
+ // Lower this manually. We can't reliably determine whether or not any
+ // given va_copy() is for a Win64 va_list from the calling convention
+ // alone, because it's legal to do this from a System V ABI function.
+ // With opaque pointer types, we won't have enough information in LLVM
+ // IR to determine this from the argument types, either. Best to do it
+ // now, while we have enough information.
+ Address DestAddr = EmitMSVAListRef(E->getArg(0));
+ Address SrcAddr = EmitMSVAListRef(E->getArg(1));
+
+ llvm::Type *BPP = Int8PtrPtrTy;
+
+ DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), BPP, "cp"),
+ DestAddr.getAlignment());
+ SrcAddr = Address(Builder.CreateBitCast(SrcAddr.getPointer(), BPP, "ap"),
+ SrcAddr.getAlignment());
+
+ Value *ArgPtr = Builder.CreateLoad(SrcAddr, "ap.val");
+ return RValue::get(Builder.CreateStore(ArgPtr, DestAddr));
+ }
+ }
+
+ // If this is an alias for a lib function (e.g. __builtin_sin), emit
+ // the call using the normal call path, but using the unmangled
+ // version of the function name.
+ if (getContext().BuiltinInfo.isLibFunction(BuiltinID))
+ return emitLibraryCall(*this, FD, E,
+ CGM.getBuiltinLibFunction(FD, BuiltinID));
+
+ // If this is a predefined lib function (e.g. malloc), emit the call
+ // using exactly the normal call path.
+ if (getContext().BuiltinInfo.isPredefinedLibFunction(BuiltinID))
+ return emitLibraryCall(*this, FD, E,
+ cast<llvm::Constant>(EmitScalarExpr(E->getCallee())));
+
+ // Check that a call to a target specific builtin has the correct target
+ // features.
+ // This is down here to avoid non-target specific builtins, however, if
+ // generic builtins start to require generic target features then we
+ // can move this up to the beginning of the function.
+ checkTargetFeatures(E, FD);
+
+ if (unsigned VectorWidth = getContext().BuiltinInfo.getRequiredVectorWidth(BuiltinID))
+ LargestVectorWidth = std::max(LargestVectorWidth, VectorWidth);
+
+ // See if we have a target specific intrinsic.
+ const char *Name = getContext().BuiltinInfo.getName(BuiltinID);
+ Intrinsic::ID IntrinsicID = Intrinsic::not_intrinsic;
+ StringRef Prefix =
+ llvm::Triple::getArchTypePrefix(getTarget().getTriple().getArch());
+ if (!Prefix.empty()) {
+ IntrinsicID = Intrinsic::getIntrinsicForGCCBuiltin(Prefix.data(), Name);
+ // NOTE we don't need to perform a compatibility flag check here since the
+ // intrinsics are declared in Builtins*.def via LANGBUILTIN which filter the
+ // MS builtins via ALL_MS_LANGUAGES and are filtered earlier.
+ if (IntrinsicID == Intrinsic::not_intrinsic)
+ IntrinsicID = Intrinsic::getIntrinsicForMSBuiltin(Prefix.data(), Name);
+ }
+
+ if (IntrinsicID != Intrinsic::not_intrinsic) {
+ SmallVector<Value*, 16> Args;
+
+ // Find out if any arguments are required to be integer constant
+ // expressions.
+ unsigned ICEArguments = 0;
+ ASTContext::GetBuiltinTypeError Error;
+ getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
+ assert(Error == ASTContext::GE_None && "Should not codegen an error");
+
+ Function *F = CGM.getIntrinsic(IntrinsicID);
+ llvm::FunctionType *FTy = F->getFunctionType();
+
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; ++i) {
+ Value *ArgValue;
+ // If this is a normal argument, just emit it as a scalar.
+ if ((ICEArguments & (1 << i)) == 0) {
+ ArgValue = EmitScalarExpr(E->getArg(i));
+ } else {
+ // If this is required to be a constant, constant fold it so that we
+ // know that the generated intrinsic gets a ConstantInt.
+ llvm::APSInt Result;
+ bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result,getContext());
+ assert(IsConst && "Constant arg isn't actually constant?");
+ (void)IsConst;
+ ArgValue = llvm::ConstantInt::get(getLLVMContext(), Result);
+ }
+
+ // If the intrinsic arg type is different from the builtin arg type
+ // we need to do a bit cast.
+ llvm::Type *PTy = FTy->getParamType(i);
+ if (PTy != ArgValue->getType()) {
+ // XXX - vector of pointers?
+ if (auto *PtrTy = dyn_cast<llvm::PointerType>(PTy)) {
+ if (PtrTy->getAddressSpace() !=
+ ArgValue->getType()->getPointerAddressSpace()) {
+ ArgValue = Builder.CreateAddrSpaceCast(
+ ArgValue,
+ ArgValue->getType()->getPointerTo(PtrTy->getAddressSpace()));
+ }
+ }
+
+ assert(PTy->canLosslesslyBitCastTo(FTy->getParamType(i)) &&
+ "Must be able to losslessly bit cast to param");
+ ArgValue = Builder.CreateBitCast(ArgValue, PTy);
+ }
+
+ Args.push_back(ArgValue);
+ }
+
+ Value *V = Builder.CreateCall(F, Args);
+ QualType BuiltinRetType = E->getType();
+
+ llvm::Type *RetTy = VoidTy;
+ if (!BuiltinRetType->isVoidType())
+ RetTy = ConvertType(BuiltinRetType);
+
+ if (RetTy != V->getType()) {
+ // XXX - vector of pointers?
+ if (auto *PtrTy = dyn_cast<llvm::PointerType>(RetTy)) {
+ if (PtrTy->getAddressSpace() != V->getType()->getPointerAddressSpace()) {
+ V = Builder.CreateAddrSpaceCast(
+ V, V->getType()->getPointerTo(PtrTy->getAddressSpace()));
+ }
+ }
+
+ assert(V->getType()->canLosslesslyBitCastTo(RetTy) &&
+ "Must be able to losslessly bit cast result type");
+ V = Builder.CreateBitCast(V, RetTy);
+ }
+
+ return RValue::get(V);
+ }
+
+ // See if we have a target specific builtin that needs to be lowered.
+ if (Value *V = EmitTargetBuiltinExpr(BuiltinID, E))
+ return RValue::get(V);
+
+ ErrorUnsupported(E, "builtin function");
+
+ // Unknown builtin, for now just dump it out and return undef.
+ return GetUndefRValue(E->getType());
+}
+
+static Value *EmitTargetArchBuiltinExpr(CodeGenFunction *CGF,
+ unsigned BuiltinID, const CallExpr *E,
+ llvm::Triple::ArchType Arch) {
+ switch (Arch) {
+ case llvm::Triple::arm:
+ case llvm::Triple::armeb:
+ case llvm::Triple::thumb:
+ case llvm::Triple::thumbeb:
+ return CGF->EmitARMBuiltinExpr(BuiltinID, E, Arch);
+ case llvm::Triple::aarch64:
+ case llvm::Triple::aarch64_be:
+ return CGF->EmitAArch64BuiltinExpr(BuiltinID, E, Arch);
+ case llvm::Triple::x86:
+ case llvm::Triple::x86_64:
+ return CGF->EmitX86BuiltinExpr(BuiltinID, E);
+ case llvm::Triple::ppc:
+ case llvm::Triple::ppc64:
+ case llvm::Triple::ppc64le:
+ return CGF->EmitPPCBuiltinExpr(BuiltinID, E);
+ case llvm::Triple::r600:
+ case llvm::Triple::amdgcn:
+ return CGF->EmitAMDGPUBuiltinExpr(BuiltinID, E);
+ case llvm::Triple::systemz:
+ return CGF->EmitSystemZBuiltinExpr(BuiltinID, E);
+ case llvm::Triple::nvptx:
+ case llvm::Triple::nvptx64:
+ return CGF->EmitNVPTXBuiltinExpr(BuiltinID, E);
+ case llvm::Triple::wasm32:
+ case llvm::Triple::wasm64:
+ return CGF->EmitWebAssemblyBuiltinExpr(BuiltinID, E);
+ case llvm::Triple::hexagon:
+ return CGF->EmitHexagonBuiltinExpr(BuiltinID, E);
+ default:
+ return nullptr;
+ }
+}
+
+Value *CodeGenFunction::EmitTargetBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ if (getContext().BuiltinInfo.isAuxBuiltinID(BuiltinID)) {
+ assert(getContext().getAuxTargetInfo() && "Missing aux target info");
+ return EmitTargetArchBuiltinExpr(
+ this, getContext().BuiltinInfo.getAuxBuiltinID(BuiltinID), E,
+ getContext().getAuxTargetInfo()->getTriple().getArch());
+ }
+
+ return EmitTargetArchBuiltinExpr(this, BuiltinID, E,
+ getTarget().getTriple().getArch());
+}
+
+static llvm::VectorType *GetNeonType(CodeGenFunction *CGF,
+ NeonTypeFlags TypeFlags,
+ bool HasLegalHalfType=true,
+ bool V1Ty=false) {
+ int IsQuad = TypeFlags.isQuad();
+ switch (TypeFlags.getEltType()) {
+ case NeonTypeFlags::Int8:
+ case NeonTypeFlags::Poly8:
+ return llvm::VectorType::get(CGF->Int8Ty, V1Ty ? 1 : (8 << IsQuad));
+ case NeonTypeFlags::Int16:
+ case NeonTypeFlags::Poly16:
+ return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
+ case NeonTypeFlags::Float16:
+ if (HasLegalHalfType)
+ return llvm::VectorType::get(CGF->HalfTy, V1Ty ? 1 : (4 << IsQuad));
+ else
+ return llvm::VectorType::get(CGF->Int16Ty, V1Ty ? 1 : (4 << IsQuad));
+ case NeonTypeFlags::Int32:
+ return llvm::VectorType::get(CGF->Int32Ty, V1Ty ? 1 : (2 << IsQuad));
+ case NeonTypeFlags::Int64:
+ case NeonTypeFlags::Poly64:
+ return llvm::VectorType::get(CGF->Int64Ty, V1Ty ? 1 : (1 << IsQuad));
+ case NeonTypeFlags::Poly128:
+ // FIXME: i128 and f128 doesn't get fully support in Clang and llvm.
+ // There is a lot of i128 and f128 API missing.
+ // so we use v16i8 to represent poly128 and get pattern matched.
+ return llvm::VectorType::get(CGF->Int8Ty, 16);
+ case NeonTypeFlags::Float32:
+ return llvm::VectorType::get(CGF->FloatTy, V1Ty ? 1 : (2 << IsQuad));
+ case NeonTypeFlags::Float64:
+ return llvm::VectorType::get(CGF->DoubleTy, V1Ty ? 1 : (1 << IsQuad));
+ }
+ llvm_unreachable("Unknown vector element type!");
+}
+
+static llvm::VectorType *GetFloatNeonType(CodeGenFunction *CGF,
+ NeonTypeFlags IntTypeFlags) {
+ int IsQuad = IntTypeFlags.isQuad();
+ switch (IntTypeFlags.getEltType()) {
+ case NeonTypeFlags::Int16:
+ return llvm::VectorType::get(CGF->HalfTy, (4 << IsQuad));
+ case NeonTypeFlags::Int32:
+ return llvm::VectorType::get(CGF->FloatTy, (2 << IsQuad));
+ case NeonTypeFlags::Int64:
+ return llvm::VectorType::get(CGF->DoubleTy, (1 << IsQuad));
+ default:
+ llvm_unreachable("Type can't be converted to floating-point!");
+ }
+}
+
+Value *CodeGenFunction::EmitNeonSplat(Value *V, Constant *C) {
+ unsigned nElts = V->getType()->getVectorNumElements();
+ Value* SV = llvm::ConstantVector::getSplat(nElts, C);
+ return Builder.CreateShuffleVector(V, V, SV, "lane");
+}
+
+Value *CodeGenFunction::EmitNeonCall(Function *F, SmallVectorImpl<Value*> &Ops,
+ const char *name,
+ unsigned shift, bool rightshift) {
+ unsigned j = 0;
+ for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
+ ai != ae; ++ai, ++j)
+ if (shift > 0 && shift == j)
+ Ops[j] = EmitNeonShiftVector(Ops[j], ai->getType(), rightshift);
+ else
+ Ops[j] = Builder.CreateBitCast(Ops[j], ai->getType(), name);
+
+ return Builder.CreateCall(F, Ops, name);
+}
+
+Value *CodeGenFunction::EmitNeonShiftVector(Value *V, llvm::Type *Ty,
+ bool neg) {
+ int SV = cast<ConstantInt>(V)->getSExtValue();
+ return ConstantInt::get(Ty, neg ? -SV : SV);
+}
+
+// Right-shift a vector by a constant.
+Value *CodeGenFunction::EmitNeonRShiftImm(Value *Vec, Value *Shift,
+ llvm::Type *Ty, bool usgn,
+ const char *name) {
+ llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
+
+ int ShiftAmt = cast<ConstantInt>(Shift)->getSExtValue();
+ int EltSize = VTy->getScalarSizeInBits();
+
+ Vec = Builder.CreateBitCast(Vec, Ty);
+
+ // lshr/ashr are undefined when the shift amount is equal to the vector
+ // element size.
+ if (ShiftAmt == EltSize) {
+ if (usgn) {
+ // Right-shifting an unsigned value by its size yields 0.
+ return llvm::ConstantAggregateZero::get(VTy);
+ } else {
+ // Right-shifting a signed value by its size is equivalent
+ // to a shift of size-1.
+ --ShiftAmt;
+ Shift = ConstantInt::get(VTy->getElementType(), ShiftAmt);
+ }
+ }
+
+ Shift = EmitNeonShiftVector(Shift, Ty, false);
+ if (usgn)
+ return Builder.CreateLShr(Vec, Shift, name);
+ else
+ return Builder.CreateAShr(Vec, Shift, name);
+}
+
+enum {
+ AddRetType = (1 << 0),
+ Add1ArgType = (1 << 1),
+ Add2ArgTypes = (1 << 2),
+
+ VectorizeRetType = (1 << 3),
+ VectorizeArgTypes = (1 << 4),
+
+ InventFloatType = (1 << 5),
+ UnsignedAlts = (1 << 6),
+
+ Use64BitVectors = (1 << 7),
+ Use128BitVectors = (1 << 8),
+
+ Vectorize1ArgType = Add1ArgType | VectorizeArgTypes,
+ VectorRet = AddRetType | VectorizeRetType,
+ VectorRetGetArgs01 =
+ AddRetType | Add2ArgTypes | VectorizeRetType | VectorizeArgTypes,
+ FpCmpzModifiers =
+ AddRetType | VectorizeRetType | Add1ArgType | InventFloatType
+};
+
+namespace {
+struct NeonIntrinsicInfo {
+ const char *NameHint;
+ unsigned BuiltinID;
+ unsigned LLVMIntrinsic;
+ unsigned AltLLVMIntrinsic;
+ unsigned TypeModifier;
+
+ bool operator<(unsigned RHSBuiltinID) const {
+ return BuiltinID < RHSBuiltinID;
+ }
+ bool operator<(const NeonIntrinsicInfo &TE) const {
+ return BuiltinID < TE.BuiltinID;
+ }
+};
+} // end anonymous namespace
+
+#define NEONMAP0(NameBase) \
+ { #NameBase, NEON::BI__builtin_neon_ ## NameBase, 0, 0, 0 }
+
+#define NEONMAP1(NameBase, LLVMIntrinsic, TypeModifier) \
+ { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
+ Intrinsic::LLVMIntrinsic, 0, TypeModifier }
+
+#define NEONMAP2(NameBase, LLVMIntrinsic, AltLLVMIntrinsic, TypeModifier) \
+ { #NameBase, NEON:: BI__builtin_neon_ ## NameBase, \
+ Intrinsic::LLVMIntrinsic, Intrinsic::AltLLVMIntrinsic, \
+ TypeModifier }
+
+static const NeonIntrinsicInfo ARMSIMDIntrinsicMap [] = {
+ NEONMAP2(vabd_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vabdq_v, arm_neon_vabdu, arm_neon_vabds, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vabs_v, arm_neon_vabs, 0),
+ NEONMAP1(vabsq_v, arm_neon_vabs, 0),
+ NEONMAP0(vaddhn_v),
+ NEONMAP1(vaesdq_v, arm_neon_aesd, 0),
+ NEONMAP1(vaeseq_v, arm_neon_aese, 0),
+ NEONMAP1(vaesimcq_v, arm_neon_aesimc, 0),
+ NEONMAP1(vaesmcq_v, arm_neon_aesmc, 0),
+ NEONMAP1(vbsl_v, arm_neon_vbsl, AddRetType),
+ NEONMAP1(vbslq_v, arm_neon_vbsl, AddRetType),
+ NEONMAP1(vcage_v, arm_neon_vacge, 0),
+ NEONMAP1(vcageq_v, arm_neon_vacge, 0),
+ NEONMAP1(vcagt_v, arm_neon_vacgt, 0),
+ NEONMAP1(vcagtq_v, arm_neon_vacgt, 0),
+ NEONMAP1(vcale_v, arm_neon_vacge, 0),
+ NEONMAP1(vcaleq_v, arm_neon_vacge, 0),
+ NEONMAP1(vcalt_v, arm_neon_vacgt, 0),
+ NEONMAP1(vcaltq_v, arm_neon_vacgt, 0),
+ NEONMAP0(vceqz_v),
+ NEONMAP0(vceqzq_v),
+ NEONMAP0(vcgez_v),
+ NEONMAP0(vcgezq_v),
+ NEONMAP0(vcgtz_v),
+ NEONMAP0(vcgtzq_v),
+ NEONMAP0(vclez_v),
+ NEONMAP0(vclezq_v),
+ NEONMAP1(vcls_v, arm_neon_vcls, Add1ArgType),
+ NEONMAP1(vclsq_v, arm_neon_vcls, Add1ArgType),
+ NEONMAP0(vcltz_v),
+ NEONMAP0(vcltzq_v),
+ NEONMAP1(vclz_v, ctlz, Add1ArgType),
+ NEONMAP1(vclzq_v, ctlz, Add1ArgType),
+ NEONMAP1(vcnt_v, ctpop, Add1ArgType),
+ NEONMAP1(vcntq_v, ctpop, Add1ArgType),
+ NEONMAP1(vcvt_f16_f32, arm_neon_vcvtfp2hf, 0),
+ NEONMAP0(vcvt_f16_v),
+ NEONMAP1(vcvt_f32_f16, arm_neon_vcvthf2fp, 0),
+ NEONMAP0(vcvt_f32_v),
+ NEONMAP2(vcvt_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
+ NEONMAP2(vcvt_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
+ NEONMAP1(vcvt_n_s16_v, arm_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvt_n_s32_v, arm_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvt_n_s64_v, arm_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvt_n_u16_v, arm_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvt_n_u32_v, arm_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvt_n_u64_v, arm_neon_vcvtfp2fxu, 0),
+ NEONMAP0(vcvt_s16_v),
+ NEONMAP0(vcvt_s32_v),
+ NEONMAP0(vcvt_s64_v),
+ NEONMAP0(vcvt_u16_v),
+ NEONMAP0(vcvt_u32_v),
+ NEONMAP0(vcvt_u64_v),
+ NEONMAP1(vcvta_s16_v, arm_neon_vcvtas, 0),
+ NEONMAP1(vcvta_s32_v, arm_neon_vcvtas, 0),
+ NEONMAP1(vcvta_s64_v, arm_neon_vcvtas, 0),
+ NEONMAP1(vcvta_u16_v, arm_neon_vcvtau, 0),
+ NEONMAP1(vcvta_u32_v, arm_neon_vcvtau, 0),
+ NEONMAP1(vcvta_u64_v, arm_neon_vcvtau, 0),
+ NEONMAP1(vcvtaq_s16_v, arm_neon_vcvtas, 0),
+ NEONMAP1(vcvtaq_s32_v, arm_neon_vcvtas, 0),
+ NEONMAP1(vcvtaq_s64_v, arm_neon_vcvtas, 0),
+ NEONMAP1(vcvtaq_u16_v, arm_neon_vcvtau, 0),
+ NEONMAP1(vcvtaq_u32_v, arm_neon_vcvtau, 0),
+ NEONMAP1(vcvtaq_u64_v, arm_neon_vcvtau, 0),
+ NEONMAP1(vcvtm_s16_v, arm_neon_vcvtms, 0),
+ NEONMAP1(vcvtm_s32_v, arm_neon_vcvtms, 0),
+ NEONMAP1(vcvtm_s64_v, arm_neon_vcvtms, 0),
+ NEONMAP1(vcvtm_u16_v, arm_neon_vcvtmu, 0),
+ NEONMAP1(vcvtm_u32_v, arm_neon_vcvtmu, 0),
+ NEONMAP1(vcvtm_u64_v, arm_neon_vcvtmu, 0),
+ NEONMAP1(vcvtmq_s16_v, arm_neon_vcvtms, 0),
+ NEONMAP1(vcvtmq_s32_v, arm_neon_vcvtms, 0),
+ NEONMAP1(vcvtmq_s64_v, arm_neon_vcvtms, 0),
+ NEONMAP1(vcvtmq_u16_v, arm_neon_vcvtmu, 0),
+ NEONMAP1(vcvtmq_u32_v, arm_neon_vcvtmu, 0),
+ NEONMAP1(vcvtmq_u64_v, arm_neon_vcvtmu, 0),
+ NEONMAP1(vcvtn_s16_v, arm_neon_vcvtns, 0),
+ NEONMAP1(vcvtn_s32_v, arm_neon_vcvtns, 0),
+ NEONMAP1(vcvtn_s64_v, arm_neon_vcvtns, 0),
+ NEONMAP1(vcvtn_u16_v, arm_neon_vcvtnu, 0),
+ NEONMAP1(vcvtn_u32_v, arm_neon_vcvtnu, 0),
+ NEONMAP1(vcvtn_u64_v, arm_neon_vcvtnu, 0),
+ NEONMAP1(vcvtnq_s16_v, arm_neon_vcvtns, 0),
+ NEONMAP1(vcvtnq_s32_v, arm_neon_vcvtns, 0),
+ NEONMAP1(vcvtnq_s64_v, arm_neon_vcvtns, 0),
+ NEONMAP1(vcvtnq_u16_v, arm_neon_vcvtnu, 0),
+ NEONMAP1(vcvtnq_u32_v, arm_neon_vcvtnu, 0),
+ NEONMAP1(vcvtnq_u64_v, arm_neon_vcvtnu, 0),
+ NEONMAP1(vcvtp_s16_v, arm_neon_vcvtps, 0),
+ NEONMAP1(vcvtp_s32_v, arm_neon_vcvtps, 0),
+ NEONMAP1(vcvtp_s64_v, arm_neon_vcvtps, 0),
+ NEONMAP1(vcvtp_u16_v, arm_neon_vcvtpu, 0),
+ NEONMAP1(vcvtp_u32_v, arm_neon_vcvtpu, 0),
+ NEONMAP1(vcvtp_u64_v, arm_neon_vcvtpu, 0),
+ NEONMAP1(vcvtpq_s16_v, arm_neon_vcvtps, 0),
+ NEONMAP1(vcvtpq_s32_v, arm_neon_vcvtps, 0),
+ NEONMAP1(vcvtpq_s64_v, arm_neon_vcvtps, 0),
+ NEONMAP1(vcvtpq_u16_v, arm_neon_vcvtpu, 0),
+ NEONMAP1(vcvtpq_u32_v, arm_neon_vcvtpu, 0),
+ NEONMAP1(vcvtpq_u64_v, arm_neon_vcvtpu, 0),
+ NEONMAP0(vcvtq_f16_v),
+ NEONMAP0(vcvtq_f32_v),
+ NEONMAP2(vcvtq_n_f16_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
+ NEONMAP2(vcvtq_n_f32_v, arm_neon_vcvtfxu2fp, arm_neon_vcvtfxs2fp, 0),
+ NEONMAP1(vcvtq_n_s16_v, arm_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvtq_n_s32_v, arm_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvtq_n_s64_v, arm_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvtq_n_u16_v, arm_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvtq_n_u32_v, arm_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvtq_n_u64_v, arm_neon_vcvtfp2fxu, 0),
+ NEONMAP0(vcvtq_s16_v),
+ NEONMAP0(vcvtq_s32_v),
+ NEONMAP0(vcvtq_s64_v),
+ NEONMAP0(vcvtq_u16_v),
+ NEONMAP0(vcvtq_u32_v),
+ NEONMAP0(vcvtq_u64_v),
+ NEONMAP2(vdot_v, arm_neon_udot, arm_neon_sdot, 0),
+ NEONMAP2(vdotq_v, arm_neon_udot, arm_neon_sdot, 0),
+ NEONMAP0(vext_v),
+ NEONMAP0(vextq_v),
+ NEONMAP0(vfma_v),
+ NEONMAP0(vfmaq_v),
+ NEONMAP2(vhadd_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vhaddq_v, arm_neon_vhaddu, arm_neon_vhadds, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vhsub_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vhsubq_v, arm_neon_vhsubu, arm_neon_vhsubs, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vld1_dup_v),
+ NEONMAP1(vld1_v, arm_neon_vld1, 0),
+ NEONMAP1(vld1_x2_v, arm_neon_vld1x2, 0),
+ NEONMAP1(vld1_x3_v, arm_neon_vld1x3, 0),
+ NEONMAP1(vld1_x4_v, arm_neon_vld1x4, 0),
+ NEONMAP0(vld1q_dup_v),
+ NEONMAP1(vld1q_v, arm_neon_vld1, 0),
+ NEONMAP1(vld1q_x2_v, arm_neon_vld1x2, 0),
+ NEONMAP1(vld1q_x3_v, arm_neon_vld1x3, 0),
+ NEONMAP1(vld1q_x4_v, arm_neon_vld1x4, 0),
+ NEONMAP1(vld2_dup_v, arm_neon_vld2dup, 0),
+ NEONMAP1(vld2_lane_v, arm_neon_vld2lane, 0),
+ NEONMAP1(vld2_v, arm_neon_vld2, 0),
+ NEONMAP1(vld2q_dup_v, arm_neon_vld2dup, 0),
+ NEONMAP1(vld2q_lane_v, arm_neon_vld2lane, 0),
+ NEONMAP1(vld2q_v, arm_neon_vld2, 0),
+ NEONMAP1(vld3_dup_v, arm_neon_vld3dup, 0),
+ NEONMAP1(vld3_lane_v, arm_neon_vld3lane, 0),
+ NEONMAP1(vld3_v, arm_neon_vld3, 0),
+ NEONMAP1(vld3q_dup_v, arm_neon_vld3dup, 0),
+ NEONMAP1(vld3q_lane_v, arm_neon_vld3lane, 0),
+ NEONMAP1(vld3q_v, arm_neon_vld3, 0),
+ NEONMAP1(vld4_dup_v, arm_neon_vld4dup, 0),
+ NEONMAP1(vld4_lane_v, arm_neon_vld4lane, 0),
+ NEONMAP1(vld4_v, arm_neon_vld4, 0),
+ NEONMAP1(vld4q_dup_v, arm_neon_vld4dup, 0),
+ NEONMAP1(vld4q_lane_v, arm_neon_vld4lane, 0),
+ NEONMAP1(vld4q_v, arm_neon_vld4, 0),
+ NEONMAP2(vmax_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vmaxnm_v, arm_neon_vmaxnm, Add1ArgType),
+ NEONMAP1(vmaxnmq_v, arm_neon_vmaxnm, Add1ArgType),
+ NEONMAP2(vmaxq_v, arm_neon_vmaxu, arm_neon_vmaxs, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vmin_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vminnm_v, arm_neon_vminnm, Add1ArgType),
+ NEONMAP1(vminnmq_v, arm_neon_vminnm, Add1ArgType),
+ NEONMAP2(vminq_v, arm_neon_vminu, arm_neon_vmins, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vmovl_v),
+ NEONMAP0(vmovn_v),
+ NEONMAP1(vmul_v, arm_neon_vmulp, Add1ArgType),
+ NEONMAP0(vmull_v),
+ NEONMAP1(vmulq_v, arm_neon_vmulp, Add1ArgType),
+ NEONMAP2(vpadal_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
+ NEONMAP2(vpadalq_v, arm_neon_vpadalu, arm_neon_vpadals, UnsignedAlts),
+ NEONMAP1(vpadd_v, arm_neon_vpadd, Add1ArgType),
+ NEONMAP2(vpaddl_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
+ NEONMAP2(vpaddlq_v, arm_neon_vpaddlu, arm_neon_vpaddls, UnsignedAlts),
+ NEONMAP1(vpaddq_v, arm_neon_vpadd, Add1ArgType),
+ NEONMAP2(vpmax_v, arm_neon_vpmaxu, arm_neon_vpmaxs, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vpmin_v, arm_neon_vpminu, arm_neon_vpmins, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vqabs_v, arm_neon_vqabs, Add1ArgType),
+ NEONMAP1(vqabsq_v, arm_neon_vqabs, Add1ArgType),
+ NEONMAP2(vqadd_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqaddq_v, arm_neon_vqaddu, arm_neon_vqadds, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqdmlal_v, arm_neon_vqdmull, arm_neon_vqadds, 0),
+ NEONMAP2(vqdmlsl_v, arm_neon_vqdmull, arm_neon_vqsubs, 0),
+ NEONMAP1(vqdmulh_v, arm_neon_vqdmulh, Add1ArgType),
+ NEONMAP1(vqdmulhq_v, arm_neon_vqdmulh, Add1ArgType),
+ NEONMAP1(vqdmull_v, arm_neon_vqdmull, Add1ArgType),
+ NEONMAP2(vqmovn_v, arm_neon_vqmovnu, arm_neon_vqmovns, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vqmovun_v, arm_neon_vqmovnsu, Add1ArgType),
+ NEONMAP1(vqneg_v, arm_neon_vqneg, Add1ArgType),
+ NEONMAP1(vqnegq_v, arm_neon_vqneg, Add1ArgType),
+ NEONMAP1(vqrdmulh_v, arm_neon_vqrdmulh, Add1ArgType),
+ NEONMAP1(vqrdmulhq_v, arm_neon_vqrdmulh, Add1ArgType),
+ NEONMAP2(vqrshl_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqrshlq_v, arm_neon_vqrshiftu, arm_neon_vqrshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqshl_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
+ NEONMAP2(vqshl_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqshlq_n_v, arm_neon_vqshiftu, arm_neon_vqshifts, UnsignedAlts),
+ NEONMAP2(vqshlq_v, arm_neon_vqshiftu, arm_neon_vqshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vqshlu_n_v, arm_neon_vqshiftsu, 0),
+ NEONMAP1(vqshluq_n_v, arm_neon_vqshiftsu, 0),
+ NEONMAP2(vqsub_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqsubq_v, arm_neon_vqsubu, arm_neon_vqsubs, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vraddhn_v, arm_neon_vraddhn, Add1ArgType),
+ NEONMAP2(vrecpe_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
+ NEONMAP2(vrecpeq_v, arm_neon_vrecpe, arm_neon_vrecpe, 0),
+ NEONMAP1(vrecps_v, arm_neon_vrecps, Add1ArgType),
+ NEONMAP1(vrecpsq_v, arm_neon_vrecps, Add1ArgType),
+ NEONMAP2(vrhadd_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrhaddq_v, arm_neon_vrhaddu, arm_neon_vrhadds, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vrnd_v, arm_neon_vrintz, Add1ArgType),
+ NEONMAP1(vrnda_v, arm_neon_vrinta, Add1ArgType),
+ NEONMAP1(vrndaq_v, arm_neon_vrinta, Add1ArgType),
+ NEONMAP0(vrndi_v),
+ NEONMAP0(vrndiq_v),
+ NEONMAP1(vrndm_v, arm_neon_vrintm, Add1ArgType),
+ NEONMAP1(vrndmq_v, arm_neon_vrintm, Add1ArgType),
+ NEONMAP1(vrndn_v, arm_neon_vrintn, Add1ArgType),
+ NEONMAP1(vrndnq_v, arm_neon_vrintn, Add1ArgType),
+ NEONMAP1(vrndp_v, arm_neon_vrintp, Add1ArgType),
+ NEONMAP1(vrndpq_v, arm_neon_vrintp, Add1ArgType),
+ NEONMAP1(vrndq_v, arm_neon_vrintz, Add1ArgType),
+ NEONMAP1(vrndx_v, arm_neon_vrintx, Add1ArgType),
+ NEONMAP1(vrndxq_v, arm_neon_vrintx, Add1ArgType),
+ NEONMAP2(vrshl_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrshlq_v, arm_neon_vrshiftu, arm_neon_vrshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrshr_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
+ NEONMAP2(vrshrq_n_v, arm_neon_vrshiftu, arm_neon_vrshifts, UnsignedAlts),
+ NEONMAP2(vrsqrte_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
+ NEONMAP2(vrsqrteq_v, arm_neon_vrsqrte, arm_neon_vrsqrte, 0),
+ NEONMAP1(vrsqrts_v, arm_neon_vrsqrts, Add1ArgType),
+ NEONMAP1(vrsqrtsq_v, arm_neon_vrsqrts, Add1ArgType),
+ NEONMAP1(vrsubhn_v, arm_neon_vrsubhn, Add1ArgType),
+ NEONMAP1(vsha1su0q_v, arm_neon_sha1su0, 0),
+ NEONMAP1(vsha1su1q_v, arm_neon_sha1su1, 0),
+ NEONMAP1(vsha256h2q_v, arm_neon_sha256h2, 0),
+ NEONMAP1(vsha256hq_v, arm_neon_sha256h, 0),
+ NEONMAP1(vsha256su0q_v, arm_neon_sha256su0, 0),
+ NEONMAP1(vsha256su1q_v, arm_neon_sha256su1, 0),
+ NEONMAP0(vshl_n_v),
+ NEONMAP2(vshl_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vshll_n_v),
+ NEONMAP0(vshlq_n_v),
+ NEONMAP2(vshlq_v, arm_neon_vshiftu, arm_neon_vshifts, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vshr_n_v),
+ NEONMAP0(vshrn_n_v),
+ NEONMAP0(vshrq_n_v),
+ NEONMAP1(vst1_v, arm_neon_vst1, 0),
+ NEONMAP1(vst1_x2_v, arm_neon_vst1x2, 0),
+ NEONMAP1(vst1_x3_v, arm_neon_vst1x3, 0),
+ NEONMAP1(vst1_x4_v, arm_neon_vst1x4, 0),
+ NEONMAP1(vst1q_v, arm_neon_vst1, 0),
+ NEONMAP1(vst1q_x2_v, arm_neon_vst1x2, 0),
+ NEONMAP1(vst1q_x3_v, arm_neon_vst1x3, 0),
+ NEONMAP1(vst1q_x4_v, arm_neon_vst1x4, 0),
+ NEONMAP1(vst2_lane_v, arm_neon_vst2lane, 0),
+ NEONMAP1(vst2_v, arm_neon_vst2, 0),
+ NEONMAP1(vst2q_lane_v, arm_neon_vst2lane, 0),
+ NEONMAP1(vst2q_v, arm_neon_vst2, 0),
+ NEONMAP1(vst3_lane_v, arm_neon_vst3lane, 0),
+ NEONMAP1(vst3_v, arm_neon_vst3, 0),
+ NEONMAP1(vst3q_lane_v, arm_neon_vst3lane, 0),
+ NEONMAP1(vst3q_v, arm_neon_vst3, 0),
+ NEONMAP1(vst4_lane_v, arm_neon_vst4lane, 0),
+ NEONMAP1(vst4_v, arm_neon_vst4, 0),
+ NEONMAP1(vst4q_lane_v, arm_neon_vst4lane, 0),
+ NEONMAP1(vst4q_v, arm_neon_vst4, 0),
+ NEONMAP0(vsubhn_v),
+ NEONMAP0(vtrn_v),
+ NEONMAP0(vtrnq_v),
+ NEONMAP0(vtst_v),
+ NEONMAP0(vtstq_v),
+ NEONMAP0(vuzp_v),
+ NEONMAP0(vuzpq_v),
+ NEONMAP0(vzip_v),
+ NEONMAP0(vzipq_v)
+};
+
+static const NeonIntrinsicInfo AArch64SIMDIntrinsicMap[] = {
+ NEONMAP1(vabs_v, aarch64_neon_abs, 0),
+ NEONMAP1(vabsq_v, aarch64_neon_abs, 0),
+ NEONMAP0(vaddhn_v),
+ NEONMAP1(vaesdq_v, aarch64_crypto_aesd, 0),
+ NEONMAP1(vaeseq_v, aarch64_crypto_aese, 0),
+ NEONMAP1(vaesimcq_v, aarch64_crypto_aesimc, 0),
+ NEONMAP1(vaesmcq_v, aarch64_crypto_aesmc, 0),
+ NEONMAP1(vcage_v, aarch64_neon_facge, 0),
+ NEONMAP1(vcageq_v, aarch64_neon_facge, 0),
+ NEONMAP1(vcagt_v, aarch64_neon_facgt, 0),
+ NEONMAP1(vcagtq_v, aarch64_neon_facgt, 0),
+ NEONMAP1(vcale_v, aarch64_neon_facge, 0),
+ NEONMAP1(vcaleq_v, aarch64_neon_facge, 0),
+ NEONMAP1(vcalt_v, aarch64_neon_facgt, 0),
+ NEONMAP1(vcaltq_v, aarch64_neon_facgt, 0),
+ NEONMAP0(vceqz_v),
+ NEONMAP0(vceqzq_v),
+ NEONMAP0(vcgez_v),
+ NEONMAP0(vcgezq_v),
+ NEONMAP0(vcgtz_v),
+ NEONMAP0(vcgtzq_v),
+ NEONMAP0(vclez_v),
+ NEONMAP0(vclezq_v),
+ NEONMAP1(vcls_v, aarch64_neon_cls, Add1ArgType),
+ NEONMAP1(vclsq_v, aarch64_neon_cls, Add1ArgType),
+ NEONMAP0(vcltz_v),
+ NEONMAP0(vcltzq_v),
+ NEONMAP1(vclz_v, ctlz, Add1ArgType),
+ NEONMAP1(vclzq_v, ctlz, Add1ArgType),
+ NEONMAP1(vcnt_v, ctpop, Add1ArgType),
+ NEONMAP1(vcntq_v, ctpop, Add1ArgType),
+ NEONMAP1(vcvt_f16_f32, aarch64_neon_vcvtfp2hf, 0),
+ NEONMAP0(vcvt_f16_v),
+ NEONMAP1(vcvt_f32_f16, aarch64_neon_vcvthf2fp, 0),
+ NEONMAP0(vcvt_f32_v),
+ NEONMAP2(vcvt_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
+ NEONMAP2(vcvt_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
+ NEONMAP2(vcvt_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
+ NEONMAP1(vcvt_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvt_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvt_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvt_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvt_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvt_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
+ NEONMAP0(vcvtq_f16_v),
+ NEONMAP0(vcvtq_f32_v),
+ NEONMAP2(vcvtq_n_f16_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
+ NEONMAP2(vcvtq_n_f32_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
+ NEONMAP2(vcvtq_n_f64_v, aarch64_neon_vcvtfxu2fp, aarch64_neon_vcvtfxs2fp, 0),
+ NEONMAP1(vcvtq_n_s16_v, aarch64_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvtq_n_s32_v, aarch64_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvtq_n_s64_v, aarch64_neon_vcvtfp2fxs, 0),
+ NEONMAP1(vcvtq_n_u16_v, aarch64_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvtq_n_u32_v, aarch64_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvtq_n_u64_v, aarch64_neon_vcvtfp2fxu, 0),
+ NEONMAP1(vcvtx_f32_v, aarch64_neon_fcvtxn, AddRetType | Add1ArgType),
+ NEONMAP2(vdot_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
+ NEONMAP2(vdotq_v, aarch64_neon_udot, aarch64_neon_sdot, 0),
+ NEONMAP0(vext_v),
+ NEONMAP0(vextq_v),
+ NEONMAP0(vfma_v),
+ NEONMAP0(vfmaq_v),
+ NEONMAP1(vfmlal_high_v, aarch64_neon_fmlal2, 0),
+ NEONMAP1(vfmlal_low_v, aarch64_neon_fmlal, 0),
+ NEONMAP1(vfmlalq_high_v, aarch64_neon_fmlal2, 0),
+ NEONMAP1(vfmlalq_low_v, aarch64_neon_fmlal, 0),
+ NEONMAP1(vfmlsl_high_v, aarch64_neon_fmlsl2, 0),
+ NEONMAP1(vfmlsl_low_v, aarch64_neon_fmlsl, 0),
+ NEONMAP1(vfmlslq_high_v, aarch64_neon_fmlsl2, 0),
+ NEONMAP1(vfmlslq_low_v, aarch64_neon_fmlsl, 0),
+ NEONMAP2(vhadd_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vhaddq_v, aarch64_neon_uhadd, aarch64_neon_shadd, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vhsub_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vhsubq_v, aarch64_neon_uhsub, aarch64_neon_shsub, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vld1_x2_v, aarch64_neon_ld1x2, 0),
+ NEONMAP1(vld1_x3_v, aarch64_neon_ld1x3, 0),
+ NEONMAP1(vld1_x4_v, aarch64_neon_ld1x4, 0),
+ NEONMAP1(vld1q_x2_v, aarch64_neon_ld1x2, 0),
+ NEONMAP1(vld1q_x3_v, aarch64_neon_ld1x3, 0),
+ NEONMAP1(vld1q_x4_v, aarch64_neon_ld1x4, 0),
+ NEONMAP0(vmovl_v),
+ NEONMAP0(vmovn_v),
+ NEONMAP1(vmul_v, aarch64_neon_pmul, Add1ArgType),
+ NEONMAP1(vmulq_v, aarch64_neon_pmul, Add1ArgType),
+ NEONMAP1(vpadd_v, aarch64_neon_addp, Add1ArgType),
+ NEONMAP2(vpaddl_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
+ NEONMAP2(vpaddlq_v, aarch64_neon_uaddlp, aarch64_neon_saddlp, UnsignedAlts),
+ NEONMAP1(vpaddq_v, aarch64_neon_addp, Add1ArgType),
+ NEONMAP1(vqabs_v, aarch64_neon_sqabs, Add1ArgType),
+ NEONMAP1(vqabsq_v, aarch64_neon_sqabs, Add1ArgType),
+ NEONMAP2(vqadd_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqaddq_v, aarch64_neon_uqadd, aarch64_neon_sqadd, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqdmlal_v, aarch64_neon_sqdmull, aarch64_neon_sqadd, 0),
+ NEONMAP2(vqdmlsl_v, aarch64_neon_sqdmull, aarch64_neon_sqsub, 0),
+ NEONMAP1(vqdmulh_v, aarch64_neon_sqdmulh, Add1ArgType),
+ NEONMAP1(vqdmulhq_v, aarch64_neon_sqdmulh, Add1ArgType),
+ NEONMAP1(vqdmull_v, aarch64_neon_sqdmull, Add1ArgType),
+ NEONMAP2(vqmovn_v, aarch64_neon_uqxtn, aarch64_neon_sqxtn, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vqmovun_v, aarch64_neon_sqxtun, Add1ArgType),
+ NEONMAP1(vqneg_v, aarch64_neon_sqneg, Add1ArgType),
+ NEONMAP1(vqnegq_v, aarch64_neon_sqneg, Add1ArgType),
+ NEONMAP1(vqrdmulh_v, aarch64_neon_sqrdmulh, Add1ArgType),
+ NEONMAP1(vqrdmulhq_v, aarch64_neon_sqrdmulh, Add1ArgType),
+ NEONMAP2(vqrshl_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqrshlq_v, aarch64_neon_uqrshl, aarch64_neon_sqrshl, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqshl_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl, UnsignedAlts),
+ NEONMAP2(vqshl_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqshlq_n_v, aarch64_neon_uqshl, aarch64_neon_sqshl,UnsignedAlts),
+ NEONMAP2(vqshlq_v, aarch64_neon_uqshl, aarch64_neon_sqshl, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vqshlu_n_v, aarch64_neon_sqshlu, 0),
+ NEONMAP1(vqshluq_n_v, aarch64_neon_sqshlu, 0),
+ NEONMAP2(vqsub_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vqsubq_v, aarch64_neon_uqsub, aarch64_neon_sqsub, Add1ArgType | UnsignedAlts),
+ NEONMAP1(vraddhn_v, aarch64_neon_raddhn, Add1ArgType),
+ NEONMAP2(vrecpe_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
+ NEONMAP2(vrecpeq_v, aarch64_neon_frecpe, aarch64_neon_urecpe, 0),
+ NEONMAP1(vrecps_v, aarch64_neon_frecps, Add1ArgType),
+ NEONMAP1(vrecpsq_v, aarch64_neon_frecps, Add1ArgType),
+ NEONMAP2(vrhadd_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrhaddq_v, aarch64_neon_urhadd, aarch64_neon_srhadd, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vrndi_v),
+ NEONMAP0(vrndiq_v),
+ NEONMAP2(vrshl_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrshlq_v, aarch64_neon_urshl, aarch64_neon_srshl, Add1ArgType | UnsignedAlts),
+ NEONMAP2(vrshr_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
+ NEONMAP2(vrshrq_n_v, aarch64_neon_urshl, aarch64_neon_srshl, UnsignedAlts),
+ NEONMAP2(vrsqrte_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
+ NEONMAP2(vrsqrteq_v, aarch64_neon_frsqrte, aarch64_neon_ursqrte, 0),
+ NEONMAP1(vrsqrts_v, aarch64_neon_frsqrts, Add1ArgType),
+ NEONMAP1(vrsqrtsq_v, aarch64_neon_frsqrts, Add1ArgType),
+ NEONMAP1(vrsubhn_v, aarch64_neon_rsubhn, Add1ArgType),
+ NEONMAP1(vsha1su0q_v, aarch64_crypto_sha1su0, 0),
+ NEONMAP1(vsha1su1q_v, aarch64_crypto_sha1su1, 0),
+ NEONMAP1(vsha256h2q_v, aarch64_crypto_sha256h2, 0),
+ NEONMAP1(vsha256hq_v, aarch64_crypto_sha256h, 0),
+ NEONMAP1(vsha256su0q_v, aarch64_crypto_sha256su0, 0),
+ NEONMAP1(vsha256su1q_v, aarch64_crypto_sha256su1, 0),
+ NEONMAP0(vshl_n_v),
+ NEONMAP2(vshl_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vshll_n_v),
+ NEONMAP0(vshlq_n_v),
+ NEONMAP2(vshlq_v, aarch64_neon_ushl, aarch64_neon_sshl, Add1ArgType | UnsignedAlts),
+ NEONMAP0(vshr_n_v),
+ NEONMAP0(vshrn_n_v),
+ NEONMAP0(vshrq_n_v),
+ NEONMAP1(vst1_x2_v, aarch64_neon_st1x2, 0),
+ NEONMAP1(vst1_x3_v, aarch64_neon_st1x3, 0),
+ NEONMAP1(vst1_x4_v, aarch64_neon_st1x4, 0),
+ NEONMAP1(vst1q_x2_v, aarch64_neon_st1x2, 0),
+ NEONMAP1(vst1q_x3_v, aarch64_neon_st1x3, 0),
+ NEONMAP1(vst1q_x4_v, aarch64_neon_st1x4, 0),
+ NEONMAP0(vsubhn_v),
+ NEONMAP0(vtst_v),
+ NEONMAP0(vtstq_v),
+};
+
+static const NeonIntrinsicInfo AArch64SISDIntrinsicMap[] = {
+ NEONMAP1(vabdd_f64, aarch64_sisd_fabd, Add1ArgType),
+ NEONMAP1(vabds_f32, aarch64_sisd_fabd, Add1ArgType),
+ NEONMAP1(vabsd_s64, aarch64_neon_abs, Add1ArgType),
+ NEONMAP1(vaddlv_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddlv_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddlvq_s32, aarch64_neon_saddlv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddlvq_u32, aarch64_neon_uaddlv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddv_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddv_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddv_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddvq_f32, aarch64_neon_faddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddvq_f64, aarch64_neon_faddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddvq_s32, aarch64_neon_saddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddvq_s64, aarch64_neon_saddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddvq_u32, aarch64_neon_uaddv, AddRetType | Add1ArgType),
+ NEONMAP1(vaddvq_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
+ NEONMAP1(vcaged_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
+ NEONMAP1(vcages_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
+ NEONMAP1(vcagtd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
+ NEONMAP1(vcagts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
+ NEONMAP1(vcaled_f64, aarch64_neon_facge, AddRetType | Add1ArgType),
+ NEONMAP1(vcales_f32, aarch64_neon_facge, AddRetType | Add1ArgType),
+ NEONMAP1(vcaltd_f64, aarch64_neon_facgt, AddRetType | Add1ArgType),
+ NEONMAP1(vcalts_f32, aarch64_neon_facgt, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtad_s64_f64, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtad_u64_f64, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtas_s32_f32, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtas_u32_f32, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtd_n_f64_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtd_n_f64_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtd_n_s64_f64, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtd_n_u64_f64, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtmd_s64_f64, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtmd_u64_f64, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtms_s32_f32, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtms_u32_f32, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtnd_s64_f64, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtnd_u64_f64, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtns_s32_f32, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtns_u32_f32, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtpd_s64_f64, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtpd_u64_f64, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtps_s32_f32, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtps_u32_f32, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvts_n_f32_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
+ NEONMAP1(vcvts_n_f32_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
+ NEONMAP1(vcvts_n_s32_f32, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
+ NEONMAP1(vcvts_n_u32_f32, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtxd_f32_f64, aarch64_sisd_fcvtxn, 0),
+ NEONMAP1(vmaxnmv_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxnmvq_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxnmvq_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxv_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxv_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxv_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxvq_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxvq_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxvq_s32, aarch64_neon_smaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vmaxvq_u32, aarch64_neon_umaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vminnmv_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vminnmvq_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vminnmvq_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vminv_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
+ NEONMAP1(vminv_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
+ NEONMAP1(vminv_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
+ NEONMAP1(vminvq_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
+ NEONMAP1(vminvq_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
+ NEONMAP1(vminvq_s32, aarch64_neon_sminv, AddRetType | Add1ArgType),
+ NEONMAP1(vminvq_u32, aarch64_neon_uminv, AddRetType | Add1ArgType),
+ NEONMAP1(vmull_p64, aarch64_neon_pmull64, 0),
+ NEONMAP1(vmulxd_f64, aarch64_neon_fmulx, Add1ArgType),
+ NEONMAP1(vmulxs_f32, aarch64_neon_fmulx, Add1ArgType),
+ NEONMAP1(vpaddd_s64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
+ NEONMAP1(vpaddd_u64, aarch64_neon_uaddv, AddRetType | Add1ArgType),
+ NEONMAP1(vpmaxnmqd_f64, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vpmaxnms_f32, aarch64_neon_fmaxnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vpmaxqd_f64, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vpmaxs_f32, aarch64_neon_fmaxv, AddRetType | Add1ArgType),
+ NEONMAP1(vpminnmqd_f64, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vpminnms_f32, aarch64_neon_fminnmv, AddRetType | Add1ArgType),
+ NEONMAP1(vpminqd_f64, aarch64_neon_fminv, AddRetType | Add1ArgType),
+ NEONMAP1(vpmins_f32, aarch64_neon_fminv, AddRetType | Add1ArgType),
+ NEONMAP1(vqabsb_s8, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqabsd_s64, aarch64_neon_sqabs, Add1ArgType),
+ NEONMAP1(vqabsh_s16, aarch64_neon_sqabs, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqabss_s32, aarch64_neon_sqabs, Add1ArgType),
+ NEONMAP1(vqaddb_s8, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqaddb_u8, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqaddd_s64, aarch64_neon_sqadd, Add1ArgType),
+ NEONMAP1(vqaddd_u64, aarch64_neon_uqadd, Add1ArgType),
+ NEONMAP1(vqaddh_s16, aarch64_neon_sqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqaddh_u16, aarch64_neon_uqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqadds_s32, aarch64_neon_sqadd, Add1ArgType),
+ NEONMAP1(vqadds_u32, aarch64_neon_uqadd, Add1ArgType),
+ NEONMAP1(vqdmulhh_s16, aarch64_neon_sqdmulh, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqdmulhs_s32, aarch64_neon_sqdmulh, Add1ArgType),
+ NEONMAP1(vqdmullh_s16, aarch64_neon_sqdmull, VectorRet | Use128BitVectors),
+ NEONMAP1(vqdmulls_s32, aarch64_neon_sqdmulls_scalar, 0),
+ NEONMAP1(vqmovnd_s64, aarch64_neon_scalar_sqxtn, AddRetType | Add1ArgType),
+ NEONMAP1(vqmovnd_u64, aarch64_neon_scalar_uqxtn, AddRetType | Add1ArgType),
+ NEONMAP1(vqmovnh_s16, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqmovnh_u16, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqmovns_s32, aarch64_neon_sqxtn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqmovns_u32, aarch64_neon_uqxtn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqmovund_s64, aarch64_neon_scalar_sqxtun, AddRetType | Add1ArgType),
+ NEONMAP1(vqmovunh_s16, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
+ NEONMAP1(vqmovuns_s32, aarch64_neon_sqxtun, VectorRet | Use64BitVectors),
+ NEONMAP1(vqnegb_s8, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqnegd_s64, aarch64_neon_sqneg, Add1ArgType),
+ NEONMAP1(vqnegh_s16, aarch64_neon_sqneg, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqnegs_s32, aarch64_neon_sqneg, Add1ArgType),
+ NEONMAP1(vqrdmulhh_s16, aarch64_neon_sqrdmulh, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqrdmulhs_s32, aarch64_neon_sqrdmulh, Add1ArgType),
+ NEONMAP1(vqrshlb_s8, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqrshlb_u8, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqrshld_s64, aarch64_neon_sqrshl, Add1ArgType),
+ NEONMAP1(vqrshld_u64, aarch64_neon_uqrshl, Add1ArgType),
+ NEONMAP1(vqrshlh_s16, aarch64_neon_sqrshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqrshlh_u16, aarch64_neon_uqrshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqrshls_s32, aarch64_neon_sqrshl, Add1ArgType),
+ NEONMAP1(vqrshls_u32, aarch64_neon_uqrshl, Add1ArgType),
+ NEONMAP1(vqrshrnd_n_s64, aarch64_neon_sqrshrn, AddRetType),
+ NEONMAP1(vqrshrnd_n_u64, aarch64_neon_uqrshrn, AddRetType),
+ NEONMAP1(vqrshrnh_n_s16, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqrshrnh_n_u16, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqrshrns_n_s32, aarch64_neon_sqrshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqrshrns_n_u32, aarch64_neon_uqrshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqrshrund_n_s64, aarch64_neon_sqrshrun, AddRetType),
+ NEONMAP1(vqrshrunh_n_s16, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
+ NEONMAP1(vqrshruns_n_s32, aarch64_neon_sqrshrun, VectorRet | Use64BitVectors),
+ NEONMAP1(vqshlb_n_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlb_n_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlb_s8, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlb_u8, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshld_s64, aarch64_neon_sqshl, Add1ArgType),
+ NEONMAP1(vqshld_u64, aarch64_neon_uqshl, Add1ArgType),
+ NEONMAP1(vqshlh_n_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlh_n_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlh_s16, aarch64_neon_sqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlh_u16, aarch64_neon_uqshl, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshls_n_s32, aarch64_neon_sqshl, Add1ArgType),
+ NEONMAP1(vqshls_n_u32, aarch64_neon_uqshl, Add1ArgType),
+ NEONMAP1(vqshls_s32, aarch64_neon_sqshl, Add1ArgType),
+ NEONMAP1(vqshls_u32, aarch64_neon_uqshl, Add1ArgType),
+ NEONMAP1(vqshlub_n_s8, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshluh_n_s16, aarch64_neon_sqshlu, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqshlus_n_s32, aarch64_neon_sqshlu, Add1ArgType),
+ NEONMAP1(vqshrnd_n_s64, aarch64_neon_sqshrn, AddRetType),
+ NEONMAP1(vqshrnd_n_u64, aarch64_neon_uqshrn, AddRetType),
+ NEONMAP1(vqshrnh_n_s16, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqshrnh_n_u16, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqshrns_n_s32, aarch64_neon_sqshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqshrns_n_u32, aarch64_neon_uqshrn, VectorRet | Use64BitVectors),
+ NEONMAP1(vqshrund_n_s64, aarch64_neon_sqshrun, AddRetType),
+ NEONMAP1(vqshrunh_n_s16, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
+ NEONMAP1(vqshruns_n_s32, aarch64_neon_sqshrun, VectorRet | Use64BitVectors),
+ NEONMAP1(vqsubb_s8, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqsubb_u8, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqsubd_s64, aarch64_neon_sqsub, Add1ArgType),
+ NEONMAP1(vqsubd_u64, aarch64_neon_uqsub, Add1ArgType),
+ NEONMAP1(vqsubh_s16, aarch64_neon_sqsub, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqsubh_u16, aarch64_neon_uqsub, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vqsubs_s32, aarch64_neon_sqsub, Add1ArgType),
+ NEONMAP1(vqsubs_u32, aarch64_neon_uqsub, Add1ArgType),
+ NEONMAP1(vrecped_f64, aarch64_neon_frecpe, Add1ArgType),
+ NEONMAP1(vrecpes_f32, aarch64_neon_frecpe, Add1ArgType),
+ NEONMAP1(vrecpxd_f64, aarch64_neon_frecpx, Add1ArgType),
+ NEONMAP1(vrecpxs_f32, aarch64_neon_frecpx, Add1ArgType),
+ NEONMAP1(vrshld_s64, aarch64_neon_srshl, Add1ArgType),
+ NEONMAP1(vrshld_u64, aarch64_neon_urshl, Add1ArgType),
+ NEONMAP1(vrsqrted_f64, aarch64_neon_frsqrte, Add1ArgType),
+ NEONMAP1(vrsqrtes_f32, aarch64_neon_frsqrte, Add1ArgType),
+ NEONMAP1(vrsqrtsd_f64, aarch64_neon_frsqrts, Add1ArgType),
+ NEONMAP1(vrsqrtss_f32, aarch64_neon_frsqrts, Add1ArgType),
+ NEONMAP1(vsha1cq_u32, aarch64_crypto_sha1c, 0),
+ NEONMAP1(vsha1h_u32, aarch64_crypto_sha1h, 0),
+ NEONMAP1(vsha1mq_u32, aarch64_crypto_sha1m, 0),
+ NEONMAP1(vsha1pq_u32, aarch64_crypto_sha1p, 0),
+ NEONMAP1(vshld_s64, aarch64_neon_sshl, Add1ArgType),
+ NEONMAP1(vshld_u64, aarch64_neon_ushl, Add1ArgType),
+ NEONMAP1(vslid_n_s64, aarch64_neon_vsli, Vectorize1ArgType),
+ NEONMAP1(vslid_n_u64, aarch64_neon_vsli, Vectorize1ArgType),
+ NEONMAP1(vsqaddb_u8, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vsqaddd_u64, aarch64_neon_usqadd, Add1ArgType),
+ NEONMAP1(vsqaddh_u16, aarch64_neon_usqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vsqadds_u32, aarch64_neon_usqadd, Add1ArgType),
+ NEONMAP1(vsrid_n_s64, aarch64_neon_vsri, Vectorize1ArgType),
+ NEONMAP1(vsrid_n_u64, aarch64_neon_vsri, Vectorize1ArgType),
+ NEONMAP1(vuqaddb_s8, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vuqaddd_s64, aarch64_neon_suqadd, Add1ArgType),
+ NEONMAP1(vuqaddh_s16, aarch64_neon_suqadd, Vectorize1ArgType | Use64BitVectors),
+ NEONMAP1(vuqadds_s32, aarch64_neon_suqadd, Add1ArgType),
+ // FP16 scalar intrinisics go here.
+ NEONMAP1(vabdh_f16, aarch64_sisd_fabd, Add1ArgType),
+ NEONMAP1(vcvtah_s32_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtah_s64_f16, aarch64_neon_fcvtas, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtah_u32_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtah_u64_f16, aarch64_neon_fcvtau, AddRetType | Add1ArgType),
+ NEONMAP1(vcvth_n_f16_s32, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
+ NEONMAP1(vcvth_n_f16_s64, aarch64_neon_vcvtfxs2fp, AddRetType | Add1ArgType),
+ NEONMAP1(vcvth_n_f16_u32, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
+ NEONMAP1(vcvth_n_f16_u64, aarch64_neon_vcvtfxu2fp, AddRetType | Add1ArgType),
+ NEONMAP1(vcvth_n_s32_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
+ NEONMAP1(vcvth_n_s64_f16, aarch64_neon_vcvtfp2fxs, AddRetType | Add1ArgType),
+ NEONMAP1(vcvth_n_u32_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvth_n_u64_f16, aarch64_neon_vcvtfp2fxu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtmh_s32_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtmh_s64_f16, aarch64_neon_fcvtms, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtmh_u32_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtmh_u64_f16, aarch64_neon_fcvtmu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtnh_s32_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtnh_s64_f16, aarch64_neon_fcvtns, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtnh_u32_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtnh_u64_f16, aarch64_neon_fcvtnu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtph_s32_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtph_s64_f16, aarch64_neon_fcvtps, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtph_u32_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
+ NEONMAP1(vcvtph_u64_f16, aarch64_neon_fcvtpu, AddRetType | Add1ArgType),
+ NEONMAP1(vmulxh_f16, aarch64_neon_fmulx, Add1ArgType),
+ NEONMAP1(vrecpeh_f16, aarch64_neon_frecpe, Add1ArgType),
+ NEONMAP1(vrecpxh_f16, aarch64_neon_frecpx, Add1ArgType),
+ NEONMAP1(vrsqrteh_f16, aarch64_neon_frsqrte, Add1ArgType),
+ NEONMAP1(vrsqrtsh_f16, aarch64_neon_frsqrts, Add1ArgType),
+};
+
+#undef NEONMAP0
+#undef NEONMAP1
+#undef NEONMAP2
+
+static bool NEONSIMDIntrinsicsProvenSorted = false;
+
+static bool AArch64SIMDIntrinsicsProvenSorted = false;
+static bool AArch64SISDIntrinsicsProvenSorted = false;
+
+
+static const NeonIntrinsicInfo *
+findNeonIntrinsicInMap(ArrayRef<NeonIntrinsicInfo> IntrinsicMap,
+ unsigned BuiltinID, bool &MapProvenSorted) {
+
+#ifndef NDEBUG
+ if (!MapProvenSorted) {
+ assert(std::is_sorted(std::begin(IntrinsicMap), std::end(IntrinsicMap)));
+ MapProvenSorted = true;
+ }
+#endif
+
+ const NeonIntrinsicInfo *Builtin = llvm::lower_bound(IntrinsicMap, BuiltinID);
+
+ if (Builtin != IntrinsicMap.end() && Builtin->BuiltinID == BuiltinID)
+ return Builtin;
+
+ return nullptr;
+}
+
+Function *CodeGenFunction::LookupNeonLLVMIntrinsic(unsigned IntrinsicID,
+ unsigned Modifier,
+ llvm::Type *ArgType,
+ const CallExpr *E) {
+ int VectorSize = 0;
+ if (Modifier & Use64BitVectors)
+ VectorSize = 64;
+ else if (Modifier & Use128BitVectors)
+ VectorSize = 128;
+
+ // Return type.
+ SmallVector<llvm::Type *, 3> Tys;
+ if (Modifier & AddRetType) {
+ llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
+ if (Modifier & VectorizeRetType)
+ Ty = llvm::VectorType::get(
+ Ty, VectorSize ? VectorSize / Ty->getPrimitiveSizeInBits() : 1);
+
+ Tys.push_back(Ty);
+ }
+
+ // Arguments.
+ if (Modifier & VectorizeArgTypes) {
+ int Elts = VectorSize ? VectorSize / ArgType->getPrimitiveSizeInBits() : 1;
+ ArgType = llvm::VectorType::get(ArgType, Elts);
+ }
+
+ if (Modifier & (Add1ArgType | Add2ArgTypes))
+ Tys.push_back(ArgType);
+
+ if (Modifier & Add2ArgTypes)
+ Tys.push_back(ArgType);
+
+ if (Modifier & InventFloatType)
+ Tys.push_back(FloatTy);
+
+ return CGM.getIntrinsic(IntrinsicID, Tys);
+}
+
+static Value *EmitCommonNeonSISDBuiltinExpr(CodeGenFunction &CGF,
+ const NeonIntrinsicInfo &SISDInfo,
+ SmallVectorImpl<Value *> &Ops,
+ const CallExpr *E) {
+ unsigned BuiltinID = SISDInfo.BuiltinID;
+ unsigned int Int = SISDInfo.LLVMIntrinsic;
+ unsigned Modifier = SISDInfo.TypeModifier;
+ const char *s = SISDInfo.NameHint;
+
+ switch (BuiltinID) {
+ case NEON::BI__builtin_neon_vcled_s64:
+ case NEON::BI__builtin_neon_vcled_u64:
+ case NEON::BI__builtin_neon_vcles_f32:
+ case NEON::BI__builtin_neon_vcled_f64:
+ case NEON::BI__builtin_neon_vcltd_s64:
+ case NEON::BI__builtin_neon_vcltd_u64:
+ case NEON::BI__builtin_neon_vclts_f32:
+ case NEON::BI__builtin_neon_vcltd_f64:
+ case NEON::BI__builtin_neon_vcales_f32:
+ case NEON::BI__builtin_neon_vcaled_f64:
+ case NEON::BI__builtin_neon_vcalts_f32:
+ case NEON::BI__builtin_neon_vcaltd_f64:
+ // Only one direction of comparisons actually exist, cmle is actually a cmge
+ // with swapped operands. The table gives us the right intrinsic but we
+ // still need to do the swap.
+ std::swap(Ops[0], Ops[1]);
+ break;
+ }
+
+ assert(Int && "Generic code assumes a valid intrinsic");
+
+ // Determine the type(s) of this overloaded AArch64 intrinsic.
+ const Expr *Arg = E->getArg(0);
+ llvm::Type *ArgTy = CGF.ConvertType(Arg->getType());
+ Function *F = CGF.LookupNeonLLVMIntrinsic(Int, Modifier, ArgTy, E);
+
+ int j = 0;
+ ConstantInt *C0 = ConstantInt::get(CGF.SizeTy, 0);
+ for (Function::const_arg_iterator ai = F->arg_begin(), ae = F->arg_end();
+ ai != ae; ++ai, ++j) {
+ llvm::Type *ArgTy = ai->getType();
+ if (Ops[j]->getType()->getPrimitiveSizeInBits() ==
+ ArgTy->getPrimitiveSizeInBits())
+ continue;
+
+ assert(ArgTy->isVectorTy() && !Ops[j]->getType()->isVectorTy());
+ // The constant argument to an _n_ intrinsic always has Int32Ty, so truncate
+ // it before inserting.
+ Ops[j] =
+ CGF.Builder.CreateTruncOrBitCast(Ops[j], ArgTy->getVectorElementType());
+ Ops[j] =
+ CGF.Builder.CreateInsertElement(UndefValue::get(ArgTy), Ops[j], C0);
+ }
+
+ Value *Result = CGF.EmitNeonCall(F, Ops, s);
+ llvm::Type *ResultType = CGF.ConvertType(E->getType());
+ if (ResultType->getPrimitiveSizeInBits() <
+ Result->getType()->getPrimitiveSizeInBits())
+ return CGF.Builder.CreateExtractElement(Result, C0);
+
+ return CGF.Builder.CreateBitCast(Result, ResultType, s);
+}
+
+Value *CodeGenFunction::EmitCommonNeonBuiltinExpr(
+ unsigned BuiltinID, unsigned LLVMIntrinsic, unsigned AltLLVMIntrinsic,
+ const char *NameHint, unsigned Modifier, const CallExpr *E,
+ SmallVectorImpl<llvm::Value *> &Ops, Address PtrOp0, Address PtrOp1,
+ llvm::Triple::ArchType Arch) {
+ // Get the last argument, which specifies the vector type.
+ llvm::APSInt NeonTypeConst;
+ const Expr *Arg = E->getArg(E->getNumArgs() - 1);
+ if (!Arg->isIntegerConstantExpr(NeonTypeConst, getContext()))
+ return nullptr;
+
+ // Determine the type of this overloaded NEON intrinsic.
+ NeonTypeFlags Type(NeonTypeConst.getZExtValue());
+ bool Usgn = Type.isUnsigned();
+ bool Quad = Type.isQuad();
+ const bool HasLegalHalfType = getTarget().hasLegalHalfType();
+
+ llvm::VectorType *VTy = GetNeonType(this, Type, HasLegalHalfType);
+ llvm::Type *Ty = VTy;
+ if (!Ty)
+ return nullptr;
+
+ auto getAlignmentValue32 = [&](Address addr) -> Value* {
+ return Builder.getInt32(addr.getAlignment().getQuantity());
+ };
+
+ unsigned Int = LLVMIntrinsic;
+ if ((Modifier & UnsignedAlts) && !Usgn)
+ Int = AltLLVMIntrinsic;
+
+ switch (BuiltinID) {
+ default: break;
+ case NEON::BI__builtin_neon_vpadd_v:
+ case NEON::BI__builtin_neon_vpaddq_v:
+ // We don't allow fp/int overloading of intrinsics.
+ if (VTy->getElementType()->isFloatingPointTy() &&
+ Int == Intrinsic::aarch64_neon_addp)
+ Int = Intrinsic::aarch64_neon_faddp;
+ break;
+ case NEON::BI__builtin_neon_vabs_v:
+ case NEON::BI__builtin_neon_vabsq_v:
+ if (VTy->getElementType()->isFloatingPointTy())
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, Ty), Ops, "vabs");
+ return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), Ops, "vabs");
+ case NEON::BI__builtin_neon_vaddhn_v: {
+ llvm::VectorType *SrcTy =
+ llvm::VectorType::getExtendedElementVectorType(VTy);
+
+ // %sum = add <4 x i32> %lhs, %rhs
+ Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
+ Ops[0] = Builder.CreateAdd(Ops[0], Ops[1], "vaddhn");
+
+ // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
+ Constant *ShiftAmt =
+ ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
+ Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vaddhn");
+
+ // %res = trunc <4 x i32> %high to <4 x i16>
+ return Builder.CreateTrunc(Ops[0], VTy, "vaddhn");
+ }
+ case NEON::BI__builtin_neon_vcale_v:
+ case NEON::BI__builtin_neon_vcaleq_v:
+ case NEON::BI__builtin_neon_vcalt_v:
+ case NEON::BI__builtin_neon_vcaltq_v:
+ std::swap(Ops[0], Ops[1]);
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vcage_v:
+ case NEON::BI__builtin_neon_vcageq_v:
+ case NEON::BI__builtin_neon_vcagt_v:
+ case NEON::BI__builtin_neon_vcagtq_v: {
+ llvm::Type *Ty;
+ switch (VTy->getScalarSizeInBits()) {
+ default: llvm_unreachable("unexpected type");
+ case 32:
+ Ty = FloatTy;
+ break;
+ case 64:
+ Ty = DoubleTy;
+ break;
+ case 16:
+ Ty = HalfTy;
+ break;
+ }
+ llvm::Type *VecFlt = llvm::VectorType::get(Ty, VTy->getNumElements());
+ llvm::Type *Tys[] = { VTy, VecFlt };
+ Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
+ return EmitNeonCall(F, Ops, NameHint);
+ }
+ case NEON::BI__builtin_neon_vceqz_v:
+ case NEON::BI__builtin_neon_vceqzq_v:
+ return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OEQ,
+ ICmpInst::ICMP_EQ, "vceqz");
+ case NEON::BI__builtin_neon_vcgez_v:
+ case NEON::BI__builtin_neon_vcgezq_v:
+ return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGE,
+ ICmpInst::ICMP_SGE, "vcgez");
+ case NEON::BI__builtin_neon_vclez_v:
+ case NEON::BI__builtin_neon_vclezq_v:
+ return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLE,
+ ICmpInst::ICMP_SLE, "vclez");
+ case NEON::BI__builtin_neon_vcgtz_v:
+ case NEON::BI__builtin_neon_vcgtzq_v:
+ return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OGT,
+ ICmpInst::ICMP_SGT, "vcgtz");
+ case NEON::BI__builtin_neon_vcltz_v:
+ case NEON::BI__builtin_neon_vcltzq_v:
+ return EmitAArch64CompareBuiltinExpr(Ops[0], Ty, ICmpInst::FCMP_OLT,
+ ICmpInst::ICMP_SLT, "vcltz");
+ case NEON::BI__builtin_neon_vclz_v:
+ case NEON::BI__builtin_neon_vclzq_v:
+ // We generate target-independent intrinsic, which needs a second argument
+ // for whether or not clz of zero is undefined; on ARM it isn't.
+ Ops.push_back(Builder.getInt1(getTarget().isCLZForZeroUndef()));
+ break;
+ case NEON::BI__builtin_neon_vcvt_f32_v:
+ case NEON::BI__builtin_neon_vcvtq_f32_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float32, false, Quad),
+ HasLegalHalfType);
+ return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
+ : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
+ case NEON::BI__builtin_neon_vcvt_f16_v:
+ case NEON::BI__builtin_neon_vcvtq_f16_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float16, false, Quad),
+ HasLegalHalfType);
+ return Usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
+ : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
+ case NEON::BI__builtin_neon_vcvt_n_f16_v:
+ case NEON::BI__builtin_neon_vcvt_n_f32_v:
+ case NEON::BI__builtin_neon_vcvt_n_f64_v:
+ case NEON::BI__builtin_neon_vcvtq_n_f16_v:
+ case NEON::BI__builtin_neon_vcvtq_n_f32_v:
+ case NEON::BI__builtin_neon_vcvtq_n_f64_v: {
+ llvm::Type *Tys[2] = { GetFloatNeonType(this, Type), Ty };
+ Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
+ Function *F = CGM.getIntrinsic(Int, Tys);
+ return EmitNeonCall(F, Ops, "vcvt_n");
+ }
+ case NEON::BI__builtin_neon_vcvt_n_s16_v:
+ case NEON::BI__builtin_neon_vcvt_n_s32_v:
+ case NEON::BI__builtin_neon_vcvt_n_u16_v:
+ case NEON::BI__builtin_neon_vcvt_n_u32_v:
+ case NEON::BI__builtin_neon_vcvt_n_s64_v:
+ case NEON::BI__builtin_neon_vcvt_n_u64_v:
+ case NEON::BI__builtin_neon_vcvtq_n_s16_v:
+ case NEON::BI__builtin_neon_vcvtq_n_s32_v:
+ case NEON::BI__builtin_neon_vcvtq_n_u16_v:
+ case NEON::BI__builtin_neon_vcvtq_n_u32_v:
+ case NEON::BI__builtin_neon_vcvtq_n_s64_v:
+ case NEON::BI__builtin_neon_vcvtq_n_u64_v: {
+ llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
+ Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
+ return EmitNeonCall(F, Ops, "vcvt_n");
+ }
+ case NEON::BI__builtin_neon_vcvt_s32_v:
+ case NEON::BI__builtin_neon_vcvt_u32_v:
+ case NEON::BI__builtin_neon_vcvt_s64_v:
+ case NEON::BI__builtin_neon_vcvt_u64_v:
+ case NEON::BI__builtin_neon_vcvt_s16_v:
+ case NEON::BI__builtin_neon_vcvt_u16_v:
+ case NEON::BI__builtin_neon_vcvtq_s32_v:
+ case NEON::BI__builtin_neon_vcvtq_u32_v:
+ case NEON::BI__builtin_neon_vcvtq_s64_v:
+ case NEON::BI__builtin_neon_vcvtq_u64_v:
+ case NEON::BI__builtin_neon_vcvtq_s16_v:
+ case NEON::BI__builtin_neon_vcvtq_u16_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
+ return Usgn ? Builder.CreateFPToUI(Ops[0], Ty, "vcvt")
+ : Builder.CreateFPToSI(Ops[0], Ty, "vcvt");
+ }
+ case NEON::BI__builtin_neon_vcvta_s16_v:
+ case NEON::BI__builtin_neon_vcvta_s32_v:
+ case NEON::BI__builtin_neon_vcvta_s64_v:
+ case NEON::BI__builtin_neon_vcvta_u16_v:
+ case NEON::BI__builtin_neon_vcvta_u32_v:
+ case NEON::BI__builtin_neon_vcvta_u64_v:
+ case NEON::BI__builtin_neon_vcvtaq_s16_v:
+ case NEON::BI__builtin_neon_vcvtaq_s32_v:
+ case NEON::BI__builtin_neon_vcvtaq_s64_v:
+ case NEON::BI__builtin_neon_vcvtaq_u16_v:
+ case NEON::BI__builtin_neon_vcvtaq_u32_v:
+ case NEON::BI__builtin_neon_vcvtaq_u64_v:
+ case NEON::BI__builtin_neon_vcvtn_s16_v:
+ case NEON::BI__builtin_neon_vcvtn_s32_v:
+ case NEON::BI__builtin_neon_vcvtn_s64_v:
+ case NEON::BI__builtin_neon_vcvtn_u16_v:
+ case NEON::BI__builtin_neon_vcvtn_u32_v:
+ case NEON::BI__builtin_neon_vcvtn_u64_v:
+ case NEON::BI__builtin_neon_vcvtnq_s16_v:
+ case NEON::BI__builtin_neon_vcvtnq_s32_v:
+ case NEON::BI__builtin_neon_vcvtnq_s64_v:
+ case NEON::BI__builtin_neon_vcvtnq_u16_v:
+ case NEON::BI__builtin_neon_vcvtnq_u32_v:
+ case NEON::BI__builtin_neon_vcvtnq_u64_v:
+ case NEON::BI__builtin_neon_vcvtp_s16_v:
+ case NEON::BI__builtin_neon_vcvtp_s32_v:
+ case NEON::BI__builtin_neon_vcvtp_s64_v:
+ case NEON::BI__builtin_neon_vcvtp_u16_v:
+ case NEON::BI__builtin_neon_vcvtp_u32_v:
+ case NEON::BI__builtin_neon_vcvtp_u64_v:
+ case NEON::BI__builtin_neon_vcvtpq_s16_v:
+ case NEON::BI__builtin_neon_vcvtpq_s32_v:
+ case NEON::BI__builtin_neon_vcvtpq_s64_v:
+ case NEON::BI__builtin_neon_vcvtpq_u16_v:
+ case NEON::BI__builtin_neon_vcvtpq_u32_v:
+ case NEON::BI__builtin_neon_vcvtpq_u64_v:
+ case NEON::BI__builtin_neon_vcvtm_s16_v:
+ case NEON::BI__builtin_neon_vcvtm_s32_v:
+ case NEON::BI__builtin_neon_vcvtm_s64_v:
+ case NEON::BI__builtin_neon_vcvtm_u16_v:
+ case NEON::BI__builtin_neon_vcvtm_u32_v:
+ case NEON::BI__builtin_neon_vcvtm_u64_v:
+ case NEON::BI__builtin_neon_vcvtmq_s16_v:
+ case NEON::BI__builtin_neon_vcvtmq_s32_v:
+ case NEON::BI__builtin_neon_vcvtmq_s64_v:
+ case NEON::BI__builtin_neon_vcvtmq_u16_v:
+ case NEON::BI__builtin_neon_vcvtmq_u32_v:
+ case NEON::BI__builtin_neon_vcvtmq_u64_v: {
+ llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
+ return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, NameHint);
+ }
+ case NEON::BI__builtin_neon_vext_v:
+ case NEON::BI__builtin_neon_vextq_v: {
+ int CV = cast<ConstantInt>(Ops[2])->getSExtValue();
+ SmallVector<uint32_t, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
+ Indices.push_back(i+CV);
+
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ return Builder.CreateShuffleVector(Ops[0], Ops[1], Indices, "vext");
+ }
+ case NEON::BI__builtin_neon_vfma_v:
+ case NEON::BI__builtin_neon_vfmaq_v: {
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+
+ // NEON intrinsic puts accumulator first, unlike the LLVM fma.
+ return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
+ }
+ case NEON::BI__builtin_neon_vld1_v:
+ case NEON::BI__builtin_neon_vld1q_v: {
+ llvm::Type *Tys[] = {Ty, Int8PtrTy};
+ Ops.push_back(getAlignmentValue32(PtrOp0));
+ return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "vld1");
+ }
+ case NEON::BI__builtin_neon_vld1_x2_v:
+ case NEON::BI__builtin_neon_vld1q_x2_v:
+ case NEON::BI__builtin_neon_vld1_x3_v:
+ case NEON::BI__builtin_neon_vld1q_x3_v:
+ case NEON::BI__builtin_neon_vld1_x4_v:
+ case NEON::BI__builtin_neon_vld1q_x4_v: {
+ llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld1xN");
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld2_v:
+ case NEON::BI__builtin_neon_vld2q_v:
+ case NEON::BI__builtin_neon_vld3_v:
+ case NEON::BI__builtin_neon_vld3q_v:
+ case NEON::BI__builtin_neon_vld4_v:
+ case NEON::BI__builtin_neon_vld4q_v:
+ case NEON::BI__builtin_neon_vld2_dup_v:
+ case NEON::BI__builtin_neon_vld2q_dup_v:
+ case NEON::BI__builtin_neon_vld3_dup_v:
+ case NEON::BI__builtin_neon_vld3q_dup_v:
+ case NEON::BI__builtin_neon_vld4_dup_v:
+ case NEON::BI__builtin_neon_vld4q_dup_v: {
+ llvm::Type *Tys[] = {Ty, Int8PtrTy};
+ Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
+ Value *Align = getAlignmentValue32(PtrOp1);
+ Ops[1] = Builder.CreateCall(F, {Ops[1], Align}, NameHint);
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld1_dup_v:
+ case NEON::BI__builtin_neon_vld1q_dup_v: {
+ Value *V = UndefValue::get(Ty);
+ Ty = llvm::PointerType::getUnqual(VTy->getElementType());
+ PtrOp0 = Builder.CreateBitCast(PtrOp0, Ty);
+ LoadInst *Ld = Builder.CreateLoad(PtrOp0);
+ llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
+ Ops[0] = Builder.CreateInsertElement(V, Ld, CI);
+ return EmitNeonSplat(Ops[0], CI);
+ }
+ case NEON::BI__builtin_neon_vld2_lane_v:
+ case NEON::BI__builtin_neon_vld2q_lane_v:
+ case NEON::BI__builtin_neon_vld3_lane_v:
+ case NEON::BI__builtin_neon_vld3q_lane_v:
+ case NEON::BI__builtin_neon_vld4_lane_v:
+ case NEON::BI__builtin_neon_vld4q_lane_v: {
+ llvm::Type *Tys[] = {Ty, Int8PtrTy};
+ Function *F = CGM.getIntrinsic(LLVMIntrinsic, Tys);
+ for (unsigned I = 2; I < Ops.size() - 1; ++I)
+ Ops[I] = Builder.CreateBitCast(Ops[I], Ty);
+ Ops.push_back(getAlignmentValue32(PtrOp1));
+ Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), NameHint);
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vmovl_v: {
+ llvm::Type *DTy =llvm::VectorType::getTruncatedElementVectorType(VTy);
+ Ops[0] = Builder.CreateBitCast(Ops[0], DTy);
+ if (Usgn)
+ return Builder.CreateZExt(Ops[0], Ty, "vmovl");
+ return Builder.CreateSExt(Ops[0], Ty, "vmovl");
+ }
+ case NEON::BI__builtin_neon_vmovn_v: {
+ llvm::Type *QTy = llvm::VectorType::getExtendedElementVectorType(VTy);
+ Ops[0] = Builder.CreateBitCast(Ops[0], QTy);
+ return Builder.CreateTrunc(Ops[0], Ty, "vmovn");
+ }
+ case NEON::BI__builtin_neon_vmull_v:
+ // FIXME: the integer vmull operations could be emitted in terms of pure
+ // LLVM IR (2 exts followed by a mul). Unfortunately LLVM has a habit of
+ // hoisting the exts outside loops. Until global ISel comes along that can
+ // see through such movement this leads to bad CodeGen. So we need an
+ // intrinsic for now.
+ Int = Usgn ? Intrinsic::arm_neon_vmullu : Intrinsic::arm_neon_vmulls;
+ Int = Type.isPoly() ? (unsigned)Intrinsic::arm_neon_vmullp : Int;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
+ case NEON::BI__builtin_neon_vpadal_v:
+ case NEON::BI__builtin_neon_vpadalq_v: {
+ // The source operand type has twice as many elements of half the size.
+ unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
+ llvm::Type *EltTy =
+ llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
+ llvm::Type *NarrowTy =
+ llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
+ llvm::Type *Tys[2] = { Ty, NarrowTy };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, NameHint);
+ }
+ case NEON::BI__builtin_neon_vpaddl_v:
+ case NEON::BI__builtin_neon_vpaddlq_v: {
+ // The source operand type has twice as many elements of half the size.
+ unsigned EltBits = VTy->getElementType()->getPrimitiveSizeInBits();
+ llvm::Type *EltTy = llvm::IntegerType::get(getLLVMContext(), EltBits / 2);
+ llvm::Type *NarrowTy =
+ llvm::VectorType::get(EltTy, VTy->getNumElements() * 2);
+ llvm::Type *Tys[2] = { Ty, NarrowTy };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vpaddl");
+ }
+ case NEON::BI__builtin_neon_vqdmlal_v:
+ case NEON::BI__builtin_neon_vqdmlsl_v: {
+ SmallVector<Value *, 2> MulOps(Ops.begin() + 1, Ops.end());
+ Ops[1] =
+ EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Ty), MulOps, "vqdmlal");
+ Ops.resize(2);
+ return EmitNeonCall(CGM.getIntrinsic(AltLLVMIntrinsic, Ty), Ops, NameHint);
+ }
+ case NEON::BI__builtin_neon_vqshl_n_v:
+ case NEON::BI__builtin_neon_vqshlq_n_v:
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshl_n",
+ 1, false);
+ case NEON::BI__builtin_neon_vqshlu_n_v:
+ case NEON::BI__builtin_neon_vqshluq_n_v:
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshlu_n",
+ 1, false);
+ case NEON::BI__builtin_neon_vrecpe_v:
+ case NEON::BI__builtin_neon_vrecpeq_v:
+ case NEON::BI__builtin_neon_vrsqrte_v:
+ case NEON::BI__builtin_neon_vrsqrteq_v:
+ Int = Ty->isFPOrFPVectorTy() ? LLVMIntrinsic : AltLLVMIntrinsic;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
+ case NEON::BI__builtin_neon_vrndi_v:
+ case NEON::BI__builtin_neon_vrndiq_v:
+ Int = Intrinsic::nearbyint;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, NameHint);
+ case NEON::BI__builtin_neon_vrshr_n_v:
+ case NEON::BI__builtin_neon_vrshrq_n_v:
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshr_n",
+ 1, true);
+ case NEON::BI__builtin_neon_vshl_n_v:
+ case NEON::BI__builtin_neon_vshlq_n_v:
+ Ops[1] = EmitNeonShiftVector(Ops[1], Ty, false);
+ return Builder.CreateShl(Builder.CreateBitCast(Ops[0],Ty), Ops[1],
+ "vshl_n");
+ case NEON::BI__builtin_neon_vshll_n_v: {
+ llvm::Type *SrcTy = llvm::VectorType::getTruncatedElementVectorType(VTy);
+ Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
+ if (Usgn)
+ Ops[0] = Builder.CreateZExt(Ops[0], VTy);
+ else
+ Ops[0] = Builder.CreateSExt(Ops[0], VTy);
+ Ops[1] = EmitNeonShiftVector(Ops[1], VTy, false);
+ return Builder.CreateShl(Ops[0], Ops[1], "vshll_n");
+ }
+ case NEON::BI__builtin_neon_vshrn_n_v: {
+ llvm::Type *SrcTy = llvm::VectorType::getExtendedElementVectorType(VTy);
+ Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
+ Ops[1] = EmitNeonShiftVector(Ops[1], SrcTy, false);
+ if (Usgn)
+ Ops[0] = Builder.CreateLShr(Ops[0], Ops[1]);
+ else
+ Ops[0] = Builder.CreateAShr(Ops[0], Ops[1]);
+ return Builder.CreateTrunc(Ops[0], Ty, "vshrn_n");
+ }
+ case NEON::BI__builtin_neon_vshr_n_v:
+ case NEON::BI__builtin_neon_vshrq_n_v:
+ return EmitNeonRShiftImm(Ops[0], Ops[1], Ty, Usgn, "vshr_n");
+ case NEON::BI__builtin_neon_vst1_v:
+ case NEON::BI__builtin_neon_vst1q_v:
+ case NEON::BI__builtin_neon_vst2_v:
+ case NEON::BI__builtin_neon_vst2q_v:
+ case NEON::BI__builtin_neon_vst3_v:
+ case NEON::BI__builtin_neon_vst3q_v:
+ case NEON::BI__builtin_neon_vst4_v:
+ case NEON::BI__builtin_neon_vst4q_v:
+ case NEON::BI__builtin_neon_vst2_lane_v:
+ case NEON::BI__builtin_neon_vst2q_lane_v:
+ case NEON::BI__builtin_neon_vst3_lane_v:
+ case NEON::BI__builtin_neon_vst3q_lane_v:
+ case NEON::BI__builtin_neon_vst4_lane_v:
+ case NEON::BI__builtin_neon_vst4q_lane_v: {
+ llvm::Type *Tys[] = {Int8PtrTy, Ty};
+ Ops.push_back(getAlignmentValue32(PtrOp0));
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "");
+ }
+ case NEON::BI__builtin_neon_vst1_x2_v:
+ case NEON::BI__builtin_neon_vst1q_x2_v:
+ case NEON::BI__builtin_neon_vst1_x3_v:
+ case NEON::BI__builtin_neon_vst1q_x3_v:
+ case NEON::BI__builtin_neon_vst1_x4_v:
+ case NEON::BI__builtin_neon_vst1q_x4_v: {
+ llvm::Type *PTy = llvm::PointerType::getUnqual(VTy->getVectorElementType());
+ // TODO: Currently in AArch32 mode the pointer operand comes first, whereas
+ // in AArch64 it comes last. We may want to stick to one or another.
+ if (Arch == llvm::Triple::aarch64 || Arch == llvm::Triple::aarch64_be) {
+ llvm::Type *Tys[2] = { VTy, PTy };
+ std::rotate(Ops.begin(), Ops.begin() + 1, Ops.end());
+ return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
+ }
+ llvm::Type *Tys[2] = { PTy, VTy };
+ return EmitNeonCall(CGM.getIntrinsic(LLVMIntrinsic, Tys), Ops, "");
+ }
+ case NEON::BI__builtin_neon_vsubhn_v: {
+ llvm::VectorType *SrcTy =
+ llvm::VectorType::getExtendedElementVectorType(VTy);
+
+ // %sum = add <4 x i32> %lhs, %rhs
+ Ops[0] = Builder.CreateBitCast(Ops[0], SrcTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], SrcTy);
+ Ops[0] = Builder.CreateSub(Ops[0], Ops[1], "vsubhn");
+
+ // %high = lshr <4 x i32> %sum, <i32 16, i32 16, i32 16, i32 16>
+ Constant *ShiftAmt =
+ ConstantInt::get(SrcTy, SrcTy->getScalarSizeInBits() / 2);
+ Ops[0] = Builder.CreateLShr(Ops[0], ShiftAmt, "vsubhn");
+
+ // %res = trunc <4 x i32> %high to <4 x i16>
+ return Builder.CreateTrunc(Ops[0], VTy, "vsubhn");
+ }
+ case NEON::BI__builtin_neon_vtrn_v:
+ case NEON::BI__builtin_neon_vtrnq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Value *SV = nullptr;
+
+ for (unsigned vi = 0; vi != 2; ++vi) {
+ SmallVector<uint32_t, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
+ Indices.push_back(i+vi);
+ Indices.push_back(i+e+vi);
+ }
+ Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
+ SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
+ SV = Builder.CreateDefaultAlignedStore(SV, Addr);
+ }
+ return SV;
+ }
+ case NEON::BI__builtin_neon_vtst_v:
+ case NEON::BI__builtin_neon_vtstq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
+ Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
+ ConstantAggregateZero::get(Ty));
+ return Builder.CreateSExt(Ops[0], Ty, "vtst");
+ }
+ case NEON::BI__builtin_neon_vuzp_v:
+ case NEON::BI__builtin_neon_vuzpq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Value *SV = nullptr;
+
+ for (unsigned vi = 0; vi != 2; ++vi) {
+ SmallVector<uint32_t, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
+ Indices.push_back(2*i+vi);
+
+ Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
+ SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
+ SV = Builder.CreateDefaultAlignedStore(SV, Addr);
+ }
+ return SV;
+ }
+ case NEON::BI__builtin_neon_vzip_v:
+ case NEON::BI__builtin_neon_vzipq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Value *SV = nullptr;
+
+ for (unsigned vi = 0; vi != 2; ++vi) {
+ SmallVector<uint32_t, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
+ Indices.push_back((i + vi*e) >> 1);
+ Indices.push_back(((i + vi*e) >> 1)+e);
+ }
+ Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
+ SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
+ SV = Builder.CreateDefaultAlignedStore(SV, Addr);
+ }
+ return SV;
+ }
+ case NEON::BI__builtin_neon_vdot_v:
+ case NEON::BI__builtin_neon_vdotq_v: {
+ llvm::Type *InputTy =
+ llvm::VectorType::get(Int8Ty, Ty->getPrimitiveSizeInBits() / 8);
+ llvm::Type *Tys[2] = { Ty, InputTy };
+ Int = Usgn ? LLVMIntrinsic : AltLLVMIntrinsic;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vdot");
+ }
+ case NEON::BI__builtin_neon_vfmlal_low_v:
+ case NEON::BI__builtin_neon_vfmlalq_low_v: {
+ llvm::Type *InputTy =
+ llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
+ llvm::Type *Tys[2] = { Ty, InputTy };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_low");
+ }
+ case NEON::BI__builtin_neon_vfmlsl_low_v:
+ case NEON::BI__builtin_neon_vfmlslq_low_v: {
+ llvm::Type *InputTy =
+ llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
+ llvm::Type *Tys[2] = { Ty, InputTy };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_low");
+ }
+ case NEON::BI__builtin_neon_vfmlal_high_v:
+ case NEON::BI__builtin_neon_vfmlalq_high_v: {
+ llvm::Type *InputTy =
+ llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
+ llvm::Type *Tys[2] = { Ty, InputTy };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlal_high");
+ }
+ case NEON::BI__builtin_neon_vfmlsl_high_v:
+ case NEON::BI__builtin_neon_vfmlslq_high_v: {
+ llvm::Type *InputTy =
+ llvm::VectorType::get(HalfTy, Ty->getPrimitiveSizeInBits() / 16);
+ llvm::Type *Tys[2] = { Ty, InputTy };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vfmlsl_high");
+ }
+ }
+
+ assert(Int && "Expected valid intrinsic number");
+
+ // Determine the type(s) of this overloaded AArch64 intrinsic.
+ Function *F = LookupNeonLLVMIntrinsic(Int, Modifier, Ty, E);
+
+ Value *Result = EmitNeonCall(F, Ops, NameHint);
+ llvm::Type *ResultType = ConvertType(E->getType());
+ // AArch64 intrinsic one-element vector type cast to
+ // scalar type expected by the builtin
+ return Builder.CreateBitCast(Result, ResultType, NameHint);
+}
+
+Value *CodeGenFunction::EmitAArch64CompareBuiltinExpr(
+ Value *Op, llvm::Type *Ty, const CmpInst::Predicate Fp,
+ const CmpInst::Predicate Ip, const Twine &Name) {
+ llvm::Type *OTy = Op->getType();
+
+ // FIXME: this is utterly horrific. We should not be looking at previous
+ // codegen context to find out what needs doing. Unfortunately TableGen
+ // currently gives us exactly the same calls for vceqz_f32 and vceqz_s32
+ // (etc).
+ if (BitCastInst *BI = dyn_cast<BitCastInst>(Op))
+ OTy = BI->getOperand(0)->getType();
+
+ Op = Builder.CreateBitCast(Op, OTy);
+ if (OTy->getScalarType()->isFloatingPointTy()) {
+ Op = Builder.CreateFCmp(Fp, Op, Constant::getNullValue(OTy));
+ } else {
+ Op = Builder.CreateICmp(Ip, Op, Constant::getNullValue(OTy));
+ }
+ return Builder.CreateSExt(Op, Ty, Name);
+}
+
+static Value *packTBLDVectorList(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
+ Value *ExtOp, Value *IndexOp,
+ llvm::Type *ResTy, unsigned IntID,
+ const char *Name) {
+ SmallVector<Value *, 2> TblOps;
+ if (ExtOp)
+ TblOps.push_back(ExtOp);
+
+ // Build a vector containing sequential number like (0, 1, 2, ..., 15)
+ SmallVector<uint32_t, 16> Indices;
+ llvm::VectorType *TblTy = cast<llvm::VectorType>(Ops[0]->getType());
+ for (unsigned i = 0, e = TblTy->getNumElements(); i != e; ++i) {
+ Indices.push_back(2*i);
+ Indices.push_back(2*i+1);
+ }
+
+ int PairPos = 0, End = Ops.size() - 1;
+ while (PairPos < End) {
+ TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
+ Ops[PairPos+1], Indices,
+ Name));
+ PairPos += 2;
+ }
+
+ // If there's an odd number of 64-bit lookup table, fill the high 64-bit
+ // of the 128-bit lookup table with zero.
+ if (PairPos == End) {
+ Value *ZeroTbl = ConstantAggregateZero::get(TblTy);
+ TblOps.push_back(CGF.Builder.CreateShuffleVector(Ops[PairPos],
+ ZeroTbl, Indices, Name));
+ }
+
+ Function *TblF;
+ TblOps.push_back(IndexOp);
+ TblF = CGF.CGM.getIntrinsic(IntID, ResTy);
+
+ return CGF.EmitNeonCall(TblF, TblOps, Name);
+}
+
+Value *CodeGenFunction::GetValueForARMHint(unsigned BuiltinID) {
+ unsigned Value;
+ switch (BuiltinID) {
+ default:
+ return nullptr;
+ case ARM::BI__builtin_arm_nop:
+ Value = 0;
+ break;
+ case ARM::BI__builtin_arm_yield:
+ case ARM::BI__yield:
+ Value = 1;
+ break;
+ case ARM::BI__builtin_arm_wfe:
+ case ARM::BI__wfe:
+ Value = 2;
+ break;
+ case ARM::BI__builtin_arm_wfi:
+ case ARM::BI__wfi:
+ Value = 3;
+ break;
+ case ARM::BI__builtin_arm_sev:
+ case ARM::BI__sev:
+ Value = 4;
+ break;
+ case ARM::BI__builtin_arm_sevl:
+ case ARM::BI__sevl:
+ Value = 5;
+ break;
+ }
+
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_hint),
+ llvm::ConstantInt::get(Int32Ty, Value));
+}
+
+// Generates the IR for the read/write special register builtin,
+// ValueType is the type of the value that is to be written or read,
+// RegisterType is the type of the register being written to or read from.
+static Value *EmitSpecialRegisterBuiltin(CodeGenFunction &CGF,
+ const CallExpr *E,
+ llvm::Type *RegisterType,
+ llvm::Type *ValueType,
+ bool IsRead,
+ StringRef SysReg = "") {
+ // write and register intrinsics only support 32 and 64 bit operations.
+ assert((RegisterType->isIntegerTy(32) || RegisterType->isIntegerTy(64))
+ && "Unsupported size for register.");
+
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+ CodeGen::CodeGenModule &CGM = CGF.CGM;
+ LLVMContext &Context = CGM.getLLVMContext();
+
+ if (SysReg.empty()) {
+ const Expr *SysRegStrExpr = E->getArg(0)->IgnoreParenCasts();
+ SysReg = cast<clang::StringLiteral>(SysRegStrExpr)->getString();
+ }
+
+ llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysReg) };
+ llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
+ llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
+
+ llvm::Type *Types[] = { RegisterType };
+
+ bool MixedTypes = RegisterType->isIntegerTy(64) && ValueType->isIntegerTy(32);
+ assert(!(RegisterType->isIntegerTy(32) && ValueType->isIntegerTy(64))
+ && "Can't fit 64-bit value in 32-bit register");
+
+ if (IsRead) {
+ llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
+ llvm::Value *Call = Builder.CreateCall(F, Metadata);
+
+ if (MixedTypes)
+ // Read into 64 bit register and then truncate result to 32 bit.
+ return Builder.CreateTrunc(Call, ValueType);
+
+ if (ValueType->isPointerTy())
+ // Have i32/i64 result (Call) but want to return a VoidPtrTy (i8*).
+ return Builder.CreateIntToPtr(Call, ValueType);
+
+ return Call;
+ }
+
+ llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
+ llvm::Value *ArgValue = CGF.EmitScalarExpr(E->getArg(1));
+ if (MixedTypes) {
+ // Extend 32 bit write value to 64 bit to pass to write.
+ ArgValue = Builder.CreateZExt(ArgValue, RegisterType);
+ return Builder.CreateCall(F, { Metadata, ArgValue });
+ }
+
+ if (ValueType->isPointerTy()) {
+ // Have VoidPtrTy ArgValue but want to return an i32/i64.
+ ArgValue = Builder.CreatePtrToInt(ArgValue, RegisterType);
+ return Builder.CreateCall(F, { Metadata, ArgValue });
+ }
+
+ return Builder.CreateCall(F, { Metadata, ArgValue });
+}
+
+/// Return true if BuiltinID is an overloaded Neon intrinsic with an extra
+/// argument that specifies the vector type.
+static bool HasExtraNeonArgument(unsigned BuiltinID) {
+ switch (BuiltinID) {
+ default: break;
+ case NEON::BI__builtin_neon_vget_lane_i8:
+ case NEON::BI__builtin_neon_vget_lane_i16:
+ case NEON::BI__builtin_neon_vget_lane_i32:
+ case NEON::BI__builtin_neon_vget_lane_i64:
+ case NEON::BI__builtin_neon_vget_lane_f32:
+ case NEON::BI__builtin_neon_vgetq_lane_i8:
+ case NEON::BI__builtin_neon_vgetq_lane_i16:
+ case NEON::BI__builtin_neon_vgetq_lane_i32:
+ case NEON::BI__builtin_neon_vgetq_lane_i64:
+ case NEON::BI__builtin_neon_vgetq_lane_f32:
+ case NEON::BI__builtin_neon_vset_lane_i8:
+ case NEON::BI__builtin_neon_vset_lane_i16:
+ case NEON::BI__builtin_neon_vset_lane_i32:
+ case NEON::BI__builtin_neon_vset_lane_i64:
+ case NEON::BI__builtin_neon_vset_lane_f32:
+ case NEON::BI__builtin_neon_vsetq_lane_i8:
+ case NEON::BI__builtin_neon_vsetq_lane_i16:
+ case NEON::BI__builtin_neon_vsetq_lane_i32:
+ case NEON::BI__builtin_neon_vsetq_lane_i64:
+ case NEON::BI__builtin_neon_vsetq_lane_f32:
+ case NEON::BI__builtin_neon_vsha1h_u32:
+ case NEON::BI__builtin_neon_vsha1cq_u32:
+ case NEON::BI__builtin_neon_vsha1pq_u32:
+ case NEON::BI__builtin_neon_vsha1mq_u32:
+ case clang::ARM::BI_MoveToCoprocessor:
+ case clang::ARM::BI_MoveToCoprocessor2:
+ return false;
+ }
+ return true;
+}
+
+Value *CodeGenFunction::EmitARMBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E,
+ llvm::Triple::ArchType Arch) {
+ if (auto Hint = GetValueForARMHint(BuiltinID))
+ return Hint;
+
+ if (BuiltinID == ARM::BI__emit) {
+ bool IsThumb = getTarget().getTriple().getArch() == llvm::Triple::thumb;
+ llvm::FunctionType *FTy =
+ llvm::FunctionType::get(VoidTy, /*Variadic=*/false);
+
+ Expr::EvalResult Result;
+ if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
+ llvm_unreachable("Sema will ensure that the parameter is constant");
+
+ llvm::APSInt Value = Result.Val.getInt();
+ uint64_t ZExtValue = Value.zextOrTrunc(IsThumb ? 16 : 32).getZExtValue();
+
+ llvm::InlineAsm *Emit =
+ IsThumb ? InlineAsm::get(FTy, ".inst.n 0x" + utohexstr(ZExtValue), "",
+ /*hasSideEffects=*/true)
+ : InlineAsm::get(FTy, ".inst 0x" + utohexstr(ZExtValue), "",
+ /*hasSideEffects=*/true);
+
+ return Builder.CreateCall(Emit);
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_dbg) {
+ Value *Option = EmitScalarExpr(E->getArg(0));
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_dbg), Option);
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_prefetch) {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *RW = EmitScalarExpr(E->getArg(1));
+ Value *IsData = EmitScalarExpr(E->getArg(2));
+
+ // Locality is not supported on ARM target
+ Value *Locality = llvm::ConstantInt::get(Int32Ty, 3);
+
+ Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
+ return Builder.CreateCall(F, {Address, RW, Locality, IsData});
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_rbit) {
+ llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
+ return Builder.CreateCall(
+ CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
+ }
+
+ if (BuiltinID == ARM::BI__clear_cache) {
+ assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
+ const FunctionDecl *FD = E->getDirectCallee();
+ Value *Ops[2];
+ for (unsigned i = 0; i < 2; i++)
+ Ops[i] = EmitScalarExpr(E->getArg(i));
+ llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
+ llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
+ StringRef Name = FD->getName();
+ return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_mcrr ||
+ BuiltinID == ARM::BI__builtin_arm_mcrr2) {
+ Function *F;
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("unexpected builtin");
+ case ARM::BI__builtin_arm_mcrr:
+ F = CGM.getIntrinsic(Intrinsic::arm_mcrr);
+ break;
+ case ARM::BI__builtin_arm_mcrr2:
+ F = CGM.getIntrinsic(Intrinsic::arm_mcrr2);
+ break;
+ }
+
+ // MCRR{2} instruction has 5 operands but
+ // the intrinsic has 4 because Rt and Rt2
+ // are represented as a single unsigned 64
+ // bit integer in the intrinsic definition
+ // but internally it's represented as 2 32
+ // bit integers.
+
+ Value *Coproc = EmitScalarExpr(E->getArg(0));
+ Value *Opc1 = EmitScalarExpr(E->getArg(1));
+ Value *RtAndRt2 = EmitScalarExpr(E->getArg(2));
+ Value *CRm = EmitScalarExpr(E->getArg(3));
+
+ Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
+ Value *Rt = Builder.CreateTruncOrBitCast(RtAndRt2, Int32Ty);
+ Value *Rt2 = Builder.CreateLShr(RtAndRt2, C1);
+ Rt2 = Builder.CreateTruncOrBitCast(Rt2, Int32Ty);
+
+ return Builder.CreateCall(F, {Coproc, Opc1, Rt, Rt2, CRm});
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_mrrc ||
+ BuiltinID == ARM::BI__builtin_arm_mrrc2) {
+ Function *F;
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("unexpected builtin");
+ case ARM::BI__builtin_arm_mrrc:
+ F = CGM.getIntrinsic(Intrinsic::arm_mrrc);
+ break;
+ case ARM::BI__builtin_arm_mrrc2:
+ F = CGM.getIntrinsic(Intrinsic::arm_mrrc2);
+ break;
+ }
+
+ Value *Coproc = EmitScalarExpr(E->getArg(0));
+ Value *Opc1 = EmitScalarExpr(E->getArg(1));
+ Value *CRm = EmitScalarExpr(E->getArg(2));
+ Value *RtAndRt2 = Builder.CreateCall(F, {Coproc, Opc1, CRm});
+
+ // Returns an unsigned 64 bit integer, represented
+ // as two 32 bit integers.
+
+ Value *Rt = Builder.CreateExtractValue(RtAndRt2, 1);
+ Value *Rt1 = Builder.CreateExtractValue(RtAndRt2, 0);
+ Rt = Builder.CreateZExt(Rt, Int64Ty);
+ Rt1 = Builder.CreateZExt(Rt1, Int64Ty);
+
+ Value *ShiftCast = llvm::ConstantInt::get(Int64Ty, 32);
+ RtAndRt2 = Builder.CreateShl(Rt, ShiftCast, "shl", true);
+ RtAndRt2 = Builder.CreateOr(RtAndRt2, Rt1);
+
+ return Builder.CreateBitCast(RtAndRt2, ConvertType(E->getType()));
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_ldrexd ||
+ ((BuiltinID == ARM::BI__builtin_arm_ldrex ||
+ BuiltinID == ARM::BI__builtin_arm_ldaex) &&
+ getContext().getTypeSize(E->getType()) == 64) ||
+ BuiltinID == ARM::BI__ldrexd) {
+ Function *F;
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("unexpected builtin");
+ case ARM::BI__builtin_arm_ldaex:
+ F = CGM.getIntrinsic(Intrinsic::arm_ldaexd);
+ break;
+ case ARM::BI__builtin_arm_ldrexd:
+ case ARM::BI__builtin_arm_ldrex:
+ case ARM::BI__ldrexd:
+ F = CGM.getIntrinsic(Intrinsic::arm_ldrexd);
+ break;
+ }
+
+ Value *LdPtr = EmitScalarExpr(E->getArg(0));
+ Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
+ "ldrexd");
+
+ Value *Val0 = Builder.CreateExtractValue(Val, 1);
+ Value *Val1 = Builder.CreateExtractValue(Val, 0);
+ Val0 = Builder.CreateZExt(Val0, Int64Ty);
+ Val1 = Builder.CreateZExt(Val1, Int64Ty);
+
+ Value *ShiftCst = llvm::ConstantInt::get(Int64Ty, 32);
+ Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
+ Val = Builder.CreateOr(Val, Val1);
+ return Builder.CreateBitCast(Val, ConvertType(E->getType()));
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_ldrex ||
+ BuiltinID == ARM::BI__builtin_arm_ldaex) {
+ Value *LoadAddr = EmitScalarExpr(E->getArg(0));
+
+ QualType Ty = E->getType();
+ llvm::Type *RealResTy = ConvertType(Ty);
+ llvm::Type *PtrTy = llvm::IntegerType::get(
+ getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
+ LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
+
+ Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_ldaex
+ ? Intrinsic::arm_ldaex
+ : Intrinsic::arm_ldrex,
+ PtrTy);
+ Value *Val = Builder.CreateCall(F, LoadAddr, "ldrex");
+
+ if (RealResTy->isPointerTy())
+ return Builder.CreateIntToPtr(Val, RealResTy);
+ else {
+ llvm::Type *IntResTy = llvm::IntegerType::get(
+ getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
+ Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
+ return Builder.CreateBitCast(Val, RealResTy);
+ }
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_strexd ||
+ ((BuiltinID == ARM::BI__builtin_arm_stlex ||
+ BuiltinID == ARM::BI__builtin_arm_strex) &&
+ getContext().getTypeSize(E->getArg(0)->getType()) == 64)) {
+ Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
+ ? Intrinsic::arm_stlexd
+ : Intrinsic::arm_strexd);
+ llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty);
+
+ Address Tmp = CreateMemTemp(E->getArg(0)->getType());
+ Value *Val = EmitScalarExpr(E->getArg(0));
+ Builder.CreateStore(Val, Tmp);
+
+ Address LdPtr = Builder.CreateBitCast(Tmp,llvm::PointerType::getUnqual(STy));
+ Val = Builder.CreateLoad(LdPtr);
+
+ Value *Arg0 = Builder.CreateExtractValue(Val, 0);
+ Value *Arg1 = Builder.CreateExtractValue(Val, 1);
+ Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), Int8PtrTy);
+ return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "strexd");
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_strex ||
+ BuiltinID == ARM::BI__builtin_arm_stlex) {
+ Value *StoreVal = EmitScalarExpr(E->getArg(0));
+ Value *StoreAddr = EmitScalarExpr(E->getArg(1));
+
+ QualType Ty = E->getArg(0)->getType();
+ llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
+ getContext().getTypeSize(Ty));
+ StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
+
+ if (StoreVal->getType()->isPointerTy())
+ StoreVal = Builder.CreatePtrToInt(StoreVal, Int32Ty);
+ else {
+ llvm::Type *IntTy = llvm::IntegerType::get(
+ getLLVMContext(),
+ CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
+ StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
+ StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int32Ty);
+ }
+
+ Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI__builtin_arm_stlex
+ ? Intrinsic::arm_stlex
+ : Intrinsic::arm_strex,
+ StoreAddr->getType());
+ return Builder.CreateCall(F, {StoreVal, StoreAddr}, "strex");
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_clrex) {
+ Function *F = CGM.getIntrinsic(Intrinsic::arm_clrex);
+ return Builder.CreateCall(F);
+ }
+
+ // CRC32
+ Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
+ switch (BuiltinID) {
+ case ARM::BI__builtin_arm_crc32b:
+ CRCIntrinsicID = Intrinsic::arm_crc32b; break;
+ case ARM::BI__builtin_arm_crc32cb:
+ CRCIntrinsicID = Intrinsic::arm_crc32cb; break;
+ case ARM::BI__builtin_arm_crc32h:
+ CRCIntrinsicID = Intrinsic::arm_crc32h; break;
+ case ARM::BI__builtin_arm_crc32ch:
+ CRCIntrinsicID = Intrinsic::arm_crc32ch; break;
+ case ARM::BI__builtin_arm_crc32w:
+ case ARM::BI__builtin_arm_crc32d:
+ CRCIntrinsicID = Intrinsic::arm_crc32w; break;
+ case ARM::BI__builtin_arm_crc32cw:
+ case ARM::BI__builtin_arm_crc32cd:
+ CRCIntrinsicID = Intrinsic::arm_crc32cw; break;
+ }
+
+ if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
+ Value *Arg0 = EmitScalarExpr(E->getArg(0));
+ Value *Arg1 = EmitScalarExpr(E->getArg(1));
+
+ // crc32{c,}d intrinsics are implemnted as two calls to crc32{c,}w
+ // intrinsics, hence we need different codegen for these cases.
+ if (BuiltinID == ARM::BI__builtin_arm_crc32d ||
+ BuiltinID == ARM::BI__builtin_arm_crc32cd) {
+ Value *C1 = llvm::ConstantInt::get(Int64Ty, 32);
+ Value *Arg1a = Builder.CreateTruncOrBitCast(Arg1, Int32Ty);
+ Value *Arg1b = Builder.CreateLShr(Arg1, C1);
+ Arg1b = Builder.CreateTruncOrBitCast(Arg1b, Int32Ty);
+
+ Function *F = CGM.getIntrinsic(CRCIntrinsicID);
+ Value *Res = Builder.CreateCall(F, {Arg0, Arg1a});
+ return Builder.CreateCall(F, {Res, Arg1b});
+ } else {
+ Arg1 = Builder.CreateZExtOrBitCast(Arg1, Int32Ty);
+
+ Function *F = CGM.getIntrinsic(CRCIntrinsicID);
+ return Builder.CreateCall(F, {Arg0, Arg1});
+ }
+ }
+
+ if (BuiltinID == ARM::BI__builtin_arm_rsr ||
+ BuiltinID == ARM::BI__builtin_arm_rsr64 ||
+ BuiltinID == ARM::BI__builtin_arm_rsrp ||
+ BuiltinID == ARM::BI__builtin_arm_wsr ||
+ BuiltinID == ARM::BI__builtin_arm_wsr64 ||
+ BuiltinID == ARM::BI__builtin_arm_wsrp) {
+
+ bool IsRead = BuiltinID == ARM::BI__builtin_arm_rsr ||
+ BuiltinID == ARM::BI__builtin_arm_rsr64 ||
+ BuiltinID == ARM::BI__builtin_arm_rsrp;
+
+ bool IsPointerBuiltin = BuiltinID == ARM::BI__builtin_arm_rsrp ||
+ BuiltinID == ARM::BI__builtin_arm_wsrp;
+
+ bool Is64Bit = BuiltinID == ARM::BI__builtin_arm_rsr64 ||
+ BuiltinID == ARM::BI__builtin_arm_wsr64;
+
+ llvm::Type *ValueType;
+ llvm::Type *RegisterType;
+ if (IsPointerBuiltin) {
+ ValueType = VoidPtrTy;
+ RegisterType = Int32Ty;
+ } else if (Is64Bit) {
+ ValueType = RegisterType = Int64Ty;
+ } else {
+ ValueType = RegisterType = Int32Ty;
+ }
+
+ return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
+ }
+
+ // Find out if any arguments are required to be integer constant
+ // expressions.
+ unsigned ICEArguments = 0;
+ ASTContext::GetBuiltinTypeError Error;
+ getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
+ assert(Error == ASTContext::GE_None && "Should not codegen an error");
+
+ auto getAlignmentValue32 = [&](Address addr) -> Value* {
+ return Builder.getInt32(addr.getAlignment().getQuantity());
+ };
+
+ Address PtrOp0 = Address::invalid();
+ Address PtrOp1 = Address::invalid();
+ SmallVector<Value*, 4> Ops;
+ bool HasExtraArg = HasExtraNeonArgument(BuiltinID);
+ unsigned NumArgs = E->getNumArgs() - (HasExtraArg ? 1 : 0);
+ for (unsigned i = 0, e = NumArgs; i != e; i++) {
+ if (i == 0) {
+ switch (BuiltinID) {
+ case NEON::BI__builtin_neon_vld1_v:
+ case NEON::BI__builtin_neon_vld1q_v:
+ case NEON::BI__builtin_neon_vld1q_lane_v:
+ case NEON::BI__builtin_neon_vld1_lane_v:
+ case NEON::BI__builtin_neon_vld1_dup_v:
+ case NEON::BI__builtin_neon_vld1q_dup_v:
+ case NEON::BI__builtin_neon_vst1_v:
+ case NEON::BI__builtin_neon_vst1q_v:
+ case NEON::BI__builtin_neon_vst1q_lane_v:
+ case NEON::BI__builtin_neon_vst1_lane_v:
+ case NEON::BI__builtin_neon_vst2_v:
+ case NEON::BI__builtin_neon_vst2q_v:
+ case NEON::BI__builtin_neon_vst2_lane_v:
+ case NEON::BI__builtin_neon_vst2q_lane_v:
+ case NEON::BI__builtin_neon_vst3_v:
+ case NEON::BI__builtin_neon_vst3q_v:
+ case NEON::BI__builtin_neon_vst3_lane_v:
+ case NEON::BI__builtin_neon_vst3q_lane_v:
+ case NEON::BI__builtin_neon_vst4_v:
+ case NEON::BI__builtin_neon_vst4q_v:
+ case NEON::BI__builtin_neon_vst4_lane_v:
+ case NEON::BI__builtin_neon_vst4q_lane_v:
+ // Get the alignment for the argument in addition to the value;
+ // we'll use it later.
+ PtrOp0 = EmitPointerWithAlignment(E->getArg(0));
+ Ops.push_back(PtrOp0.getPointer());
+ continue;
+ }
+ }
+ if (i == 1) {
+ switch (BuiltinID) {
+ case NEON::BI__builtin_neon_vld2_v:
+ case NEON::BI__builtin_neon_vld2q_v:
+ case NEON::BI__builtin_neon_vld3_v:
+ case NEON::BI__builtin_neon_vld3q_v:
+ case NEON::BI__builtin_neon_vld4_v:
+ case NEON::BI__builtin_neon_vld4q_v:
+ case NEON::BI__builtin_neon_vld2_lane_v:
+ case NEON::BI__builtin_neon_vld2q_lane_v:
+ case NEON::BI__builtin_neon_vld3_lane_v:
+ case NEON::BI__builtin_neon_vld3q_lane_v:
+ case NEON::BI__builtin_neon_vld4_lane_v:
+ case NEON::BI__builtin_neon_vld4q_lane_v:
+ case NEON::BI__builtin_neon_vld2_dup_v:
+ case NEON::BI__builtin_neon_vld2q_dup_v:
+ case NEON::BI__builtin_neon_vld3_dup_v:
+ case NEON::BI__builtin_neon_vld3q_dup_v:
+ case NEON::BI__builtin_neon_vld4_dup_v:
+ case NEON::BI__builtin_neon_vld4q_dup_v:
+ // Get the alignment for the argument in addition to the value;
+ // we'll use it later.
+ PtrOp1 = EmitPointerWithAlignment(E->getArg(1));
+ Ops.push_back(PtrOp1.getPointer());
+ continue;
+ }
+ }
+
+ if ((ICEArguments & (1 << i)) == 0) {
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+ } else {
+ // If this is required to be a constant, constant fold it so that we know
+ // that the generated intrinsic gets a ConstantInt.
+ llvm::APSInt Result;
+ bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
+ assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
+ Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
+ }
+ }
+
+ switch (BuiltinID) {
+ default: break;
+
+ case NEON::BI__builtin_neon_vget_lane_i8:
+ case NEON::BI__builtin_neon_vget_lane_i16:
+ case NEON::BI__builtin_neon_vget_lane_i32:
+ case NEON::BI__builtin_neon_vget_lane_i64:
+ case NEON::BI__builtin_neon_vget_lane_f32:
+ case NEON::BI__builtin_neon_vgetq_lane_i8:
+ case NEON::BI__builtin_neon_vgetq_lane_i16:
+ case NEON::BI__builtin_neon_vgetq_lane_i32:
+ case NEON::BI__builtin_neon_vgetq_lane_i64:
+ case NEON::BI__builtin_neon_vgetq_lane_f32:
+ return Builder.CreateExtractElement(Ops[0], Ops[1], "vget_lane");
+
+ case NEON::BI__builtin_neon_vrndns_f32: {
+ Value *Arg = EmitScalarExpr(E->getArg(0));
+ llvm::Type *Tys[] = {Arg->getType()};
+ Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vrintn, Tys);
+ return Builder.CreateCall(F, {Arg}, "vrndn"); }
+
+ case NEON::BI__builtin_neon_vset_lane_i8:
+ case NEON::BI__builtin_neon_vset_lane_i16:
+ case NEON::BI__builtin_neon_vset_lane_i32:
+ case NEON::BI__builtin_neon_vset_lane_i64:
+ case NEON::BI__builtin_neon_vset_lane_f32:
+ case NEON::BI__builtin_neon_vsetq_lane_i8:
+ case NEON::BI__builtin_neon_vsetq_lane_i16:
+ case NEON::BI__builtin_neon_vsetq_lane_i32:
+ case NEON::BI__builtin_neon_vsetq_lane_i64:
+ case NEON::BI__builtin_neon_vsetq_lane_f32:
+ return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
+
+ case NEON::BI__builtin_neon_vsha1h_u32:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1h), Ops,
+ "vsha1h");
+ case NEON::BI__builtin_neon_vsha1cq_u32:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1c), Ops,
+ "vsha1h");
+ case NEON::BI__builtin_neon_vsha1pq_u32:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1p), Ops,
+ "vsha1h");
+ case NEON::BI__builtin_neon_vsha1mq_u32:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_sha1m), Ops,
+ "vsha1h");
+
+ // The ARM _MoveToCoprocessor builtins put the input register value as
+ // the first argument, but the LLVM intrinsic expects it as the third one.
+ case ARM::BI_MoveToCoprocessor:
+ case ARM::BI_MoveToCoprocessor2: {
+ Function *F = CGM.getIntrinsic(BuiltinID == ARM::BI_MoveToCoprocessor ?
+ Intrinsic::arm_mcr : Intrinsic::arm_mcr2);
+ return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0],
+ Ops[3], Ops[4], Ops[5]});
+ }
+ case ARM::BI_BitScanForward:
+ case ARM::BI_BitScanForward64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
+ case ARM::BI_BitScanReverse:
+ case ARM::BI_BitScanReverse64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
+
+ case ARM::BI_InterlockedAnd64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
+ case ARM::BI_InterlockedExchange64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
+ case ARM::BI_InterlockedExchangeAdd64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
+ case ARM::BI_InterlockedExchangeSub64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
+ case ARM::BI_InterlockedOr64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
+ case ARM::BI_InterlockedXor64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
+ case ARM::BI_InterlockedDecrement64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
+ case ARM::BI_InterlockedIncrement64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
+ case ARM::BI_InterlockedExchangeAdd8_acq:
+ case ARM::BI_InterlockedExchangeAdd16_acq:
+ case ARM::BI_InterlockedExchangeAdd_acq:
+ case ARM::BI_InterlockedExchangeAdd64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
+ case ARM::BI_InterlockedExchangeAdd8_rel:
+ case ARM::BI_InterlockedExchangeAdd16_rel:
+ case ARM::BI_InterlockedExchangeAdd_rel:
+ case ARM::BI_InterlockedExchangeAdd64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
+ case ARM::BI_InterlockedExchangeAdd8_nf:
+ case ARM::BI_InterlockedExchangeAdd16_nf:
+ case ARM::BI_InterlockedExchangeAdd_nf:
+ case ARM::BI_InterlockedExchangeAdd64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
+ case ARM::BI_InterlockedExchange8_acq:
+ case ARM::BI_InterlockedExchange16_acq:
+ case ARM::BI_InterlockedExchange_acq:
+ case ARM::BI_InterlockedExchange64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
+ case ARM::BI_InterlockedExchange8_rel:
+ case ARM::BI_InterlockedExchange16_rel:
+ case ARM::BI_InterlockedExchange_rel:
+ case ARM::BI_InterlockedExchange64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
+ case ARM::BI_InterlockedExchange8_nf:
+ case ARM::BI_InterlockedExchange16_nf:
+ case ARM::BI_InterlockedExchange_nf:
+ case ARM::BI_InterlockedExchange64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
+ case ARM::BI_InterlockedCompareExchange8_acq:
+ case ARM::BI_InterlockedCompareExchange16_acq:
+ case ARM::BI_InterlockedCompareExchange_acq:
+ case ARM::BI_InterlockedCompareExchange64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
+ case ARM::BI_InterlockedCompareExchange8_rel:
+ case ARM::BI_InterlockedCompareExchange16_rel:
+ case ARM::BI_InterlockedCompareExchange_rel:
+ case ARM::BI_InterlockedCompareExchange64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
+ case ARM::BI_InterlockedCompareExchange8_nf:
+ case ARM::BI_InterlockedCompareExchange16_nf:
+ case ARM::BI_InterlockedCompareExchange_nf:
+ case ARM::BI_InterlockedCompareExchange64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
+ case ARM::BI_InterlockedOr8_acq:
+ case ARM::BI_InterlockedOr16_acq:
+ case ARM::BI_InterlockedOr_acq:
+ case ARM::BI_InterlockedOr64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
+ case ARM::BI_InterlockedOr8_rel:
+ case ARM::BI_InterlockedOr16_rel:
+ case ARM::BI_InterlockedOr_rel:
+ case ARM::BI_InterlockedOr64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
+ case ARM::BI_InterlockedOr8_nf:
+ case ARM::BI_InterlockedOr16_nf:
+ case ARM::BI_InterlockedOr_nf:
+ case ARM::BI_InterlockedOr64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
+ case ARM::BI_InterlockedXor8_acq:
+ case ARM::BI_InterlockedXor16_acq:
+ case ARM::BI_InterlockedXor_acq:
+ case ARM::BI_InterlockedXor64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
+ case ARM::BI_InterlockedXor8_rel:
+ case ARM::BI_InterlockedXor16_rel:
+ case ARM::BI_InterlockedXor_rel:
+ case ARM::BI_InterlockedXor64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
+ case ARM::BI_InterlockedXor8_nf:
+ case ARM::BI_InterlockedXor16_nf:
+ case ARM::BI_InterlockedXor_nf:
+ case ARM::BI_InterlockedXor64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
+ case ARM::BI_InterlockedAnd8_acq:
+ case ARM::BI_InterlockedAnd16_acq:
+ case ARM::BI_InterlockedAnd_acq:
+ case ARM::BI_InterlockedAnd64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
+ case ARM::BI_InterlockedAnd8_rel:
+ case ARM::BI_InterlockedAnd16_rel:
+ case ARM::BI_InterlockedAnd_rel:
+ case ARM::BI_InterlockedAnd64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
+ case ARM::BI_InterlockedAnd8_nf:
+ case ARM::BI_InterlockedAnd16_nf:
+ case ARM::BI_InterlockedAnd_nf:
+ case ARM::BI_InterlockedAnd64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
+ case ARM::BI_InterlockedIncrement16_acq:
+ case ARM::BI_InterlockedIncrement_acq:
+ case ARM::BI_InterlockedIncrement64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
+ case ARM::BI_InterlockedIncrement16_rel:
+ case ARM::BI_InterlockedIncrement_rel:
+ case ARM::BI_InterlockedIncrement64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
+ case ARM::BI_InterlockedIncrement16_nf:
+ case ARM::BI_InterlockedIncrement_nf:
+ case ARM::BI_InterlockedIncrement64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
+ case ARM::BI_InterlockedDecrement16_acq:
+ case ARM::BI_InterlockedDecrement_acq:
+ case ARM::BI_InterlockedDecrement64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
+ case ARM::BI_InterlockedDecrement16_rel:
+ case ARM::BI_InterlockedDecrement_rel:
+ case ARM::BI_InterlockedDecrement64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
+ case ARM::BI_InterlockedDecrement16_nf:
+ case ARM::BI_InterlockedDecrement_nf:
+ case ARM::BI_InterlockedDecrement64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
+ }
+
+ // Get the last argument, which specifies the vector type.
+ assert(HasExtraArg);
+ llvm::APSInt Result;
+ const Expr *Arg = E->getArg(E->getNumArgs()-1);
+ if (!Arg->isIntegerConstantExpr(Result, getContext()))
+ return nullptr;
+
+ if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f ||
+ BuiltinID == ARM::BI__builtin_arm_vcvtr_d) {
+ // Determine the overloaded type of this builtin.
+ llvm::Type *Ty;
+ if (BuiltinID == ARM::BI__builtin_arm_vcvtr_f)
+ Ty = FloatTy;
+ else
+ Ty = DoubleTy;
+
+ // Determine whether this is an unsigned conversion or not.
+ bool usgn = Result.getZExtValue() == 1;
+ unsigned Int = usgn ? Intrinsic::arm_vcvtru : Intrinsic::arm_vcvtr;
+
+ // Call the appropriate intrinsic.
+ Function *F = CGM.getIntrinsic(Int, Ty);
+ return Builder.CreateCall(F, Ops, "vcvtr");
+ }
+
+ // Determine the type of this overloaded NEON intrinsic.
+ NeonTypeFlags Type(Result.getZExtValue());
+ bool usgn = Type.isUnsigned();
+ bool rightShift = false;
+
+ llvm::VectorType *VTy = GetNeonType(this, Type,
+ getTarget().hasLegalHalfType());
+ llvm::Type *Ty = VTy;
+ if (!Ty)
+ return nullptr;
+
+ // Many NEON builtins have identical semantics and uses in ARM and
+ // AArch64. Emit these in a single function.
+ auto IntrinsicMap = makeArrayRef(ARMSIMDIntrinsicMap);
+ const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
+ IntrinsicMap, BuiltinID, NEONSIMDIntrinsicsProvenSorted);
+ if (Builtin)
+ return EmitCommonNeonBuiltinExpr(
+ Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
+ Builtin->NameHint, Builtin->TypeModifier, E, Ops, PtrOp0, PtrOp1, Arch);
+
+ unsigned Int;
+ switch (BuiltinID) {
+ default: return nullptr;
+ case NEON::BI__builtin_neon_vld1q_lane_v:
+ // Handle 64-bit integer elements as a special case. Use shuffles of
+ // one-element vectors to avoid poor code for i64 in the backend.
+ if (VTy->getElementType()->isIntegerTy(64)) {
+ // Extract the other lane.
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ uint32_t Lane = cast<ConstantInt>(Ops[2])->getZExtValue();
+ Value *SV = llvm::ConstantVector::get(ConstantInt::get(Int32Ty, 1-Lane));
+ Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
+ // Load the value as a one-element vector.
+ Ty = llvm::VectorType::get(VTy->getElementType(), 1);
+ llvm::Type *Tys[] = {Ty, Int8PtrTy};
+ Function *F = CGM.getIntrinsic(Intrinsic::arm_neon_vld1, Tys);
+ Value *Align = getAlignmentValue32(PtrOp0);
+ Value *Ld = Builder.CreateCall(F, {Ops[0], Align});
+ // Combine them.
+ uint32_t Indices[] = {1 - Lane, Lane};
+ SV = llvm::ConstantDataVector::get(getLLVMContext(), Indices);
+ return Builder.CreateShuffleVector(Ops[1], Ld, SV, "vld1q_lane");
+ }
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vld1_lane_v: {
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ PtrOp0 = Builder.CreateElementBitCast(PtrOp0, VTy->getElementType());
+ Value *Ld = Builder.CreateLoad(PtrOp0);
+ return Builder.CreateInsertElement(Ops[1], Ld, Ops[2], "vld1_lane");
+ }
+ case NEON::BI__builtin_neon_vqrshrn_n_v:
+ Int =
+ usgn ? Intrinsic::arm_neon_vqrshiftnu : Intrinsic::arm_neon_vqrshiftns;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n",
+ 1, true);
+ case NEON::BI__builtin_neon_vqrshrun_n_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqrshiftnsu, Ty),
+ Ops, "vqrshrun_n", 1, true);
+ case NEON::BI__builtin_neon_vqshrn_n_v:
+ Int = usgn ? Intrinsic::arm_neon_vqshiftnu : Intrinsic::arm_neon_vqshiftns;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n",
+ 1, true);
+ case NEON::BI__builtin_neon_vqshrun_n_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vqshiftnsu, Ty),
+ Ops, "vqshrun_n", 1, true);
+ case NEON::BI__builtin_neon_vrecpe_v:
+ case NEON::BI__builtin_neon_vrecpeq_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrecpe, Ty),
+ Ops, "vrecpe");
+ case NEON::BI__builtin_neon_vrshrn_n_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vrshiftn, Ty),
+ Ops, "vrshrn_n", 1, true);
+ case NEON::BI__builtin_neon_vrsra_n_v:
+ case NEON::BI__builtin_neon_vrsraq_n_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = EmitNeonShiftVector(Ops[2], Ty, true);
+ Int = usgn ? Intrinsic::arm_neon_vrshiftu : Intrinsic::arm_neon_vrshifts;
+ Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Ty), {Ops[1], Ops[2]});
+ return Builder.CreateAdd(Ops[0], Ops[1], "vrsra_n");
+ case NEON::BI__builtin_neon_vsri_n_v:
+ case NEON::BI__builtin_neon_vsriq_n_v:
+ rightShift = true;
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vsli_n_v:
+ case NEON::BI__builtin_neon_vsliq_n_v:
+ Ops[2] = EmitNeonShiftVector(Ops[2], Ty, rightShift);
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vshiftins, Ty),
+ Ops, "vsli_n");
+ case NEON::BI__builtin_neon_vsra_n_v:
+ case NEON::BI__builtin_neon_vsraq_n_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
+ return Builder.CreateAdd(Ops[0], Ops[1]);
+ case NEON::BI__builtin_neon_vst1q_lane_v:
+ // Handle 64-bit integer elements as a special case. Use a shuffle to get
+ // a one-element vector and avoid poor code for i64 in the backend.
+ if (VTy->getElementType()->isIntegerTy(64)) {
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Value *SV = llvm::ConstantVector::get(cast<llvm::Constant>(Ops[2]));
+ Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV);
+ Ops[2] = getAlignmentValue32(PtrOp0);
+ llvm::Type *Tys[] = {Int8PtrTy, Ops[1]->getType()};
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::arm_neon_vst1,
+ Tys), Ops);
+ }
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vst1_lane_v: {
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ auto St = Builder.CreateStore(Ops[1], Builder.CreateBitCast(PtrOp0, Ty));
+ return St;
+ }
+ case NEON::BI__builtin_neon_vtbl1_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl1),
+ Ops, "vtbl1");
+ case NEON::BI__builtin_neon_vtbl2_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl2),
+ Ops, "vtbl2");
+ case NEON::BI__builtin_neon_vtbl3_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl3),
+ Ops, "vtbl3");
+ case NEON::BI__builtin_neon_vtbl4_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbl4),
+ Ops, "vtbl4");
+ case NEON::BI__builtin_neon_vtbx1_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx1),
+ Ops, "vtbx1");
+ case NEON::BI__builtin_neon_vtbx2_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx2),
+ Ops, "vtbx2");
+ case NEON::BI__builtin_neon_vtbx3_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx3),
+ Ops, "vtbx3");
+ case NEON::BI__builtin_neon_vtbx4_v:
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::arm_neon_vtbx4),
+ Ops, "vtbx4");
+ }
+}
+
+static Value *EmitAArch64TblBuiltinExpr(CodeGenFunction &CGF, unsigned BuiltinID,
+ const CallExpr *E,
+ SmallVectorImpl<Value *> &Ops,
+ llvm::Triple::ArchType Arch) {
+ unsigned int Int = 0;
+ const char *s = nullptr;
+
+ switch (BuiltinID) {
+ default:
+ return nullptr;
+ case NEON::BI__builtin_neon_vtbl1_v:
+ case NEON::BI__builtin_neon_vqtbl1_v:
+ case NEON::BI__builtin_neon_vqtbl1q_v:
+ case NEON::BI__builtin_neon_vtbl2_v:
+ case NEON::BI__builtin_neon_vqtbl2_v:
+ case NEON::BI__builtin_neon_vqtbl2q_v:
+ case NEON::BI__builtin_neon_vtbl3_v:
+ case NEON::BI__builtin_neon_vqtbl3_v:
+ case NEON::BI__builtin_neon_vqtbl3q_v:
+ case NEON::BI__builtin_neon_vtbl4_v:
+ case NEON::BI__builtin_neon_vqtbl4_v:
+ case NEON::BI__builtin_neon_vqtbl4q_v:
+ break;
+ case NEON::BI__builtin_neon_vtbx1_v:
+ case NEON::BI__builtin_neon_vqtbx1_v:
+ case NEON::BI__builtin_neon_vqtbx1q_v:
+ case NEON::BI__builtin_neon_vtbx2_v:
+ case NEON::BI__builtin_neon_vqtbx2_v:
+ case NEON::BI__builtin_neon_vqtbx2q_v:
+ case NEON::BI__builtin_neon_vtbx3_v:
+ case NEON::BI__builtin_neon_vqtbx3_v:
+ case NEON::BI__builtin_neon_vqtbx3q_v:
+ case NEON::BI__builtin_neon_vtbx4_v:
+ case NEON::BI__builtin_neon_vqtbx4_v:
+ case NEON::BI__builtin_neon_vqtbx4q_v:
+ break;
+ }
+
+ assert(E->getNumArgs() >= 3);
+
+ // Get the last argument, which specifies the vector type.
+ llvm::APSInt Result;
+ const Expr *Arg = E->getArg(E->getNumArgs() - 1);
+ if (!Arg->isIntegerConstantExpr(Result, CGF.getContext()))
+ return nullptr;
+
+ // Determine the type of this overloaded NEON intrinsic.
+ NeonTypeFlags Type(Result.getZExtValue());
+ llvm::VectorType *Ty = GetNeonType(&CGF, Type);
+ if (!Ty)
+ return nullptr;
+
+ CodeGen::CGBuilderTy &Builder = CGF.Builder;
+
+ // AArch64 scalar builtins are not overloaded, they do not have an extra
+ // argument that specifies the vector type, need to handle each case.
+ switch (BuiltinID) {
+ case NEON::BI__builtin_neon_vtbl1_v: {
+ return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 1), nullptr,
+ Ops[1], Ty, Intrinsic::aarch64_neon_tbl1,
+ "vtbl1");
+ }
+ case NEON::BI__builtin_neon_vtbl2_v: {
+ return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 2), nullptr,
+ Ops[2], Ty, Intrinsic::aarch64_neon_tbl1,
+ "vtbl1");
+ }
+ case NEON::BI__builtin_neon_vtbl3_v: {
+ return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 3), nullptr,
+ Ops[3], Ty, Intrinsic::aarch64_neon_tbl2,
+ "vtbl2");
+ }
+ case NEON::BI__builtin_neon_vtbl4_v: {
+ return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(0, 4), nullptr,
+ Ops[4], Ty, Intrinsic::aarch64_neon_tbl2,
+ "vtbl2");
+ }
+ case NEON::BI__builtin_neon_vtbx1_v: {
+ Value *TblRes =
+ packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 1), nullptr, Ops[2],
+ Ty, Intrinsic::aarch64_neon_tbl1, "vtbl1");
+
+ llvm::Constant *EightV = ConstantInt::get(Ty, 8);
+ Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[2], EightV);
+ CmpRes = Builder.CreateSExt(CmpRes, Ty);
+
+ Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
+ Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
+ return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
+ }
+ case NEON::BI__builtin_neon_vtbx2_v: {
+ return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 2), Ops[0],
+ Ops[3], Ty, Intrinsic::aarch64_neon_tbx1,
+ "vtbx1");
+ }
+ case NEON::BI__builtin_neon_vtbx3_v: {
+ Value *TblRes =
+ packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 3), nullptr, Ops[4],
+ Ty, Intrinsic::aarch64_neon_tbl2, "vtbl2");
+
+ llvm::Constant *TwentyFourV = ConstantInt::get(Ty, 24);
+ Value *CmpRes = Builder.CreateICmp(ICmpInst::ICMP_UGE, Ops[4],
+ TwentyFourV);
+ CmpRes = Builder.CreateSExt(CmpRes, Ty);
+
+ Value *EltsFromInput = Builder.CreateAnd(CmpRes, Ops[0]);
+ Value *EltsFromTbl = Builder.CreateAnd(Builder.CreateNot(CmpRes), TblRes);
+ return Builder.CreateOr(EltsFromInput, EltsFromTbl, "vtbx");
+ }
+ case NEON::BI__builtin_neon_vtbx4_v: {
+ return packTBLDVectorList(CGF, makeArrayRef(Ops).slice(1, 4), Ops[0],
+ Ops[5], Ty, Intrinsic::aarch64_neon_tbx2,
+ "vtbx2");
+ }
+ case NEON::BI__builtin_neon_vqtbl1_v:
+ case NEON::BI__builtin_neon_vqtbl1q_v:
+ Int = Intrinsic::aarch64_neon_tbl1; s = "vtbl1"; break;
+ case NEON::BI__builtin_neon_vqtbl2_v:
+ case NEON::BI__builtin_neon_vqtbl2q_v: {
+ Int = Intrinsic::aarch64_neon_tbl2; s = "vtbl2"; break;
+ case NEON::BI__builtin_neon_vqtbl3_v:
+ case NEON::BI__builtin_neon_vqtbl3q_v:
+ Int = Intrinsic::aarch64_neon_tbl3; s = "vtbl3"; break;
+ case NEON::BI__builtin_neon_vqtbl4_v:
+ case NEON::BI__builtin_neon_vqtbl4q_v:
+ Int = Intrinsic::aarch64_neon_tbl4; s = "vtbl4"; break;
+ case NEON::BI__builtin_neon_vqtbx1_v:
+ case NEON::BI__builtin_neon_vqtbx1q_v:
+ Int = Intrinsic::aarch64_neon_tbx1; s = "vtbx1"; break;
+ case NEON::BI__builtin_neon_vqtbx2_v:
+ case NEON::BI__builtin_neon_vqtbx2q_v:
+ Int = Intrinsic::aarch64_neon_tbx2; s = "vtbx2"; break;
+ case NEON::BI__builtin_neon_vqtbx3_v:
+ case NEON::BI__builtin_neon_vqtbx3q_v:
+ Int = Intrinsic::aarch64_neon_tbx3; s = "vtbx3"; break;
+ case NEON::BI__builtin_neon_vqtbx4_v:
+ case NEON::BI__builtin_neon_vqtbx4q_v:
+ Int = Intrinsic::aarch64_neon_tbx4; s = "vtbx4"; break;
+ }
+ }
+
+ if (!Int)
+ return nullptr;
+
+ Function *F = CGF.CGM.getIntrinsic(Int, Ty);
+ return CGF.EmitNeonCall(F, Ops, s);
+}
+
+Value *CodeGenFunction::vectorWrapScalar16(Value *Op) {
+ llvm::Type *VTy = llvm::VectorType::get(Int16Ty, 4);
+ Op = Builder.CreateBitCast(Op, Int16Ty);
+ Value *V = UndefValue::get(VTy);
+ llvm::Constant *CI = ConstantInt::get(SizeTy, 0);
+ Op = Builder.CreateInsertElement(V, Op, CI);
+ return Op;
+}
+
+Value *CodeGenFunction::EmitAArch64BuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E,
+ llvm::Triple::ArchType Arch) {
+ unsigned HintID = static_cast<unsigned>(-1);
+ switch (BuiltinID) {
+ default: break;
+ case AArch64::BI__builtin_arm_nop:
+ HintID = 0;
+ break;
+ case AArch64::BI__builtin_arm_yield:
+ case AArch64::BI__yield:
+ HintID = 1;
+ break;
+ case AArch64::BI__builtin_arm_wfe:
+ case AArch64::BI__wfe:
+ HintID = 2;
+ break;
+ case AArch64::BI__builtin_arm_wfi:
+ case AArch64::BI__wfi:
+ HintID = 3;
+ break;
+ case AArch64::BI__builtin_arm_sev:
+ case AArch64::BI__sev:
+ HintID = 4;
+ break;
+ case AArch64::BI__builtin_arm_sevl:
+ case AArch64::BI__sevl:
+ HintID = 5;
+ break;
+ }
+
+ if (HintID != static_cast<unsigned>(-1)) {
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_hint);
+ return Builder.CreateCall(F, llvm::ConstantInt::get(Int32Ty, HintID));
+ }
+
+ if (BuiltinID == AArch64::BI__builtin_arm_prefetch) {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *RW = EmitScalarExpr(E->getArg(1));
+ Value *CacheLevel = EmitScalarExpr(E->getArg(2));
+ Value *RetentionPolicy = EmitScalarExpr(E->getArg(3));
+ Value *IsData = EmitScalarExpr(E->getArg(4));
+
+ Value *Locality = nullptr;
+ if (cast<llvm::ConstantInt>(RetentionPolicy)->isZero()) {
+ // Temporal fetch, needs to convert cache level to locality.
+ Locality = llvm::ConstantInt::get(Int32Ty,
+ -cast<llvm::ConstantInt>(CacheLevel)->getValue() + 3);
+ } else {
+ // Streaming fetch.
+ Locality = llvm::ConstantInt::get(Int32Ty, 0);
+ }
+
+ // FIXME: We need AArch64 specific LLVM intrinsic if we want to specify
+ // PLDL3STRM or PLDL2STRM.
+ Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
+ return Builder.CreateCall(F, {Address, RW, Locality, IsData});
+ }
+
+ if (BuiltinID == AArch64::BI__builtin_arm_rbit) {
+ assert((getContext().getTypeSize(E->getType()) == 32) &&
+ "rbit of unusual size!");
+ llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
+ return Builder.CreateCall(
+ CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
+ }
+ if (BuiltinID == AArch64::BI__builtin_arm_rbit64) {
+ assert((getContext().getTypeSize(E->getType()) == 64) &&
+ "rbit of unusual size!");
+ llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
+ return Builder.CreateCall(
+ CGM.getIntrinsic(Intrinsic::bitreverse, Arg->getType()), Arg, "rbit");
+ }
+
+ if (BuiltinID == AArch64::BI__builtin_arm_jcvt) {
+ assert((getContext().getTypeSize(E->getType()) == 32) &&
+ "__jcvt of unusual size!");
+ llvm::Value *Arg = EmitScalarExpr(E->getArg(0));
+ return Builder.CreateCall(
+ CGM.getIntrinsic(Intrinsic::aarch64_fjcvtzs), Arg);
+ }
+
+ if (BuiltinID == AArch64::BI__clear_cache) {
+ assert(E->getNumArgs() == 2 && "__clear_cache takes 2 arguments");
+ const FunctionDecl *FD = E->getDirectCallee();
+ Value *Ops[2];
+ for (unsigned i = 0; i < 2; i++)
+ Ops[i] = EmitScalarExpr(E->getArg(i));
+ llvm::Type *Ty = CGM.getTypes().ConvertType(FD->getType());
+ llvm::FunctionType *FTy = cast<llvm::FunctionType>(Ty);
+ StringRef Name = FD->getName();
+ return EmitNounwindRuntimeCall(CGM.CreateRuntimeFunction(FTy, Name), Ops);
+ }
+
+ if ((BuiltinID == AArch64::BI__builtin_arm_ldrex ||
+ BuiltinID == AArch64::BI__builtin_arm_ldaex) &&
+ getContext().getTypeSize(E->getType()) == 128) {
+ Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
+ ? Intrinsic::aarch64_ldaxp
+ : Intrinsic::aarch64_ldxp);
+
+ Value *LdPtr = EmitScalarExpr(E->getArg(0));
+ Value *Val = Builder.CreateCall(F, Builder.CreateBitCast(LdPtr, Int8PtrTy),
+ "ldxp");
+
+ Value *Val0 = Builder.CreateExtractValue(Val, 1);
+ Value *Val1 = Builder.CreateExtractValue(Val, 0);
+ llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
+ Val0 = Builder.CreateZExt(Val0, Int128Ty);
+ Val1 = Builder.CreateZExt(Val1, Int128Ty);
+
+ Value *ShiftCst = llvm::ConstantInt::get(Int128Ty, 64);
+ Val = Builder.CreateShl(Val0, ShiftCst, "shl", true /* nuw */);
+ Val = Builder.CreateOr(Val, Val1);
+ return Builder.CreateBitCast(Val, ConvertType(E->getType()));
+ } else if (BuiltinID == AArch64::BI__builtin_arm_ldrex ||
+ BuiltinID == AArch64::BI__builtin_arm_ldaex) {
+ Value *LoadAddr = EmitScalarExpr(E->getArg(0));
+
+ QualType Ty = E->getType();
+ llvm::Type *RealResTy = ConvertType(Ty);
+ llvm::Type *PtrTy = llvm::IntegerType::get(
+ getLLVMContext(), getContext().getTypeSize(Ty))->getPointerTo();
+ LoadAddr = Builder.CreateBitCast(LoadAddr, PtrTy);
+
+ Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_ldaex
+ ? Intrinsic::aarch64_ldaxr
+ : Intrinsic::aarch64_ldxr,
+ PtrTy);
+ Value *Val = Builder.CreateCall(F, LoadAddr, "ldxr");
+
+ if (RealResTy->isPointerTy())
+ return Builder.CreateIntToPtr(Val, RealResTy);
+
+ llvm::Type *IntResTy = llvm::IntegerType::get(
+ getLLVMContext(), CGM.getDataLayout().getTypeSizeInBits(RealResTy));
+ Val = Builder.CreateTruncOrBitCast(Val, IntResTy);
+ return Builder.CreateBitCast(Val, RealResTy);
+ }
+
+ if ((BuiltinID == AArch64::BI__builtin_arm_strex ||
+ BuiltinID == AArch64::BI__builtin_arm_stlex) &&
+ getContext().getTypeSize(E->getArg(0)->getType()) == 128) {
+ Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
+ ? Intrinsic::aarch64_stlxp
+ : Intrinsic::aarch64_stxp);
+ llvm::Type *STy = llvm::StructType::get(Int64Ty, Int64Ty);
+
+ Address Tmp = CreateMemTemp(E->getArg(0)->getType());
+ EmitAnyExprToMem(E->getArg(0), Tmp, Qualifiers(), /*init*/ true);
+
+ Tmp = Builder.CreateBitCast(Tmp, llvm::PointerType::getUnqual(STy));
+ llvm::Value *Val = Builder.CreateLoad(Tmp);
+
+ Value *Arg0 = Builder.CreateExtractValue(Val, 0);
+ Value *Arg1 = Builder.CreateExtractValue(Val, 1);
+ Value *StPtr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)),
+ Int8PtrTy);
+ return Builder.CreateCall(F, {Arg0, Arg1, StPtr}, "stxp");
+ }
+
+ if (BuiltinID == AArch64::BI__builtin_arm_strex ||
+ BuiltinID == AArch64::BI__builtin_arm_stlex) {
+ Value *StoreVal = EmitScalarExpr(E->getArg(0));
+ Value *StoreAddr = EmitScalarExpr(E->getArg(1));
+
+ QualType Ty = E->getArg(0)->getType();
+ llvm::Type *StoreTy = llvm::IntegerType::get(getLLVMContext(),
+ getContext().getTypeSize(Ty));
+ StoreAddr = Builder.CreateBitCast(StoreAddr, StoreTy->getPointerTo());
+
+ if (StoreVal->getType()->isPointerTy())
+ StoreVal = Builder.CreatePtrToInt(StoreVal, Int64Ty);
+ else {
+ llvm::Type *IntTy = llvm::IntegerType::get(
+ getLLVMContext(),
+ CGM.getDataLayout().getTypeSizeInBits(StoreVal->getType()));
+ StoreVal = Builder.CreateBitCast(StoreVal, IntTy);
+ StoreVal = Builder.CreateZExtOrBitCast(StoreVal, Int64Ty);
+ }
+
+ Function *F = CGM.getIntrinsic(BuiltinID == AArch64::BI__builtin_arm_stlex
+ ? Intrinsic::aarch64_stlxr
+ : Intrinsic::aarch64_stxr,
+ StoreAddr->getType());
+ return Builder.CreateCall(F, {StoreVal, StoreAddr}, "stxr");
+ }
+
+ if (BuiltinID == AArch64::BI__getReg) {
+ Expr::EvalResult Result;
+ if (!E->getArg(0)->EvaluateAsInt(Result, CGM.getContext()))
+ llvm_unreachable("Sema will ensure that the parameter is constant");
+
+ llvm::APSInt Value = Result.Val.getInt();
+ LLVMContext &Context = CGM.getLLVMContext();
+ std::string Reg = Value == 31 ? "sp" : "x" + Value.toString(10);
+
+ llvm::Metadata *Ops[] = {llvm::MDString::get(Context, Reg)};
+ llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
+ llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
+
+ llvm::Function *F =
+ CGM.getIntrinsic(llvm::Intrinsic::read_register, {Int64Ty});
+ return Builder.CreateCall(F, Metadata);
+ }
+
+ if (BuiltinID == AArch64::BI__builtin_arm_clrex) {
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_clrex);
+ return Builder.CreateCall(F);
+ }
+
+ if (BuiltinID == AArch64::BI_ReadWriteBarrier)
+ return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
+ llvm::SyncScope::SingleThread);
+
+ // CRC32
+ Intrinsic::ID CRCIntrinsicID = Intrinsic::not_intrinsic;
+ switch (BuiltinID) {
+ case AArch64::BI__builtin_arm_crc32b:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32b; break;
+ case AArch64::BI__builtin_arm_crc32cb:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32cb; break;
+ case AArch64::BI__builtin_arm_crc32h:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32h; break;
+ case AArch64::BI__builtin_arm_crc32ch:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32ch; break;
+ case AArch64::BI__builtin_arm_crc32w:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32w; break;
+ case AArch64::BI__builtin_arm_crc32cw:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32cw; break;
+ case AArch64::BI__builtin_arm_crc32d:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32x; break;
+ case AArch64::BI__builtin_arm_crc32cd:
+ CRCIntrinsicID = Intrinsic::aarch64_crc32cx; break;
+ }
+
+ if (CRCIntrinsicID != Intrinsic::not_intrinsic) {
+ Value *Arg0 = EmitScalarExpr(E->getArg(0));
+ Value *Arg1 = EmitScalarExpr(E->getArg(1));
+ Function *F = CGM.getIntrinsic(CRCIntrinsicID);
+
+ llvm::Type *DataTy = F->getFunctionType()->getParamType(1);
+ Arg1 = Builder.CreateZExtOrBitCast(Arg1, DataTy);
+
+ return Builder.CreateCall(F, {Arg0, Arg1});
+ }
+
+ // Memory Tagging Extensions (MTE) Intrinsics
+ Intrinsic::ID MTEIntrinsicID = Intrinsic::not_intrinsic;
+ switch (BuiltinID) {
+ case AArch64::BI__builtin_arm_irg:
+ MTEIntrinsicID = Intrinsic::aarch64_irg; break;
+ case AArch64::BI__builtin_arm_addg:
+ MTEIntrinsicID = Intrinsic::aarch64_addg; break;
+ case AArch64::BI__builtin_arm_gmi:
+ MTEIntrinsicID = Intrinsic::aarch64_gmi; break;
+ case AArch64::BI__builtin_arm_ldg:
+ MTEIntrinsicID = Intrinsic::aarch64_ldg; break;
+ case AArch64::BI__builtin_arm_stg:
+ MTEIntrinsicID = Intrinsic::aarch64_stg; break;
+ case AArch64::BI__builtin_arm_subp:
+ MTEIntrinsicID = Intrinsic::aarch64_subp; break;
+ }
+
+ if (MTEIntrinsicID != Intrinsic::not_intrinsic) {
+ llvm::Type *T = ConvertType(E->getType());
+
+ if (MTEIntrinsicID == Intrinsic::aarch64_irg) {
+ Value *Pointer = EmitScalarExpr(E->getArg(0));
+ Value *Mask = EmitScalarExpr(E->getArg(1));
+
+ Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
+ Mask = Builder.CreateZExt(Mask, Int64Ty);
+ Value *RV = Builder.CreateCall(
+ CGM.getIntrinsic(MTEIntrinsicID), {Pointer, Mask});
+ return Builder.CreatePointerCast(RV, T);
+ }
+ if (MTEIntrinsicID == Intrinsic::aarch64_addg) {
+ Value *Pointer = EmitScalarExpr(E->getArg(0));
+ Value *TagOffset = EmitScalarExpr(E->getArg(1));
+
+ Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
+ TagOffset = Builder.CreateZExt(TagOffset, Int64Ty);
+ Value *RV = Builder.CreateCall(
+ CGM.getIntrinsic(MTEIntrinsicID), {Pointer, TagOffset});
+ return Builder.CreatePointerCast(RV, T);
+ }
+ if (MTEIntrinsicID == Intrinsic::aarch64_gmi) {
+ Value *Pointer = EmitScalarExpr(E->getArg(0));
+ Value *ExcludedMask = EmitScalarExpr(E->getArg(1));
+
+ ExcludedMask = Builder.CreateZExt(ExcludedMask, Int64Ty);
+ Pointer = Builder.CreatePointerCast(Pointer, Int8PtrTy);
+ return Builder.CreateCall(
+ CGM.getIntrinsic(MTEIntrinsicID), {Pointer, ExcludedMask});
+ }
+ // Although it is possible to supply a different return
+ // address (first arg) to this intrinsic, for now we set
+ // return address same as input address.
+ if (MTEIntrinsicID == Intrinsic::aarch64_ldg) {
+ Value *TagAddress = EmitScalarExpr(E->getArg(0));
+ TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
+ Value *RV = Builder.CreateCall(
+ CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
+ return Builder.CreatePointerCast(RV, T);
+ }
+ // Although it is possible to supply a different tag (to set)
+ // to this intrinsic (as first arg), for now we supply
+ // the tag that is in input address arg (common use case).
+ if (MTEIntrinsicID == Intrinsic::aarch64_stg) {
+ Value *TagAddress = EmitScalarExpr(E->getArg(0));
+ TagAddress = Builder.CreatePointerCast(TagAddress, Int8PtrTy);
+ return Builder.CreateCall(
+ CGM.getIntrinsic(MTEIntrinsicID), {TagAddress, TagAddress});
+ }
+ if (MTEIntrinsicID == Intrinsic::aarch64_subp) {
+ Value *PointerA = EmitScalarExpr(E->getArg(0));
+ Value *PointerB = EmitScalarExpr(E->getArg(1));
+ PointerA = Builder.CreatePointerCast(PointerA, Int8PtrTy);
+ PointerB = Builder.CreatePointerCast(PointerB, Int8PtrTy);
+ return Builder.CreateCall(
+ CGM.getIntrinsic(MTEIntrinsicID), {PointerA, PointerB});
+ }
+ }
+
+ if (BuiltinID == AArch64::BI__builtin_arm_rsr ||
+ BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
+ BuiltinID == AArch64::BI__builtin_arm_rsrp ||
+ BuiltinID == AArch64::BI__builtin_arm_wsr ||
+ BuiltinID == AArch64::BI__builtin_arm_wsr64 ||
+ BuiltinID == AArch64::BI__builtin_arm_wsrp) {
+
+ bool IsRead = BuiltinID == AArch64::BI__builtin_arm_rsr ||
+ BuiltinID == AArch64::BI__builtin_arm_rsr64 ||
+ BuiltinID == AArch64::BI__builtin_arm_rsrp;
+
+ bool IsPointerBuiltin = BuiltinID == AArch64::BI__builtin_arm_rsrp ||
+ BuiltinID == AArch64::BI__builtin_arm_wsrp;
+
+ bool Is64Bit = BuiltinID != AArch64::BI__builtin_arm_rsr &&
+ BuiltinID != AArch64::BI__builtin_arm_wsr;
+
+ llvm::Type *ValueType;
+ llvm::Type *RegisterType = Int64Ty;
+ if (IsPointerBuiltin) {
+ ValueType = VoidPtrTy;
+ } else if (Is64Bit) {
+ ValueType = Int64Ty;
+ } else {
+ ValueType = Int32Ty;
+ }
+
+ return EmitSpecialRegisterBuiltin(*this, E, RegisterType, ValueType, IsRead);
+ }
+
+ if (BuiltinID == AArch64::BI_ReadStatusReg ||
+ BuiltinID == AArch64::BI_WriteStatusReg) {
+ LLVMContext &Context = CGM.getLLVMContext();
+
+ unsigned SysReg =
+ E->getArg(0)->EvaluateKnownConstInt(getContext()).getZExtValue();
+
+ std::string SysRegStr;
+ llvm::raw_string_ostream(SysRegStr) <<
+ ((1 << 1) | ((SysReg >> 14) & 1)) << ":" <<
+ ((SysReg >> 11) & 7) << ":" <<
+ ((SysReg >> 7) & 15) << ":" <<
+ ((SysReg >> 3) & 15) << ":" <<
+ ( SysReg & 7);
+
+ llvm::Metadata *Ops[] = { llvm::MDString::get(Context, SysRegStr) };
+ llvm::MDNode *RegName = llvm::MDNode::get(Context, Ops);
+ llvm::Value *Metadata = llvm::MetadataAsValue::get(Context, RegName);
+
+ llvm::Type *RegisterType = Int64Ty;
+ llvm::Type *Types[] = { RegisterType };
+
+ if (BuiltinID == AArch64::BI_ReadStatusReg) {
+ llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::read_register, Types);
+
+ return Builder.CreateCall(F, Metadata);
+ }
+
+ llvm::Function *F = CGM.getIntrinsic(llvm::Intrinsic::write_register, Types);
+ llvm::Value *ArgValue = EmitScalarExpr(E->getArg(1));
+
+ return Builder.CreateCall(F, { Metadata, ArgValue });
+ }
+
+ if (BuiltinID == AArch64::BI_AddressOfReturnAddress) {
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
+ return Builder.CreateCall(F);
+ }
+
+ if (BuiltinID == AArch64::BI__builtin_sponentry) {
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::sponentry);
+ return Builder.CreateCall(F);
+ }
+
+ // Find out if any arguments are required to be integer constant
+ // expressions.
+ unsigned ICEArguments = 0;
+ ASTContext::GetBuiltinTypeError Error;
+ getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
+ assert(Error == ASTContext::GE_None && "Should not codegen an error");
+
+ llvm::SmallVector<Value*, 4> Ops;
+ for (unsigned i = 0, e = E->getNumArgs() - 1; i != e; i++) {
+ if ((ICEArguments & (1 << i)) == 0) {
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+ } else {
+ // If this is required to be a constant, constant fold it so that we know
+ // that the generated intrinsic gets a ConstantInt.
+ llvm::APSInt Result;
+ bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
+ assert(IsConst && "Constant arg isn't actually constant?");
+ (void)IsConst;
+ Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
+ }
+ }
+
+ auto SISDMap = makeArrayRef(AArch64SISDIntrinsicMap);
+ const NeonIntrinsicInfo *Builtin = findNeonIntrinsicInMap(
+ SISDMap, BuiltinID, AArch64SISDIntrinsicsProvenSorted);
+
+ if (Builtin) {
+ Ops.push_back(EmitScalarExpr(E->getArg(E->getNumArgs() - 1)));
+ Value *Result = EmitCommonNeonSISDBuiltinExpr(*this, *Builtin, Ops, E);
+ assert(Result && "SISD intrinsic should have been handled");
+ return Result;
+ }
+
+ llvm::APSInt Result;
+ const Expr *Arg = E->getArg(E->getNumArgs()-1);
+ NeonTypeFlags Type(0);
+ if (Arg->isIntegerConstantExpr(Result, getContext()))
+ // Determine the type of this overloaded NEON intrinsic.
+ Type = NeonTypeFlags(Result.getZExtValue());
+
+ bool usgn = Type.isUnsigned();
+ bool quad = Type.isQuad();
+
+ // Handle non-overloaded intrinsics first.
+ switch (BuiltinID) {
+ default: break;
+ case NEON::BI__builtin_neon_vabsh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::fabs, HalfTy), Ops, "vabs");
+ case NEON::BI__builtin_neon_vldrq_p128: {
+ llvm::Type *Int128Ty = llvm::Type::getIntNTy(getLLVMContext(), 128);
+ llvm::Type *Int128PTy = llvm::PointerType::get(Int128Ty, 0);
+ Value *Ptr = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int128PTy);
+ return Builder.CreateAlignedLoad(Int128Ty, Ptr,
+ CharUnits::fromQuantity(16));
+ }
+ case NEON::BI__builtin_neon_vstrq_p128: {
+ llvm::Type *Int128PTy = llvm::Type::getIntNPtrTy(getLLVMContext(), 128);
+ Value *Ptr = Builder.CreateBitCast(Ops[0], Int128PTy);
+ return Builder.CreateDefaultAlignedStore(EmitScalarExpr(E->getArg(1)), Ptr);
+ }
+ case NEON::BI__builtin_neon_vcvts_u32_f32:
+ case NEON::BI__builtin_neon_vcvtd_u64_f64:
+ usgn = true;
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vcvts_s32_f32:
+ case NEON::BI__builtin_neon_vcvtd_s64_f64: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
+ llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
+ llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
+ Ops[0] = Builder.CreateBitCast(Ops[0], FTy);
+ if (usgn)
+ return Builder.CreateFPToUI(Ops[0], InTy);
+ return Builder.CreateFPToSI(Ops[0], InTy);
+ }
+ case NEON::BI__builtin_neon_vcvts_f32_u32:
+ case NEON::BI__builtin_neon_vcvtd_f64_u64:
+ usgn = true;
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vcvts_f32_s32:
+ case NEON::BI__builtin_neon_vcvtd_f64_s64: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ bool Is64 = Ops[0]->getType()->getPrimitiveSizeInBits() == 64;
+ llvm::Type *InTy = Is64 ? Int64Ty : Int32Ty;
+ llvm::Type *FTy = Is64 ? DoubleTy : FloatTy;
+ Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
+ if (usgn)
+ return Builder.CreateUIToFP(Ops[0], FTy);
+ return Builder.CreateSIToFP(Ops[0], FTy);
+ }
+ case NEON::BI__builtin_neon_vcvth_f16_u16:
+ case NEON::BI__builtin_neon_vcvth_f16_u32:
+ case NEON::BI__builtin_neon_vcvth_f16_u64:
+ usgn = true;
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vcvth_f16_s16:
+ case NEON::BI__builtin_neon_vcvth_f16_s32:
+ case NEON::BI__builtin_neon_vcvth_f16_s64: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ llvm::Type *FTy = HalfTy;
+ llvm::Type *InTy;
+ if (Ops[0]->getType()->getPrimitiveSizeInBits() == 64)
+ InTy = Int64Ty;
+ else if (Ops[0]->getType()->getPrimitiveSizeInBits() == 32)
+ InTy = Int32Ty;
+ else
+ InTy = Int16Ty;
+ Ops[0] = Builder.CreateBitCast(Ops[0], InTy);
+ if (usgn)
+ return Builder.CreateUIToFP(Ops[0], FTy);
+ return Builder.CreateSIToFP(Ops[0], FTy);
+ }
+ case NEON::BI__builtin_neon_vcvth_u16_f16:
+ usgn = true;
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vcvth_s16_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
+ if (usgn)
+ return Builder.CreateFPToUI(Ops[0], Int16Ty);
+ return Builder.CreateFPToSI(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vcvth_u32_f16:
+ usgn = true;
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vcvth_s32_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
+ if (usgn)
+ return Builder.CreateFPToUI(Ops[0], Int32Ty);
+ return Builder.CreateFPToSI(Ops[0], Int32Ty);
+ }
+ case NEON::BI__builtin_neon_vcvth_u64_f16:
+ usgn = true;
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vcvth_s64_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
+ if (usgn)
+ return Builder.CreateFPToUI(Ops[0], Int64Ty);
+ return Builder.CreateFPToSI(Ops[0], Int64Ty);
+ }
+ case NEON::BI__builtin_neon_vcvtah_u16_f16:
+ case NEON::BI__builtin_neon_vcvtmh_u16_f16:
+ case NEON::BI__builtin_neon_vcvtnh_u16_f16:
+ case NEON::BI__builtin_neon_vcvtph_u16_f16:
+ case NEON::BI__builtin_neon_vcvtah_s16_f16:
+ case NEON::BI__builtin_neon_vcvtmh_s16_f16:
+ case NEON::BI__builtin_neon_vcvtnh_s16_f16:
+ case NEON::BI__builtin_neon_vcvtph_s16_f16: {
+ unsigned Int;
+ llvm::Type* InTy = Int32Ty;
+ llvm::Type* FTy = HalfTy;
+ llvm::Type *Tys[2] = {InTy, FTy};
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ switch (BuiltinID) {
+ default: llvm_unreachable("missing builtin ID in switch!");
+ case NEON::BI__builtin_neon_vcvtah_u16_f16:
+ Int = Intrinsic::aarch64_neon_fcvtau; break;
+ case NEON::BI__builtin_neon_vcvtmh_u16_f16:
+ Int = Intrinsic::aarch64_neon_fcvtmu; break;
+ case NEON::BI__builtin_neon_vcvtnh_u16_f16:
+ Int = Intrinsic::aarch64_neon_fcvtnu; break;
+ case NEON::BI__builtin_neon_vcvtph_u16_f16:
+ Int = Intrinsic::aarch64_neon_fcvtpu; break;
+ case NEON::BI__builtin_neon_vcvtah_s16_f16:
+ Int = Intrinsic::aarch64_neon_fcvtas; break;
+ case NEON::BI__builtin_neon_vcvtmh_s16_f16:
+ Int = Intrinsic::aarch64_neon_fcvtms; break;
+ case NEON::BI__builtin_neon_vcvtnh_s16_f16:
+ Int = Intrinsic::aarch64_neon_fcvtns; break;
+ case NEON::BI__builtin_neon_vcvtph_s16_f16:
+ Int = Intrinsic::aarch64_neon_fcvtps; break;
+ }
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvt");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vcaleh_f16:
+ case NEON::BI__builtin_neon_vcalth_f16:
+ case NEON::BI__builtin_neon_vcageh_f16:
+ case NEON::BI__builtin_neon_vcagth_f16: {
+ unsigned Int;
+ llvm::Type* InTy = Int32Ty;
+ llvm::Type* FTy = HalfTy;
+ llvm::Type *Tys[2] = {InTy, FTy};
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ switch (BuiltinID) {
+ default: llvm_unreachable("missing builtin ID in switch!");
+ case NEON::BI__builtin_neon_vcageh_f16:
+ Int = Intrinsic::aarch64_neon_facge; break;
+ case NEON::BI__builtin_neon_vcagth_f16:
+ Int = Intrinsic::aarch64_neon_facgt; break;
+ case NEON::BI__builtin_neon_vcaleh_f16:
+ Int = Intrinsic::aarch64_neon_facge; std::swap(Ops[0], Ops[1]); break;
+ case NEON::BI__builtin_neon_vcalth_f16:
+ Int = Intrinsic::aarch64_neon_facgt; std::swap(Ops[0], Ops[1]); break;
+ }
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "facg");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vcvth_n_s16_f16:
+ case NEON::BI__builtin_neon_vcvth_n_u16_f16: {
+ unsigned Int;
+ llvm::Type* InTy = Int32Ty;
+ llvm::Type* FTy = HalfTy;
+ llvm::Type *Tys[2] = {InTy, FTy};
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ switch (BuiltinID) {
+ default: llvm_unreachable("missing builtin ID in switch!");
+ case NEON::BI__builtin_neon_vcvth_n_s16_f16:
+ Int = Intrinsic::aarch64_neon_vcvtfp2fxs; break;
+ case NEON::BI__builtin_neon_vcvth_n_u16_f16:
+ Int = Intrinsic::aarch64_neon_vcvtfp2fxu; break;
+ }
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vcvth_n_f16_s16:
+ case NEON::BI__builtin_neon_vcvth_n_f16_u16: {
+ unsigned Int;
+ llvm::Type* FTy = HalfTy;
+ llvm::Type* InTy = Int32Ty;
+ llvm::Type *Tys[2] = {FTy, InTy};
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ switch (BuiltinID) {
+ default: llvm_unreachable("missing builtin ID in switch!");
+ case NEON::BI__builtin_neon_vcvth_n_f16_s16:
+ Int = Intrinsic::aarch64_neon_vcvtfxs2fp;
+ Ops[0] = Builder.CreateSExt(Ops[0], InTy, "sext");
+ break;
+ case NEON::BI__builtin_neon_vcvth_n_f16_u16:
+ Int = Intrinsic::aarch64_neon_vcvtfxu2fp;
+ Ops[0] = Builder.CreateZExt(Ops[0], InTy);
+ break;
+ }
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "fcvth_n");
+ }
+ case NEON::BI__builtin_neon_vpaddd_s64: {
+ llvm::Type *Ty = llvm::VectorType::get(Int64Ty, 2);
+ Value *Vec = EmitScalarExpr(E->getArg(0));
+ // The vector is v2f64, so make sure it's bitcast to that.
+ Vec = Builder.CreateBitCast(Vec, Ty, "v2i64");
+ llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
+ llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
+ Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
+ Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
+ // Pairwise addition of a v2f64 into a scalar f64.
+ return Builder.CreateAdd(Op0, Op1, "vpaddd");
+ }
+ case NEON::BI__builtin_neon_vpaddd_f64: {
+ llvm::Type *Ty =
+ llvm::VectorType::get(DoubleTy, 2);
+ Value *Vec = EmitScalarExpr(E->getArg(0));
+ // The vector is v2f64, so make sure it's bitcast to that.
+ Vec = Builder.CreateBitCast(Vec, Ty, "v2f64");
+ llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
+ llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
+ Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
+ Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
+ // Pairwise addition of a v2f64 into a scalar f64.
+ return Builder.CreateFAdd(Op0, Op1, "vpaddd");
+ }
+ case NEON::BI__builtin_neon_vpadds_f32: {
+ llvm::Type *Ty =
+ llvm::VectorType::get(FloatTy, 2);
+ Value *Vec = EmitScalarExpr(E->getArg(0));
+ // The vector is v2f32, so make sure it's bitcast to that.
+ Vec = Builder.CreateBitCast(Vec, Ty, "v2f32");
+ llvm::Value *Idx0 = llvm::ConstantInt::get(SizeTy, 0);
+ llvm::Value *Idx1 = llvm::ConstantInt::get(SizeTy, 1);
+ Value *Op0 = Builder.CreateExtractElement(Vec, Idx0, "lane0");
+ Value *Op1 = Builder.CreateExtractElement(Vec, Idx1, "lane1");
+ // Pairwise addition of a v2f32 into a scalar f32.
+ return Builder.CreateFAdd(Op0, Op1, "vpaddd");
+ }
+ case NEON::BI__builtin_neon_vceqzd_s64:
+ case NEON::BI__builtin_neon_vceqzd_f64:
+ case NEON::BI__builtin_neon_vceqzs_f32:
+ case NEON::BI__builtin_neon_vceqzh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitAArch64CompareBuiltinExpr(
+ Ops[0], ConvertType(E->getCallReturnType(getContext())),
+ ICmpInst::FCMP_OEQ, ICmpInst::ICMP_EQ, "vceqz");
+ case NEON::BI__builtin_neon_vcgezd_s64:
+ case NEON::BI__builtin_neon_vcgezd_f64:
+ case NEON::BI__builtin_neon_vcgezs_f32:
+ case NEON::BI__builtin_neon_vcgezh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitAArch64CompareBuiltinExpr(
+ Ops[0], ConvertType(E->getCallReturnType(getContext())),
+ ICmpInst::FCMP_OGE, ICmpInst::ICMP_SGE, "vcgez");
+ case NEON::BI__builtin_neon_vclezd_s64:
+ case NEON::BI__builtin_neon_vclezd_f64:
+ case NEON::BI__builtin_neon_vclezs_f32:
+ case NEON::BI__builtin_neon_vclezh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitAArch64CompareBuiltinExpr(
+ Ops[0], ConvertType(E->getCallReturnType(getContext())),
+ ICmpInst::FCMP_OLE, ICmpInst::ICMP_SLE, "vclez");
+ case NEON::BI__builtin_neon_vcgtzd_s64:
+ case NEON::BI__builtin_neon_vcgtzd_f64:
+ case NEON::BI__builtin_neon_vcgtzs_f32:
+ case NEON::BI__builtin_neon_vcgtzh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitAArch64CompareBuiltinExpr(
+ Ops[0], ConvertType(E->getCallReturnType(getContext())),
+ ICmpInst::FCMP_OGT, ICmpInst::ICMP_SGT, "vcgtz");
+ case NEON::BI__builtin_neon_vcltzd_s64:
+ case NEON::BI__builtin_neon_vcltzd_f64:
+ case NEON::BI__builtin_neon_vcltzs_f32:
+ case NEON::BI__builtin_neon_vcltzh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitAArch64CompareBuiltinExpr(
+ Ops[0], ConvertType(E->getCallReturnType(getContext())),
+ ICmpInst::FCMP_OLT, ICmpInst::ICMP_SLT, "vcltz");
+
+ case NEON::BI__builtin_neon_vceqzd_u64: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
+ Ops[0] =
+ Builder.CreateICmpEQ(Ops[0], llvm::Constant::getNullValue(Int64Ty));
+ return Builder.CreateSExt(Ops[0], Int64Ty, "vceqzd");
+ }
+ case NEON::BI__builtin_neon_vceqd_f64:
+ case NEON::BI__builtin_neon_vcled_f64:
+ case NEON::BI__builtin_neon_vcltd_f64:
+ case NEON::BI__builtin_neon_vcged_f64:
+ case NEON::BI__builtin_neon_vcgtd_f64: {
+ llvm::CmpInst::Predicate P;
+ switch (BuiltinID) {
+ default: llvm_unreachable("missing builtin ID in switch!");
+ case NEON::BI__builtin_neon_vceqd_f64: P = llvm::FCmpInst::FCMP_OEQ; break;
+ case NEON::BI__builtin_neon_vcled_f64: P = llvm::FCmpInst::FCMP_OLE; break;
+ case NEON::BI__builtin_neon_vcltd_f64: P = llvm::FCmpInst::FCMP_OLT; break;
+ case NEON::BI__builtin_neon_vcged_f64: P = llvm::FCmpInst::FCMP_OGE; break;
+ case NEON::BI__builtin_neon_vcgtd_f64: P = llvm::FCmpInst::FCMP_OGT; break;
+ }
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
+ Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
+ return Builder.CreateSExt(Ops[0], Int64Ty, "vcmpd");
+ }
+ case NEON::BI__builtin_neon_vceqs_f32:
+ case NEON::BI__builtin_neon_vcles_f32:
+ case NEON::BI__builtin_neon_vclts_f32:
+ case NEON::BI__builtin_neon_vcges_f32:
+ case NEON::BI__builtin_neon_vcgts_f32: {
+ llvm::CmpInst::Predicate P;
+ switch (BuiltinID) {
+ default: llvm_unreachable("missing builtin ID in switch!");
+ case NEON::BI__builtin_neon_vceqs_f32: P = llvm::FCmpInst::FCMP_OEQ; break;
+ case NEON::BI__builtin_neon_vcles_f32: P = llvm::FCmpInst::FCMP_OLE; break;
+ case NEON::BI__builtin_neon_vclts_f32: P = llvm::FCmpInst::FCMP_OLT; break;
+ case NEON::BI__builtin_neon_vcges_f32: P = llvm::FCmpInst::FCMP_OGE; break;
+ case NEON::BI__builtin_neon_vcgts_f32: P = llvm::FCmpInst::FCMP_OGT; break;
+ }
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], FloatTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], FloatTy);
+ Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
+ return Builder.CreateSExt(Ops[0], Int32Ty, "vcmpd");
+ }
+ case NEON::BI__builtin_neon_vceqh_f16:
+ case NEON::BI__builtin_neon_vcleh_f16:
+ case NEON::BI__builtin_neon_vclth_f16:
+ case NEON::BI__builtin_neon_vcgeh_f16:
+ case NEON::BI__builtin_neon_vcgth_f16: {
+ llvm::CmpInst::Predicate P;
+ switch (BuiltinID) {
+ default: llvm_unreachable("missing builtin ID in switch!");
+ case NEON::BI__builtin_neon_vceqh_f16: P = llvm::FCmpInst::FCMP_OEQ; break;
+ case NEON::BI__builtin_neon_vcleh_f16: P = llvm::FCmpInst::FCMP_OLE; break;
+ case NEON::BI__builtin_neon_vclth_f16: P = llvm::FCmpInst::FCMP_OLT; break;
+ case NEON::BI__builtin_neon_vcgeh_f16: P = llvm::FCmpInst::FCMP_OGE; break;
+ case NEON::BI__builtin_neon_vcgth_f16: P = llvm::FCmpInst::FCMP_OGT; break;
+ }
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], HalfTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], HalfTy);
+ Ops[0] = Builder.CreateFCmp(P, Ops[0], Ops[1]);
+ return Builder.CreateSExt(Ops[0], Int16Ty, "vcmpd");
+ }
+ case NEON::BI__builtin_neon_vceqd_s64:
+ case NEON::BI__builtin_neon_vceqd_u64:
+ case NEON::BI__builtin_neon_vcgtd_s64:
+ case NEON::BI__builtin_neon_vcgtd_u64:
+ case NEON::BI__builtin_neon_vcltd_s64:
+ case NEON::BI__builtin_neon_vcltd_u64:
+ case NEON::BI__builtin_neon_vcged_u64:
+ case NEON::BI__builtin_neon_vcged_s64:
+ case NEON::BI__builtin_neon_vcled_u64:
+ case NEON::BI__builtin_neon_vcled_s64: {
+ llvm::CmpInst::Predicate P;
+ switch (BuiltinID) {
+ default: llvm_unreachable("missing builtin ID in switch!");
+ case NEON::BI__builtin_neon_vceqd_s64:
+ case NEON::BI__builtin_neon_vceqd_u64:P = llvm::ICmpInst::ICMP_EQ;break;
+ case NEON::BI__builtin_neon_vcgtd_s64:P = llvm::ICmpInst::ICMP_SGT;break;
+ case NEON::BI__builtin_neon_vcgtd_u64:P = llvm::ICmpInst::ICMP_UGT;break;
+ case NEON::BI__builtin_neon_vcltd_s64:P = llvm::ICmpInst::ICMP_SLT;break;
+ case NEON::BI__builtin_neon_vcltd_u64:P = llvm::ICmpInst::ICMP_ULT;break;
+ case NEON::BI__builtin_neon_vcged_u64:P = llvm::ICmpInst::ICMP_UGE;break;
+ case NEON::BI__builtin_neon_vcged_s64:P = llvm::ICmpInst::ICMP_SGE;break;
+ case NEON::BI__builtin_neon_vcled_u64:P = llvm::ICmpInst::ICMP_ULE;break;
+ case NEON::BI__builtin_neon_vcled_s64:P = llvm::ICmpInst::ICMP_SLE;break;
+ }
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
+ Ops[0] = Builder.CreateICmp(P, Ops[0], Ops[1]);
+ return Builder.CreateSExt(Ops[0], Int64Ty, "vceqd");
+ }
+ case NEON::BI__builtin_neon_vtstd_s64:
+ case NEON::BI__builtin_neon_vtstd_u64: {
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[0] = Builder.CreateBitCast(Ops[0], Int64Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
+ Ops[0] = Builder.CreateAnd(Ops[0], Ops[1]);
+ Ops[0] = Builder.CreateICmp(ICmpInst::ICMP_NE, Ops[0],
+ llvm::Constant::getNullValue(Int64Ty));
+ return Builder.CreateSExt(Ops[0], Int64Ty, "vtstd");
+ }
+ case NEON::BI__builtin_neon_vset_lane_i8:
+ case NEON::BI__builtin_neon_vset_lane_i16:
+ case NEON::BI__builtin_neon_vset_lane_i32:
+ case NEON::BI__builtin_neon_vset_lane_i64:
+ case NEON::BI__builtin_neon_vset_lane_f32:
+ case NEON::BI__builtin_neon_vsetq_lane_i8:
+ case NEON::BI__builtin_neon_vsetq_lane_i16:
+ case NEON::BI__builtin_neon_vsetq_lane_i32:
+ case NEON::BI__builtin_neon_vsetq_lane_i64:
+ case NEON::BI__builtin_neon_vsetq_lane_f32:
+ Ops.push_back(EmitScalarExpr(E->getArg(2)));
+ return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
+ case NEON::BI__builtin_neon_vset_lane_f64:
+ // The vector type needs a cast for the v1f64 variant.
+ Ops[1] = Builder.CreateBitCast(Ops[1],
+ llvm::VectorType::get(DoubleTy, 1));
+ Ops.push_back(EmitScalarExpr(E->getArg(2)));
+ return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
+ case NEON::BI__builtin_neon_vsetq_lane_f64:
+ // The vector type needs a cast for the v2f64 variant.
+ Ops[1] = Builder.CreateBitCast(Ops[1],
+ llvm::VectorType::get(DoubleTy, 2));
+ Ops.push_back(EmitScalarExpr(E->getArg(2)));
+ return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vset_lane");
+
+ case NEON::BI__builtin_neon_vget_lane_i8:
+ case NEON::BI__builtin_neon_vdupb_lane_i8:
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 8));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vgetq_lane_i8:
+ case NEON::BI__builtin_neon_vdupb_laneq_i8:
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int8Ty, 16));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ case NEON::BI__builtin_neon_vget_lane_i16:
+ case NEON::BI__builtin_neon_vduph_lane_i16:
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 4));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vgetq_lane_i16:
+ case NEON::BI__builtin_neon_vduph_laneq_i16:
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int16Ty, 8));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ case NEON::BI__builtin_neon_vget_lane_i32:
+ case NEON::BI__builtin_neon_vdups_lane_i32:
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 2));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vdups_lane_f32:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(FloatTy, 2));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vdups_lane");
+ case NEON::BI__builtin_neon_vgetq_lane_i32:
+ case NEON::BI__builtin_neon_vdups_laneq_i32:
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ case NEON::BI__builtin_neon_vget_lane_i64:
+ case NEON::BI__builtin_neon_vdupd_lane_i64:
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 1));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vdupd_lane_f64:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(DoubleTy, 1));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vdupd_lane");
+ case NEON::BI__builtin_neon_vgetq_lane_i64:
+ case NEON::BI__builtin_neon_vdupd_laneq_i64:
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ case NEON::BI__builtin_neon_vget_lane_f32:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(FloatTy, 2));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vget_lane_f64:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(DoubleTy, 1));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ case NEON::BI__builtin_neon_vgetq_lane_f32:
+ case NEON::BI__builtin_neon_vdups_laneq_f32:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(FloatTy, 4));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ case NEON::BI__builtin_neon_vgetq_lane_f64:
+ case NEON::BI__builtin_neon_vdupd_laneq_f64:
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::VectorType::get(DoubleTy, 2));
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ case NEON::BI__builtin_neon_vaddh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ return Builder.CreateFAdd(Ops[0], Ops[1], "vaddh");
+ case NEON::BI__builtin_neon_vsubh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ return Builder.CreateFSub(Ops[0], Ops[1], "vsubh");
+ case NEON::BI__builtin_neon_vmulh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ return Builder.CreateFMul(Ops[0], Ops[1], "vmulh");
+ case NEON::BI__builtin_neon_vdivh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ return Builder.CreateFDiv(Ops[0], Ops[1], "vdivh");
+ case NEON::BI__builtin_neon_vfmah_f16: {
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
+ // NEON intrinsic puts accumulator first, unlike the LLVM fma.
+ return Builder.CreateCall(F,
+ {EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)), Ops[0]});
+ }
+ case NEON::BI__builtin_neon_vfmsh_f16: {
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, HalfTy);
+ Value *Zero = llvm::ConstantFP::getZeroValueForNegation(HalfTy);
+ Value* Sub = Builder.CreateFSub(Zero, EmitScalarExpr(E->getArg(1)), "vsubh");
+ // NEON intrinsic puts accumulator first, unlike the LLVM fma.
+ return Builder.CreateCall(F, {Sub, EmitScalarExpr(E->getArg(2)), Ops[0]});
+ }
+ case NEON::BI__builtin_neon_vaddd_s64:
+ case NEON::BI__builtin_neon_vaddd_u64:
+ return Builder.CreateAdd(Ops[0], EmitScalarExpr(E->getArg(1)), "vaddd");
+ case NEON::BI__builtin_neon_vsubd_s64:
+ case NEON::BI__builtin_neon_vsubd_u64:
+ return Builder.CreateSub(Ops[0], EmitScalarExpr(E->getArg(1)), "vsubd");
+ case NEON::BI__builtin_neon_vqdmlalh_s16:
+ case NEON::BI__builtin_neon_vqdmlslh_s16: {
+ SmallVector<Value *, 2> ProductOps;
+ ProductOps.push_back(vectorWrapScalar16(Ops[1]));
+ ProductOps.push_back(vectorWrapScalar16(EmitScalarExpr(E->getArg(2))));
+ llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
+ Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
+ ProductOps, "vqdmlXl");
+ Constant *CI = ConstantInt::get(SizeTy, 0);
+ Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
+
+ unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlalh_s16
+ ? Intrinsic::aarch64_neon_sqadd
+ : Intrinsic::aarch64_neon_sqsub;
+ return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int32Ty), Ops, "vqdmlXl");
+ }
+ case NEON::BI__builtin_neon_vqshlud_n_s64: {
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqshlu, Int64Ty),
+ Ops, "vqshlu_n");
+ }
+ case NEON::BI__builtin_neon_vqshld_n_u64:
+ case NEON::BI__builtin_neon_vqshld_n_s64: {
+ unsigned Int = BuiltinID == NEON::BI__builtin_neon_vqshld_n_u64
+ ? Intrinsic::aarch64_neon_uqshl
+ : Intrinsic::aarch64_neon_sqshl;
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Ops[1] = Builder.CreateZExt(Ops[1], Int64Ty);
+ return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vqshl_n");
+ }
+ case NEON::BI__builtin_neon_vrshrd_n_u64:
+ case NEON::BI__builtin_neon_vrshrd_n_s64: {
+ unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrshrd_n_u64
+ ? Intrinsic::aarch64_neon_urshl
+ : Intrinsic::aarch64_neon_srshl;
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ int SV = cast<ConstantInt>(Ops[1])->getSExtValue();
+ Ops[1] = ConstantInt::get(Int64Ty, -SV);
+ return EmitNeonCall(CGM.getIntrinsic(Int, Int64Ty), Ops, "vrshr_n");
+ }
+ case NEON::BI__builtin_neon_vrsrad_n_u64:
+ case NEON::BI__builtin_neon_vrsrad_n_s64: {
+ unsigned Int = BuiltinID == NEON::BI__builtin_neon_vrsrad_n_u64
+ ? Intrinsic::aarch64_neon_urshl
+ : Intrinsic::aarch64_neon_srshl;
+ Ops[1] = Builder.CreateBitCast(Ops[1], Int64Ty);
+ Ops.push_back(Builder.CreateNeg(EmitScalarExpr(E->getArg(2))));
+ Ops[1] = Builder.CreateCall(CGM.getIntrinsic(Int, Int64Ty),
+ {Ops[1], Builder.CreateSExt(Ops[2], Int64Ty)});
+ return Builder.CreateAdd(Ops[0], Builder.CreateBitCast(Ops[1], Int64Ty));
+ }
+ case NEON::BI__builtin_neon_vshld_n_s64:
+ case NEON::BI__builtin_neon_vshld_n_u64: {
+ llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
+ return Builder.CreateShl(
+ Ops[0], ConstantInt::get(Int64Ty, Amt->getZExtValue()), "shld_n");
+ }
+ case NEON::BI__builtin_neon_vshrd_n_s64: {
+ llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
+ return Builder.CreateAShr(
+ Ops[0], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
+ Amt->getZExtValue())),
+ "shrd_n");
+ }
+ case NEON::BI__builtin_neon_vshrd_n_u64: {
+ llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(1)));
+ uint64_t ShiftAmt = Amt->getZExtValue();
+ // Right-shifting an unsigned value by its size yields 0.
+ if (ShiftAmt == 64)
+ return ConstantInt::get(Int64Ty, 0);
+ return Builder.CreateLShr(Ops[0], ConstantInt::get(Int64Ty, ShiftAmt),
+ "shrd_n");
+ }
+ case NEON::BI__builtin_neon_vsrad_n_s64: {
+ llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
+ Ops[1] = Builder.CreateAShr(
+ Ops[1], ConstantInt::get(Int64Ty, std::min(static_cast<uint64_t>(63),
+ Amt->getZExtValue())),
+ "shrd_n");
+ return Builder.CreateAdd(Ops[0], Ops[1]);
+ }
+ case NEON::BI__builtin_neon_vsrad_n_u64: {
+ llvm::ConstantInt *Amt = cast<ConstantInt>(EmitScalarExpr(E->getArg(2)));
+ uint64_t ShiftAmt = Amt->getZExtValue();
+ // Right-shifting an unsigned value by its size yields 0.
+ // As Op + 0 = Op, return Ops[0] directly.
+ if (ShiftAmt == 64)
+ return Ops[0];
+ Ops[1] = Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, ShiftAmt),
+ "shrd_n");
+ return Builder.CreateAdd(Ops[0], Ops[1]);
+ }
+ case NEON::BI__builtin_neon_vqdmlalh_lane_s16:
+ case NEON::BI__builtin_neon_vqdmlalh_laneq_s16:
+ case NEON::BI__builtin_neon_vqdmlslh_lane_s16:
+ case NEON::BI__builtin_neon_vqdmlslh_laneq_s16: {
+ Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
+ "lane");
+ SmallVector<Value *, 2> ProductOps;
+ ProductOps.push_back(vectorWrapScalar16(Ops[1]));
+ ProductOps.push_back(vectorWrapScalar16(Ops[2]));
+ llvm::Type *VTy = llvm::VectorType::get(Int32Ty, 4);
+ Ops[1] = EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmull, VTy),
+ ProductOps, "vqdmlXl");
+ Constant *CI = ConstantInt::get(SizeTy, 0);
+ Ops[1] = Builder.CreateExtractElement(Ops[1], CI, "lane0");
+ Ops.pop_back();
+
+ unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlalh_lane_s16 ||
+ BuiltinID == NEON::BI__builtin_neon_vqdmlalh_laneq_s16)
+ ? Intrinsic::aarch64_neon_sqadd
+ : Intrinsic::aarch64_neon_sqsub;
+ return EmitNeonCall(CGM.getIntrinsic(AccInt, Int32Ty), Ops, "vqdmlXl");
+ }
+ case NEON::BI__builtin_neon_vqdmlals_s32:
+ case NEON::BI__builtin_neon_vqdmlsls_s32: {
+ SmallVector<Value *, 2> ProductOps;
+ ProductOps.push_back(Ops[1]);
+ ProductOps.push_back(EmitScalarExpr(E->getArg(2)));
+ Ops[1] =
+ EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
+ ProductOps, "vqdmlXl");
+
+ unsigned AccumInt = BuiltinID == NEON::BI__builtin_neon_vqdmlals_s32
+ ? Intrinsic::aarch64_neon_sqadd
+ : Intrinsic::aarch64_neon_sqsub;
+ return EmitNeonCall(CGM.getIntrinsic(AccumInt, Int64Ty), Ops, "vqdmlXl");
+ }
+ case NEON::BI__builtin_neon_vqdmlals_lane_s32:
+ case NEON::BI__builtin_neon_vqdmlals_laneq_s32:
+ case NEON::BI__builtin_neon_vqdmlsls_lane_s32:
+ case NEON::BI__builtin_neon_vqdmlsls_laneq_s32: {
+ Ops[2] = Builder.CreateExtractElement(Ops[2], EmitScalarExpr(E->getArg(3)),
+ "lane");
+ SmallVector<Value *, 2> ProductOps;
+ ProductOps.push_back(Ops[1]);
+ ProductOps.push_back(Ops[2]);
+ Ops[1] =
+ EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_sqdmulls_scalar),
+ ProductOps, "vqdmlXl");
+ Ops.pop_back();
+
+ unsigned AccInt = (BuiltinID == NEON::BI__builtin_neon_vqdmlals_lane_s32 ||
+ BuiltinID == NEON::BI__builtin_neon_vqdmlals_laneq_s32)
+ ? Intrinsic::aarch64_neon_sqadd
+ : Intrinsic::aarch64_neon_sqsub;
+ return EmitNeonCall(CGM.getIntrinsic(AccInt, Int64Ty), Ops, "vqdmlXl");
+ }
+ case NEON::BI__builtin_neon_vduph_lane_f16: {
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vget_lane");
+ }
+ case NEON::BI__builtin_neon_vduph_laneq_f16: {
+ return Builder.CreateExtractElement(Ops[0], EmitScalarExpr(E->getArg(1)),
+ "vgetq_lane");
+ }
+ case AArch64::BI_BitScanForward:
+ case AArch64::BI_BitScanForward64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
+ case AArch64::BI_BitScanReverse:
+ case AArch64::BI_BitScanReverse64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
+ case AArch64::BI_InterlockedAnd64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
+ case AArch64::BI_InterlockedExchange64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
+ case AArch64::BI_InterlockedExchangeAdd64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
+ case AArch64::BI_InterlockedExchangeSub64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
+ case AArch64::BI_InterlockedOr64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
+ case AArch64::BI_InterlockedXor64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
+ case AArch64::BI_InterlockedDecrement64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
+ case AArch64::BI_InterlockedIncrement64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
+ case AArch64::BI_InterlockedExchangeAdd8_acq:
+ case AArch64::BI_InterlockedExchangeAdd16_acq:
+ case AArch64::BI_InterlockedExchangeAdd_acq:
+ case AArch64::BI_InterlockedExchangeAdd64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_acq, E);
+ case AArch64::BI_InterlockedExchangeAdd8_rel:
+ case AArch64::BI_InterlockedExchangeAdd16_rel:
+ case AArch64::BI_InterlockedExchangeAdd_rel:
+ case AArch64::BI_InterlockedExchangeAdd64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_rel, E);
+ case AArch64::BI_InterlockedExchangeAdd8_nf:
+ case AArch64::BI_InterlockedExchangeAdd16_nf:
+ case AArch64::BI_InterlockedExchangeAdd_nf:
+ case AArch64::BI_InterlockedExchangeAdd64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd_nf, E);
+ case AArch64::BI_InterlockedExchange8_acq:
+ case AArch64::BI_InterlockedExchange16_acq:
+ case AArch64::BI_InterlockedExchange_acq:
+ case AArch64::BI_InterlockedExchange64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_acq, E);
+ case AArch64::BI_InterlockedExchange8_rel:
+ case AArch64::BI_InterlockedExchange16_rel:
+ case AArch64::BI_InterlockedExchange_rel:
+ case AArch64::BI_InterlockedExchange64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_rel, E);
+ case AArch64::BI_InterlockedExchange8_nf:
+ case AArch64::BI_InterlockedExchange16_nf:
+ case AArch64::BI_InterlockedExchange_nf:
+ case AArch64::BI_InterlockedExchange64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange_nf, E);
+ case AArch64::BI_InterlockedCompareExchange8_acq:
+ case AArch64::BI_InterlockedCompareExchange16_acq:
+ case AArch64::BI_InterlockedCompareExchange_acq:
+ case AArch64::BI_InterlockedCompareExchange64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_acq, E);
+ case AArch64::BI_InterlockedCompareExchange8_rel:
+ case AArch64::BI_InterlockedCompareExchange16_rel:
+ case AArch64::BI_InterlockedCompareExchange_rel:
+ case AArch64::BI_InterlockedCompareExchange64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_rel, E);
+ case AArch64::BI_InterlockedCompareExchange8_nf:
+ case AArch64::BI_InterlockedCompareExchange16_nf:
+ case AArch64::BI_InterlockedCompareExchange_nf:
+ case AArch64::BI_InterlockedCompareExchange64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedCompareExchange_nf, E);
+ case AArch64::BI_InterlockedOr8_acq:
+ case AArch64::BI_InterlockedOr16_acq:
+ case AArch64::BI_InterlockedOr_acq:
+ case AArch64::BI_InterlockedOr64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_acq, E);
+ case AArch64::BI_InterlockedOr8_rel:
+ case AArch64::BI_InterlockedOr16_rel:
+ case AArch64::BI_InterlockedOr_rel:
+ case AArch64::BI_InterlockedOr64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_rel, E);
+ case AArch64::BI_InterlockedOr8_nf:
+ case AArch64::BI_InterlockedOr16_nf:
+ case AArch64::BI_InterlockedOr_nf:
+ case AArch64::BI_InterlockedOr64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr_nf, E);
+ case AArch64::BI_InterlockedXor8_acq:
+ case AArch64::BI_InterlockedXor16_acq:
+ case AArch64::BI_InterlockedXor_acq:
+ case AArch64::BI_InterlockedXor64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_acq, E);
+ case AArch64::BI_InterlockedXor8_rel:
+ case AArch64::BI_InterlockedXor16_rel:
+ case AArch64::BI_InterlockedXor_rel:
+ case AArch64::BI_InterlockedXor64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_rel, E);
+ case AArch64::BI_InterlockedXor8_nf:
+ case AArch64::BI_InterlockedXor16_nf:
+ case AArch64::BI_InterlockedXor_nf:
+ case AArch64::BI_InterlockedXor64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor_nf, E);
+ case AArch64::BI_InterlockedAnd8_acq:
+ case AArch64::BI_InterlockedAnd16_acq:
+ case AArch64::BI_InterlockedAnd_acq:
+ case AArch64::BI_InterlockedAnd64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_acq, E);
+ case AArch64::BI_InterlockedAnd8_rel:
+ case AArch64::BI_InterlockedAnd16_rel:
+ case AArch64::BI_InterlockedAnd_rel:
+ case AArch64::BI_InterlockedAnd64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_rel, E);
+ case AArch64::BI_InterlockedAnd8_nf:
+ case AArch64::BI_InterlockedAnd16_nf:
+ case AArch64::BI_InterlockedAnd_nf:
+ case AArch64::BI_InterlockedAnd64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd_nf, E);
+ case AArch64::BI_InterlockedIncrement16_acq:
+ case AArch64::BI_InterlockedIncrement_acq:
+ case AArch64::BI_InterlockedIncrement64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_acq, E);
+ case AArch64::BI_InterlockedIncrement16_rel:
+ case AArch64::BI_InterlockedIncrement_rel:
+ case AArch64::BI_InterlockedIncrement64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_rel, E);
+ case AArch64::BI_InterlockedIncrement16_nf:
+ case AArch64::BI_InterlockedIncrement_nf:
+ case AArch64::BI_InterlockedIncrement64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement_nf, E);
+ case AArch64::BI_InterlockedDecrement16_acq:
+ case AArch64::BI_InterlockedDecrement_acq:
+ case AArch64::BI_InterlockedDecrement64_acq:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_acq, E);
+ case AArch64::BI_InterlockedDecrement16_rel:
+ case AArch64::BI_InterlockedDecrement_rel:
+ case AArch64::BI_InterlockedDecrement64_rel:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_rel, E);
+ case AArch64::BI_InterlockedDecrement16_nf:
+ case AArch64::BI_InterlockedDecrement_nf:
+ case AArch64::BI_InterlockedDecrement64_nf:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement_nf, E);
+
+ case AArch64::BI_InterlockedAdd: {
+ Value *Arg0 = EmitScalarExpr(E->getArg(0));
+ Value *Arg1 = EmitScalarExpr(E->getArg(1));
+ AtomicRMWInst *RMWI = Builder.CreateAtomicRMW(
+ AtomicRMWInst::Add, Arg0, Arg1,
+ llvm::AtomicOrdering::SequentiallyConsistent);
+ return Builder.CreateAdd(RMWI, Arg1);
+ }
+ }
+
+ llvm::VectorType *VTy = GetNeonType(this, Type);
+ llvm::Type *Ty = VTy;
+ if (!Ty)
+ return nullptr;
+
+ // Not all intrinsics handled by the common case work for AArch64 yet, so only
+ // defer to common code if it's been added to our special map.
+ Builtin = findNeonIntrinsicInMap(AArch64SIMDIntrinsicMap, BuiltinID,
+ AArch64SIMDIntrinsicsProvenSorted);
+
+ if (Builtin)
+ return EmitCommonNeonBuiltinExpr(
+ Builtin->BuiltinID, Builtin->LLVMIntrinsic, Builtin->AltLLVMIntrinsic,
+ Builtin->NameHint, Builtin->TypeModifier, E, Ops,
+ /*never use addresses*/ Address::invalid(), Address::invalid(), Arch);
+
+ if (Value *V = EmitAArch64TblBuiltinExpr(*this, BuiltinID, E, Ops, Arch))
+ return V;
+
+ unsigned Int;
+ switch (BuiltinID) {
+ default: return nullptr;
+ case NEON::BI__builtin_neon_vbsl_v:
+ case NEON::BI__builtin_neon_vbslq_v: {
+ llvm::Type *BitTy = llvm::VectorType::getInteger(VTy);
+ Ops[0] = Builder.CreateBitCast(Ops[0], BitTy, "vbsl");
+ Ops[1] = Builder.CreateBitCast(Ops[1], BitTy, "vbsl");
+ Ops[2] = Builder.CreateBitCast(Ops[2], BitTy, "vbsl");
+
+ Ops[1] = Builder.CreateAnd(Ops[0], Ops[1], "vbsl");
+ Ops[2] = Builder.CreateAnd(Builder.CreateNot(Ops[0]), Ops[2], "vbsl");
+ Ops[0] = Builder.CreateOr(Ops[1], Ops[2], "vbsl");
+ return Builder.CreateBitCast(Ops[0], Ty);
+ }
+ case NEON::BI__builtin_neon_vfma_lane_v:
+ case NEON::BI__builtin_neon_vfmaq_lane_v: { // Only used for FP types
+ // The ARM builtins (and instructions) have the addend as the first
+ // operand, but the 'fma' intrinsics have it last. Swap it around here.
+ Value *Addend = Ops[0];
+ Value *Multiplicand = Ops[1];
+ Value *LaneSource = Ops[2];
+ Ops[0] = Multiplicand;
+ Ops[1] = LaneSource;
+ Ops[2] = Addend;
+
+ // Now adjust things to handle the lane access.
+ llvm::Type *SourceTy = BuiltinID == NEON::BI__builtin_neon_vfmaq_lane_v ?
+ llvm::VectorType::get(VTy->getElementType(), VTy->getNumElements() / 2) :
+ VTy;
+ llvm::Constant *cst = cast<Constant>(Ops[3]);
+ Value *SV = llvm::ConstantVector::getSplat(VTy->getNumElements(), cst);
+ Ops[1] = Builder.CreateBitCast(Ops[1], SourceTy);
+ Ops[1] = Builder.CreateShuffleVector(Ops[1], Ops[1], SV, "lane");
+
+ Ops.pop_back();
+ Int = Intrinsic::fma;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "fmla");
+ }
+ case NEON::BI__builtin_neon_vfma_laneq_v: {
+ llvm::VectorType *VTy = cast<llvm::VectorType>(Ty);
+ // v1f64 fma should be mapped to Neon scalar f64 fma
+ if (VTy && VTy->getElementType() == DoubleTy) {
+ Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], DoubleTy);
+ llvm::Type *VTy = GetNeonType(this,
+ NeonTypeFlags(NeonTypeFlags::Float64, false, true));
+ Ops[2] = Builder.CreateBitCast(Ops[2], VTy);
+ Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, DoubleTy);
+ Value *Result = Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
+ return Builder.CreateBitCast(Result, Ty);
+ }
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+
+ llvm::Type *STy = llvm::VectorType::get(VTy->getElementType(),
+ VTy->getNumElements() * 2);
+ Ops[2] = Builder.CreateBitCast(Ops[2], STy);
+ Value* SV = llvm::ConstantVector::getSplat(VTy->getNumElements(),
+ cast<ConstantInt>(Ops[3]));
+ Ops[2] = Builder.CreateShuffleVector(Ops[2], Ops[2], SV, "lane");
+
+ return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
+ }
+ case NEON::BI__builtin_neon_vfmaq_laneq_v: {
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Ops[2] = EmitNeonSplat(Ops[2], cast<ConstantInt>(Ops[3]));
+ return Builder.CreateCall(F, {Ops[2], Ops[1], Ops[0]});
+ }
+ case NEON::BI__builtin_neon_vfmah_lane_f16:
+ case NEON::BI__builtin_neon_vfmas_lane_f32:
+ case NEON::BI__builtin_neon_vfmah_laneq_f16:
+ case NEON::BI__builtin_neon_vfmas_laneq_f32:
+ case NEON::BI__builtin_neon_vfmad_lane_f64:
+ case NEON::BI__builtin_neon_vfmad_laneq_f64: {
+ Ops.push_back(EmitScalarExpr(E->getArg(3)));
+ llvm::Type *Ty = ConvertType(E->getCallReturnType(getContext()));
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, Ty);
+ Ops[2] = Builder.CreateExtractElement(Ops[2], Ops[3], "extract");
+ return Builder.CreateCall(F, {Ops[1], Ops[2], Ops[0]});
+ }
+ case NEON::BI__builtin_neon_vmull_v:
+ // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
+ Int = usgn ? Intrinsic::aarch64_neon_umull : Intrinsic::aarch64_neon_smull;
+ if (Type.isPoly()) Int = Intrinsic::aarch64_neon_pmull;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmull");
+ case NEON::BI__builtin_neon_vmax_v:
+ case NEON::BI__builtin_neon_vmaxq_v:
+ // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
+ Int = usgn ? Intrinsic::aarch64_neon_umax : Intrinsic::aarch64_neon_smax;
+ if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmax;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmax");
+ case NEON::BI__builtin_neon_vmaxh_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Int = Intrinsic::aarch64_neon_fmax;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmax");
+ }
+ case NEON::BI__builtin_neon_vmin_v:
+ case NEON::BI__builtin_neon_vminq_v:
+ // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
+ Int = usgn ? Intrinsic::aarch64_neon_umin : Intrinsic::aarch64_neon_smin;
+ if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmin;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmin");
+ case NEON::BI__builtin_neon_vminh_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Int = Intrinsic::aarch64_neon_fmin;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmin");
+ }
+ case NEON::BI__builtin_neon_vabd_v:
+ case NEON::BI__builtin_neon_vabdq_v:
+ // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
+ Int = usgn ? Intrinsic::aarch64_neon_uabd : Intrinsic::aarch64_neon_sabd;
+ if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fabd;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vabd");
+ case NEON::BI__builtin_neon_vpadal_v:
+ case NEON::BI__builtin_neon_vpadalq_v: {
+ unsigned ArgElts = VTy->getNumElements();
+ llvm::IntegerType *EltTy = cast<IntegerType>(VTy->getElementType());
+ unsigned BitWidth = EltTy->getBitWidth();
+ llvm::Type *ArgTy = llvm::VectorType::get(
+ llvm::IntegerType::get(getLLVMContext(), BitWidth/2), 2*ArgElts);
+ llvm::Type* Tys[2] = { VTy, ArgTy };
+ Int = usgn ? Intrinsic::aarch64_neon_uaddlp : Intrinsic::aarch64_neon_saddlp;
+ SmallVector<llvm::Value*, 1> TmpOps;
+ TmpOps.push_back(Ops[1]);
+ Function *F = CGM.getIntrinsic(Int, Tys);
+ llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vpadal");
+ llvm::Value *addend = Builder.CreateBitCast(Ops[0], tmp->getType());
+ return Builder.CreateAdd(tmp, addend);
+ }
+ case NEON::BI__builtin_neon_vpmin_v:
+ case NEON::BI__builtin_neon_vpminq_v:
+ // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
+ Int = usgn ? Intrinsic::aarch64_neon_uminp : Intrinsic::aarch64_neon_sminp;
+ if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fminp;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmin");
+ case NEON::BI__builtin_neon_vpmax_v:
+ case NEON::BI__builtin_neon_vpmaxq_v:
+ // FIXME: improve sharing scheme to cope with 3 alternative LLVM intrinsics.
+ Int = usgn ? Intrinsic::aarch64_neon_umaxp : Intrinsic::aarch64_neon_smaxp;
+ if (Ty->isFPOrFPVectorTy()) Int = Intrinsic::aarch64_neon_fmaxp;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmax");
+ case NEON::BI__builtin_neon_vminnm_v:
+ case NEON::BI__builtin_neon_vminnmq_v:
+ Int = Intrinsic::aarch64_neon_fminnm;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vminnm");
+ case NEON::BI__builtin_neon_vminnmh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Int = Intrinsic::aarch64_neon_fminnm;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vminnm");
+ case NEON::BI__builtin_neon_vmaxnm_v:
+ case NEON::BI__builtin_neon_vmaxnmq_v:
+ Int = Intrinsic::aarch64_neon_fmaxnm;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmaxnm");
+ case NEON::BI__builtin_neon_vmaxnmh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ Int = Intrinsic::aarch64_neon_fmaxnm;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmaxnm");
+ case NEON::BI__builtin_neon_vrecpss_f32: {
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, FloatTy),
+ Ops, "vrecps");
+ }
+ case NEON::BI__builtin_neon_vrecpsd_f64:
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, DoubleTy),
+ Ops, "vrecps");
+ case NEON::BI__builtin_neon_vrecpsh_f16:
+ Ops.push_back(EmitScalarExpr(E->getArg(1)));
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_frecps, HalfTy),
+ Ops, "vrecps");
+ case NEON::BI__builtin_neon_vqshrun_n_v:
+ Int = Intrinsic::aarch64_neon_sqshrun;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrun_n");
+ case NEON::BI__builtin_neon_vqrshrun_n_v:
+ Int = Intrinsic::aarch64_neon_sqrshrun;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrun_n");
+ case NEON::BI__builtin_neon_vqshrn_n_v:
+ Int = usgn ? Intrinsic::aarch64_neon_uqshrn : Intrinsic::aarch64_neon_sqshrn;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqshrn_n");
+ case NEON::BI__builtin_neon_vrshrn_n_v:
+ Int = Intrinsic::aarch64_neon_rshrn;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrshrn_n");
+ case NEON::BI__builtin_neon_vqrshrn_n_v:
+ Int = usgn ? Intrinsic::aarch64_neon_uqrshrn : Intrinsic::aarch64_neon_sqrshrn;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vqrshrn_n");
+ case NEON::BI__builtin_neon_vrndah_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Int = Intrinsic::round;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrnda");
+ }
+ case NEON::BI__builtin_neon_vrnda_v:
+ case NEON::BI__builtin_neon_vrndaq_v: {
+ Int = Intrinsic::round;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrnda");
+ }
+ case NEON::BI__builtin_neon_vrndih_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Int = Intrinsic::nearbyint;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndi");
+ }
+ case NEON::BI__builtin_neon_vrndmh_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Int = Intrinsic::floor;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndm");
+ }
+ case NEON::BI__builtin_neon_vrndm_v:
+ case NEON::BI__builtin_neon_vrndmq_v: {
+ Int = Intrinsic::floor;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndm");
+ }
+ case NEON::BI__builtin_neon_vrndnh_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Int = Intrinsic::aarch64_neon_frintn;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndn");
+ }
+ case NEON::BI__builtin_neon_vrndn_v:
+ case NEON::BI__builtin_neon_vrndnq_v: {
+ Int = Intrinsic::aarch64_neon_frintn;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndn");
+ }
+ case NEON::BI__builtin_neon_vrndns_f32: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Int = Intrinsic::aarch64_neon_frintn;
+ return EmitNeonCall(CGM.getIntrinsic(Int, FloatTy), Ops, "vrndn");
+ }
+ case NEON::BI__builtin_neon_vrndph_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Int = Intrinsic::ceil;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndp");
+ }
+ case NEON::BI__builtin_neon_vrndp_v:
+ case NEON::BI__builtin_neon_vrndpq_v: {
+ Int = Intrinsic::ceil;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndp");
+ }
+ case NEON::BI__builtin_neon_vrndxh_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Int = Intrinsic::rint;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndx");
+ }
+ case NEON::BI__builtin_neon_vrndx_v:
+ case NEON::BI__builtin_neon_vrndxq_v: {
+ Int = Intrinsic::rint;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndx");
+ }
+ case NEON::BI__builtin_neon_vrndh_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Int = Intrinsic::trunc;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vrndz");
+ }
+ case NEON::BI__builtin_neon_vrnd_v:
+ case NEON::BI__builtin_neon_vrndq_v: {
+ Int = Intrinsic::trunc;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrndz");
+ }
+ case NEON::BI__builtin_neon_vcvt_f64_v:
+ case NEON::BI__builtin_neon_vcvtq_f64_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ty = GetNeonType(this, NeonTypeFlags(NeonTypeFlags::Float64, false, quad));
+ return usgn ? Builder.CreateUIToFP(Ops[0], Ty, "vcvt")
+ : Builder.CreateSIToFP(Ops[0], Ty, "vcvt");
+ case NEON::BI__builtin_neon_vcvt_f64_f32: {
+ assert(Type.getEltType() == NeonTypeFlags::Float64 && quad &&
+ "unexpected vcvt_f64_f32 builtin");
+ NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float32, false, false);
+ Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
+
+ return Builder.CreateFPExt(Ops[0], Ty, "vcvt");
+ }
+ case NEON::BI__builtin_neon_vcvt_f32_f64: {
+ assert(Type.getEltType() == NeonTypeFlags::Float32 &&
+ "unexpected vcvt_f32_f64 builtin");
+ NeonTypeFlags SrcFlag = NeonTypeFlags(NeonTypeFlags::Float64, false, true);
+ Ops[0] = Builder.CreateBitCast(Ops[0], GetNeonType(this, SrcFlag));
+
+ return Builder.CreateFPTrunc(Ops[0], Ty, "vcvt");
+ }
+ case NEON::BI__builtin_neon_vcvt_s32_v:
+ case NEON::BI__builtin_neon_vcvt_u32_v:
+ case NEON::BI__builtin_neon_vcvt_s64_v:
+ case NEON::BI__builtin_neon_vcvt_u64_v:
+ case NEON::BI__builtin_neon_vcvt_s16_v:
+ case NEON::BI__builtin_neon_vcvt_u16_v:
+ case NEON::BI__builtin_neon_vcvtq_s32_v:
+ case NEON::BI__builtin_neon_vcvtq_u32_v:
+ case NEON::BI__builtin_neon_vcvtq_s64_v:
+ case NEON::BI__builtin_neon_vcvtq_u64_v:
+ case NEON::BI__builtin_neon_vcvtq_s16_v:
+ case NEON::BI__builtin_neon_vcvtq_u16_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], GetFloatNeonType(this, Type));
+ if (usgn)
+ return Builder.CreateFPToUI(Ops[0], Ty);
+ return Builder.CreateFPToSI(Ops[0], Ty);
+ }
+ case NEON::BI__builtin_neon_vcvta_s16_v:
+ case NEON::BI__builtin_neon_vcvta_u16_v:
+ case NEON::BI__builtin_neon_vcvta_s32_v:
+ case NEON::BI__builtin_neon_vcvtaq_s16_v:
+ case NEON::BI__builtin_neon_vcvtaq_s32_v:
+ case NEON::BI__builtin_neon_vcvta_u32_v:
+ case NEON::BI__builtin_neon_vcvtaq_u16_v:
+ case NEON::BI__builtin_neon_vcvtaq_u32_v:
+ case NEON::BI__builtin_neon_vcvta_s64_v:
+ case NEON::BI__builtin_neon_vcvtaq_s64_v:
+ case NEON::BI__builtin_neon_vcvta_u64_v:
+ case NEON::BI__builtin_neon_vcvtaq_u64_v: {
+ Int = usgn ? Intrinsic::aarch64_neon_fcvtau : Intrinsic::aarch64_neon_fcvtas;
+ llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvta");
+ }
+ case NEON::BI__builtin_neon_vcvtm_s16_v:
+ case NEON::BI__builtin_neon_vcvtm_s32_v:
+ case NEON::BI__builtin_neon_vcvtmq_s16_v:
+ case NEON::BI__builtin_neon_vcvtmq_s32_v:
+ case NEON::BI__builtin_neon_vcvtm_u16_v:
+ case NEON::BI__builtin_neon_vcvtm_u32_v:
+ case NEON::BI__builtin_neon_vcvtmq_u16_v:
+ case NEON::BI__builtin_neon_vcvtmq_u32_v:
+ case NEON::BI__builtin_neon_vcvtm_s64_v:
+ case NEON::BI__builtin_neon_vcvtmq_s64_v:
+ case NEON::BI__builtin_neon_vcvtm_u64_v:
+ case NEON::BI__builtin_neon_vcvtmq_u64_v: {
+ Int = usgn ? Intrinsic::aarch64_neon_fcvtmu : Intrinsic::aarch64_neon_fcvtms;
+ llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtm");
+ }
+ case NEON::BI__builtin_neon_vcvtn_s16_v:
+ case NEON::BI__builtin_neon_vcvtn_s32_v:
+ case NEON::BI__builtin_neon_vcvtnq_s16_v:
+ case NEON::BI__builtin_neon_vcvtnq_s32_v:
+ case NEON::BI__builtin_neon_vcvtn_u16_v:
+ case NEON::BI__builtin_neon_vcvtn_u32_v:
+ case NEON::BI__builtin_neon_vcvtnq_u16_v:
+ case NEON::BI__builtin_neon_vcvtnq_u32_v:
+ case NEON::BI__builtin_neon_vcvtn_s64_v:
+ case NEON::BI__builtin_neon_vcvtnq_s64_v:
+ case NEON::BI__builtin_neon_vcvtn_u64_v:
+ case NEON::BI__builtin_neon_vcvtnq_u64_v: {
+ Int = usgn ? Intrinsic::aarch64_neon_fcvtnu : Intrinsic::aarch64_neon_fcvtns;
+ llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtn");
+ }
+ case NEON::BI__builtin_neon_vcvtp_s16_v:
+ case NEON::BI__builtin_neon_vcvtp_s32_v:
+ case NEON::BI__builtin_neon_vcvtpq_s16_v:
+ case NEON::BI__builtin_neon_vcvtpq_s32_v:
+ case NEON::BI__builtin_neon_vcvtp_u16_v:
+ case NEON::BI__builtin_neon_vcvtp_u32_v:
+ case NEON::BI__builtin_neon_vcvtpq_u16_v:
+ case NEON::BI__builtin_neon_vcvtpq_u32_v:
+ case NEON::BI__builtin_neon_vcvtp_s64_v:
+ case NEON::BI__builtin_neon_vcvtpq_s64_v:
+ case NEON::BI__builtin_neon_vcvtp_u64_v:
+ case NEON::BI__builtin_neon_vcvtpq_u64_v: {
+ Int = usgn ? Intrinsic::aarch64_neon_fcvtpu : Intrinsic::aarch64_neon_fcvtps;
+ llvm::Type *Tys[2] = { Ty, GetFloatNeonType(this, Type) };
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vcvtp");
+ }
+ case NEON::BI__builtin_neon_vmulx_v:
+ case NEON::BI__builtin_neon_vmulxq_v: {
+ Int = Intrinsic::aarch64_neon_fmulx;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vmulx");
+ }
+ case NEON::BI__builtin_neon_vmulxh_lane_f16:
+ case NEON::BI__builtin_neon_vmulxh_laneq_f16: {
+ // vmulx_lane should be mapped to Neon scalar mulx after
+ // extracting the scalar element
+ Ops.push_back(EmitScalarExpr(E->getArg(2)));
+ Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
+ Ops.pop_back();
+ Int = Intrinsic::aarch64_neon_fmulx;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vmulx");
+ }
+ case NEON::BI__builtin_neon_vmul_lane_v:
+ case NEON::BI__builtin_neon_vmul_laneq_v: {
+ // v1f64 vmul_lane should be mapped to Neon scalar mul lane
+ bool Quad = false;
+ if (BuiltinID == NEON::BI__builtin_neon_vmul_laneq_v)
+ Quad = true;
+ Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
+ llvm::Type *VTy = GetNeonType(this,
+ NeonTypeFlags(NeonTypeFlags::Float64, false, Quad));
+ Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
+ Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2], "extract");
+ Value *Result = Builder.CreateFMul(Ops[0], Ops[1]);
+ return Builder.CreateBitCast(Result, Ty);
+ }
+ case NEON::BI__builtin_neon_vnegd_s64:
+ return Builder.CreateNeg(EmitScalarExpr(E->getArg(0)), "vnegd");
+ case NEON::BI__builtin_neon_vnegh_f16:
+ return Builder.CreateFNeg(EmitScalarExpr(E->getArg(0)), "vnegh");
+ case NEON::BI__builtin_neon_vpmaxnm_v:
+ case NEON::BI__builtin_neon_vpmaxnmq_v: {
+ Int = Intrinsic::aarch64_neon_fmaxnmp;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpmaxnm");
+ }
+ case NEON::BI__builtin_neon_vpminnm_v:
+ case NEON::BI__builtin_neon_vpminnmq_v: {
+ Int = Intrinsic::aarch64_neon_fminnmp;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vpminnm");
+ }
+ case NEON::BI__builtin_neon_vsqrth_f16: {
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Int = Intrinsic::sqrt;
+ return EmitNeonCall(CGM.getIntrinsic(Int, HalfTy), Ops, "vsqrt");
+ }
+ case NEON::BI__builtin_neon_vsqrt_v:
+ case NEON::BI__builtin_neon_vsqrtq_v: {
+ Int = Intrinsic::sqrt;
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqrt");
+ }
+ case NEON::BI__builtin_neon_vrbit_v:
+ case NEON::BI__builtin_neon_vrbitq_v: {
+ Int = Intrinsic::aarch64_neon_rbit;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vrbit");
+ }
+ case NEON::BI__builtin_neon_vaddv_u8:
+ // FIXME: These are handled by the AArch64 scalar code.
+ usgn = true;
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vaddv_s8: {
+ Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
+ return Builder.CreateTrunc(Ops[0], Int8Ty);
+ }
+ case NEON::BI__builtin_neon_vaddv_u16:
+ usgn = true;
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vaddv_s16: {
+ Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vaddvq_u8:
+ usgn = true;
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vaddvq_s8: {
+ Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
+ return Builder.CreateTrunc(Ops[0], Int8Ty);
+ }
+ case NEON::BI__builtin_neon_vaddvq_u16:
+ usgn = true;
+ LLVM_FALLTHROUGH;
+ case NEON::BI__builtin_neon_vaddvq_s16: {
+ Int = usgn ? Intrinsic::aarch64_neon_uaddv : Intrinsic::aarch64_neon_saddv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vmaxv_u8: {
+ Int = Intrinsic::aarch64_neon_umaxv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0], Int8Ty);
+ }
+ case NEON::BI__builtin_neon_vmaxv_u16: {
+ Int = Intrinsic::aarch64_neon_umaxv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vmaxvq_u8: {
+ Int = Intrinsic::aarch64_neon_umaxv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0], Int8Ty);
+ }
+ case NEON::BI__builtin_neon_vmaxvq_u16: {
+ Int = Intrinsic::aarch64_neon_umaxv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vmaxv_s8: {
+ Int = Intrinsic::aarch64_neon_smaxv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0], Int8Ty);
+ }
+ case NEON::BI__builtin_neon_vmaxv_s16: {
+ Int = Intrinsic::aarch64_neon_smaxv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vmaxvq_s8: {
+ Int = Intrinsic::aarch64_neon_smaxv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0], Int8Ty);
+ }
+ case NEON::BI__builtin_neon_vmaxvq_s16: {
+ Int = Intrinsic::aarch64_neon_smaxv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vmaxv_f16: {
+ Int = Intrinsic::aarch64_neon_fmaxv;
+ Ty = HalfTy;
+ VTy = llvm::VectorType::get(HalfTy, 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0], HalfTy);
+ }
+ case NEON::BI__builtin_neon_vmaxvq_f16: {
+ Int = Intrinsic::aarch64_neon_fmaxv;
+ Ty = HalfTy;
+ VTy = llvm::VectorType::get(HalfTy, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxv");
+ return Builder.CreateTrunc(Ops[0], HalfTy);
+ }
+ case NEON::BI__builtin_neon_vminv_u8: {
+ Int = Intrinsic::aarch64_neon_uminv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0], Int8Ty);
+ }
+ case NEON::BI__builtin_neon_vminv_u16: {
+ Int = Intrinsic::aarch64_neon_uminv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vminvq_u8: {
+ Int = Intrinsic::aarch64_neon_uminv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0], Int8Ty);
+ }
+ case NEON::BI__builtin_neon_vminvq_u16: {
+ Int = Intrinsic::aarch64_neon_uminv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vminv_s8: {
+ Int = Intrinsic::aarch64_neon_sminv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0], Int8Ty);
+ }
+ case NEON::BI__builtin_neon_vminv_s16: {
+ Int = Intrinsic::aarch64_neon_sminv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vminvq_s8: {
+ Int = Intrinsic::aarch64_neon_sminv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0], Int8Ty);
+ }
+ case NEON::BI__builtin_neon_vminvq_s16: {
+ Int = Intrinsic::aarch64_neon_sminv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vminv_f16: {
+ Int = Intrinsic::aarch64_neon_fminv;
+ Ty = HalfTy;
+ VTy = llvm::VectorType::get(HalfTy, 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0], HalfTy);
+ }
+ case NEON::BI__builtin_neon_vminvq_f16: {
+ Int = Intrinsic::aarch64_neon_fminv;
+ Ty = HalfTy;
+ VTy = llvm::VectorType::get(HalfTy, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminv");
+ return Builder.CreateTrunc(Ops[0], HalfTy);
+ }
+ case NEON::BI__builtin_neon_vmaxnmv_f16: {
+ Int = Intrinsic::aarch64_neon_fmaxnmv;
+ Ty = HalfTy;
+ VTy = llvm::VectorType::get(HalfTy, 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
+ return Builder.CreateTrunc(Ops[0], HalfTy);
+ }
+ case NEON::BI__builtin_neon_vmaxnmvq_f16: {
+ Int = Intrinsic::aarch64_neon_fmaxnmv;
+ Ty = HalfTy;
+ VTy = llvm::VectorType::get(HalfTy, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vmaxnmv");
+ return Builder.CreateTrunc(Ops[0], HalfTy);
+ }
+ case NEON::BI__builtin_neon_vminnmv_f16: {
+ Int = Intrinsic::aarch64_neon_fminnmv;
+ Ty = HalfTy;
+ VTy = llvm::VectorType::get(HalfTy, 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
+ return Builder.CreateTrunc(Ops[0], HalfTy);
+ }
+ case NEON::BI__builtin_neon_vminnmvq_f16: {
+ Int = Intrinsic::aarch64_neon_fminnmv;
+ Ty = HalfTy;
+ VTy = llvm::VectorType::get(HalfTy, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vminnmv");
+ return Builder.CreateTrunc(Ops[0], HalfTy);
+ }
+ case NEON::BI__builtin_neon_vmul_n_f64: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], DoubleTy);
+ Value *RHS = Builder.CreateBitCast(EmitScalarExpr(E->getArg(1)), DoubleTy);
+ return Builder.CreateFMul(Ops[0], RHS);
+ }
+ case NEON::BI__builtin_neon_vaddlv_u8: {
+ Int = Intrinsic::aarch64_neon_uaddlv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vaddlv_u16: {
+ Int = Intrinsic::aarch64_neon_uaddlv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ }
+ case NEON::BI__builtin_neon_vaddlvq_u8: {
+ Int = Intrinsic::aarch64_neon_uaddlv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vaddlvq_u16: {
+ Int = Intrinsic::aarch64_neon_uaddlv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ }
+ case NEON::BI__builtin_neon_vaddlv_s8: {
+ Int = Intrinsic::aarch64_neon_saddlv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vaddlv_s16: {
+ Int = Intrinsic::aarch64_neon_saddlv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 4);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ }
+ case NEON::BI__builtin_neon_vaddlvq_s8: {
+ Int = Intrinsic::aarch64_neon_saddlv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int8Ty, 16);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ Ops[0] = EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ return Builder.CreateTrunc(Ops[0], Int16Ty);
+ }
+ case NEON::BI__builtin_neon_vaddlvq_s16: {
+ Int = Intrinsic::aarch64_neon_saddlv;
+ Ty = Int32Ty;
+ VTy = llvm::VectorType::get(Int16Ty, 8);
+ llvm::Type *Tys[2] = { Ty, VTy };
+ Ops.push_back(EmitScalarExpr(E->getArg(0)));
+ return EmitNeonCall(CGM.getIntrinsic(Int, Tys), Ops, "vaddlv");
+ }
+ case NEON::BI__builtin_neon_vsri_n_v:
+ case NEON::BI__builtin_neon_vsriq_n_v: {
+ Int = Intrinsic::aarch64_neon_vsri;
+ llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
+ return EmitNeonCall(Intrin, Ops, "vsri_n");
+ }
+ case NEON::BI__builtin_neon_vsli_n_v:
+ case NEON::BI__builtin_neon_vsliq_n_v: {
+ Int = Intrinsic::aarch64_neon_vsli;
+ llvm::Function *Intrin = CGM.getIntrinsic(Int, Ty);
+ return EmitNeonCall(Intrin, Ops, "vsli_n");
+ }
+ case NEON::BI__builtin_neon_vsra_n_v:
+ case NEON::BI__builtin_neon_vsraq_n_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ Ops[1] = EmitNeonRShiftImm(Ops[1], Ops[2], Ty, usgn, "vsra_n");
+ return Builder.CreateAdd(Ops[0], Ops[1]);
+ case NEON::BI__builtin_neon_vrsra_n_v:
+ case NEON::BI__builtin_neon_vrsraq_n_v: {
+ Int = usgn ? Intrinsic::aarch64_neon_urshl : Intrinsic::aarch64_neon_srshl;
+ SmallVector<llvm::Value*,2> TmpOps;
+ TmpOps.push_back(Ops[1]);
+ TmpOps.push_back(Ops[2]);
+ Function* F = CGM.getIntrinsic(Int, Ty);
+ llvm::Value *tmp = EmitNeonCall(F, TmpOps, "vrshr_n", 1, true);
+ Ops[0] = Builder.CreateBitCast(Ops[0], VTy);
+ return Builder.CreateAdd(Ops[0], tmp);
+ }
+ case NEON::BI__builtin_neon_vld1_v:
+ case NEON::BI__builtin_neon_vld1q_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
+ auto Alignment = CharUnits::fromQuantity(
+ BuiltinID == NEON::BI__builtin_neon_vld1_v ? 8 : 16);
+ return Builder.CreateAlignedLoad(VTy, Ops[0], Alignment);
+ }
+ case NEON::BI__builtin_neon_vst1_v:
+ case NEON::BI__builtin_neon_vst1q_v:
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(VTy));
+ Ops[1] = Builder.CreateBitCast(Ops[1], VTy);
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ case NEON::BI__builtin_neon_vld1_lane_v:
+ case NEON::BI__builtin_neon_vld1q_lane_v: {
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ty = llvm::PointerType::getUnqual(VTy->getElementType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ auto Alignment = CharUnits::fromQuantity(
+ BuiltinID == NEON::BI__builtin_neon_vld1_lane_v ? 8 : 16);
+ Ops[0] =
+ Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
+ return Builder.CreateInsertElement(Ops[1], Ops[0], Ops[2], "vld1_lane");
+ }
+ case NEON::BI__builtin_neon_vld1_dup_v:
+ case NEON::BI__builtin_neon_vld1q_dup_v: {
+ Value *V = UndefValue::get(Ty);
+ Ty = llvm::PointerType::getUnqual(VTy->getElementType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ auto Alignment = CharUnits::fromQuantity(
+ BuiltinID == NEON::BI__builtin_neon_vld1_dup_v ? 8 : 16);
+ Ops[0] =
+ Builder.CreateAlignedLoad(VTy->getElementType(), Ops[0], Alignment);
+ llvm::Constant *CI = ConstantInt::get(Int32Ty, 0);
+ Ops[0] = Builder.CreateInsertElement(V, Ops[0], CI);
+ return EmitNeonSplat(Ops[0], CI);
+ }
+ case NEON::BI__builtin_neon_vst1_lane_v:
+ case NEON::BI__builtin_neon_vst1q_lane_v:
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[1] = Builder.CreateExtractElement(Ops[1], Ops[2]);
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ return Builder.CreateDefaultAlignedStore(Ops[1],
+ Builder.CreateBitCast(Ops[0], Ty));
+ case NEON::BI__builtin_neon_vld2_v:
+ case NEON::BI__builtin_neon_vld2q_v: {
+ llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld3_v:
+ case NEON::BI__builtin_neon_vld3q_v: {
+ llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld4_v:
+ case NEON::BI__builtin_neon_vld4q_v: {
+ llvm::Type *PTy = llvm::PointerType::getUnqual(VTy);
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld2_dup_v:
+ case NEON::BI__builtin_neon_vld2q_dup_v: {
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(VTy->getElementType());
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2r, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld2");
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld3_dup_v:
+ case NEON::BI__builtin_neon_vld3q_dup_v: {
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(VTy->getElementType());
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3r, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld3");
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld4_dup_v:
+ case NEON::BI__builtin_neon_vld4q_dup_v: {
+ llvm::Type *PTy =
+ llvm::PointerType::getUnqual(VTy->getElementType());
+ Ops[1] = Builder.CreateBitCast(Ops[1], PTy);
+ llvm::Type *Tys[2] = { VTy, PTy };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4r, Tys);
+ Ops[1] = Builder.CreateCall(F, Ops[1], "vld4");
+ Ops[0] = Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld2_lane_v:
+ case NEON::BI__builtin_neon_vld2q_lane_v: {
+ llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld2lane, Tys);
+ Ops.push_back(Ops[1]);
+ Ops.erase(Ops.begin()+1);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
+ Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld2_lane");
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld3_lane_v:
+ case NEON::BI__builtin_neon_vld3q_lane_v: {
+ llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld3lane, Tys);
+ Ops.push_back(Ops[1]);
+ Ops.erase(Ops.begin()+1);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
+ Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
+ Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld3_lane");
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vld4_lane_v:
+ case NEON::BI__builtin_neon_vld4q_lane_v: {
+ llvm::Type *Tys[2] = { VTy, Ops[1]->getType() };
+ Function *F = CGM.getIntrinsic(Intrinsic::aarch64_neon_ld4lane, Tys);
+ Ops.push_back(Ops[1]);
+ Ops.erase(Ops.begin()+1);
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Ops[3] = Builder.CreateBitCast(Ops[3], Ty);
+ Ops[4] = Builder.CreateBitCast(Ops[4], Ty);
+ Ops[5] = Builder.CreateZExt(Ops[5], Int64Ty);
+ Ops[1] = Builder.CreateCall(F, makeArrayRef(Ops).slice(1), "vld4_lane");
+ Ty = llvm::PointerType::getUnqual(Ops[1]->getType());
+ Ops[0] = Builder.CreateBitCast(Ops[0], Ty);
+ return Builder.CreateDefaultAlignedStore(Ops[1], Ops[0]);
+ }
+ case NEON::BI__builtin_neon_vst2_v:
+ case NEON::BI__builtin_neon_vst2q_v: {
+ Ops.push_back(Ops[0]);
+ Ops.erase(Ops.begin());
+ llvm::Type *Tys[2] = { VTy, Ops[2]->getType() };
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2, Tys),
+ Ops, "");
+ }
+ case NEON::BI__builtin_neon_vst2_lane_v:
+ case NEON::BI__builtin_neon_vst2q_lane_v: {
+ Ops.push_back(Ops[0]);
+ Ops.erase(Ops.begin());
+ Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
+ llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st2lane, Tys),
+ Ops, "");
+ }
+ case NEON::BI__builtin_neon_vst3_v:
+ case NEON::BI__builtin_neon_vst3q_v: {
+ Ops.push_back(Ops[0]);
+ Ops.erase(Ops.begin());
+ llvm::Type *Tys[2] = { VTy, Ops[3]->getType() };
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3, Tys),
+ Ops, "");
+ }
+ case NEON::BI__builtin_neon_vst3_lane_v:
+ case NEON::BI__builtin_neon_vst3q_lane_v: {
+ Ops.push_back(Ops[0]);
+ Ops.erase(Ops.begin());
+ Ops[3] = Builder.CreateZExt(Ops[3], Int64Ty);
+ llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st3lane, Tys),
+ Ops, "");
+ }
+ case NEON::BI__builtin_neon_vst4_v:
+ case NEON::BI__builtin_neon_vst4q_v: {
+ Ops.push_back(Ops[0]);
+ Ops.erase(Ops.begin());
+ llvm::Type *Tys[2] = { VTy, Ops[4]->getType() };
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4, Tys),
+ Ops, "");
+ }
+ case NEON::BI__builtin_neon_vst4_lane_v:
+ case NEON::BI__builtin_neon_vst4q_lane_v: {
+ Ops.push_back(Ops[0]);
+ Ops.erase(Ops.begin());
+ Ops[4] = Builder.CreateZExt(Ops[4], Int64Ty);
+ llvm::Type *Tys[2] = { VTy, Ops[5]->getType() };
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_st4lane, Tys),
+ Ops, "");
+ }
+ case NEON::BI__builtin_neon_vtrn_v:
+ case NEON::BI__builtin_neon_vtrnq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Value *SV = nullptr;
+
+ for (unsigned vi = 0; vi != 2; ++vi) {
+ SmallVector<uint32_t, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
+ Indices.push_back(i+vi);
+ Indices.push_back(i+e+vi);
+ }
+ Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
+ SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vtrn");
+ SV = Builder.CreateDefaultAlignedStore(SV, Addr);
+ }
+ return SV;
+ }
+ case NEON::BI__builtin_neon_vuzp_v:
+ case NEON::BI__builtin_neon_vuzpq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Value *SV = nullptr;
+
+ for (unsigned vi = 0; vi != 2; ++vi) {
+ SmallVector<uint32_t, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i)
+ Indices.push_back(2*i+vi);
+
+ Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
+ SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vuzp");
+ SV = Builder.CreateDefaultAlignedStore(SV, Addr);
+ }
+ return SV;
+ }
+ case NEON::BI__builtin_neon_vzip_v:
+ case NEON::BI__builtin_neon_vzipq_v: {
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::PointerType::getUnqual(Ty));
+ Ops[1] = Builder.CreateBitCast(Ops[1], Ty);
+ Ops[2] = Builder.CreateBitCast(Ops[2], Ty);
+ Value *SV = nullptr;
+
+ for (unsigned vi = 0; vi != 2; ++vi) {
+ SmallVector<uint32_t, 16> Indices;
+ for (unsigned i = 0, e = VTy->getNumElements(); i != e; i += 2) {
+ Indices.push_back((i + vi*e) >> 1);
+ Indices.push_back(((i + vi*e) >> 1)+e);
+ }
+ Value *Addr = Builder.CreateConstInBoundsGEP1_32(Ty, Ops[0], vi);
+ SV = Builder.CreateShuffleVector(Ops[1], Ops[2], Indices, "vzip");
+ SV = Builder.CreateDefaultAlignedStore(SV, Addr);
+ }
+ return SV;
+ }
+ case NEON::BI__builtin_neon_vqtbl1q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl1, Ty),
+ Ops, "vtbl1");
+ }
+ case NEON::BI__builtin_neon_vqtbl2q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl2, Ty),
+ Ops, "vtbl2");
+ }
+ case NEON::BI__builtin_neon_vqtbl3q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl3, Ty),
+ Ops, "vtbl3");
+ }
+ case NEON::BI__builtin_neon_vqtbl4q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbl4, Ty),
+ Ops, "vtbl4");
+ }
+ case NEON::BI__builtin_neon_vqtbx1q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx1, Ty),
+ Ops, "vtbx1");
+ }
+ case NEON::BI__builtin_neon_vqtbx2q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx2, Ty),
+ Ops, "vtbx2");
+ }
+ case NEON::BI__builtin_neon_vqtbx3q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx3, Ty),
+ Ops, "vtbx3");
+ }
+ case NEON::BI__builtin_neon_vqtbx4q_v: {
+ return EmitNeonCall(CGM.getIntrinsic(Intrinsic::aarch64_neon_tbx4, Ty),
+ Ops, "vtbx4");
+ }
+ case NEON::BI__builtin_neon_vsqadd_v:
+ case NEON::BI__builtin_neon_vsqaddq_v: {
+ Int = Intrinsic::aarch64_neon_usqadd;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vsqadd");
+ }
+ case NEON::BI__builtin_neon_vuqadd_v:
+ case NEON::BI__builtin_neon_vuqaddq_v: {
+ Int = Intrinsic::aarch64_neon_suqadd;
+ return EmitNeonCall(CGM.getIntrinsic(Int, Ty), Ops, "vuqadd");
+ }
+ }
+}
+
+llvm::Value *CodeGenFunction::
+BuildVector(ArrayRef<llvm::Value*> Ops) {
+ assert((Ops.size() & (Ops.size() - 1)) == 0 &&
+ "Not a power-of-two sized vector!");
+ bool AllConstants = true;
+ for (unsigned i = 0, e = Ops.size(); i != e && AllConstants; ++i)
+ AllConstants &= isa<Constant>(Ops[i]);
+
+ // If this is a constant vector, create a ConstantVector.
+ if (AllConstants) {
+ SmallVector<llvm::Constant*, 16> CstOps;
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ CstOps.push_back(cast<Constant>(Ops[i]));
+ return llvm::ConstantVector::get(CstOps);
+ }
+
+ // Otherwise, insertelement the values to build the vector.
+ Value *Result =
+ llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), Ops.size()));
+
+ for (unsigned i = 0, e = Ops.size(); i != e; ++i)
+ Result = Builder.CreateInsertElement(Result, Ops[i], Builder.getInt32(i));
+
+ return Result;
+}
+
+// Convert the mask from an integer type to a vector of i1.
+static Value *getMaskVecValue(CodeGenFunction &CGF, Value *Mask,
+ unsigned NumElts) {
+
+ llvm::VectorType *MaskTy = llvm::VectorType::get(CGF.Builder.getInt1Ty(),
+ cast<IntegerType>(Mask->getType())->getBitWidth());
+ Value *MaskVec = CGF.Builder.CreateBitCast(Mask, MaskTy);
+
+ // If we have less than 8 elements, then the starting mask was an i8 and
+ // we need to extract down to the right number of elements.
+ if (NumElts < 8) {
+ uint32_t Indices[4];
+ for (unsigned i = 0; i != NumElts; ++i)
+ Indices[i] = i;
+ MaskVec = CGF.Builder.CreateShuffleVector(MaskVec, MaskVec,
+ makeArrayRef(Indices, NumElts),
+ "extract");
+ }
+ return MaskVec;
+}
+
+static Value *EmitX86MaskedStore(CodeGenFunction &CGF,
+ ArrayRef<Value *> Ops,
+ unsigned Align) {
+ // Cast the pointer to right type.
+ Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+
+ Value *MaskVec = getMaskVecValue(CGF, Ops[2],
+ Ops[1]->getType()->getVectorNumElements());
+
+ return CGF.Builder.CreateMaskedStore(Ops[1], Ptr, Align, MaskVec);
+}
+
+static Value *EmitX86MaskedLoad(CodeGenFunction &CGF,
+ ArrayRef<Value *> Ops, unsigned Align) {
+ // Cast the pointer to right type.
+ Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(Ops[1]->getType()));
+
+ Value *MaskVec = getMaskVecValue(CGF, Ops[2],
+ Ops[1]->getType()->getVectorNumElements());
+
+ return CGF.Builder.CreateMaskedLoad(Ptr, Align, MaskVec, Ops[1]);
+}
+
+static Value *EmitX86ExpandLoad(CodeGenFunction &CGF,
+ ArrayRef<Value *> Ops) {
+ llvm::Type *ResultTy = Ops[1]->getType();
+ llvm::Type *PtrTy = ResultTy->getVectorElementType();
+
+ // Cast the pointer to element type.
+ Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(PtrTy));
+
+ Value *MaskVec = getMaskVecValue(CGF, Ops[2],
+ ResultTy->getVectorNumElements());
+
+ llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_expandload,
+ ResultTy);
+ return CGF.Builder.CreateCall(F, { Ptr, MaskVec, Ops[1] });
+}
+
+static Value *EmitX86CompressExpand(CodeGenFunction &CGF,
+ ArrayRef<Value *> Ops,
+ bool IsCompress) {
+ llvm::Type *ResultTy = Ops[1]->getType();
+
+ Value *MaskVec = getMaskVecValue(CGF, Ops[2],
+ ResultTy->getVectorNumElements());
+
+ Intrinsic::ID IID = IsCompress ? Intrinsic::x86_avx512_mask_compress
+ : Intrinsic::x86_avx512_mask_expand;
+ llvm::Function *F = CGF.CGM.getIntrinsic(IID, ResultTy);
+ return CGF.Builder.CreateCall(F, { Ops[0], Ops[1], MaskVec });
+}
+
+static Value *EmitX86CompressStore(CodeGenFunction &CGF,
+ ArrayRef<Value *> Ops) {
+ llvm::Type *ResultTy = Ops[1]->getType();
+ llvm::Type *PtrTy = ResultTy->getVectorElementType();
+
+ // Cast the pointer to element type.
+ Value *Ptr = CGF.Builder.CreateBitCast(Ops[0],
+ llvm::PointerType::getUnqual(PtrTy));
+
+ Value *MaskVec = getMaskVecValue(CGF, Ops[2],
+ ResultTy->getVectorNumElements());
+
+ llvm::Function *F = CGF.CGM.getIntrinsic(Intrinsic::masked_compressstore,
+ ResultTy);
+ return CGF.Builder.CreateCall(F, { Ops[1], Ptr, MaskVec });
+}
+
+static Value *EmitX86MaskLogic(CodeGenFunction &CGF, Instruction::BinaryOps Opc,
+ ArrayRef<Value *> Ops,
+ bool InvertLHS = false) {
+ unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
+ Value *LHS = getMaskVecValue(CGF, Ops[0], NumElts);
+ Value *RHS = getMaskVecValue(CGF, Ops[1], NumElts);
+
+ if (InvertLHS)
+ LHS = CGF.Builder.CreateNot(LHS);
+
+ return CGF.Builder.CreateBitCast(CGF.Builder.CreateBinOp(Opc, LHS, RHS),
+ Ops[0]->getType());
+}
+
+static Value *EmitX86FunnelShift(CodeGenFunction &CGF, Value *Op0, Value *Op1,
+ Value *Amt, bool IsRight) {
+ llvm::Type *Ty = Op0->getType();
+
+ // Amount may be scalar immediate, in which case create a splat vector.
+ // Funnel shifts amounts are treated as modulo and types are all power-of-2 so
+ // we only care about the lowest log2 bits anyway.
+ if (Amt->getType() != Ty) {
+ unsigned NumElts = Ty->getVectorNumElements();
+ Amt = CGF.Builder.CreateIntCast(Amt, Ty->getScalarType(), false);
+ Amt = CGF.Builder.CreateVectorSplat(NumElts, Amt);
+ }
+
+ unsigned IID = IsRight ? Intrinsic::fshr : Intrinsic::fshl;
+ Function *F = CGF.CGM.getIntrinsic(IID, Ty);
+ return CGF.Builder.CreateCall(F, {Op0, Op1, Amt});
+}
+
+static Value *EmitX86vpcom(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
+ bool IsSigned) {
+ Value *Op0 = Ops[0];
+ Value *Op1 = Ops[1];
+ llvm::Type *Ty = Op0->getType();
+ uint64_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
+
+ CmpInst::Predicate Pred;
+ switch (Imm) {
+ case 0x0:
+ Pred = IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
+ break;
+ case 0x1:
+ Pred = IsSigned ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE;
+ break;
+ case 0x2:
+ Pred = IsSigned ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
+ break;
+ case 0x3:
+ Pred = IsSigned ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE;
+ break;
+ case 0x4:
+ Pred = ICmpInst::ICMP_EQ;
+ break;
+ case 0x5:
+ Pred = ICmpInst::ICMP_NE;
+ break;
+ case 0x6:
+ return llvm::Constant::getNullValue(Ty); // FALSE
+ case 0x7:
+ return llvm::Constant::getAllOnesValue(Ty); // TRUE
+ default:
+ llvm_unreachable("Unexpected XOP vpcom/vpcomu predicate");
+ }
+
+ Value *Cmp = CGF.Builder.CreateICmp(Pred, Op0, Op1);
+ Value *Res = CGF.Builder.CreateSExt(Cmp, Ty);
+ return Res;
+}
+
+static Value *EmitX86Select(CodeGenFunction &CGF,
+ Value *Mask, Value *Op0, Value *Op1) {
+
+ // If the mask is all ones just return first argument.
+ if (const auto *C = dyn_cast<Constant>(Mask))
+ if (C->isAllOnesValue())
+ return Op0;
+
+ Mask = getMaskVecValue(CGF, Mask, Op0->getType()->getVectorNumElements());
+
+ return CGF.Builder.CreateSelect(Mask, Op0, Op1);
+}
+
+static Value *EmitX86ScalarSelect(CodeGenFunction &CGF,
+ Value *Mask, Value *Op0, Value *Op1) {
+ // If the mask is all ones just return first argument.
+ if (const auto *C = dyn_cast<Constant>(Mask))
+ if (C->isAllOnesValue())
+ return Op0;
+
+ llvm::VectorType *MaskTy =
+ llvm::VectorType::get(CGF.Builder.getInt1Ty(),
+ Mask->getType()->getIntegerBitWidth());
+ Mask = CGF.Builder.CreateBitCast(Mask, MaskTy);
+ Mask = CGF.Builder.CreateExtractElement(Mask, (uint64_t)0);
+ return CGF.Builder.CreateSelect(Mask, Op0, Op1);
+}
+
+static Value *EmitX86MaskedCompareResult(CodeGenFunction &CGF, Value *Cmp,
+ unsigned NumElts, Value *MaskIn) {
+ if (MaskIn) {
+ const auto *C = dyn_cast<Constant>(MaskIn);
+ if (!C || !C->isAllOnesValue())
+ Cmp = CGF.Builder.CreateAnd(Cmp, getMaskVecValue(CGF, MaskIn, NumElts));
+ }
+
+ if (NumElts < 8) {
+ uint32_t Indices[8];
+ for (unsigned i = 0; i != NumElts; ++i)
+ Indices[i] = i;
+ for (unsigned i = NumElts; i != 8; ++i)
+ Indices[i] = i % NumElts + NumElts;
+ Cmp = CGF.Builder.CreateShuffleVector(
+ Cmp, llvm::Constant::getNullValue(Cmp->getType()), Indices);
+ }
+
+ return CGF.Builder.CreateBitCast(Cmp,
+ IntegerType::get(CGF.getLLVMContext(),
+ std::max(NumElts, 8U)));
+}
+
+static Value *EmitX86MaskedCompare(CodeGenFunction &CGF, unsigned CC,
+ bool Signed, ArrayRef<Value *> Ops) {
+ assert((Ops.size() == 2 || Ops.size() == 4) &&
+ "Unexpected number of arguments");
+ unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
+ Value *Cmp;
+
+ if (CC == 3) {
+ Cmp = Constant::getNullValue(
+ llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
+ } else if (CC == 7) {
+ Cmp = Constant::getAllOnesValue(
+ llvm::VectorType::get(CGF.Builder.getInt1Ty(), NumElts));
+ } else {
+ ICmpInst::Predicate Pred;
+ switch (CC) {
+ default: llvm_unreachable("Unknown condition code");
+ case 0: Pred = ICmpInst::ICMP_EQ; break;
+ case 1: Pred = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT; break;
+ case 2: Pred = Signed ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_ULE; break;
+ case 4: Pred = ICmpInst::ICMP_NE; break;
+ case 5: Pred = Signed ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_UGE; break;
+ case 6: Pred = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT; break;
+ }
+ Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
+ }
+
+ Value *MaskIn = nullptr;
+ if (Ops.size() == 4)
+ MaskIn = Ops[3];
+
+ return EmitX86MaskedCompareResult(CGF, Cmp, NumElts, MaskIn);
+}
+
+static Value *EmitX86ConvertToMask(CodeGenFunction &CGF, Value *In) {
+ Value *Zero = Constant::getNullValue(In->getType());
+ return EmitX86MaskedCompare(CGF, 1, true, { In, Zero });
+}
+
+static Value *EmitX86ConvertIntToFp(CodeGenFunction &CGF,
+ ArrayRef<Value *> Ops, bool IsSigned) {
+ unsigned Rnd = cast<llvm::ConstantInt>(Ops[3])->getZExtValue();
+ llvm::Type *Ty = Ops[1]->getType();
+
+ Value *Res;
+ if (Rnd != 4) {
+ Intrinsic::ID IID = IsSigned ? Intrinsic::x86_avx512_sitofp_round
+ : Intrinsic::x86_avx512_uitofp_round;
+ Function *F = CGF.CGM.getIntrinsic(IID, { Ty, Ops[0]->getType() });
+ Res = CGF.Builder.CreateCall(F, { Ops[0], Ops[3] });
+ } else {
+ Res = IsSigned ? CGF.Builder.CreateSIToFP(Ops[0], Ty)
+ : CGF.Builder.CreateUIToFP(Ops[0], Ty);
+ }
+
+ return EmitX86Select(CGF, Ops[2], Res, Ops[1]);
+}
+
+static Value *EmitX86Abs(CodeGenFunction &CGF, ArrayRef<Value *> Ops) {
+
+ llvm::Type *Ty = Ops[0]->getType();
+ Value *Zero = llvm::Constant::getNullValue(Ty);
+ Value *Sub = CGF.Builder.CreateSub(Zero, Ops[0]);
+ Value *Cmp = CGF.Builder.CreateICmp(ICmpInst::ICMP_SGT, Ops[0], Zero);
+ Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Sub);
+ return Res;
+}
+
+static Value *EmitX86MinMax(CodeGenFunction &CGF, ICmpInst::Predicate Pred,
+ ArrayRef<Value *> Ops) {
+ Value *Cmp = CGF.Builder.CreateICmp(Pred, Ops[0], Ops[1]);
+ Value *Res = CGF.Builder.CreateSelect(Cmp, Ops[0], Ops[1]);
+
+ assert(Ops.size() == 2);
+ return Res;
+}
+
+// Lowers X86 FMA intrinsics to IR.
+static Value *EmitX86FMAExpr(CodeGenFunction &CGF, ArrayRef<Value *> Ops,
+ unsigned BuiltinID, bool IsAddSub) {
+
+ bool Subtract = false;
+ Intrinsic::ID IID = Intrinsic::not_intrinsic;
+ switch (BuiltinID) {
+ default: break;
+ case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
+ Subtract = true;
+ LLVM_FALLTHROUGH;
+ case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
+ case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
+ case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
+ IID = llvm::Intrinsic::x86_avx512_vfmadd_ps_512; break;
+ case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
+ Subtract = true;
+ LLVM_FALLTHROUGH;
+ case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
+ case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
+ case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
+ IID = llvm::Intrinsic::x86_avx512_vfmadd_pd_512; break;
+ case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
+ Subtract = true;
+ LLVM_FALLTHROUGH;
+ case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
+ case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
+ case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
+ IID = llvm::Intrinsic::x86_avx512_vfmaddsub_ps_512;
+ break;
+ case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
+ Subtract = true;
+ LLVM_FALLTHROUGH;
+ case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
+ case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
+ case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
+ IID = llvm::Intrinsic::x86_avx512_vfmaddsub_pd_512;
+ break;
+ }
+
+ Value *A = Ops[0];
+ Value *B = Ops[1];
+ Value *C = Ops[2];
+
+ if (Subtract)
+ C = CGF.Builder.CreateFNeg(C);
+
+ Value *Res;
+
+ // Only handle in case of _MM_FROUND_CUR_DIRECTION/4 (no rounding).
+ if (IID != Intrinsic::not_intrinsic &&
+ cast<llvm::ConstantInt>(Ops.back())->getZExtValue() != (uint64_t)4) {
+ Function *Intr = CGF.CGM.getIntrinsic(IID);
+ Res = CGF.Builder.CreateCall(Intr, {A, B, C, Ops.back() });
+ } else {
+ llvm::Type *Ty = A->getType();
+ Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ty);
+ Res = CGF.Builder.CreateCall(FMA, {A, B, C} );
+
+ if (IsAddSub) {
+ // Negate even elts in C using a mask.
+ unsigned NumElts = Ty->getVectorNumElements();
+ SmallVector<uint32_t, 16> Indices(NumElts);
+ for (unsigned i = 0; i != NumElts; ++i)
+ Indices[i] = i + (i % 2) * NumElts;
+
+ Value *NegC = CGF.Builder.CreateFNeg(C);
+ Value *FMSub = CGF.Builder.CreateCall(FMA, {A, B, NegC} );
+ Res = CGF.Builder.CreateShuffleVector(FMSub, Res, Indices);
+ }
+ }
+
+ // Handle any required masking.
+ Value *MaskFalseVal = nullptr;
+ switch (BuiltinID) {
+ case clang::X86::BI__builtin_ia32_vfmaddps512_mask:
+ case clang::X86::BI__builtin_ia32_vfmaddpd512_mask:
+ case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask:
+ case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask:
+ MaskFalseVal = Ops[0];
+ break;
+ case clang::X86::BI__builtin_ia32_vfmaddps512_maskz:
+ case clang::X86::BI__builtin_ia32_vfmaddpd512_maskz:
+ case clang::X86::BI__builtin_ia32_vfmaddsubps512_maskz:
+ case clang::X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
+ MaskFalseVal = Constant::getNullValue(Ops[0]->getType());
+ break;
+ case clang::X86::BI__builtin_ia32_vfmsubps512_mask3:
+ case clang::X86::BI__builtin_ia32_vfmaddps512_mask3:
+ case clang::X86::BI__builtin_ia32_vfmsubpd512_mask3:
+ case clang::X86::BI__builtin_ia32_vfmaddpd512_mask3:
+ case clang::X86::BI__builtin_ia32_vfmsubaddps512_mask3:
+ case clang::X86::BI__builtin_ia32_vfmaddsubps512_mask3:
+ case clang::X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
+ case clang::X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
+ MaskFalseVal = Ops[2];
+ break;
+ }
+
+ if (MaskFalseVal)
+ return EmitX86Select(CGF, Ops[3], Res, MaskFalseVal);
+
+ return Res;
+}
+
+static Value *
+EmitScalarFMAExpr(CodeGenFunction &CGF, MutableArrayRef<Value *> Ops,
+ Value *Upper, bool ZeroMask = false, unsigned PTIdx = 0,
+ bool NegAcc = false) {
+ unsigned Rnd = 4;
+ if (Ops.size() > 4)
+ Rnd = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
+
+ if (NegAcc)
+ Ops[2] = CGF.Builder.CreateFNeg(Ops[2]);
+
+ Ops[0] = CGF.Builder.CreateExtractElement(Ops[0], (uint64_t)0);
+ Ops[1] = CGF.Builder.CreateExtractElement(Ops[1], (uint64_t)0);
+ Ops[2] = CGF.Builder.CreateExtractElement(Ops[2], (uint64_t)0);
+ Value *Res;
+ if (Rnd != 4) {
+ Intrinsic::ID IID = Ops[0]->getType()->getPrimitiveSizeInBits() == 32 ?
+ Intrinsic::x86_avx512_vfmadd_f32 :
+ Intrinsic::x86_avx512_vfmadd_f64;
+ Res = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
+ {Ops[0], Ops[1], Ops[2], Ops[4]});
+ } else {
+ Function *FMA = CGF.CGM.getIntrinsic(Intrinsic::fma, Ops[0]->getType());
+ Res = CGF.Builder.CreateCall(FMA, Ops.slice(0, 3));
+ }
+ // If we have more than 3 arguments, we need to do masking.
+ if (Ops.size() > 3) {
+ Value *PassThru = ZeroMask ? Constant::getNullValue(Res->getType())
+ : Ops[PTIdx];
+
+ // If we negated the accumulator and the its the PassThru value we need to
+ // bypass the negate. Conveniently Upper should be the same thing in this
+ // case.
+ if (NegAcc && PTIdx == 2)
+ PassThru = CGF.Builder.CreateExtractElement(Upper, (uint64_t)0);
+
+ Res = EmitX86ScalarSelect(CGF, Ops[3], Res, PassThru);
+ }
+ return CGF.Builder.CreateInsertElement(Upper, Res, (uint64_t)0);
+}
+
+static Value *EmitX86Muldq(CodeGenFunction &CGF, bool IsSigned,
+ ArrayRef<Value *> Ops) {
+ llvm::Type *Ty = Ops[0]->getType();
+ // Arguments have a vXi32 type so cast to vXi64.
+ Ty = llvm::VectorType::get(CGF.Int64Ty,
+ Ty->getPrimitiveSizeInBits() / 64);
+ Value *LHS = CGF.Builder.CreateBitCast(Ops[0], Ty);
+ Value *RHS = CGF.Builder.CreateBitCast(Ops[1], Ty);
+
+ if (IsSigned) {
+ // Shift left then arithmetic shift right.
+ Constant *ShiftAmt = ConstantInt::get(Ty, 32);
+ LHS = CGF.Builder.CreateShl(LHS, ShiftAmt);
+ LHS = CGF.Builder.CreateAShr(LHS, ShiftAmt);
+ RHS = CGF.Builder.CreateShl(RHS, ShiftAmt);
+ RHS = CGF.Builder.CreateAShr(RHS, ShiftAmt);
+ } else {
+ // Clear the upper bits.
+ Constant *Mask = ConstantInt::get(Ty, 0xffffffff);
+ LHS = CGF.Builder.CreateAnd(LHS, Mask);
+ RHS = CGF.Builder.CreateAnd(RHS, Mask);
+ }
+
+ return CGF.Builder.CreateMul(LHS, RHS);
+}
+
+// Emit a masked pternlog intrinsic. This only exists because the header has to
+// use a macro and we aren't able to pass the input argument to a pternlog
+// builtin and a select builtin without evaluating it twice.
+static Value *EmitX86Ternlog(CodeGenFunction &CGF, bool ZeroMask,
+ ArrayRef<Value *> Ops) {
+ llvm::Type *Ty = Ops[0]->getType();
+
+ unsigned VecWidth = Ty->getPrimitiveSizeInBits();
+ unsigned EltWidth = Ty->getScalarSizeInBits();
+ Intrinsic::ID IID;
+ if (VecWidth == 128 && EltWidth == 32)
+ IID = Intrinsic::x86_avx512_pternlog_d_128;
+ else if (VecWidth == 256 && EltWidth == 32)
+ IID = Intrinsic::x86_avx512_pternlog_d_256;
+ else if (VecWidth == 512 && EltWidth == 32)
+ IID = Intrinsic::x86_avx512_pternlog_d_512;
+ else if (VecWidth == 128 && EltWidth == 64)
+ IID = Intrinsic::x86_avx512_pternlog_q_128;
+ else if (VecWidth == 256 && EltWidth == 64)
+ IID = Intrinsic::x86_avx512_pternlog_q_256;
+ else if (VecWidth == 512 && EltWidth == 64)
+ IID = Intrinsic::x86_avx512_pternlog_q_512;
+ else
+ llvm_unreachable("Unexpected intrinsic");
+
+ Value *Ternlog = CGF.Builder.CreateCall(CGF.CGM.getIntrinsic(IID),
+ Ops.drop_back());
+ Value *PassThru = ZeroMask ? ConstantAggregateZero::get(Ty) : Ops[0];
+ return EmitX86Select(CGF, Ops[4], Ternlog, PassThru);
+}
+
+static Value *EmitX86SExtMask(CodeGenFunction &CGF, Value *Op,
+ llvm::Type *DstTy) {
+ unsigned NumberOfElements = DstTy->getVectorNumElements();
+ Value *Mask = getMaskVecValue(CGF, Op, NumberOfElements);
+ return CGF.Builder.CreateSExt(Mask, DstTy, "vpmovm2");
+}
+
+// Emit addition or subtraction with signed/unsigned saturation.
+static Value *EmitX86AddSubSatExpr(CodeGenFunction &CGF,
+ ArrayRef<Value *> Ops, bool IsSigned,
+ bool IsAddition) {
+ Intrinsic::ID IID =
+ IsSigned ? (IsAddition ? Intrinsic::sadd_sat : Intrinsic::ssub_sat)
+ : (IsAddition ? Intrinsic::uadd_sat : Intrinsic::usub_sat);
+ llvm::Function *F = CGF.CGM.getIntrinsic(IID, Ops[0]->getType());
+ return CGF.Builder.CreateCall(F, {Ops[0], Ops[1]});
+}
+
+Value *CodeGenFunction::EmitX86CpuIs(const CallExpr *E) {
+ const Expr *CPUExpr = E->getArg(0)->IgnoreParenCasts();
+ StringRef CPUStr = cast<clang::StringLiteral>(CPUExpr)->getString();
+ return EmitX86CpuIs(CPUStr);
+}
+
+// Convert a BF16 to a float.
+static Value *EmitX86CvtBF16ToFloatExpr(CodeGenFunction &CGF,
+ const CallExpr *E,
+ ArrayRef<Value *> Ops) {
+ llvm::Type *Int32Ty = CGF.Builder.getInt32Ty();
+ Value *ZeroExt = CGF.Builder.CreateZExt(Ops[0], Int32Ty);
+ Value *Shl = CGF.Builder.CreateShl(ZeroExt, 16);
+ llvm::Type *ResultType = CGF.ConvertType(E->getType());
+ Value *BitCast = CGF.Builder.CreateBitCast(Shl, ResultType);
+ return BitCast;
+}
+
+Value *CodeGenFunction::EmitX86CpuIs(StringRef CPUStr) {
+
+ llvm::Type *Int32Ty = Builder.getInt32Ty();
+
+ // Matching the struct layout from the compiler-rt/libgcc structure that is
+ // filled in:
+ // unsigned int __cpu_vendor;
+ // unsigned int __cpu_type;
+ // unsigned int __cpu_subtype;
+ // unsigned int __cpu_features[1];
+ llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
+ llvm::ArrayType::get(Int32Ty, 1));
+
+ // Grab the global __cpu_model.
+ llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
+ cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
+
+ // Calculate the index needed to access the correct field based on the
+ // range. Also adjust the expected value.
+ unsigned Index;
+ unsigned Value;
+ std::tie(Index, Value) = StringSwitch<std::pair<unsigned, unsigned>>(CPUStr)
+#define X86_VENDOR(ENUM, STRING) \
+ .Case(STRING, {0u, static_cast<unsigned>(llvm::X86::ENUM)})
+#define X86_CPU_TYPE_COMPAT_WITH_ALIAS(ARCHNAME, ENUM, STR, ALIAS) \
+ .Cases(STR, ALIAS, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
+#define X86_CPU_TYPE_COMPAT(ARCHNAME, ENUM, STR) \
+ .Case(STR, {1u, static_cast<unsigned>(llvm::X86::ENUM)})
+#define X86_CPU_SUBTYPE_COMPAT(ARCHNAME, ENUM, STR) \
+ .Case(STR, {2u, static_cast<unsigned>(llvm::X86::ENUM)})
+#include "llvm/Support/X86TargetParser.def"
+ .Default({0, 0});
+ assert(Value != 0 && "Invalid CPUStr passed to CpuIs");
+
+ // Grab the appropriate field from __cpu_model.
+ llvm::Value *Idxs[] = {ConstantInt::get(Int32Ty, 0),
+ ConstantInt::get(Int32Ty, Index)};
+ llvm::Value *CpuValue = Builder.CreateGEP(STy, CpuModel, Idxs);
+ CpuValue = Builder.CreateAlignedLoad(CpuValue, CharUnits::fromQuantity(4));
+
+ // Check the value of the field against the requested value.
+ return Builder.CreateICmpEQ(CpuValue,
+ llvm::ConstantInt::get(Int32Ty, Value));
+}
+
+Value *CodeGenFunction::EmitX86CpuSupports(const CallExpr *E) {
+ const Expr *FeatureExpr = E->getArg(0)->IgnoreParenCasts();
+ StringRef FeatureStr = cast<StringLiteral>(FeatureExpr)->getString();
+ return EmitX86CpuSupports(FeatureStr);
+}
+
+uint64_t
+CodeGenFunction::GetX86CpuSupportsMask(ArrayRef<StringRef> FeatureStrs) {
+ // Processor features and mapping to processor feature value.
+ uint64_t FeaturesMask = 0;
+ for (const StringRef &FeatureStr : FeatureStrs) {
+ unsigned Feature =
+ StringSwitch<unsigned>(FeatureStr)
+#define X86_FEATURE_COMPAT(VAL, ENUM, STR) .Case(STR, VAL)
+#include "llvm/Support/X86TargetParser.def"
+ ;
+ FeaturesMask |= (1ULL << Feature);
+ }
+ return FeaturesMask;
+}
+
+Value *CodeGenFunction::EmitX86CpuSupports(ArrayRef<StringRef> FeatureStrs) {
+ return EmitX86CpuSupports(GetX86CpuSupportsMask(FeatureStrs));
+}
+
+llvm::Value *CodeGenFunction::EmitX86CpuSupports(uint64_t FeaturesMask) {
+ uint32_t Features1 = Lo_32(FeaturesMask);
+ uint32_t Features2 = Hi_32(FeaturesMask);
+
+ Value *Result = Builder.getTrue();
+
+ if (Features1 != 0) {
+ // Matching the struct layout from the compiler-rt/libgcc structure that is
+ // filled in:
+ // unsigned int __cpu_vendor;
+ // unsigned int __cpu_type;
+ // unsigned int __cpu_subtype;
+ // unsigned int __cpu_features[1];
+ llvm::Type *STy = llvm::StructType::get(Int32Ty, Int32Ty, Int32Ty,
+ llvm::ArrayType::get(Int32Ty, 1));
+
+ // Grab the global __cpu_model.
+ llvm::Constant *CpuModel = CGM.CreateRuntimeVariable(STy, "__cpu_model");
+ cast<llvm::GlobalValue>(CpuModel)->setDSOLocal(true);
+
+ // Grab the first (0th) element from the field __cpu_features off of the
+ // global in the struct STy.
+ Value *Idxs[] = {Builder.getInt32(0), Builder.getInt32(3),
+ Builder.getInt32(0)};
+ Value *CpuFeatures = Builder.CreateGEP(STy, CpuModel, Idxs);
+ Value *Features =
+ Builder.CreateAlignedLoad(CpuFeatures, CharUnits::fromQuantity(4));
+
+ // Check the value of the bit corresponding to the feature requested.
+ Value *Mask = Builder.getInt32(Features1);
+ Value *Bitset = Builder.CreateAnd(Features, Mask);
+ Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
+ Result = Builder.CreateAnd(Result, Cmp);
+ }
+
+ if (Features2 != 0) {
+ llvm::Constant *CpuFeatures2 = CGM.CreateRuntimeVariable(Int32Ty,
+ "__cpu_features2");
+ cast<llvm::GlobalValue>(CpuFeatures2)->setDSOLocal(true);
+
+ Value *Features =
+ Builder.CreateAlignedLoad(CpuFeatures2, CharUnits::fromQuantity(4));
+
+ // Check the value of the bit corresponding to the feature requested.
+ Value *Mask = Builder.getInt32(Features2);
+ Value *Bitset = Builder.CreateAnd(Features, Mask);
+ Value *Cmp = Builder.CreateICmpEQ(Bitset, Mask);
+ Result = Builder.CreateAnd(Result, Cmp);
+ }
+
+ return Result;
+}
+
+Value *CodeGenFunction::EmitX86CpuInit() {
+ llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy,
+ /*Variadic*/ false);
+ llvm::FunctionCallee Func =
+ CGM.CreateRuntimeFunction(FTy, "__cpu_indicator_init");
+ cast<llvm::GlobalValue>(Func.getCallee())->setDSOLocal(true);
+ cast<llvm::GlobalValue>(Func.getCallee())
+ ->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass);
+ return Builder.CreateCall(Func);
+}
+
+Value *CodeGenFunction::EmitX86BuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ if (BuiltinID == X86::BI__builtin_cpu_is)
+ return EmitX86CpuIs(E);
+ if (BuiltinID == X86::BI__builtin_cpu_supports)
+ return EmitX86CpuSupports(E);
+ if (BuiltinID == X86::BI__builtin_cpu_init)
+ return EmitX86CpuInit();
+
+ SmallVector<Value*, 4> Ops;
+
+ // Find out if any arguments are required to be integer constant expressions.
+ unsigned ICEArguments = 0;
+ ASTContext::GetBuiltinTypeError Error;
+ getContext().GetBuiltinType(BuiltinID, Error, &ICEArguments);
+ assert(Error == ASTContext::GE_None && "Should not codegen an error");
+
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; i++) {
+ // If this is a normal argument, just emit it as a scalar.
+ if ((ICEArguments & (1 << i)) == 0) {
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+ continue;
+ }
+
+ // If this is required to be a constant, constant fold it so that we know
+ // that the generated intrinsic gets a ConstantInt.
+ llvm::APSInt Result;
+ bool IsConst = E->getArg(i)->isIntegerConstantExpr(Result, getContext());
+ assert(IsConst && "Constant arg isn't actually constant?"); (void)IsConst;
+ Ops.push_back(llvm::ConstantInt::get(getLLVMContext(), Result));
+ }
+
+ // These exist so that the builtin that takes an immediate can be bounds
+ // checked by clang to avoid passing bad immediates to the backend. Since
+ // AVX has a larger immediate than SSE we would need separate builtins to
+ // do the different bounds checking. Rather than create a clang specific
+ // SSE only builtin, this implements eight separate builtins to match gcc
+ // implementation.
+ auto getCmpIntrinsicCall = [this, &Ops](Intrinsic::ID ID, unsigned Imm) {
+ Ops.push_back(llvm::ConstantInt::get(Int8Ty, Imm));
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ return Builder.CreateCall(F, Ops);
+ };
+
+ // For the vector forms of FP comparisons, translate the builtins directly to
+ // IR.
+ // TODO: The builtins could be removed if the SSE header files used vector
+ // extension comparisons directly (vector ordered/unordered may need
+ // additional support via __builtin_isnan()).
+ auto getVectorFCmpIR = [this, &Ops](CmpInst::Predicate Pred) {
+ Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
+ llvm::VectorType *FPVecTy = cast<llvm::VectorType>(Ops[0]->getType());
+ llvm::VectorType *IntVecTy = llvm::VectorType::getInteger(FPVecTy);
+ Value *Sext = Builder.CreateSExt(Cmp, IntVecTy);
+ return Builder.CreateBitCast(Sext, FPVecTy);
+ };
+
+ switch (BuiltinID) {
+ default: return nullptr;
+ case X86::BI_mm_prefetch: {
+ Value *Address = Ops[0];
+ ConstantInt *C = cast<ConstantInt>(Ops[1]);
+ Value *RW = ConstantInt::get(Int32Ty, (C->getZExtValue() >> 2) & 0x1);
+ Value *Locality = ConstantInt::get(Int32Ty, C->getZExtValue() & 0x3);
+ Value *Data = ConstantInt::get(Int32Ty, 1);
+ Function *F = CGM.getIntrinsic(Intrinsic::prefetch);
+ return Builder.CreateCall(F, {Address, RW, Locality, Data});
+ }
+ case X86::BI_mm_clflush: {
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_clflush),
+ Ops[0]);
+ }
+ case X86::BI_mm_lfence: {
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_lfence));
+ }
+ case X86::BI_mm_mfence: {
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_mfence));
+ }
+ case X86::BI_mm_sfence: {
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_sfence));
+ }
+ case X86::BI_mm_pause: {
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse2_pause));
+ }
+ case X86::BI__rdtsc: {
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtsc));
+ }
+ case X86::BI__builtin_ia32_rdtscp: {
+ Value *Call = Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_rdtscp));
+ Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
+ Ops[0]);
+ return Builder.CreateExtractValue(Call, 0);
+ }
+ case X86::BI__builtin_ia32_lzcnt_u16:
+ case X86::BI__builtin_ia32_lzcnt_u32:
+ case X86::BI__builtin_ia32_lzcnt_u64: {
+ Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
+ return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
+ }
+ case X86::BI__builtin_ia32_tzcnt_u16:
+ case X86::BI__builtin_ia32_tzcnt_u32:
+ case X86::BI__builtin_ia32_tzcnt_u64: {
+ Function *F = CGM.getIntrinsic(Intrinsic::cttz, Ops[0]->getType());
+ return Builder.CreateCall(F, {Ops[0], Builder.getInt1(false)});
+ }
+ case X86::BI__builtin_ia32_undef128:
+ case X86::BI__builtin_ia32_undef256:
+ case X86::BI__builtin_ia32_undef512:
+ // The x86 definition of "undef" is not the same as the LLVM definition
+ // (PR32176). We leave optimizing away an unnecessary zero constant to the
+ // IR optimizer and backend.
+ // TODO: If we had a "freeze" IR instruction to generate a fixed undef
+ // value, we should use that here instead of a zero.
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+ case X86::BI__builtin_ia32_vec_init_v8qi:
+ case X86::BI__builtin_ia32_vec_init_v4hi:
+ case X86::BI__builtin_ia32_vec_init_v2si:
+ return Builder.CreateBitCast(BuildVector(Ops),
+ llvm::Type::getX86_MMXTy(getLLVMContext()));
+ case X86::BI__builtin_ia32_vec_ext_v2si:
+ case X86::BI__builtin_ia32_vec_ext_v16qi:
+ case X86::BI__builtin_ia32_vec_ext_v8hi:
+ case X86::BI__builtin_ia32_vec_ext_v4si:
+ case X86::BI__builtin_ia32_vec_ext_v4sf:
+ case X86::BI__builtin_ia32_vec_ext_v2di:
+ case X86::BI__builtin_ia32_vec_ext_v32qi:
+ case X86::BI__builtin_ia32_vec_ext_v16hi:
+ case X86::BI__builtin_ia32_vec_ext_v8si:
+ case X86::BI__builtin_ia32_vec_ext_v4di: {
+ unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
+ uint64_t Index = cast<ConstantInt>(Ops[1])->getZExtValue();
+ Index &= NumElts - 1;
+ // These builtins exist so we can ensure the index is an ICE and in range.
+ // Otherwise we could just do this in the header file.
+ return Builder.CreateExtractElement(Ops[0], Index);
+ }
+ case X86::BI__builtin_ia32_vec_set_v16qi:
+ case X86::BI__builtin_ia32_vec_set_v8hi:
+ case X86::BI__builtin_ia32_vec_set_v4si:
+ case X86::BI__builtin_ia32_vec_set_v2di:
+ case X86::BI__builtin_ia32_vec_set_v32qi:
+ case X86::BI__builtin_ia32_vec_set_v16hi:
+ case X86::BI__builtin_ia32_vec_set_v8si:
+ case X86::BI__builtin_ia32_vec_set_v4di: {
+ unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
+ unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
+ Index &= NumElts - 1;
+ // These builtins exist so we can ensure the index is an ICE and in range.
+ // Otherwise we could just do this in the header file.
+ return Builder.CreateInsertElement(Ops[0], Ops[1], Index);
+ }
+ case X86::BI_mm_setcsr:
+ case X86::BI__builtin_ia32_ldmxcsr: {
+ Address Tmp = CreateMemTemp(E->getArg(0)->getType());
+ Builder.CreateStore(Ops[0], Tmp);
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_ldmxcsr),
+ Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
+ }
+ case X86::BI_mm_getcsr:
+ case X86::BI__builtin_ia32_stmxcsr: {
+ Address Tmp = CreateMemTemp(E->getType());
+ Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_sse_stmxcsr),
+ Builder.CreateBitCast(Tmp.getPointer(), Int8PtrTy));
+ return Builder.CreateLoad(Tmp, "stmxcsr");
+ }
+ case X86::BI__builtin_ia32_xsave:
+ case X86::BI__builtin_ia32_xsave64:
+ case X86::BI__builtin_ia32_xrstor:
+ case X86::BI__builtin_ia32_xrstor64:
+ case X86::BI__builtin_ia32_xsaveopt:
+ case X86::BI__builtin_ia32_xsaveopt64:
+ case X86::BI__builtin_ia32_xrstors:
+ case X86::BI__builtin_ia32_xrstors64:
+ case X86::BI__builtin_ia32_xsavec:
+ case X86::BI__builtin_ia32_xsavec64:
+ case X86::BI__builtin_ia32_xsaves:
+ case X86::BI__builtin_ia32_xsaves64:
+ case X86::BI__builtin_ia32_xsetbv:
+ case X86::BI_xsetbv: {
+ Intrinsic::ID ID;
+#define INTRINSIC_X86_XSAVE_ID(NAME) \
+ case X86::BI__builtin_ia32_##NAME: \
+ ID = Intrinsic::x86_##NAME; \
+ break
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ INTRINSIC_X86_XSAVE_ID(xsave);
+ INTRINSIC_X86_XSAVE_ID(xsave64);
+ INTRINSIC_X86_XSAVE_ID(xrstor);
+ INTRINSIC_X86_XSAVE_ID(xrstor64);
+ INTRINSIC_X86_XSAVE_ID(xsaveopt);
+ INTRINSIC_X86_XSAVE_ID(xsaveopt64);
+ INTRINSIC_X86_XSAVE_ID(xrstors);
+ INTRINSIC_X86_XSAVE_ID(xrstors64);
+ INTRINSIC_X86_XSAVE_ID(xsavec);
+ INTRINSIC_X86_XSAVE_ID(xsavec64);
+ INTRINSIC_X86_XSAVE_ID(xsaves);
+ INTRINSIC_X86_XSAVE_ID(xsaves64);
+ INTRINSIC_X86_XSAVE_ID(xsetbv);
+ case X86::BI_xsetbv:
+ ID = Intrinsic::x86_xsetbv;
+ break;
+ }
+#undef INTRINSIC_X86_XSAVE_ID
+ Value *Mhi = Builder.CreateTrunc(
+ Builder.CreateLShr(Ops[1], ConstantInt::get(Int64Ty, 32)), Int32Ty);
+ Value *Mlo = Builder.CreateTrunc(Ops[1], Int32Ty);
+ Ops[1] = Mhi;
+ Ops.push_back(Mlo);
+ return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
+ }
+ case X86::BI__builtin_ia32_xgetbv:
+ case X86::BI_xgetbv:
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::x86_xgetbv), Ops);
+ case X86::BI__builtin_ia32_storedqudi128_mask:
+ case X86::BI__builtin_ia32_storedqusi128_mask:
+ case X86::BI__builtin_ia32_storedquhi128_mask:
+ case X86::BI__builtin_ia32_storedquqi128_mask:
+ case X86::BI__builtin_ia32_storeupd128_mask:
+ case X86::BI__builtin_ia32_storeups128_mask:
+ case X86::BI__builtin_ia32_storedqudi256_mask:
+ case X86::BI__builtin_ia32_storedqusi256_mask:
+ case X86::BI__builtin_ia32_storedquhi256_mask:
+ case X86::BI__builtin_ia32_storedquqi256_mask:
+ case X86::BI__builtin_ia32_storeupd256_mask:
+ case X86::BI__builtin_ia32_storeups256_mask:
+ case X86::BI__builtin_ia32_storedqudi512_mask:
+ case X86::BI__builtin_ia32_storedqusi512_mask:
+ case X86::BI__builtin_ia32_storedquhi512_mask:
+ case X86::BI__builtin_ia32_storedquqi512_mask:
+ case X86::BI__builtin_ia32_storeupd512_mask:
+ case X86::BI__builtin_ia32_storeups512_mask:
+ return EmitX86MaskedStore(*this, Ops, 1);
+
+ case X86::BI__builtin_ia32_storess128_mask:
+ case X86::BI__builtin_ia32_storesd128_mask: {
+ return EmitX86MaskedStore(*this, Ops, 1);
+ }
+ case X86::BI__builtin_ia32_vpopcntb_128:
+ case X86::BI__builtin_ia32_vpopcntd_128:
+ case X86::BI__builtin_ia32_vpopcntq_128:
+ case X86::BI__builtin_ia32_vpopcntw_128:
+ case X86::BI__builtin_ia32_vpopcntb_256:
+ case X86::BI__builtin_ia32_vpopcntd_256:
+ case X86::BI__builtin_ia32_vpopcntq_256:
+ case X86::BI__builtin_ia32_vpopcntw_256:
+ case X86::BI__builtin_ia32_vpopcntb_512:
+ case X86::BI__builtin_ia32_vpopcntd_512:
+ case X86::BI__builtin_ia32_vpopcntq_512:
+ case X86::BI__builtin_ia32_vpopcntw_512: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
+ return Builder.CreateCall(F, Ops);
+ }
+ case X86::BI__builtin_ia32_cvtmask2b128:
+ case X86::BI__builtin_ia32_cvtmask2b256:
+ case X86::BI__builtin_ia32_cvtmask2b512:
+ case X86::BI__builtin_ia32_cvtmask2w128:
+ case X86::BI__builtin_ia32_cvtmask2w256:
+ case X86::BI__builtin_ia32_cvtmask2w512:
+ case X86::BI__builtin_ia32_cvtmask2d128:
+ case X86::BI__builtin_ia32_cvtmask2d256:
+ case X86::BI__builtin_ia32_cvtmask2d512:
+ case X86::BI__builtin_ia32_cvtmask2q128:
+ case X86::BI__builtin_ia32_cvtmask2q256:
+ case X86::BI__builtin_ia32_cvtmask2q512:
+ return EmitX86SExtMask(*this, Ops[0], ConvertType(E->getType()));
+
+ case X86::BI__builtin_ia32_cvtb2mask128:
+ case X86::BI__builtin_ia32_cvtb2mask256:
+ case X86::BI__builtin_ia32_cvtb2mask512:
+ case X86::BI__builtin_ia32_cvtw2mask128:
+ case X86::BI__builtin_ia32_cvtw2mask256:
+ case X86::BI__builtin_ia32_cvtw2mask512:
+ case X86::BI__builtin_ia32_cvtd2mask128:
+ case X86::BI__builtin_ia32_cvtd2mask256:
+ case X86::BI__builtin_ia32_cvtd2mask512:
+ case X86::BI__builtin_ia32_cvtq2mask128:
+ case X86::BI__builtin_ia32_cvtq2mask256:
+ case X86::BI__builtin_ia32_cvtq2mask512:
+ return EmitX86ConvertToMask(*this, Ops[0]);
+
+ case X86::BI__builtin_ia32_cvtdq2ps512_mask:
+ case X86::BI__builtin_ia32_cvtqq2ps512_mask:
+ case X86::BI__builtin_ia32_cvtqq2pd512_mask:
+ return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/true);
+ case X86::BI__builtin_ia32_cvtudq2ps512_mask:
+ case X86::BI__builtin_ia32_cvtuqq2ps512_mask:
+ case X86::BI__builtin_ia32_cvtuqq2pd512_mask:
+ return EmitX86ConvertIntToFp(*this, Ops, /*IsSigned*/false);
+
+ case X86::BI__builtin_ia32_vfmaddss3:
+ case X86::BI__builtin_ia32_vfmaddsd3:
+ case X86::BI__builtin_ia32_vfmaddss3_mask:
+ case X86::BI__builtin_ia32_vfmaddsd3_mask:
+ return EmitScalarFMAExpr(*this, Ops, Ops[0]);
+ case X86::BI__builtin_ia32_vfmaddss:
+ case X86::BI__builtin_ia32_vfmaddsd:
+ return EmitScalarFMAExpr(*this, Ops,
+ Constant::getNullValue(Ops[0]->getType()));
+ case X86::BI__builtin_ia32_vfmaddss3_maskz:
+ case X86::BI__builtin_ia32_vfmaddsd3_maskz:
+ return EmitScalarFMAExpr(*this, Ops, Ops[0], /*ZeroMask*/true);
+ case X86::BI__builtin_ia32_vfmaddss3_mask3:
+ case X86::BI__builtin_ia32_vfmaddsd3_mask3:
+ return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2);
+ case X86::BI__builtin_ia32_vfmsubss3_mask3:
+ case X86::BI__builtin_ia32_vfmsubsd3_mask3:
+ return EmitScalarFMAExpr(*this, Ops, Ops[2], /*ZeroMask*/false, 2,
+ /*NegAcc*/true);
+ case X86::BI__builtin_ia32_vfmaddps:
+ case X86::BI__builtin_ia32_vfmaddpd:
+ case X86::BI__builtin_ia32_vfmaddps256:
+ case X86::BI__builtin_ia32_vfmaddpd256:
+ case X86::BI__builtin_ia32_vfmaddps512_mask:
+ case X86::BI__builtin_ia32_vfmaddps512_maskz:
+ case X86::BI__builtin_ia32_vfmaddps512_mask3:
+ case X86::BI__builtin_ia32_vfmsubps512_mask3:
+ case X86::BI__builtin_ia32_vfmaddpd512_mask:
+ case X86::BI__builtin_ia32_vfmaddpd512_maskz:
+ case X86::BI__builtin_ia32_vfmaddpd512_mask3:
+ case X86::BI__builtin_ia32_vfmsubpd512_mask3:
+ return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/false);
+ case X86::BI__builtin_ia32_vfmaddsubps:
+ case X86::BI__builtin_ia32_vfmaddsubpd:
+ case X86::BI__builtin_ia32_vfmaddsubps256:
+ case X86::BI__builtin_ia32_vfmaddsubpd256:
+ case X86::BI__builtin_ia32_vfmaddsubps512_mask:
+ case X86::BI__builtin_ia32_vfmaddsubps512_maskz:
+ case X86::BI__builtin_ia32_vfmaddsubps512_mask3:
+ case X86::BI__builtin_ia32_vfmsubaddps512_mask3:
+ case X86::BI__builtin_ia32_vfmaddsubpd512_mask:
+ case X86::BI__builtin_ia32_vfmaddsubpd512_maskz:
+ case X86::BI__builtin_ia32_vfmaddsubpd512_mask3:
+ case X86::BI__builtin_ia32_vfmsubaddpd512_mask3:
+ return EmitX86FMAExpr(*this, Ops, BuiltinID, /*IsAddSub*/true);
+
+ case X86::BI__builtin_ia32_movdqa32store128_mask:
+ case X86::BI__builtin_ia32_movdqa64store128_mask:
+ case X86::BI__builtin_ia32_storeaps128_mask:
+ case X86::BI__builtin_ia32_storeapd128_mask:
+ case X86::BI__builtin_ia32_movdqa32store256_mask:
+ case X86::BI__builtin_ia32_movdqa64store256_mask:
+ case X86::BI__builtin_ia32_storeaps256_mask:
+ case X86::BI__builtin_ia32_storeapd256_mask:
+ case X86::BI__builtin_ia32_movdqa32store512_mask:
+ case X86::BI__builtin_ia32_movdqa64store512_mask:
+ case X86::BI__builtin_ia32_storeaps512_mask:
+ case X86::BI__builtin_ia32_storeapd512_mask: {
+ unsigned Align =
+ getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
+ return EmitX86MaskedStore(*this, Ops, Align);
+ }
+ case X86::BI__builtin_ia32_loadups128_mask:
+ case X86::BI__builtin_ia32_loadups256_mask:
+ case X86::BI__builtin_ia32_loadups512_mask:
+ case X86::BI__builtin_ia32_loadupd128_mask:
+ case X86::BI__builtin_ia32_loadupd256_mask:
+ case X86::BI__builtin_ia32_loadupd512_mask:
+ case X86::BI__builtin_ia32_loaddquqi128_mask:
+ case X86::BI__builtin_ia32_loaddquqi256_mask:
+ case X86::BI__builtin_ia32_loaddquqi512_mask:
+ case X86::BI__builtin_ia32_loaddquhi128_mask:
+ case X86::BI__builtin_ia32_loaddquhi256_mask:
+ case X86::BI__builtin_ia32_loaddquhi512_mask:
+ case X86::BI__builtin_ia32_loaddqusi128_mask:
+ case X86::BI__builtin_ia32_loaddqusi256_mask:
+ case X86::BI__builtin_ia32_loaddqusi512_mask:
+ case X86::BI__builtin_ia32_loaddqudi128_mask:
+ case X86::BI__builtin_ia32_loaddqudi256_mask:
+ case X86::BI__builtin_ia32_loaddqudi512_mask:
+ return EmitX86MaskedLoad(*this, Ops, 1);
+
+ case X86::BI__builtin_ia32_loadss128_mask:
+ case X86::BI__builtin_ia32_loadsd128_mask:
+ return EmitX86MaskedLoad(*this, Ops, 1);
+
+ case X86::BI__builtin_ia32_loadaps128_mask:
+ case X86::BI__builtin_ia32_loadaps256_mask:
+ case X86::BI__builtin_ia32_loadaps512_mask:
+ case X86::BI__builtin_ia32_loadapd128_mask:
+ case X86::BI__builtin_ia32_loadapd256_mask:
+ case X86::BI__builtin_ia32_loadapd512_mask:
+ case X86::BI__builtin_ia32_movdqa32load128_mask:
+ case X86::BI__builtin_ia32_movdqa32load256_mask:
+ case X86::BI__builtin_ia32_movdqa32load512_mask:
+ case X86::BI__builtin_ia32_movdqa64load128_mask:
+ case X86::BI__builtin_ia32_movdqa64load256_mask:
+ case X86::BI__builtin_ia32_movdqa64load512_mask: {
+ unsigned Align =
+ getContext().getTypeAlignInChars(E->getArg(1)->getType()).getQuantity();
+ return EmitX86MaskedLoad(*this, Ops, Align);
+ }
+
+ case X86::BI__builtin_ia32_expandloaddf128_mask:
+ case X86::BI__builtin_ia32_expandloaddf256_mask:
+ case X86::BI__builtin_ia32_expandloaddf512_mask:
+ case X86::BI__builtin_ia32_expandloadsf128_mask:
+ case X86::BI__builtin_ia32_expandloadsf256_mask:
+ case X86::BI__builtin_ia32_expandloadsf512_mask:
+ case X86::BI__builtin_ia32_expandloaddi128_mask:
+ case X86::BI__builtin_ia32_expandloaddi256_mask:
+ case X86::BI__builtin_ia32_expandloaddi512_mask:
+ case X86::BI__builtin_ia32_expandloadsi128_mask:
+ case X86::BI__builtin_ia32_expandloadsi256_mask:
+ case X86::BI__builtin_ia32_expandloadsi512_mask:
+ case X86::BI__builtin_ia32_expandloadhi128_mask:
+ case X86::BI__builtin_ia32_expandloadhi256_mask:
+ case X86::BI__builtin_ia32_expandloadhi512_mask:
+ case X86::BI__builtin_ia32_expandloadqi128_mask:
+ case X86::BI__builtin_ia32_expandloadqi256_mask:
+ case X86::BI__builtin_ia32_expandloadqi512_mask:
+ return EmitX86ExpandLoad(*this, Ops);
+
+ case X86::BI__builtin_ia32_compressstoredf128_mask:
+ case X86::BI__builtin_ia32_compressstoredf256_mask:
+ case X86::BI__builtin_ia32_compressstoredf512_mask:
+ case X86::BI__builtin_ia32_compressstoresf128_mask:
+ case X86::BI__builtin_ia32_compressstoresf256_mask:
+ case X86::BI__builtin_ia32_compressstoresf512_mask:
+ case X86::BI__builtin_ia32_compressstoredi128_mask:
+ case X86::BI__builtin_ia32_compressstoredi256_mask:
+ case X86::BI__builtin_ia32_compressstoredi512_mask:
+ case X86::BI__builtin_ia32_compressstoresi128_mask:
+ case X86::BI__builtin_ia32_compressstoresi256_mask:
+ case X86::BI__builtin_ia32_compressstoresi512_mask:
+ case X86::BI__builtin_ia32_compressstorehi128_mask:
+ case X86::BI__builtin_ia32_compressstorehi256_mask:
+ case X86::BI__builtin_ia32_compressstorehi512_mask:
+ case X86::BI__builtin_ia32_compressstoreqi128_mask:
+ case X86::BI__builtin_ia32_compressstoreqi256_mask:
+ case X86::BI__builtin_ia32_compressstoreqi512_mask:
+ return EmitX86CompressStore(*this, Ops);
+
+ case X86::BI__builtin_ia32_expanddf128_mask:
+ case X86::BI__builtin_ia32_expanddf256_mask:
+ case X86::BI__builtin_ia32_expanddf512_mask:
+ case X86::BI__builtin_ia32_expandsf128_mask:
+ case X86::BI__builtin_ia32_expandsf256_mask:
+ case X86::BI__builtin_ia32_expandsf512_mask:
+ case X86::BI__builtin_ia32_expanddi128_mask:
+ case X86::BI__builtin_ia32_expanddi256_mask:
+ case X86::BI__builtin_ia32_expanddi512_mask:
+ case X86::BI__builtin_ia32_expandsi128_mask:
+ case X86::BI__builtin_ia32_expandsi256_mask:
+ case X86::BI__builtin_ia32_expandsi512_mask:
+ case X86::BI__builtin_ia32_expandhi128_mask:
+ case X86::BI__builtin_ia32_expandhi256_mask:
+ case X86::BI__builtin_ia32_expandhi512_mask:
+ case X86::BI__builtin_ia32_expandqi128_mask:
+ case X86::BI__builtin_ia32_expandqi256_mask:
+ case X86::BI__builtin_ia32_expandqi512_mask:
+ return EmitX86CompressExpand(*this, Ops, /*IsCompress*/false);
+
+ case X86::BI__builtin_ia32_compressdf128_mask:
+ case X86::BI__builtin_ia32_compressdf256_mask:
+ case X86::BI__builtin_ia32_compressdf512_mask:
+ case X86::BI__builtin_ia32_compresssf128_mask:
+ case X86::BI__builtin_ia32_compresssf256_mask:
+ case X86::BI__builtin_ia32_compresssf512_mask:
+ case X86::BI__builtin_ia32_compressdi128_mask:
+ case X86::BI__builtin_ia32_compressdi256_mask:
+ case X86::BI__builtin_ia32_compressdi512_mask:
+ case X86::BI__builtin_ia32_compresssi128_mask:
+ case X86::BI__builtin_ia32_compresssi256_mask:
+ case X86::BI__builtin_ia32_compresssi512_mask:
+ case X86::BI__builtin_ia32_compresshi128_mask:
+ case X86::BI__builtin_ia32_compresshi256_mask:
+ case X86::BI__builtin_ia32_compresshi512_mask:
+ case X86::BI__builtin_ia32_compressqi128_mask:
+ case X86::BI__builtin_ia32_compressqi256_mask:
+ case X86::BI__builtin_ia32_compressqi512_mask:
+ return EmitX86CompressExpand(*this, Ops, /*IsCompress*/true);
+
+ case X86::BI__builtin_ia32_gather3div2df:
+ case X86::BI__builtin_ia32_gather3div2di:
+ case X86::BI__builtin_ia32_gather3div4df:
+ case X86::BI__builtin_ia32_gather3div4di:
+ case X86::BI__builtin_ia32_gather3div4sf:
+ case X86::BI__builtin_ia32_gather3div4si:
+ case X86::BI__builtin_ia32_gather3div8sf:
+ case X86::BI__builtin_ia32_gather3div8si:
+ case X86::BI__builtin_ia32_gather3siv2df:
+ case X86::BI__builtin_ia32_gather3siv2di:
+ case X86::BI__builtin_ia32_gather3siv4df:
+ case X86::BI__builtin_ia32_gather3siv4di:
+ case X86::BI__builtin_ia32_gather3siv4sf:
+ case X86::BI__builtin_ia32_gather3siv4si:
+ case X86::BI__builtin_ia32_gather3siv8sf:
+ case X86::BI__builtin_ia32_gather3siv8si:
+ case X86::BI__builtin_ia32_gathersiv8df:
+ case X86::BI__builtin_ia32_gathersiv16sf:
+ case X86::BI__builtin_ia32_gatherdiv8df:
+ case X86::BI__builtin_ia32_gatherdiv16sf:
+ case X86::BI__builtin_ia32_gathersiv8di:
+ case X86::BI__builtin_ia32_gathersiv16si:
+ case X86::BI__builtin_ia32_gatherdiv8di:
+ case X86::BI__builtin_ia32_gatherdiv16si: {
+ Intrinsic::ID IID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unexpected builtin");
+ case X86::BI__builtin_ia32_gather3div2df:
+ IID = Intrinsic::x86_avx512_mask_gather3div2_df;
+ break;
+ case X86::BI__builtin_ia32_gather3div2di:
+ IID = Intrinsic::x86_avx512_mask_gather3div2_di;
+ break;
+ case X86::BI__builtin_ia32_gather3div4df:
+ IID = Intrinsic::x86_avx512_mask_gather3div4_df;
+ break;
+ case X86::BI__builtin_ia32_gather3div4di:
+ IID = Intrinsic::x86_avx512_mask_gather3div4_di;
+ break;
+ case X86::BI__builtin_ia32_gather3div4sf:
+ IID = Intrinsic::x86_avx512_mask_gather3div4_sf;
+ break;
+ case X86::BI__builtin_ia32_gather3div4si:
+ IID = Intrinsic::x86_avx512_mask_gather3div4_si;
+ break;
+ case X86::BI__builtin_ia32_gather3div8sf:
+ IID = Intrinsic::x86_avx512_mask_gather3div8_sf;
+ break;
+ case X86::BI__builtin_ia32_gather3div8si:
+ IID = Intrinsic::x86_avx512_mask_gather3div8_si;
+ break;
+ case X86::BI__builtin_ia32_gather3siv2df:
+ IID = Intrinsic::x86_avx512_mask_gather3siv2_df;
+ break;
+ case X86::BI__builtin_ia32_gather3siv2di:
+ IID = Intrinsic::x86_avx512_mask_gather3siv2_di;
+ break;
+ case X86::BI__builtin_ia32_gather3siv4df:
+ IID = Intrinsic::x86_avx512_mask_gather3siv4_df;
+ break;
+ case X86::BI__builtin_ia32_gather3siv4di:
+ IID = Intrinsic::x86_avx512_mask_gather3siv4_di;
+ break;
+ case X86::BI__builtin_ia32_gather3siv4sf:
+ IID = Intrinsic::x86_avx512_mask_gather3siv4_sf;
+ break;
+ case X86::BI__builtin_ia32_gather3siv4si:
+ IID = Intrinsic::x86_avx512_mask_gather3siv4_si;
+ break;
+ case X86::BI__builtin_ia32_gather3siv8sf:
+ IID = Intrinsic::x86_avx512_mask_gather3siv8_sf;
+ break;
+ case X86::BI__builtin_ia32_gather3siv8si:
+ IID = Intrinsic::x86_avx512_mask_gather3siv8_si;
+ break;
+ case X86::BI__builtin_ia32_gathersiv8df:
+ IID = Intrinsic::x86_avx512_mask_gather_dpd_512;
+ break;
+ case X86::BI__builtin_ia32_gathersiv16sf:
+ IID = Intrinsic::x86_avx512_mask_gather_dps_512;
+ break;
+ case X86::BI__builtin_ia32_gatherdiv8df:
+ IID = Intrinsic::x86_avx512_mask_gather_qpd_512;
+ break;
+ case X86::BI__builtin_ia32_gatherdiv16sf:
+ IID = Intrinsic::x86_avx512_mask_gather_qps_512;
+ break;
+ case X86::BI__builtin_ia32_gathersiv8di:
+ IID = Intrinsic::x86_avx512_mask_gather_dpq_512;
+ break;
+ case X86::BI__builtin_ia32_gathersiv16si:
+ IID = Intrinsic::x86_avx512_mask_gather_dpi_512;
+ break;
+ case X86::BI__builtin_ia32_gatherdiv8di:
+ IID = Intrinsic::x86_avx512_mask_gather_qpq_512;
+ break;
+ case X86::BI__builtin_ia32_gatherdiv16si:
+ IID = Intrinsic::x86_avx512_mask_gather_qpi_512;
+ break;
+ }
+
+ unsigned MinElts = std::min(Ops[0]->getType()->getVectorNumElements(),
+ Ops[2]->getType()->getVectorNumElements());
+ Ops[3] = getMaskVecValue(*this, Ops[3], MinElts);
+ Function *Intr = CGM.getIntrinsic(IID);
+ return Builder.CreateCall(Intr, Ops);
+ }
+
+ case X86::BI__builtin_ia32_scattersiv8df:
+ case X86::BI__builtin_ia32_scattersiv16sf:
+ case X86::BI__builtin_ia32_scatterdiv8df:
+ case X86::BI__builtin_ia32_scatterdiv16sf:
+ case X86::BI__builtin_ia32_scattersiv8di:
+ case X86::BI__builtin_ia32_scattersiv16si:
+ case X86::BI__builtin_ia32_scatterdiv8di:
+ case X86::BI__builtin_ia32_scatterdiv16si:
+ case X86::BI__builtin_ia32_scatterdiv2df:
+ case X86::BI__builtin_ia32_scatterdiv2di:
+ case X86::BI__builtin_ia32_scatterdiv4df:
+ case X86::BI__builtin_ia32_scatterdiv4di:
+ case X86::BI__builtin_ia32_scatterdiv4sf:
+ case X86::BI__builtin_ia32_scatterdiv4si:
+ case X86::BI__builtin_ia32_scatterdiv8sf:
+ case X86::BI__builtin_ia32_scatterdiv8si:
+ case X86::BI__builtin_ia32_scattersiv2df:
+ case X86::BI__builtin_ia32_scattersiv2di:
+ case X86::BI__builtin_ia32_scattersiv4df:
+ case X86::BI__builtin_ia32_scattersiv4di:
+ case X86::BI__builtin_ia32_scattersiv4sf:
+ case X86::BI__builtin_ia32_scattersiv4si:
+ case X86::BI__builtin_ia32_scattersiv8sf:
+ case X86::BI__builtin_ia32_scattersiv8si: {
+ Intrinsic::ID IID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unexpected builtin");
+ case X86::BI__builtin_ia32_scattersiv8df:
+ IID = Intrinsic::x86_avx512_mask_scatter_dpd_512;
+ break;
+ case X86::BI__builtin_ia32_scattersiv16sf:
+ IID = Intrinsic::x86_avx512_mask_scatter_dps_512;
+ break;
+ case X86::BI__builtin_ia32_scatterdiv8df:
+ IID = Intrinsic::x86_avx512_mask_scatter_qpd_512;
+ break;
+ case X86::BI__builtin_ia32_scatterdiv16sf:
+ IID = Intrinsic::x86_avx512_mask_scatter_qps_512;
+ break;
+ case X86::BI__builtin_ia32_scattersiv8di:
+ IID = Intrinsic::x86_avx512_mask_scatter_dpq_512;
+ break;
+ case X86::BI__builtin_ia32_scattersiv16si:
+ IID = Intrinsic::x86_avx512_mask_scatter_dpi_512;
+ break;
+ case X86::BI__builtin_ia32_scatterdiv8di:
+ IID = Intrinsic::x86_avx512_mask_scatter_qpq_512;
+ break;
+ case X86::BI__builtin_ia32_scatterdiv16si:
+ IID = Intrinsic::x86_avx512_mask_scatter_qpi_512;
+ break;
+ case X86::BI__builtin_ia32_scatterdiv2df:
+ IID = Intrinsic::x86_avx512_mask_scatterdiv2_df;
+ break;
+ case X86::BI__builtin_ia32_scatterdiv2di:
+ IID = Intrinsic::x86_avx512_mask_scatterdiv2_di;
+ break;
+ case X86::BI__builtin_ia32_scatterdiv4df:
+ IID = Intrinsic::x86_avx512_mask_scatterdiv4_df;
+ break;
+ case X86::BI__builtin_ia32_scatterdiv4di:
+ IID = Intrinsic::x86_avx512_mask_scatterdiv4_di;
+ break;
+ case X86::BI__builtin_ia32_scatterdiv4sf:
+ IID = Intrinsic::x86_avx512_mask_scatterdiv4_sf;
+ break;
+ case X86::BI__builtin_ia32_scatterdiv4si:
+ IID = Intrinsic::x86_avx512_mask_scatterdiv4_si;
+ break;
+ case X86::BI__builtin_ia32_scatterdiv8sf:
+ IID = Intrinsic::x86_avx512_mask_scatterdiv8_sf;
+ break;
+ case X86::BI__builtin_ia32_scatterdiv8si:
+ IID = Intrinsic::x86_avx512_mask_scatterdiv8_si;
+ break;
+ case X86::BI__builtin_ia32_scattersiv2df:
+ IID = Intrinsic::x86_avx512_mask_scattersiv2_df;
+ break;
+ case X86::BI__builtin_ia32_scattersiv2di:
+ IID = Intrinsic::x86_avx512_mask_scattersiv2_di;
+ break;
+ case X86::BI__builtin_ia32_scattersiv4df:
+ IID = Intrinsic::x86_avx512_mask_scattersiv4_df;
+ break;
+ case X86::BI__builtin_ia32_scattersiv4di:
+ IID = Intrinsic::x86_avx512_mask_scattersiv4_di;
+ break;
+ case X86::BI__builtin_ia32_scattersiv4sf:
+ IID = Intrinsic::x86_avx512_mask_scattersiv4_sf;
+ break;
+ case X86::BI__builtin_ia32_scattersiv4si:
+ IID = Intrinsic::x86_avx512_mask_scattersiv4_si;
+ break;
+ case X86::BI__builtin_ia32_scattersiv8sf:
+ IID = Intrinsic::x86_avx512_mask_scattersiv8_sf;
+ break;
+ case X86::BI__builtin_ia32_scattersiv8si:
+ IID = Intrinsic::x86_avx512_mask_scattersiv8_si;
+ break;
+ }
+
+ unsigned MinElts = std::min(Ops[2]->getType()->getVectorNumElements(),
+ Ops[3]->getType()->getVectorNumElements());
+ Ops[1] = getMaskVecValue(*this, Ops[1], MinElts);
+ Function *Intr = CGM.getIntrinsic(IID);
+ return Builder.CreateCall(Intr, Ops);
+ }
+
+ case X86::BI__builtin_ia32_vextractf128_pd256:
+ case X86::BI__builtin_ia32_vextractf128_ps256:
+ case X86::BI__builtin_ia32_vextractf128_si256:
+ case X86::BI__builtin_ia32_extract128i256:
+ case X86::BI__builtin_ia32_extractf64x4_mask:
+ case X86::BI__builtin_ia32_extractf32x4_mask:
+ case X86::BI__builtin_ia32_extracti64x4_mask:
+ case X86::BI__builtin_ia32_extracti32x4_mask:
+ case X86::BI__builtin_ia32_extractf32x8_mask:
+ case X86::BI__builtin_ia32_extracti32x8_mask:
+ case X86::BI__builtin_ia32_extractf32x4_256_mask:
+ case X86::BI__builtin_ia32_extracti32x4_256_mask:
+ case X86::BI__builtin_ia32_extractf64x2_256_mask:
+ case X86::BI__builtin_ia32_extracti64x2_256_mask:
+ case X86::BI__builtin_ia32_extractf64x2_512_mask:
+ case X86::BI__builtin_ia32_extracti64x2_512_mask: {
+ llvm::Type *DstTy = ConvertType(E->getType());
+ unsigned NumElts = DstTy->getVectorNumElements();
+ unsigned SrcNumElts = Ops[0]->getType()->getVectorNumElements();
+ unsigned SubVectors = SrcNumElts / NumElts;
+ unsigned Index = cast<ConstantInt>(Ops[1])->getZExtValue();
+ assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
+ Index &= SubVectors - 1; // Remove any extra bits.
+ Index *= NumElts;
+
+ uint32_t Indices[16];
+ for (unsigned i = 0; i != NumElts; ++i)
+ Indices[i] = i + Index;
+
+ Value *Res = Builder.CreateShuffleVector(Ops[0],
+ UndefValue::get(Ops[0]->getType()),
+ makeArrayRef(Indices, NumElts),
+ "extract");
+
+ if (Ops.size() == 4)
+ Res = EmitX86Select(*this, Ops[3], Res, Ops[2]);
+
+ return Res;
+ }
+ case X86::BI__builtin_ia32_vinsertf128_pd256:
+ case X86::BI__builtin_ia32_vinsertf128_ps256:
+ case X86::BI__builtin_ia32_vinsertf128_si256:
+ case X86::BI__builtin_ia32_insert128i256:
+ case X86::BI__builtin_ia32_insertf64x4:
+ case X86::BI__builtin_ia32_insertf32x4:
+ case X86::BI__builtin_ia32_inserti64x4:
+ case X86::BI__builtin_ia32_inserti32x4:
+ case X86::BI__builtin_ia32_insertf32x8:
+ case X86::BI__builtin_ia32_inserti32x8:
+ case X86::BI__builtin_ia32_insertf32x4_256:
+ case X86::BI__builtin_ia32_inserti32x4_256:
+ case X86::BI__builtin_ia32_insertf64x2_256:
+ case X86::BI__builtin_ia32_inserti64x2_256:
+ case X86::BI__builtin_ia32_insertf64x2_512:
+ case X86::BI__builtin_ia32_inserti64x2_512: {
+ unsigned DstNumElts = Ops[0]->getType()->getVectorNumElements();
+ unsigned SrcNumElts = Ops[1]->getType()->getVectorNumElements();
+ unsigned SubVectors = DstNumElts / SrcNumElts;
+ unsigned Index = cast<ConstantInt>(Ops[2])->getZExtValue();
+ assert(llvm::isPowerOf2_32(SubVectors) && "Expected power of 2 subvectors");
+ Index &= SubVectors - 1; // Remove any extra bits.
+ Index *= SrcNumElts;
+
+ uint32_t Indices[16];
+ for (unsigned i = 0; i != DstNumElts; ++i)
+ Indices[i] = (i >= SrcNumElts) ? SrcNumElts + (i % SrcNumElts) : i;
+
+ Value *Op1 = Builder.CreateShuffleVector(Ops[1],
+ UndefValue::get(Ops[1]->getType()),
+ makeArrayRef(Indices, DstNumElts),
+ "widen");
+
+ for (unsigned i = 0; i != DstNumElts; ++i) {
+ if (i >= Index && i < (Index + SrcNumElts))
+ Indices[i] = (i - Index) + DstNumElts;
+ else
+ Indices[i] = i;
+ }
+
+ return Builder.CreateShuffleVector(Ops[0], Op1,
+ makeArrayRef(Indices, DstNumElts),
+ "insert");
+ }
+ case X86::BI__builtin_ia32_pmovqd512_mask:
+ case X86::BI__builtin_ia32_pmovwb512_mask: {
+ Value *Res = Builder.CreateTrunc(Ops[0], Ops[1]->getType());
+ return EmitX86Select(*this, Ops[2], Res, Ops[1]);
+ }
+ case X86::BI__builtin_ia32_pmovdb512_mask:
+ case X86::BI__builtin_ia32_pmovdw512_mask:
+ case X86::BI__builtin_ia32_pmovqw512_mask: {
+ if (const auto *C = dyn_cast<Constant>(Ops[2]))
+ if (C->isAllOnesValue())
+ return Builder.CreateTrunc(Ops[0], Ops[1]->getType());
+
+ Intrinsic::ID IID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_pmovdb512_mask:
+ IID = Intrinsic::x86_avx512_mask_pmov_db_512;
+ break;
+ case X86::BI__builtin_ia32_pmovdw512_mask:
+ IID = Intrinsic::x86_avx512_mask_pmov_dw_512;
+ break;
+ case X86::BI__builtin_ia32_pmovqw512_mask:
+ IID = Intrinsic::x86_avx512_mask_pmov_qw_512;
+ break;
+ }
+
+ Function *Intr = CGM.getIntrinsic(IID);
+ return Builder.CreateCall(Intr, Ops);
+ }
+ case X86::BI__builtin_ia32_pblendw128:
+ case X86::BI__builtin_ia32_blendpd:
+ case X86::BI__builtin_ia32_blendps:
+ case X86::BI__builtin_ia32_blendpd256:
+ case X86::BI__builtin_ia32_blendps256:
+ case X86::BI__builtin_ia32_pblendw256:
+ case X86::BI__builtin_ia32_pblendd128:
+ case X86::BI__builtin_ia32_pblendd256: {
+ unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
+ unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
+
+ uint32_t Indices[16];
+ // If there are more than 8 elements, the immediate is used twice so make
+ // sure we handle that.
+ for (unsigned i = 0; i != NumElts; ++i)
+ Indices[i] = ((Imm >> (i % 8)) & 0x1) ? NumElts + i : i;
+
+ return Builder.CreateShuffleVector(Ops[0], Ops[1],
+ makeArrayRef(Indices, NumElts),
+ "blend");
+ }
+ case X86::BI__builtin_ia32_pshuflw:
+ case X86::BI__builtin_ia32_pshuflw256:
+ case X86::BI__builtin_ia32_pshuflw512: {
+ uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
+ llvm::Type *Ty = Ops[0]->getType();
+ unsigned NumElts = Ty->getVectorNumElements();
+
+ // Splat the 8-bits of immediate 4 times to help the loop wrap around.
+ Imm = (Imm & 0xff) * 0x01010101;
+
+ uint32_t Indices[32];
+ for (unsigned l = 0; l != NumElts; l += 8) {
+ for (unsigned i = 0; i != 4; ++i) {
+ Indices[l + i] = l + (Imm & 3);
+ Imm >>= 2;
+ }
+ for (unsigned i = 4; i != 8; ++i)
+ Indices[l + i] = l + i;
+ }
+
+ return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
+ makeArrayRef(Indices, NumElts),
+ "pshuflw");
+ }
+ case X86::BI__builtin_ia32_pshufhw:
+ case X86::BI__builtin_ia32_pshufhw256:
+ case X86::BI__builtin_ia32_pshufhw512: {
+ uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
+ llvm::Type *Ty = Ops[0]->getType();
+ unsigned NumElts = Ty->getVectorNumElements();
+
+ // Splat the 8-bits of immediate 4 times to help the loop wrap around.
+ Imm = (Imm & 0xff) * 0x01010101;
+
+ uint32_t Indices[32];
+ for (unsigned l = 0; l != NumElts; l += 8) {
+ for (unsigned i = 0; i != 4; ++i)
+ Indices[l + i] = l + i;
+ for (unsigned i = 4; i != 8; ++i) {
+ Indices[l + i] = l + 4 + (Imm & 3);
+ Imm >>= 2;
+ }
+ }
+
+ return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
+ makeArrayRef(Indices, NumElts),
+ "pshufhw");
+ }
+ case X86::BI__builtin_ia32_pshufd:
+ case X86::BI__builtin_ia32_pshufd256:
+ case X86::BI__builtin_ia32_pshufd512:
+ case X86::BI__builtin_ia32_vpermilpd:
+ case X86::BI__builtin_ia32_vpermilps:
+ case X86::BI__builtin_ia32_vpermilpd256:
+ case X86::BI__builtin_ia32_vpermilps256:
+ case X86::BI__builtin_ia32_vpermilpd512:
+ case X86::BI__builtin_ia32_vpermilps512: {
+ uint32_t Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
+ llvm::Type *Ty = Ops[0]->getType();
+ unsigned NumElts = Ty->getVectorNumElements();
+ unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
+ unsigned NumLaneElts = NumElts / NumLanes;
+
+ // Splat the 8-bits of immediate 4 times to help the loop wrap around.
+ Imm = (Imm & 0xff) * 0x01010101;
+
+ uint32_t Indices[16];
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0; i != NumLaneElts; ++i) {
+ Indices[i + l] = (Imm % NumLaneElts) + l;
+ Imm /= NumLaneElts;
+ }
+ }
+
+ return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
+ makeArrayRef(Indices, NumElts),
+ "permil");
+ }
+ case X86::BI__builtin_ia32_shufpd:
+ case X86::BI__builtin_ia32_shufpd256:
+ case X86::BI__builtin_ia32_shufpd512:
+ case X86::BI__builtin_ia32_shufps:
+ case X86::BI__builtin_ia32_shufps256:
+ case X86::BI__builtin_ia32_shufps512: {
+ uint32_t Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
+ llvm::Type *Ty = Ops[0]->getType();
+ unsigned NumElts = Ty->getVectorNumElements();
+ unsigned NumLanes = Ty->getPrimitiveSizeInBits() / 128;
+ unsigned NumLaneElts = NumElts / NumLanes;
+
+ // Splat the 8-bits of immediate 4 times to help the loop wrap around.
+ Imm = (Imm & 0xff) * 0x01010101;
+
+ uint32_t Indices[16];
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ for (unsigned i = 0; i != NumLaneElts; ++i) {
+ unsigned Index = Imm % NumLaneElts;
+ Imm /= NumLaneElts;
+ if (i >= (NumLaneElts / 2))
+ Index += NumElts;
+ Indices[l + i] = l + Index;
+ }
+ }
+
+ return Builder.CreateShuffleVector(Ops[0], Ops[1],
+ makeArrayRef(Indices, NumElts),
+ "shufp");
+ }
+ case X86::BI__builtin_ia32_permdi256:
+ case X86::BI__builtin_ia32_permdf256:
+ case X86::BI__builtin_ia32_permdi512:
+ case X86::BI__builtin_ia32_permdf512: {
+ unsigned Imm = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
+ llvm::Type *Ty = Ops[0]->getType();
+ unsigned NumElts = Ty->getVectorNumElements();
+
+ // These intrinsics operate on 256-bit lanes of four 64-bit elements.
+ uint32_t Indices[8];
+ for (unsigned l = 0; l != NumElts; l += 4)
+ for (unsigned i = 0; i != 4; ++i)
+ Indices[l + i] = l + ((Imm >> (2 * i)) & 0x3);
+
+ return Builder.CreateShuffleVector(Ops[0], UndefValue::get(Ty),
+ makeArrayRef(Indices, NumElts),
+ "perm");
+ }
+ case X86::BI__builtin_ia32_palignr128:
+ case X86::BI__builtin_ia32_palignr256:
+ case X86::BI__builtin_ia32_palignr512: {
+ unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
+
+ unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
+ assert(NumElts % 16 == 0);
+
+ // If palignr is shifting the pair of vectors more than the size of two
+ // lanes, emit zero.
+ if (ShiftVal >= 32)
+ return llvm::Constant::getNullValue(ConvertType(E->getType()));
+
+ // If palignr is shifting the pair of input vectors more than one lane,
+ // but less than two lanes, convert to shifting in zeroes.
+ if (ShiftVal > 16) {
+ ShiftVal -= 16;
+ Ops[1] = Ops[0];
+ Ops[0] = llvm::Constant::getNullValue(Ops[0]->getType());
+ }
+
+ uint32_t Indices[64];
+ // 256-bit palignr operates on 128-bit lanes so we need to handle that
+ for (unsigned l = 0; l != NumElts; l += 16) {
+ for (unsigned i = 0; i != 16; ++i) {
+ unsigned Idx = ShiftVal + i;
+ if (Idx >= 16)
+ Idx += NumElts - 16; // End of lane, switch operand.
+ Indices[l + i] = Idx + l;
+ }
+ }
+
+ return Builder.CreateShuffleVector(Ops[1], Ops[0],
+ makeArrayRef(Indices, NumElts),
+ "palignr");
+ }
+ case X86::BI__builtin_ia32_alignd128:
+ case X86::BI__builtin_ia32_alignd256:
+ case X86::BI__builtin_ia32_alignd512:
+ case X86::BI__builtin_ia32_alignq128:
+ case X86::BI__builtin_ia32_alignq256:
+ case X86::BI__builtin_ia32_alignq512: {
+ unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
+ unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0xff;
+
+ // Mask the shift amount to width of two vectors.
+ ShiftVal &= (2 * NumElts) - 1;
+
+ uint32_t Indices[16];
+ for (unsigned i = 0; i != NumElts; ++i)
+ Indices[i] = i + ShiftVal;
+
+ return Builder.CreateShuffleVector(Ops[1], Ops[0],
+ makeArrayRef(Indices, NumElts),
+ "valign");
+ }
+ case X86::BI__builtin_ia32_shuf_f32x4_256:
+ case X86::BI__builtin_ia32_shuf_f64x2_256:
+ case X86::BI__builtin_ia32_shuf_i32x4_256:
+ case X86::BI__builtin_ia32_shuf_i64x2_256:
+ case X86::BI__builtin_ia32_shuf_f32x4:
+ case X86::BI__builtin_ia32_shuf_f64x2:
+ case X86::BI__builtin_ia32_shuf_i32x4:
+ case X86::BI__builtin_ia32_shuf_i64x2: {
+ unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
+ llvm::Type *Ty = Ops[0]->getType();
+ unsigned NumElts = Ty->getVectorNumElements();
+ unsigned NumLanes = Ty->getPrimitiveSizeInBits() == 512 ? 4 : 2;
+ unsigned NumLaneElts = NumElts / NumLanes;
+
+ uint32_t Indices[16];
+ for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
+ unsigned Index = (Imm % NumLanes) * NumLaneElts;
+ Imm /= NumLanes; // Discard the bits we just used.
+ if (l >= (NumElts / 2))
+ Index += NumElts; // Switch to other source.
+ for (unsigned i = 0; i != NumLaneElts; ++i) {
+ Indices[l + i] = Index + i;
+ }
+ }
+
+ return Builder.CreateShuffleVector(Ops[0], Ops[1],
+ makeArrayRef(Indices, NumElts),
+ "shuf");
+ }
+
+ case X86::BI__builtin_ia32_vperm2f128_pd256:
+ case X86::BI__builtin_ia32_vperm2f128_ps256:
+ case X86::BI__builtin_ia32_vperm2f128_si256:
+ case X86::BI__builtin_ia32_permti256: {
+ unsigned Imm = cast<llvm::ConstantInt>(Ops[2])->getZExtValue();
+ unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
+
+ // This takes a very simple approach since there are two lanes and a
+ // shuffle can have 2 inputs. So we reserve the first input for the first
+ // lane and the second input for the second lane. This may result in
+ // duplicate sources, but this can be dealt with in the backend.
+
+ Value *OutOps[2];
+ uint32_t Indices[8];
+ for (unsigned l = 0; l != 2; ++l) {
+ // Determine the source for this lane.
+ if (Imm & (1 << ((l * 4) + 3)))
+ OutOps[l] = llvm::ConstantAggregateZero::get(Ops[0]->getType());
+ else if (Imm & (1 << ((l * 4) + 1)))
+ OutOps[l] = Ops[1];
+ else
+ OutOps[l] = Ops[0];
+
+ for (unsigned i = 0; i != NumElts/2; ++i) {
+ // Start with ith element of the source for this lane.
+ unsigned Idx = (l * NumElts) + i;
+ // If bit 0 of the immediate half is set, switch to the high half of
+ // the source.
+ if (Imm & (1 << (l * 4)))
+ Idx += NumElts/2;
+ Indices[(l * (NumElts/2)) + i] = Idx;
+ }
+ }
+
+ return Builder.CreateShuffleVector(OutOps[0], OutOps[1],
+ makeArrayRef(Indices, NumElts),
+ "vperm");
+ }
+
+ case X86::BI__builtin_ia32_pslldqi128_byteshift:
+ case X86::BI__builtin_ia32_pslldqi256_byteshift:
+ case X86::BI__builtin_ia32_pslldqi512_byteshift: {
+ unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
+ llvm::Type *ResultType = Ops[0]->getType();
+ // Builtin type is vXi64 so multiply by 8 to get bytes.
+ unsigned NumElts = ResultType->getVectorNumElements() * 8;
+
+ // If pslldq is shifting the vector more than 15 bytes, emit zero.
+ if (ShiftVal >= 16)
+ return llvm::Constant::getNullValue(ResultType);
+
+ uint32_t Indices[64];
+ // 256/512-bit pslldq operates on 128-bit lanes so we need to handle that
+ for (unsigned l = 0; l != NumElts; l += 16) {
+ for (unsigned i = 0; i != 16; ++i) {
+ unsigned Idx = NumElts + i - ShiftVal;
+ if (Idx < NumElts) Idx -= NumElts - 16; // end of lane, switch operand.
+ Indices[l + i] = Idx + l;
+ }
+ }
+
+ llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
+ Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
+ Value *Zero = llvm::Constant::getNullValue(VecTy);
+ Value *SV = Builder.CreateShuffleVector(Zero, Cast,
+ makeArrayRef(Indices, NumElts),
+ "pslldq");
+ return Builder.CreateBitCast(SV, Ops[0]->getType(), "cast");
+ }
+ case X86::BI__builtin_ia32_psrldqi128_byteshift:
+ case X86::BI__builtin_ia32_psrldqi256_byteshift:
+ case X86::BI__builtin_ia32_psrldqi512_byteshift: {
+ unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
+ llvm::Type *ResultType = Ops[0]->getType();
+ // Builtin type is vXi64 so multiply by 8 to get bytes.
+ unsigned NumElts = ResultType->getVectorNumElements() * 8;
+
+ // If psrldq is shifting the vector more than 15 bytes, emit zero.
+ if (ShiftVal >= 16)
+ return llvm::Constant::getNullValue(ResultType);
+
+ uint32_t Indices[64];
+ // 256/512-bit psrldq operates on 128-bit lanes so we need to handle that
+ for (unsigned l = 0; l != NumElts; l += 16) {
+ for (unsigned i = 0; i != 16; ++i) {
+ unsigned Idx = i + ShiftVal;
+ if (Idx >= 16) Idx += NumElts - 16; // end of lane, switch operand.
+ Indices[l + i] = Idx + l;
+ }
+ }
+
+ llvm::Type *VecTy = llvm::VectorType::get(Int8Ty, NumElts);
+ Value *Cast = Builder.CreateBitCast(Ops[0], VecTy, "cast");
+ Value *Zero = llvm::Constant::getNullValue(VecTy);
+ Value *SV = Builder.CreateShuffleVector(Cast, Zero,
+ makeArrayRef(Indices, NumElts),
+ "psrldq");
+ return Builder.CreateBitCast(SV, ResultType, "cast");
+ }
+ case X86::BI__builtin_ia32_kshiftliqi:
+ case X86::BI__builtin_ia32_kshiftlihi:
+ case X86::BI__builtin_ia32_kshiftlisi:
+ case X86::BI__builtin_ia32_kshiftlidi: {
+ unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
+ unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
+
+ if (ShiftVal >= NumElts)
+ return llvm::Constant::getNullValue(Ops[0]->getType());
+
+ Value *In = getMaskVecValue(*this, Ops[0], NumElts);
+
+ uint32_t Indices[64];
+ for (unsigned i = 0; i != NumElts; ++i)
+ Indices[i] = NumElts + i - ShiftVal;
+
+ Value *Zero = llvm::Constant::getNullValue(In->getType());
+ Value *SV = Builder.CreateShuffleVector(Zero, In,
+ makeArrayRef(Indices, NumElts),
+ "kshiftl");
+ return Builder.CreateBitCast(SV, Ops[0]->getType());
+ }
+ case X86::BI__builtin_ia32_kshiftriqi:
+ case X86::BI__builtin_ia32_kshiftrihi:
+ case X86::BI__builtin_ia32_kshiftrisi:
+ case X86::BI__builtin_ia32_kshiftridi: {
+ unsigned ShiftVal = cast<llvm::ConstantInt>(Ops[1])->getZExtValue() & 0xff;
+ unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
+
+ if (ShiftVal >= NumElts)
+ return llvm::Constant::getNullValue(Ops[0]->getType());
+
+ Value *In = getMaskVecValue(*this, Ops[0], NumElts);
+
+ uint32_t Indices[64];
+ for (unsigned i = 0; i != NumElts; ++i)
+ Indices[i] = i + ShiftVal;
+
+ Value *Zero = llvm::Constant::getNullValue(In->getType());
+ Value *SV = Builder.CreateShuffleVector(In, Zero,
+ makeArrayRef(Indices, NumElts),
+ "kshiftr");
+ return Builder.CreateBitCast(SV, Ops[0]->getType());
+ }
+ case X86::BI__builtin_ia32_movnti:
+ case X86::BI__builtin_ia32_movnti64:
+ case X86::BI__builtin_ia32_movntsd:
+ case X86::BI__builtin_ia32_movntss: {
+ llvm::MDNode *Node = llvm::MDNode::get(
+ getLLVMContext(), llvm::ConstantAsMetadata::get(Builder.getInt32(1)));
+
+ Value *Ptr = Ops[0];
+ Value *Src = Ops[1];
+
+ // Extract the 0'th element of the source vector.
+ if (BuiltinID == X86::BI__builtin_ia32_movntsd ||
+ BuiltinID == X86::BI__builtin_ia32_movntss)
+ Src = Builder.CreateExtractElement(Src, (uint64_t)0, "extract");
+
+ // Convert the type of the pointer to a pointer to the stored type.
+ Value *BC = Builder.CreateBitCast(
+ Ptr, llvm::PointerType::getUnqual(Src->getType()), "cast");
+
+ // Unaligned nontemporal store of the scalar value.
+ StoreInst *SI = Builder.CreateDefaultAlignedStore(Src, BC);
+ SI->setMetadata(CGM.getModule().getMDKindID("nontemporal"), Node);
+ SI->setAlignment(1);
+ return SI;
+ }
+ // Rotate is a special case of funnel shift - 1st 2 args are the same.
+ case X86::BI__builtin_ia32_vprotb:
+ case X86::BI__builtin_ia32_vprotw:
+ case X86::BI__builtin_ia32_vprotd:
+ case X86::BI__builtin_ia32_vprotq:
+ case X86::BI__builtin_ia32_vprotbi:
+ case X86::BI__builtin_ia32_vprotwi:
+ case X86::BI__builtin_ia32_vprotdi:
+ case X86::BI__builtin_ia32_vprotqi:
+ case X86::BI__builtin_ia32_prold128:
+ case X86::BI__builtin_ia32_prold256:
+ case X86::BI__builtin_ia32_prold512:
+ case X86::BI__builtin_ia32_prolq128:
+ case X86::BI__builtin_ia32_prolq256:
+ case X86::BI__builtin_ia32_prolq512:
+ case X86::BI__builtin_ia32_prolvd128:
+ case X86::BI__builtin_ia32_prolvd256:
+ case X86::BI__builtin_ia32_prolvd512:
+ case X86::BI__builtin_ia32_prolvq128:
+ case X86::BI__builtin_ia32_prolvq256:
+ case X86::BI__builtin_ia32_prolvq512:
+ return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], false);
+ case X86::BI__builtin_ia32_prord128:
+ case X86::BI__builtin_ia32_prord256:
+ case X86::BI__builtin_ia32_prord512:
+ case X86::BI__builtin_ia32_prorq128:
+ case X86::BI__builtin_ia32_prorq256:
+ case X86::BI__builtin_ia32_prorq512:
+ case X86::BI__builtin_ia32_prorvd128:
+ case X86::BI__builtin_ia32_prorvd256:
+ case X86::BI__builtin_ia32_prorvd512:
+ case X86::BI__builtin_ia32_prorvq128:
+ case X86::BI__builtin_ia32_prorvq256:
+ case X86::BI__builtin_ia32_prorvq512:
+ return EmitX86FunnelShift(*this, Ops[0], Ops[0], Ops[1], true);
+ case X86::BI__builtin_ia32_selectb_128:
+ case X86::BI__builtin_ia32_selectb_256:
+ case X86::BI__builtin_ia32_selectb_512:
+ case X86::BI__builtin_ia32_selectw_128:
+ case X86::BI__builtin_ia32_selectw_256:
+ case X86::BI__builtin_ia32_selectw_512:
+ case X86::BI__builtin_ia32_selectd_128:
+ case X86::BI__builtin_ia32_selectd_256:
+ case X86::BI__builtin_ia32_selectd_512:
+ case X86::BI__builtin_ia32_selectq_128:
+ case X86::BI__builtin_ia32_selectq_256:
+ case X86::BI__builtin_ia32_selectq_512:
+ case X86::BI__builtin_ia32_selectps_128:
+ case X86::BI__builtin_ia32_selectps_256:
+ case X86::BI__builtin_ia32_selectps_512:
+ case X86::BI__builtin_ia32_selectpd_128:
+ case X86::BI__builtin_ia32_selectpd_256:
+ case X86::BI__builtin_ia32_selectpd_512:
+ return EmitX86Select(*this, Ops[0], Ops[1], Ops[2]);
+ case X86::BI__builtin_ia32_selectss_128:
+ case X86::BI__builtin_ia32_selectsd_128: {
+ Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
+ Value *B = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
+ A = EmitX86ScalarSelect(*this, Ops[0], A, B);
+ return Builder.CreateInsertElement(Ops[1], A, (uint64_t)0);
+ }
+ case X86::BI__builtin_ia32_cmpb128_mask:
+ case X86::BI__builtin_ia32_cmpb256_mask:
+ case X86::BI__builtin_ia32_cmpb512_mask:
+ case X86::BI__builtin_ia32_cmpw128_mask:
+ case X86::BI__builtin_ia32_cmpw256_mask:
+ case X86::BI__builtin_ia32_cmpw512_mask:
+ case X86::BI__builtin_ia32_cmpd128_mask:
+ case X86::BI__builtin_ia32_cmpd256_mask:
+ case X86::BI__builtin_ia32_cmpd512_mask:
+ case X86::BI__builtin_ia32_cmpq128_mask:
+ case X86::BI__builtin_ia32_cmpq256_mask:
+ case X86::BI__builtin_ia32_cmpq512_mask: {
+ unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
+ return EmitX86MaskedCompare(*this, CC, true, Ops);
+ }
+ case X86::BI__builtin_ia32_ucmpb128_mask:
+ case X86::BI__builtin_ia32_ucmpb256_mask:
+ case X86::BI__builtin_ia32_ucmpb512_mask:
+ case X86::BI__builtin_ia32_ucmpw128_mask:
+ case X86::BI__builtin_ia32_ucmpw256_mask:
+ case X86::BI__builtin_ia32_ucmpw512_mask:
+ case X86::BI__builtin_ia32_ucmpd128_mask:
+ case X86::BI__builtin_ia32_ucmpd256_mask:
+ case X86::BI__builtin_ia32_ucmpd512_mask:
+ case X86::BI__builtin_ia32_ucmpq128_mask:
+ case X86::BI__builtin_ia32_ucmpq256_mask:
+ case X86::BI__builtin_ia32_ucmpq512_mask: {
+ unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x7;
+ return EmitX86MaskedCompare(*this, CC, false, Ops);
+ }
+ case X86::BI__builtin_ia32_vpcomb:
+ case X86::BI__builtin_ia32_vpcomw:
+ case X86::BI__builtin_ia32_vpcomd:
+ case X86::BI__builtin_ia32_vpcomq:
+ return EmitX86vpcom(*this, Ops, true);
+ case X86::BI__builtin_ia32_vpcomub:
+ case X86::BI__builtin_ia32_vpcomuw:
+ case X86::BI__builtin_ia32_vpcomud:
+ case X86::BI__builtin_ia32_vpcomuq:
+ return EmitX86vpcom(*this, Ops, false);
+
+ case X86::BI__builtin_ia32_kortestcqi:
+ case X86::BI__builtin_ia32_kortestchi:
+ case X86::BI__builtin_ia32_kortestcsi:
+ case X86::BI__builtin_ia32_kortestcdi: {
+ Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
+ Value *C = llvm::Constant::getAllOnesValue(Ops[0]->getType());
+ Value *Cmp = Builder.CreateICmpEQ(Or, C);
+ return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
+ }
+ case X86::BI__builtin_ia32_kortestzqi:
+ case X86::BI__builtin_ia32_kortestzhi:
+ case X86::BI__builtin_ia32_kortestzsi:
+ case X86::BI__builtin_ia32_kortestzdi: {
+ Value *Or = EmitX86MaskLogic(*this, Instruction::Or, Ops);
+ Value *C = llvm::Constant::getNullValue(Ops[0]->getType());
+ Value *Cmp = Builder.CreateICmpEQ(Or, C);
+ return Builder.CreateZExt(Cmp, ConvertType(E->getType()));
+ }
+
+ case X86::BI__builtin_ia32_ktestcqi:
+ case X86::BI__builtin_ia32_ktestzqi:
+ case X86::BI__builtin_ia32_ktestchi:
+ case X86::BI__builtin_ia32_ktestzhi:
+ case X86::BI__builtin_ia32_ktestcsi:
+ case X86::BI__builtin_ia32_ktestzsi:
+ case X86::BI__builtin_ia32_ktestcdi:
+ case X86::BI__builtin_ia32_ktestzdi: {
+ Intrinsic::ID IID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_ktestcqi:
+ IID = Intrinsic::x86_avx512_ktestc_b;
+ break;
+ case X86::BI__builtin_ia32_ktestzqi:
+ IID = Intrinsic::x86_avx512_ktestz_b;
+ break;
+ case X86::BI__builtin_ia32_ktestchi:
+ IID = Intrinsic::x86_avx512_ktestc_w;
+ break;
+ case X86::BI__builtin_ia32_ktestzhi:
+ IID = Intrinsic::x86_avx512_ktestz_w;
+ break;
+ case X86::BI__builtin_ia32_ktestcsi:
+ IID = Intrinsic::x86_avx512_ktestc_d;
+ break;
+ case X86::BI__builtin_ia32_ktestzsi:
+ IID = Intrinsic::x86_avx512_ktestz_d;
+ break;
+ case X86::BI__builtin_ia32_ktestcdi:
+ IID = Intrinsic::x86_avx512_ktestc_q;
+ break;
+ case X86::BI__builtin_ia32_ktestzdi:
+ IID = Intrinsic::x86_avx512_ktestz_q;
+ break;
+ }
+
+ unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
+ Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
+ Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
+ Function *Intr = CGM.getIntrinsic(IID);
+ return Builder.CreateCall(Intr, {LHS, RHS});
+ }
+
+ case X86::BI__builtin_ia32_kaddqi:
+ case X86::BI__builtin_ia32_kaddhi:
+ case X86::BI__builtin_ia32_kaddsi:
+ case X86::BI__builtin_ia32_kadddi: {
+ Intrinsic::ID IID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_kaddqi:
+ IID = Intrinsic::x86_avx512_kadd_b;
+ break;
+ case X86::BI__builtin_ia32_kaddhi:
+ IID = Intrinsic::x86_avx512_kadd_w;
+ break;
+ case X86::BI__builtin_ia32_kaddsi:
+ IID = Intrinsic::x86_avx512_kadd_d;
+ break;
+ case X86::BI__builtin_ia32_kadddi:
+ IID = Intrinsic::x86_avx512_kadd_q;
+ break;
+ }
+
+ unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
+ Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
+ Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
+ Function *Intr = CGM.getIntrinsic(IID);
+ Value *Res = Builder.CreateCall(Intr, {LHS, RHS});
+ return Builder.CreateBitCast(Res, Ops[0]->getType());
+ }
+ case X86::BI__builtin_ia32_kandqi:
+ case X86::BI__builtin_ia32_kandhi:
+ case X86::BI__builtin_ia32_kandsi:
+ case X86::BI__builtin_ia32_kanddi:
+ return EmitX86MaskLogic(*this, Instruction::And, Ops);
+ case X86::BI__builtin_ia32_kandnqi:
+ case X86::BI__builtin_ia32_kandnhi:
+ case X86::BI__builtin_ia32_kandnsi:
+ case X86::BI__builtin_ia32_kandndi:
+ return EmitX86MaskLogic(*this, Instruction::And, Ops, true);
+ case X86::BI__builtin_ia32_korqi:
+ case X86::BI__builtin_ia32_korhi:
+ case X86::BI__builtin_ia32_korsi:
+ case X86::BI__builtin_ia32_kordi:
+ return EmitX86MaskLogic(*this, Instruction::Or, Ops);
+ case X86::BI__builtin_ia32_kxnorqi:
+ case X86::BI__builtin_ia32_kxnorhi:
+ case X86::BI__builtin_ia32_kxnorsi:
+ case X86::BI__builtin_ia32_kxnordi:
+ return EmitX86MaskLogic(*this, Instruction::Xor, Ops, true);
+ case X86::BI__builtin_ia32_kxorqi:
+ case X86::BI__builtin_ia32_kxorhi:
+ case X86::BI__builtin_ia32_kxorsi:
+ case X86::BI__builtin_ia32_kxordi:
+ return EmitX86MaskLogic(*this, Instruction::Xor, Ops);
+ case X86::BI__builtin_ia32_knotqi:
+ case X86::BI__builtin_ia32_knothi:
+ case X86::BI__builtin_ia32_knotsi:
+ case X86::BI__builtin_ia32_knotdi: {
+ unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
+ Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
+ return Builder.CreateBitCast(Builder.CreateNot(Res),
+ Ops[0]->getType());
+ }
+ case X86::BI__builtin_ia32_kmovb:
+ case X86::BI__builtin_ia32_kmovw:
+ case X86::BI__builtin_ia32_kmovd:
+ case X86::BI__builtin_ia32_kmovq: {
+ // Bitcast to vXi1 type and then back to integer. This gets the mask
+ // register type into the IR, but might be optimized out depending on
+ // what's around it.
+ unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
+ Value *Res = getMaskVecValue(*this, Ops[0], NumElts);
+ return Builder.CreateBitCast(Res, Ops[0]->getType());
+ }
+
+ case X86::BI__builtin_ia32_kunpckdi:
+ case X86::BI__builtin_ia32_kunpcksi:
+ case X86::BI__builtin_ia32_kunpckhi: {
+ unsigned NumElts = Ops[0]->getType()->getIntegerBitWidth();
+ Value *LHS = getMaskVecValue(*this, Ops[0], NumElts);
+ Value *RHS = getMaskVecValue(*this, Ops[1], NumElts);
+ uint32_t Indices[64];
+ for (unsigned i = 0; i != NumElts; ++i)
+ Indices[i] = i;
+
+ // First extract half of each vector. This gives better codegen than
+ // doing it in a single shuffle.
+ LHS = Builder.CreateShuffleVector(LHS, LHS,
+ makeArrayRef(Indices, NumElts / 2));
+ RHS = Builder.CreateShuffleVector(RHS, RHS,
+ makeArrayRef(Indices, NumElts / 2));
+ // Concat the vectors.
+ // NOTE: Operands are swapped to match the intrinsic definition.
+ Value *Res = Builder.CreateShuffleVector(RHS, LHS,
+ makeArrayRef(Indices, NumElts));
+ return Builder.CreateBitCast(Res, Ops[0]->getType());
+ }
+
+ case X86::BI__builtin_ia32_vplzcntd_128:
+ case X86::BI__builtin_ia32_vplzcntd_256:
+ case X86::BI__builtin_ia32_vplzcntd_512:
+ case X86::BI__builtin_ia32_vplzcntq_128:
+ case X86::BI__builtin_ia32_vplzcntq_256:
+ case X86::BI__builtin_ia32_vplzcntq_512: {
+ Function *F = CGM.getIntrinsic(Intrinsic::ctlz, Ops[0]->getType());
+ return Builder.CreateCall(F, {Ops[0],Builder.getInt1(false)});
+ }
+ case X86::BI__builtin_ia32_sqrtss:
+ case X86::BI__builtin_ia32_sqrtsd: {
+ Value *A = Builder.CreateExtractElement(Ops[0], (uint64_t)0);
+ Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
+ A = Builder.CreateCall(F, {A});
+ return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
+ }
+ case X86::BI__builtin_ia32_sqrtsd_round_mask:
+ case X86::BI__builtin_ia32_sqrtss_round_mask: {
+ unsigned CC = cast<llvm::ConstantInt>(Ops[4])->getZExtValue();
+ // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
+ // otherwise keep the intrinsic.
+ if (CC != 4) {
+ Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtsd_round_mask ?
+ Intrinsic::x86_avx512_mask_sqrt_sd :
+ Intrinsic::x86_avx512_mask_sqrt_ss;
+ return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
+ }
+ Value *A = Builder.CreateExtractElement(Ops[1], (uint64_t)0);
+ Function *F = CGM.getIntrinsic(Intrinsic::sqrt, A->getType());
+ A = Builder.CreateCall(F, A);
+ Value *Src = Builder.CreateExtractElement(Ops[2], (uint64_t)0);
+ A = EmitX86ScalarSelect(*this, Ops[3], A, Src);
+ return Builder.CreateInsertElement(Ops[0], A, (uint64_t)0);
+ }
+ case X86::BI__builtin_ia32_sqrtpd256:
+ case X86::BI__builtin_ia32_sqrtpd:
+ case X86::BI__builtin_ia32_sqrtps256:
+ case X86::BI__builtin_ia32_sqrtps:
+ case X86::BI__builtin_ia32_sqrtps512:
+ case X86::BI__builtin_ia32_sqrtpd512: {
+ if (Ops.size() == 2) {
+ unsigned CC = cast<llvm::ConstantInt>(Ops[1])->getZExtValue();
+ // Support only if the rounding mode is 4 (AKA CUR_DIRECTION),
+ // otherwise keep the intrinsic.
+ if (CC != 4) {
+ Intrinsic::ID IID = BuiltinID == X86::BI__builtin_ia32_sqrtps512 ?
+ Intrinsic::x86_avx512_sqrt_ps_512 :
+ Intrinsic::x86_avx512_sqrt_pd_512;
+ return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
+ }
+ }
+ Function *F = CGM.getIntrinsic(Intrinsic::sqrt, Ops[0]->getType());
+ return Builder.CreateCall(F, Ops[0]);
+ }
+ case X86::BI__builtin_ia32_pabsb128:
+ case X86::BI__builtin_ia32_pabsw128:
+ case X86::BI__builtin_ia32_pabsd128:
+ case X86::BI__builtin_ia32_pabsb256:
+ case X86::BI__builtin_ia32_pabsw256:
+ case X86::BI__builtin_ia32_pabsd256:
+ case X86::BI__builtin_ia32_pabsq128:
+ case X86::BI__builtin_ia32_pabsq256:
+ case X86::BI__builtin_ia32_pabsb512:
+ case X86::BI__builtin_ia32_pabsw512:
+ case X86::BI__builtin_ia32_pabsd512:
+ case X86::BI__builtin_ia32_pabsq512:
+ return EmitX86Abs(*this, Ops);
+
+ case X86::BI__builtin_ia32_pmaxsb128:
+ case X86::BI__builtin_ia32_pmaxsw128:
+ case X86::BI__builtin_ia32_pmaxsd128:
+ case X86::BI__builtin_ia32_pmaxsq128:
+ case X86::BI__builtin_ia32_pmaxsb256:
+ case X86::BI__builtin_ia32_pmaxsw256:
+ case X86::BI__builtin_ia32_pmaxsd256:
+ case X86::BI__builtin_ia32_pmaxsq256:
+ case X86::BI__builtin_ia32_pmaxsb512:
+ case X86::BI__builtin_ia32_pmaxsw512:
+ case X86::BI__builtin_ia32_pmaxsd512:
+ case X86::BI__builtin_ia32_pmaxsq512:
+ return EmitX86MinMax(*this, ICmpInst::ICMP_SGT, Ops);
+ case X86::BI__builtin_ia32_pmaxub128:
+ case X86::BI__builtin_ia32_pmaxuw128:
+ case X86::BI__builtin_ia32_pmaxud128:
+ case X86::BI__builtin_ia32_pmaxuq128:
+ case X86::BI__builtin_ia32_pmaxub256:
+ case X86::BI__builtin_ia32_pmaxuw256:
+ case X86::BI__builtin_ia32_pmaxud256:
+ case X86::BI__builtin_ia32_pmaxuq256:
+ case X86::BI__builtin_ia32_pmaxub512:
+ case X86::BI__builtin_ia32_pmaxuw512:
+ case X86::BI__builtin_ia32_pmaxud512:
+ case X86::BI__builtin_ia32_pmaxuq512:
+ return EmitX86MinMax(*this, ICmpInst::ICMP_UGT, Ops);
+ case X86::BI__builtin_ia32_pminsb128:
+ case X86::BI__builtin_ia32_pminsw128:
+ case X86::BI__builtin_ia32_pminsd128:
+ case X86::BI__builtin_ia32_pminsq128:
+ case X86::BI__builtin_ia32_pminsb256:
+ case X86::BI__builtin_ia32_pminsw256:
+ case X86::BI__builtin_ia32_pminsd256:
+ case X86::BI__builtin_ia32_pminsq256:
+ case X86::BI__builtin_ia32_pminsb512:
+ case X86::BI__builtin_ia32_pminsw512:
+ case X86::BI__builtin_ia32_pminsd512:
+ case X86::BI__builtin_ia32_pminsq512:
+ return EmitX86MinMax(*this, ICmpInst::ICMP_SLT, Ops);
+ case X86::BI__builtin_ia32_pminub128:
+ case X86::BI__builtin_ia32_pminuw128:
+ case X86::BI__builtin_ia32_pminud128:
+ case X86::BI__builtin_ia32_pminuq128:
+ case X86::BI__builtin_ia32_pminub256:
+ case X86::BI__builtin_ia32_pminuw256:
+ case X86::BI__builtin_ia32_pminud256:
+ case X86::BI__builtin_ia32_pminuq256:
+ case X86::BI__builtin_ia32_pminub512:
+ case X86::BI__builtin_ia32_pminuw512:
+ case X86::BI__builtin_ia32_pminud512:
+ case X86::BI__builtin_ia32_pminuq512:
+ return EmitX86MinMax(*this, ICmpInst::ICMP_ULT, Ops);
+
+ case X86::BI__builtin_ia32_pmuludq128:
+ case X86::BI__builtin_ia32_pmuludq256:
+ case X86::BI__builtin_ia32_pmuludq512:
+ return EmitX86Muldq(*this, /*IsSigned*/false, Ops);
+
+ case X86::BI__builtin_ia32_pmuldq128:
+ case X86::BI__builtin_ia32_pmuldq256:
+ case X86::BI__builtin_ia32_pmuldq512:
+ return EmitX86Muldq(*this, /*IsSigned*/true, Ops);
+
+ case X86::BI__builtin_ia32_pternlogd512_mask:
+ case X86::BI__builtin_ia32_pternlogq512_mask:
+ case X86::BI__builtin_ia32_pternlogd128_mask:
+ case X86::BI__builtin_ia32_pternlogd256_mask:
+ case X86::BI__builtin_ia32_pternlogq128_mask:
+ case X86::BI__builtin_ia32_pternlogq256_mask:
+ return EmitX86Ternlog(*this, /*ZeroMask*/false, Ops);
+
+ case X86::BI__builtin_ia32_pternlogd512_maskz:
+ case X86::BI__builtin_ia32_pternlogq512_maskz:
+ case X86::BI__builtin_ia32_pternlogd128_maskz:
+ case X86::BI__builtin_ia32_pternlogd256_maskz:
+ case X86::BI__builtin_ia32_pternlogq128_maskz:
+ case X86::BI__builtin_ia32_pternlogq256_maskz:
+ return EmitX86Ternlog(*this, /*ZeroMask*/true, Ops);
+
+ case X86::BI__builtin_ia32_vpshldd128:
+ case X86::BI__builtin_ia32_vpshldd256:
+ case X86::BI__builtin_ia32_vpshldd512:
+ case X86::BI__builtin_ia32_vpshldq128:
+ case X86::BI__builtin_ia32_vpshldq256:
+ case X86::BI__builtin_ia32_vpshldq512:
+ case X86::BI__builtin_ia32_vpshldw128:
+ case X86::BI__builtin_ia32_vpshldw256:
+ case X86::BI__builtin_ia32_vpshldw512:
+ return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
+
+ case X86::BI__builtin_ia32_vpshrdd128:
+ case X86::BI__builtin_ia32_vpshrdd256:
+ case X86::BI__builtin_ia32_vpshrdd512:
+ case X86::BI__builtin_ia32_vpshrdq128:
+ case X86::BI__builtin_ia32_vpshrdq256:
+ case X86::BI__builtin_ia32_vpshrdq512:
+ case X86::BI__builtin_ia32_vpshrdw128:
+ case X86::BI__builtin_ia32_vpshrdw256:
+ case X86::BI__builtin_ia32_vpshrdw512:
+ // Ops 0 and 1 are swapped.
+ return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
+
+ case X86::BI__builtin_ia32_vpshldvd128:
+ case X86::BI__builtin_ia32_vpshldvd256:
+ case X86::BI__builtin_ia32_vpshldvd512:
+ case X86::BI__builtin_ia32_vpshldvq128:
+ case X86::BI__builtin_ia32_vpshldvq256:
+ case X86::BI__builtin_ia32_vpshldvq512:
+ case X86::BI__builtin_ia32_vpshldvw128:
+ case X86::BI__builtin_ia32_vpshldvw256:
+ case X86::BI__builtin_ia32_vpshldvw512:
+ return EmitX86FunnelShift(*this, Ops[0], Ops[1], Ops[2], false);
+
+ case X86::BI__builtin_ia32_vpshrdvd128:
+ case X86::BI__builtin_ia32_vpshrdvd256:
+ case X86::BI__builtin_ia32_vpshrdvd512:
+ case X86::BI__builtin_ia32_vpshrdvq128:
+ case X86::BI__builtin_ia32_vpshrdvq256:
+ case X86::BI__builtin_ia32_vpshrdvq512:
+ case X86::BI__builtin_ia32_vpshrdvw128:
+ case X86::BI__builtin_ia32_vpshrdvw256:
+ case X86::BI__builtin_ia32_vpshrdvw512:
+ // Ops 0 and 1 are swapped.
+ return EmitX86FunnelShift(*this, Ops[1], Ops[0], Ops[2], true);
+
+ // 3DNow!
+ case X86::BI__builtin_ia32_pswapdsf:
+ case X86::BI__builtin_ia32_pswapdsi: {
+ llvm::Type *MMXTy = llvm::Type::getX86_MMXTy(getLLVMContext());
+ Ops[0] = Builder.CreateBitCast(Ops[0], MMXTy, "cast");
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::x86_3dnowa_pswapd);
+ return Builder.CreateCall(F, Ops, "pswapd");
+ }
+ case X86::BI__builtin_ia32_rdrand16_step:
+ case X86::BI__builtin_ia32_rdrand32_step:
+ case X86::BI__builtin_ia32_rdrand64_step:
+ case X86::BI__builtin_ia32_rdseed16_step:
+ case X86::BI__builtin_ia32_rdseed32_step:
+ case X86::BI__builtin_ia32_rdseed64_step: {
+ Intrinsic::ID ID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_rdrand16_step:
+ ID = Intrinsic::x86_rdrand_16;
+ break;
+ case X86::BI__builtin_ia32_rdrand32_step:
+ ID = Intrinsic::x86_rdrand_32;
+ break;
+ case X86::BI__builtin_ia32_rdrand64_step:
+ ID = Intrinsic::x86_rdrand_64;
+ break;
+ case X86::BI__builtin_ia32_rdseed16_step:
+ ID = Intrinsic::x86_rdseed_16;
+ break;
+ case X86::BI__builtin_ia32_rdseed32_step:
+ ID = Intrinsic::x86_rdseed_32;
+ break;
+ case X86::BI__builtin_ia32_rdseed64_step:
+ ID = Intrinsic::x86_rdseed_64;
+ break;
+ }
+
+ Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID));
+ Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 0),
+ Ops[0]);
+ return Builder.CreateExtractValue(Call, 1);
+ }
+ case X86::BI__builtin_ia32_addcarryx_u32:
+ case X86::BI__builtin_ia32_addcarryx_u64:
+ case X86::BI__builtin_ia32_subborrow_u32:
+ case X86::BI__builtin_ia32_subborrow_u64: {
+ Intrinsic::ID IID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_addcarryx_u32:
+ IID = Intrinsic::x86_addcarry_32;
+ break;
+ case X86::BI__builtin_ia32_addcarryx_u64:
+ IID = Intrinsic::x86_addcarry_64;
+ break;
+ case X86::BI__builtin_ia32_subborrow_u32:
+ IID = Intrinsic::x86_subborrow_32;
+ break;
+ case X86::BI__builtin_ia32_subborrow_u64:
+ IID = Intrinsic::x86_subborrow_64;
+ break;
+ }
+
+ Value *Call = Builder.CreateCall(CGM.getIntrinsic(IID),
+ { Ops[0], Ops[1], Ops[2] });
+ Builder.CreateDefaultAlignedStore(Builder.CreateExtractValue(Call, 1),
+ Ops[3]);
+ return Builder.CreateExtractValue(Call, 0);
+ }
+
+ case X86::BI__builtin_ia32_fpclassps128_mask:
+ case X86::BI__builtin_ia32_fpclassps256_mask:
+ case X86::BI__builtin_ia32_fpclassps512_mask:
+ case X86::BI__builtin_ia32_fpclasspd128_mask:
+ case X86::BI__builtin_ia32_fpclasspd256_mask:
+ case X86::BI__builtin_ia32_fpclasspd512_mask: {
+ unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
+ Value *MaskIn = Ops[2];
+ Ops.erase(&Ops[2]);
+
+ Intrinsic::ID ID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_fpclassps128_mask:
+ ID = Intrinsic::x86_avx512_fpclass_ps_128;
+ break;
+ case X86::BI__builtin_ia32_fpclassps256_mask:
+ ID = Intrinsic::x86_avx512_fpclass_ps_256;
+ break;
+ case X86::BI__builtin_ia32_fpclassps512_mask:
+ ID = Intrinsic::x86_avx512_fpclass_ps_512;
+ break;
+ case X86::BI__builtin_ia32_fpclasspd128_mask:
+ ID = Intrinsic::x86_avx512_fpclass_pd_128;
+ break;
+ case X86::BI__builtin_ia32_fpclasspd256_mask:
+ ID = Intrinsic::x86_avx512_fpclass_pd_256;
+ break;
+ case X86::BI__builtin_ia32_fpclasspd512_mask:
+ ID = Intrinsic::x86_avx512_fpclass_pd_512;
+ break;
+ }
+
+ Value *Fpclass = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
+ return EmitX86MaskedCompareResult(*this, Fpclass, NumElts, MaskIn);
+ }
+
+ case X86::BI__builtin_ia32_vp2intersect_q_512:
+ case X86::BI__builtin_ia32_vp2intersect_q_256:
+ case X86::BI__builtin_ia32_vp2intersect_q_128:
+ case X86::BI__builtin_ia32_vp2intersect_d_512:
+ case X86::BI__builtin_ia32_vp2intersect_d_256:
+ case X86::BI__builtin_ia32_vp2intersect_d_128: {
+ unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
+ Intrinsic::ID ID;
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_vp2intersect_q_512:
+ ID = Intrinsic::x86_avx512_vp2intersect_q_512;
+ break;
+ case X86::BI__builtin_ia32_vp2intersect_q_256:
+ ID = Intrinsic::x86_avx512_vp2intersect_q_256;
+ break;
+ case X86::BI__builtin_ia32_vp2intersect_q_128:
+ ID = Intrinsic::x86_avx512_vp2intersect_q_128;
+ break;
+ case X86::BI__builtin_ia32_vp2intersect_d_512:
+ ID = Intrinsic::x86_avx512_vp2intersect_d_512;
+ break;
+ case X86::BI__builtin_ia32_vp2intersect_d_256:
+ ID = Intrinsic::x86_avx512_vp2intersect_d_256;
+ break;
+ case X86::BI__builtin_ia32_vp2intersect_d_128:
+ ID = Intrinsic::x86_avx512_vp2intersect_d_128;
+ break;
+ }
+
+ Value *Call = Builder.CreateCall(CGM.getIntrinsic(ID), {Ops[0], Ops[1]});
+ Value *Result = Builder.CreateExtractValue(Call, 0);
+ Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
+ Builder.CreateDefaultAlignedStore(Result, Ops[2]);
+
+ Result = Builder.CreateExtractValue(Call, 1);
+ Result = EmitX86MaskedCompareResult(*this, Result, NumElts, nullptr);
+ return Builder.CreateDefaultAlignedStore(Result, Ops[3]);
+ }
+
+ case X86::BI__builtin_ia32_vpmultishiftqb128:
+ case X86::BI__builtin_ia32_vpmultishiftqb256:
+ case X86::BI__builtin_ia32_vpmultishiftqb512: {
+ Intrinsic::ID ID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_vpmultishiftqb128:
+ ID = Intrinsic::x86_avx512_pmultishift_qb_128;
+ break;
+ case X86::BI__builtin_ia32_vpmultishiftqb256:
+ ID = Intrinsic::x86_avx512_pmultishift_qb_256;
+ break;
+ case X86::BI__builtin_ia32_vpmultishiftqb512:
+ ID = Intrinsic::x86_avx512_pmultishift_qb_512;
+ break;
+ }
+
+ return Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
+ }
+
+ case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
+ case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
+ case X86::BI__builtin_ia32_vpshufbitqmb512_mask: {
+ unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
+ Value *MaskIn = Ops[2];
+ Ops.erase(&Ops[2]);
+
+ Intrinsic::ID ID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_vpshufbitqmb128_mask:
+ ID = Intrinsic::x86_avx512_vpshufbitqmb_128;
+ break;
+ case X86::BI__builtin_ia32_vpshufbitqmb256_mask:
+ ID = Intrinsic::x86_avx512_vpshufbitqmb_256;
+ break;
+ case X86::BI__builtin_ia32_vpshufbitqmb512_mask:
+ ID = Intrinsic::x86_avx512_vpshufbitqmb_512;
+ break;
+ }
+
+ Value *Shufbit = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
+ return EmitX86MaskedCompareResult(*this, Shufbit, NumElts, MaskIn);
+ }
+
+ // packed comparison intrinsics
+ case X86::BI__builtin_ia32_cmpeqps:
+ case X86::BI__builtin_ia32_cmpeqpd:
+ return getVectorFCmpIR(CmpInst::FCMP_OEQ);
+ case X86::BI__builtin_ia32_cmpltps:
+ case X86::BI__builtin_ia32_cmpltpd:
+ return getVectorFCmpIR(CmpInst::FCMP_OLT);
+ case X86::BI__builtin_ia32_cmpleps:
+ case X86::BI__builtin_ia32_cmplepd:
+ return getVectorFCmpIR(CmpInst::FCMP_OLE);
+ case X86::BI__builtin_ia32_cmpunordps:
+ case X86::BI__builtin_ia32_cmpunordpd:
+ return getVectorFCmpIR(CmpInst::FCMP_UNO);
+ case X86::BI__builtin_ia32_cmpneqps:
+ case X86::BI__builtin_ia32_cmpneqpd:
+ return getVectorFCmpIR(CmpInst::FCMP_UNE);
+ case X86::BI__builtin_ia32_cmpnltps:
+ case X86::BI__builtin_ia32_cmpnltpd:
+ return getVectorFCmpIR(CmpInst::FCMP_UGE);
+ case X86::BI__builtin_ia32_cmpnleps:
+ case X86::BI__builtin_ia32_cmpnlepd:
+ return getVectorFCmpIR(CmpInst::FCMP_UGT);
+ case X86::BI__builtin_ia32_cmpordps:
+ case X86::BI__builtin_ia32_cmpordpd:
+ return getVectorFCmpIR(CmpInst::FCMP_ORD);
+ case X86::BI__builtin_ia32_cmpps:
+ case X86::BI__builtin_ia32_cmpps256:
+ case X86::BI__builtin_ia32_cmppd:
+ case X86::BI__builtin_ia32_cmppd256:
+ case X86::BI__builtin_ia32_cmpps128_mask:
+ case X86::BI__builtin_ia32_cmpps256_mask:
+ case X86::BI__builtin_ia32_cmpps512_mask:
+ case X86::BI__builtin_ia32_cmppd128_mask:
+ case X86::BI__builtin_ia32_cmppd256_mask:
+ case X86::BI__builtin_ia32_cmppd512_mask: {
+ // Lowering vector comparisons to fcmp instructions, while
+ // ignoring signalling behaviour requested
+ // ignoring rounding mode requested
+ // This is is only possible as long as FENV_ACCESS is not implemented.
+ // See also: https://reviews.llvm.org/D45616
+
+ // The third argument is the comparison condition, and integer in the
+ // range [0, 31]
+ unsigned CC = cast<llvm::ConstantInt>(Ops[2])->getZExtValue() & 0x1f;
+
+ // Lowering to IR fcmp instruction.
+ // Ignoring requested signaling behaviour,
+ // e.g. both _CMP_GT_OS & _CMP_GT_OQ are translated to FCMP_OGT.
+ FCmpInst::Predicate Pred;
+ switch (CC) {
+ case 0x00: Pred = FCmpInst::FCMP_OEQ; break;
+ case 0x01: Pred = FCmpInst::FCMP_OLT; break;
+ case 0x02: Pred = FCmpInst::FCMP_OLE; break;
+ case 0x03: Pred = FCmpInst::FCMP_UNO; break;
+ case 0x04: Pred = FCmpInst::FCMP_UNE; break;
+ case 0x05: Pred = FCmpInst::FCMP_UGE; break;
+ case 0x06: Pred = FCmpInst::FCMP_UGT; break;
+ case 0x07: Pred = FCmpInst::FCMP_ORD; break;
+ case 0x08: Pred = FCmpInst::FCMP_UEQ; break;
+ case 0x09: Pred = FCmpInst::FCMP_ULT; break;
+ case 0x0a: Pred = FCmpInst::FCMP_ULE; break;
+ case 0x0b: Pred = FCmpInst::FCMP_FALSE; break;
+ case 0x0c: Pred = FCmpInst::FCMP_ONE; break;
+ case 0x0d: Pred = FCmpInst::FCMP_OGE; break;
+ case 0x0e: Pred = FCmpInst::FCMP_OGT; break;
+ case 0x0f: Pred = FCmpInst::FCMP_TRUE; break;
+ case 0x10: Pred = FCmpInst::FCMP_OEQ; break;
+ case 0x11: Pred = FCmpInst::FCMP_OLT; break;
+ case 0x12: Pred = FCmpInst::FCMP_OLE; break;
+ case 0x13: Pred = FCmpInst::FCMP_UNO; break;
+ case 0x14: Pred = FCmpInst::FCMP_UNE; break;
+ case 0x15: Pred = FCmpInst::FCMP_UGE; break;
+ case 0x16: Pred = FCmpInst::FCMP_UGT; break;
+ case 0x17: Pred = FCmpInst::FCMP_ORD; break;
+ case 0x18: Pred = FCmpInst::FCMP_UEQ; break;
+ case 0x19: Pred = FCmpInst::FCMP_ULT; break;
+ case 0x1a: Pred = FCmpInst::FCMP_ULE; break;
+ case 0x1b: Pred = FCmpInst::FCMP_FALSE; break;
+ case 0x1c: Pred = FCmpInst::FCMP_ONE; break;
+ case 0x1d: Pred = FCmpInst::FCMP_OGE; break;
+ case 0x1e: Pred = FCmpInst::FCMP_OGT; break;
+ case 0x1f: Pred = FCmpInst::FCMP_TRUE; break;
+ default: llvm_unreachable("Unhandled CC");
+ }
+
+ // Builtins without the _mask suffix return a vector of integers
+ // of the same width as the input vectors
+ switch (BuiltinID) {
+ case X86::BI__builtin_ia32_cmpps512_mask:
+ case X86::BI__builtin_ia32_cmppd512_mask:
+ case X86::BI__builtin_ia32_cmpps128_mask:
+ case X86::BI__builtin_ia32_cmpps256_mask:
+ case X86::BI__builtin_ia32_cmppd128_mask:
+ case X86::BI__builtin_ia32_cmppd256_mask: {
+ unsigned NumElts = Ops[0]->getType()->getVectorNumElements();
+ Value *Cmp = Builder.CreateFCmp(Pred, Ops[0], Ops[1]);
+ return EmitX86MaskedCompareResult(*this, Cmp, NumElts, Ops[3]);
+ }
+ default:
+ return getVectorFCmpIR(Pred);
+ }
+ }
+
+ // SSE scalar comparison intrinsics
+ case X86::BI__builtin_ia32_cmpeqss:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 0);
+ case X86::BI__builtin_ia32_cmpltss:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 1);
+ case X86::BI__builtin_ia32_cmpless:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 2);
+ case X86::BI__builtin_ia32_cmpunordss:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 3);
+ case X86::BI__builtin_ia32_cmpneqss:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 4);
+ case X86::BI__builtin_ia32_cmpnltss:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 5);
+ case X86::BI__builtin_ia32_cmpnless:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 6);
+ case X86::BI__builtin_ia32_cmpordss:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse_cmp_ss, 7);
+ case X86::BI__builtin_ia32_cmpeqsd:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 0);
+ case X86::BI__builtin_ia32_cmpltsd:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 1);
+ case X86::BI__builtin_ia32_cmplesd:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 2);
+ case X86::BI__builtin_ia32_cmpunordsd:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 3);
+ case X86::BI__builtin_ia32_cmpneqsd:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 4);
+ case X86::BI__builtin_ia32_cmpnltsd:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 5);
+ case X86::BI__builtin_ia32_cmpnlesd:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 6);
+ case X86::BI__builtin_ia32_cmpordsd:
+ return getCmpIntrinsicCall(Intrinsic::x86_sse2_cmp_sd, 7);
+
+// AVX512 bf16 intrinsics
+ case X86::BI__builtin_ia32_cvtneps2bf16_128_mask: {
+ Ops[2] = getMaskVecValue(*this, Ops[2],
+ Ops[0]->getType()->getVectorNumElements());
+ Intrinsic::ID IID = Intrinsic::x86_avx512bf16_mask_cvtneps2bf16_128;
+ return Builder.CreateCall(CGM.getIntrinsic(IID), Ops);
+ }
+ case X86::BI__builtin_ia32_cvtsbf162ss_32:
+ return EmitX86CvtBF16ToFloatExpr(*this, E, Ops);
+
+ case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
+ case X86::BI__builtin_ia32_cvtneps2bf16_512_mask: {
+ Intrinsic::ID IID;
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported intrinsic!");
+ case X86::BI__builtin_ia32_cvtneps2bf16_256_mask:
+ IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_256;
+ break;
+ case X86::BI__builtin_ia32_cvtneps2bf16_512_mask:
+ IID = Intrinsic::x86_avx512bf16_cvtneps2bf16_512;
+ break;
+ }
+ Value *Res = Builder.CreateCall(CGM.getIntrinsic(IID), Ops[0]);
+ return EmitX86Select(*this, Ops[2], Res, Ops[1]);
+ }
+
+ case X86::BI__emul:
+ case X86::BI__emulu: {
+ llvm::Type *Int64Ty = llvm::IntegerType::get(getLLVMContext(), 64);
+ bool isSigned = (BuiltinID == X86::BI__emul);
+ Value *LHS = Builder.CreateIntCast(Ops[0], Int64Ty, isSigned);
+ Value *RHS = Builder.CreateIntCast(Ops[1], Int64Ty, isSigned);
+ return Builder.CreateMul(LHS, RHS, "", !isSigned, isSigned);
+ }
+ case X86::BI__mulh:
+ case X86::BI__umulh:
+ case X86::BI_mul128:
+ case X86::BI_umul128: {
+ llvm::Type *ResType = ConvertType(E->getType());
+ llvm::Type *Int128Ty = llvm::IntegerType::get(getLLVMContext(), 128);
+
+ bool IsSigned = (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI_mul128);
+ Value *LHS = Builder.CreateIntCast(Ops[0], Int128Ty, IsSigned);
+ Value *RHS = Builder.CreateIntCast(Ops[1], Int128Ty, IsSigned);
+
+ Value *MulResult, *HigherBits;
+ if (IsSigned) {
+ MulResult = Builder.CreateNSWMul(LHS, RHS);
+ HigherBits = Builder.CreateAShr(MulResult, 64);
+ } else {
+ MulResult = Builder.CreateNUWMul(LHS, RHS);
+ HigherBits = Builder.CreateLShr(MulResult, 64);
+ }
+ HigherBits = Builder.CreateIntCast(HigherBits, ResType, IsSigned);
+
+ if (BuiltinID == X86::BI__mulh || BuiltinID == X86::BI__umulh)
+ return HigherBits;
+
+ Address HighBitsAddress = EmitPointerWithAlignment(E->getArg(2));
+ Builder.CreateStore(HigherBits, HighBitsAddress);
+ return Builder.CreateIntCast(MulResult, ResType, IsSigned);
+ }
+
+ case X86::BI__faststorefence: {
+ return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
+ llvm::SyncScope::System);
+ }
+ case X86::BI__shiftleft128:
+ case X86::BI__shiftright128: {
+ // FIXME: Once fshl/fshr no longer add an unneeded and and cmov, do this:
+ // llvm::Function *F = CGM.getIntrinsic(
+ // BuiltinID == X86::BI__shiftleft128 ? Intrinsic::fshl : Intrinsic::fshr,
+ // Int64Ty);
+ // Ops[2] = Builder.CreateZExt(Ops[2], Int64Ty);
+ // return Builder.CreateCall(F, Ops);
+ llvm::Type *Int128Ty = Builder.getInt128Ty();
+ Value *HighPart128 =
+ Builder.CreateShl(Builder.CreateZExt(Ops[1], Int128Ty), 64);
+ Value *LowPart128 = Builder.CreateZExt(Ops[0], Int128Ty);
+ Value *Val = Builder.CreateOr(HighPart128, LowPart128);
+ Value *Amt = Builder.CreateAnd(Builder.CreateZExt(Ops[2], Int128Ty),
+ llvm::ConstantInt::get(Int128Ty, 0x3f));
+ Value *Res;
+ if (BuiltinID == X86::BI__shiftleft128)
+ Res = Builder.CreateLShr(Builder.CreateShl(Val, Amt), 64);
+ else
+ Res = Builder.CreateLShr(Val, Amt);
+ return Builder.CreateTrunc(Res, Int64Ty);
+ }
+ case X86::BI_ReadWriteBarrier:
+ case X86::BI_ReadBarrier:
+ case X86::BI_WriteBarrier: {
+ return Builder.CreateFence(llvm::AtomicOrdering::SequentiallyConsistent,
+ llvm::SyncScope::SingleThread);
+ }
+ case X86::BI_BitScanForward:
+ case X86::BI_BitScanForward64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanForward, E);
+ case X86::BI_BitScanReverse:
+ case X86::BI_BitScanReverse64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_BitScanReverse, E);
+
+ case X86::BI_InterlockedAnd64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedAnd, E);
+ case X86::BI_InterlockedExchange64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchange, E);
+ case X86::BI_InterlockedExchangeAdd64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeAdd, E);
+ case X86::BI_InterlockedExchangeSub64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedExchangeSub, E);
+ case X86::BI_InterlockedOr64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedOr, E);
+ case X86::BI_InterlockedXor64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedXor, E);
+ case X86::BI_InterlockedDecrement64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedDecrement, E);
+ case X86::BI_InterlockedIncrement64:
+ return EmitMSVCBuiltinExpr(MSVCIntrin::_InterlockedIncrement, E);
+ case X86::BI_InterlockedCompareExchange128: {
+ // InterlockedCompareExchange128 doesn't directly refer to 128bit ints,
+ // instead it takes pointers to 64bit ints for Destination and
+ // ComparandResult, and exchange is taken as two 64bit ints (high & low).
+ // The previous value is written to ComparandResult, and success is
+ // returned.
+
+ llvm::Type *Int128Ty = Builder.getInt128Ty();
+ llvm::Type *Int128PtrTy = Int128Ty->getPointerTo();
+
+ Value *Destination =
+ Builder.CreateBitCast(Ops[0], Int128PtrTy);
+ Value *ExchangeHigh128 = Builder.CreateZExt(Ops[1], Int128Ty);
+ Value *ExchangeLow128 = Builder.CreateZExt(Ops[2], Int128Ty);
+ Address ComparandResult(Builder.CreateBitCast(Ops[3], Int128PtrTy),
+ getContext().toCharUnitsFromBits(128));
+
+ Value *Exchange = Builder.CreateOr(
+ Builder.CreateShl(ExchangeHigh128, 64, "", false, false),
+ ExchangeLow128);
+
+ Value *Comparand = Builder.CreateLoad(ComparandResult);
+
+ AtomicCmpXchgInst *CXI =
+ Builder.CreateAtomicCmpXchg(Destination, Comparand, Exchange,
+ AtomicOrdering::SequentiallyConsistent,
+ AtomicOrdering::SequentiallyConsistent);
+ CXI->setVolatile(true);
+
+ // Write the result back to the inout pointer.
+ Builder.CreateStore(Builder.CreateExtractValue(CXI, 0), ComparandResult);
+
+ // Get the success boolean and zero extend it to i8.
+ Value *Success = Builder.CreateExtractValue(CXI, 1);
+ return Builder.CreateZExt(Success, ConvertType(E->getType()));
+ }
+
+ case X86::BI_AddressOfReturnAddress: {
+ Function *F = CGM.getIntrinsic(Intrinsic::addressofreturnaddress);
+ return Builder.CreateCall(F);
+ }
+ case X86::BI__stosb: {
+ // We treat __stosb as a volatile memset - it may not generate "rep stosb"
+ // instruction, but it will create a memset that won't be optimized away.
+ return Builder.CreateMemSet(Ops[0], Ops[1], Ops[2], 1, true);
+ }
+ case X86::BI__ud2:
+ // llvm.trap makes a ud2a instruction on x86.
+ return EmitTrapCall(Intrinsic::trap);
+ case X86::BI__int2c: {
+ // This syscall signals a driver assertion failure in x86 NT kernels.
+ llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false);
+ llvm::InlineAsm *IA =
+ llvm::InlineAsm::get(FTy, "int $$0x2c", "", /*hasSideEffects=*/true);
+ llvm::AttributeList NoReturnAttr = llvm::AttributeList::get(
+ getLLVMContext(), llvm::AttributeList::FunctionIndex,
+ llvm::Attribute::NoReturn);
+ llvm::CallInst *CI = Builder.CreateCall(IA);
+ CI->setAttributes(NoReturnAttr);
+ return CI;
+ }
+ case X86::BI__readfsbyte:
+ case X86::BI__readfsword:
+ case X86::BI__readfsdword:
+ case X86::BI__readfsqword: {
+ llvm::Type *IntTy = ConvertType(E->getType());
+ Value *Ptr =
+ Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 257));
+ LoadInst *Load = Builder.CreateAlignedLoad(
+ IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
+ Load->setVolatile(true);
+ return Load;
+ }
+ case X86::BI__readgsbyte:
+ case X86::BI__readgsword:
+ case X86::BI__readgsdword:
+ case X86::BI__readgsqword: {
+ llvm::Type *IntTy = ConvertType(E->getType());
+ Value *Ptr =
+ Builder.CreateIntToPtr(Ops[0], llvm::PointerType::get(IntTy, 256));
+ LoadInst *Load = Builder.CreateAlignedLoad(
+ IntTy, Ptr, getContext().getTypeAlignInChars(E->getType()));
+ Load->setVolatile(true);
+ return Load;
+ }
+ case X86::BI__builtin_ia32_paddsb512:
+ case X86::BI__builtin_ia32_paddsw512:
+ case X86::BI__builtin_ia32_paddsb256:
+ case X86::BI__builtin_ia32_paddsw256:
+ case X86::BI__builtin_ia32_paddsb128:
+ case X86::BI__builtin_ia32_paddsw128:
+ return EmitX86AddSubSatExpr(*this, Ops, true, true);
+ case X86::BI__builtin_ia32_paddusb512:
+ case X86::BI__builtin_ia32_paddusw512:
+ case X86::BI__builtin_ia32_paddusb256:
+ case X86::BI__builtin_ia32_paddusw256:
+ case X86::BI__builtin_ia32_paddusb128:
+ case X86::BI__builtin_ia32_paddusw128:
+ return EmitX86AddSubSatExpr(*this, Ops, false, true);
+ case X86::BI__builtin_ia32_psubsb512:
+ case X86::BI__builtin_ia32_psubsw512:
+ case X86::BI__builtin_ia32_psubsb256:
+ case X86::BI__builtin_ia32_psubsw256:
+ case X86::BI__builtin_ia32_psubsb128:
+ case X86::BI__builtin_ia32_psubsw128:
+ return EmitX86AddSubSatExpr(*this, Ops, true, false);
+ case X86::BI__builtin_ia32_psubusb512:
+ case X86::BI__builtin_ia32_psubusw512:
+ case X86::BI__builtin_ia32_psubusb256:
+ case X86::BI__builtin_ia32_psubusw256:
+ case X86::BI__builtin_ia32_psubusb128:
+ case X86::BI__builtin_ia32_psubusw128:
+ return EmitX86AddSubSatExpr(*this, Ops, false, false);
+ }
+}
+
+Value *CodeGenFunction::EmitPPCBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ SmallVector<Value*, 4> Ops;
+
+ for (unsigned i = 0, e = E->getNumArgs(); i != e; i++)
+ Ops.push_back(EmitScalarExpr(E->getArg(i)));
+
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+
+ switch (BuiltinID) {
+ default: return nullptr;
+
+ // __builtin_ppc_get_timebase is GCC 4.8+'s PowerPC-specific name for what we
+ // call __builtin_readcyclecounter.
+ case PPC::BI__builtin_ppc_get_timebase:
+ return Builder.CreateCall(CGM.getIntrinsic(Intrinsic::readcyclecounter));
+
+ // vec_ld, vec_xl_be, vec_lvsl, vec_lvsr
+ case PPC::BI__builtin_altivec_lvx:
+ case PPC::BI__builtin_altivec_lvxl:
+ case PPC::BI__builtin_altivec_lvebx:
+ case PPC::BI__builtin_altivec_lvehx:
+ case PPC::BI__builtin_altivec_lvewx:
+ case PPC::BI__builtin_altivec_lvsl:
+ case PPC::BI__builtin_altivec_lvsr:
+ case PPC::BI__builtin_vsx_lxvd2x:
+ case PPC::BI__builtin_vsx_lxvw4x:
+ case PPC::BI__builtin_vsx_lxvd2x_be:
+ case PPC::BI__builtin_vsx_lxvw4x_be:
+ case PPC::BI__builtin_vsx_lxvl:
+ case PPC::BI__builtin_vsx_lxvll:
+ {
+ if(BuiltinID == PPC::BI__builtin_vsx_lxvl ||
+ BuiltinID == PPC::BI__builtin_vsx_lxvll){
+ Ops[0] = Builder.CreateBitCast(Ops[0], Int8PtrTy);
+ }else {
+ Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
+ Ops[0] = Builder.CreateGEP(Ops[1], Ops[0]);
+ Ops.pop_back();
+ }
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported ld/lvsl/lvsr intrinsic!");
+ case PPC::BI__builtin_altivec_lvx:
+ ID = Intrinsic::ppc_altivec_lvx;
+ break;
+ case PPC::BI__builtin_altivec_lvxl:
+ ID = Intrinsic::ppc_altivec_lvxl;
+ break;
+ case PPC::BI__builtin_altivec_lvebx:
+ ID = Intrinsic::ppc_altivec_lvebx;
+ break;
+ case PPC::BI__builtin_altivec_lvehx:
+ ID = Intrinsic::ppc_altivec_lvehx;
+ break;
+ case PPC::BI__builtin_altivec_lvewx:
+ ID = Intrinsic::ppc_altivec_lvewx;
+ break;
+ case PPC::BI__builtin_altivec_lvsl:
+ ID = Intrinsic::ppc_altivec_lvsl;
+ break;
+ case PPC::BI__builtin_altivec_lvsr:
+ ID = Intrinsic::ppc_altivec_lvsr;
+ break;
+ case PPC::BI__builtin_vsx_lxvd2x:
+ ID = Intrinsic::ppc_vsx_lxvd2x;
+ break;
+ case PPC::BI__builtin_vsx_lxvw4x:
+ ID = Intrinsic::ppc_vsx_lxvw4x;
+ break;
+ case PPC::BI__builtin_vsx_lxvd2x_be:
+ ID = Intrinsic::ppc_vsx_lxvd2x_be;
+ break;
+ case PPC::BI__builtin_vsx_lxvw4x_be:
+ ID = Intrinsic::ppc_vsx_lxvw4x_be;
+ break;
+ case PPC::BI__builtin_vsx_lxvl:
+ ID = Intrinsic::ppc_vsx_lxvl;
+ break;
+ case PPC::BI__builtin_vsx_lxvll:
+ ID = Intrinsic::ppc_vsx_lxvll;
+ break;
+ }
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ return Builder.CreateCall(F, Ops, "");
+ }
+
+ // vec_st, vec_xst_be
+ case PPC::BI__builtin_altivec_stvx:
+ case PPC::BI__builtin_altivec_stvxl:
+ case PPC::BI__builtin_altivec_stvebx:
+ case PPC::BI__builtin_altivec_stvehx:
+ case PPC::BI__builtin_altivec_stvewx:
+ case PPC::BI__builtin_vsx_stxvd2x:
+ case PPC::BI__builtin_vsx_stxvw4x:
+ case PPC::BI__builtin_vsx_stxvd2x_be:
+ case PPC::BI__builtin_vsx_stxvw4x_be:
+ case PPC::BI__builtin_vsx_stxvl:
+ case PPC::BI__builtin_vsx_stxvll:
+ {
+ if(BuiltinID == PPC::BI__builtin_vsx_stxvl ||
+ BuiltinID == PPC::BI__builtin_vsx_stxvll ){
+ Ops[1] = Builder.CreateBitCast(Ops[1], Int8PtrTy);
+ }else {
+ Ops[2] = Builder.CreateBitCast(Ops[2], Int8PtrTy);
+ Ops[1] = Builder.CreateGEP(Ops[2], Ops[1]);
+ Ops.pop_back();
+ }
+
+ switch (BuiltinID) {
+ default: llvm_unreachable("Unsupported st intrinsic!");
+ case PPC::BI__builtin_altivec_stvx:
+ ID = Intrinsic::ppc_altivec_stvx;
+ break;
+ case PPC::BI__builtin_altivec_stvxl:
+ ID = Intrinsic::ppc_altivec_stvxl;
+ break;
+ case PPC::BI__builtin_altivec_stvebx:
+ ID = Intrinsic::ppc_altivec_stvebx;
+ break;
+ case PPC::BI__builtin_altivec_stvehx:
+ ID = Intrinsic::ppc_altivec_stvehx;
+ break;
+ case PPC::BI__builtin_altivec_stvewx:
+ ID = Intrinsic::ppc_altivec_stvewx;
+ break;
+ case PPC::BI__builtin_vsx_stxvd2x:
+ ID = Intrinsic::ppc_vsx_stxvd2x;
+ break;
+ case PPC::BI__builtin_vsx_stxvw4x:
+ ID = Intrinsic::ppc_vsx_stxvw4x;
+ break;
+ case PPC::BI__builtin_vsx_stxvd2x_be:
+ ID = Intrinsic::ppc_vsx_stxvd2x_be;
+ break;
+ case PPC::BI__builtin_vsx_stxvw4x_be:
+ ID = Intrinsic::ppc_vsx_stxvw4x_be;
+ break;
+ case PPC::BI__builtin_vsx_stxvl:
+ ID = Intrinsic::ppc_vsx_stxvl;
+ break;
+ case PPC::BI__builtin_vsx_stxvll:
+ ID = Intrinsic::ppc_vsx_stxvll;
+ break;
+ }
+ llvm::Function *F = CGM.getIntrinsic(ID);
+ return Builder.CreateCall(F, Ops, "");
+ }
+ // Square root
+ case PPC::BI__builtin_vsx_xvsqrtsp:
+ case PPC::BI__builtin_vsx_xvsqrtdp: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ ID = Intrinsic::sqrt;
+ llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+ // Count leading zeros
+ case PPC::BI__builtin_altivec_vclzb:
+ case PPC::BI__builtin_altivec_vclzh:
+ case PPC::BI__builtin_altivec_vclzw:
+ case PPC::BI__builtin_altivec_vclzd: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
+ Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
+ return Builder.CreateCall(F, {X, Undef});
+ }
+ case PPC::BI__builtin_altivec_vctzb:
+ case PPC::BI__builtin_altivec_vctzh:
+ case PPC::BI__builtin_altivec_vctzw:
+ case PPC::BI__builtin_altivec_vctzd: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
+ Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
+ return Builder.CreateCall(F, {X, Undef});
+ }
+ case PPC::BI__builtin_altivec_vpopcntb:
+ case PPC::BI__builtin_altivec_vpopcnth:
+ case PPC::BI__builtin_altivec_vpopcntw:
+ case PPC::BI__builtin_altivec_vpopcntd: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+ // Copy sign
+ case PPC::BI__builtin_vsx_xvcpsgnsp:
+ case PPC::BI__builtin_vsx_xvcpsgndp: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ ID = Intrinsic::copysign;
+ llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
+ return Builder.CreateCall(F, {X, Y});
+ }
+ // Rounding/truncation
+ case PPC::BI__builtin_vsx_xvrspip:
+ case PPC::BI__builtin_vsx_xvrdpip:
+ case PPC::BI__builtin_vsx_xvrdpim:
+ case PPC::BI__builtin_vsx_xvrspim:
+ case PPC::BI__builtin_vsx_xvrdpi:
+ case PPC::BI__builtin_vsx_xvrspi:
+ case PPC::BI__builtin_vsx_xvrdpic:
+ case PPC::BI__builtin_vsx_xvrspic:
+ case PPC::BI__builtin_vsx_xvrdpiz:
+ case PPC::BI__builtin_vsx_xvrspiz: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ if (BuiltinID == PPC::BI__builtin_vsx_xvrdpim ||
+ BuiltinID == PPC::BI__builtin_vsx_xvrspim)
+ ID = Intrinsic::floor;
+ else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpi ||
+ BuiltinID == PPC::BI__builtin_vsx_xvrspi)
+ ID = Intrinsic::round;
+ else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpic ||
+ BuiltinID == PPC::BI__builtin_vsx_xvrspic)
+ ID = Intrinsic::nearbyint;
+ else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpip ||
+ BuiltinID == PPC::BI__builtin_vsx_xvrspip)
+ ID = Intrinsic::ceil;
+ else if (BuiltinID == PPC::BI__builtin_vsx_xvrdpiz ||
+ BuiltinID == PPC::BI__builtin_vsx_xvrspiz)
+ ID = Intrinsic::trunc;
+ llvm::Function *F = CGM.getIntrinsic(ID, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+
+ // Absolute value
+ case PPC::BI__builtin_vsx_xvabsdp:
+ case PPC::BI__builtin_vsx_xvabssp: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+
+ // FMA variations
+ case PPC::BI__builtin_vsx_xvmaddadp:
+ case PPC::BI__builtin_vsx_xvmaddasp:
+ case PPC::BI__builtin_vsx_xvnmaddadp:
+ case PPC::BI__builtin_vsx_xvnmaddasp:
+ case PPC::BI__builtin_vsx_xvmsubadp:
+ case PPC::BI__builtin_vsx_xvmsubasp:
+ case PPC::BI__builtin_vsx_xvnmsubadp:
+ case PPC::BI__builtin_vsx_xvnmsubasp: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ Value *Z = EmitScalarExpr(E->getArg(2));
+ Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
+ switch (BuiltinID) {
+ case PPC::BI__builtin_vsx_xvmaddadp:
+ case PPC::BI__builtin_vsx_xvmaddasp:
+ return Builder.CreateCall(F, {X, Y, Z});
+ case PPC::BI__builtin_vsx_xvnmaddadp:
+ case PPC::BI__builtin_vsx_xvnmaddasp:
+ return Builder.CreateFSub(Zero,
+ Builder.CreateCall(F, {X, Y, Z}), "sub");
+ case PPC::BI__builtin_vsx_xvmsubadp:
+ case PPC::BI__builtin_vsx_xvmsubasp:
+ return Builder.CreateCall(F,
+ {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
+ case PPC::BI__builtin_vsx_xvnmsubadp:
+ case PPC::BI__builtin_vsx_xvnmsubasp:
+ Value *FsubRes =
+ Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
+ return Builder.CreateFSub(Zero, FsubRes, "sub");
+ }
+ llvm_unreachable("Unknown FMA operation");
+ return nullptr; // Suppress no-return warning
+ }
+
+ case PPC::BI__builtin_vsx_insertword: {
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxinsertw);
+
+ // Third argument is a compile time constant int. It must be clamped to
+ // to the range [0, 12].
+ ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
+ assert(ArgCI &&
+ "Third arg to xxinsertw intrinsic must be constant integer");
+ const int64_t MaxIndex = 12;
+ int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
+
+ // The builtin semantics don't exactly match the xxinsertw instructions
+ // semantics (which ppc_vsx_xxinsertw follows). The builtin extracts the
+ // word from the first argument, and inserts it in the second argument. The
+ // instruction extracts the word from its second input register and inserts
+ // it into its first input register, so swap the first and second arguments.
+ std::swap(Ops[0], Ops[1]);
+
+ // Need to cast the second argument from a vector of unsigned int to a
+ // vector of long long.
+ Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
+
+ if (getTarget().isLittleEndian()) {
+ // Create a shuffle mask of (1, 0)
+ Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
+ ConstantInt::get(Int32Ty, 0)
+ };
+ Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
+
+ // Reverse the double words in the vector we will extract from.
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
+ Ops[0] = Builder.CreateShuffleVector(Ops[0], Ops[0], ShuffleMask);
+
+ // Reverse the index.
+ Index = MaxIndex - Index;
+ }
+
+ // Intrinsic expects the first arg to be a vector of int.
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
+ Ops[2] = ConstantInt::getSigned(Int32Ty, Index);
+ return Builder.CreateCall(F, Ops);
+ }
+
+ case PPC::BI__builtin_vsx_extractuword: {
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::ppc_vsx_xxextractuw);
+
+ // Intrinsic expects the first argument to be a vector of doublewords.
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
+
+ // The second argument is a compile time constant int that needs to
+ // be clamped to the range [0, 12].
+ ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[1]);
+ assert(ArgCI &&
+ "Second Arg to xxextractuw intrinsic must be a constant integer!");
+ const int64_t MaxIndex = 12;
+ int64_t Index = clamp(ArgCI->getSExtValue(), 0, MaxIndex);
+
+ if (getTarget().isLittleEndian()) {
+ // Reverse the index.
+ Index = MaxIndex - Index;
+ Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
+
+ // Emit the call, then reverse the double words of the results vector.
+ Value *Call = Builder.CreateCall(F, Ops);
+
+ // Create a shuffle mask of (1, 0)
+ Constant *ShuffleElts[2] = { ConstantInt::get(Int32Ty, 1),
+ ConstantInt::get(Int32Ty, 0)
+ };
+ Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
+
+ Value *ShuffleCall = Builder.CreateShuffleVector(Call, Call, ShuffleMask);
+ return ShuffleCall;
+ } else {
+ Ops[1] = ConstantInt::getSigned(Int32Ty, Index);
+ return Builder.CreateCall(F, Ops);
+ }
+ }
+
+ case PPC::BI__builtin_vsx_xxpermdi: {
+ ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
+ assert(ArgCI && "Third arg must be constant integer!");
+
+ unsigned Index = ArgCI->getZExtValue();
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int64Ty, 2));
+ Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int64Ty, 2));
+
+ // Account for endianness by treating this as just a shuffle. So we use the
+ // same indices for both LE and BE in order to produce expected results in
+ // both cases.
+ unsigned ElemIdx0 = (Index & 2) >> 1;
+ unsigned ElemIdx1 = 2 + (Index & 1);
+
+ Constant *ShuffleElts[2] = {ConstantInt::get(Int32Ty, ElemIdx0),
+ ConstantInt::get(Int32Ty, ElemIdx1)};
+ Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
+
+ Value *ShuffleCall =
+ Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
+ QualType BIRetType = E->getType();
+ auto RetTy = ConvertType(BIRetType);
+ return Builder.CreateBitCast(ShuffleCall, RetTy);
+ }
+
+ case PPC::BI__builtin_vsx_xxsldwi: {
+ ConstantInt *ArgCI = dyn_cast<ConstantInt>(Ops[2]);
+ assert(ArgCI && "Third argument must be a compile time constant");
+ unsigned Index = ArgCI->getZExtValue() & 0x3;
+ Ops[0] = Builder.CreateBitCast(Ops[0], llvm::VectorType::get(Int32Ty, 4));
+ Ops[1] = Builder.CreateBitCast(Ops[1], llvm::VectorType::get(Int32Ty, 4));
+
+ // Create a shuffle mask
+ unsigned ElemIdx0;
+ unsigned ElemIdx1;
+ unsigned ElemIdx2;
+ unsigned ElemIdx3;
+ if (getTarget().isLittleEndian()) {
+ // Little endian element N comes from element 8+N-Index of the
+ // concatenated wide vector (of course, using modulo arithmetic on
+ // the total number of elements).
+ ElemIdx0 = (8 - Index) % 8;
+ ElemIdx1 = (9 - Index) % 8;
+ ElemIdx2 = (10 - Index) % 8;
+ ElemIdx3 = (11 - Index) % 8;
+ } else {
+ // Big endian ElemIdx<N> = Index + N
+ ElemIdx0 = Index;
+ ElemIdx1 = Index + 1;
+ ElemIdx2 = Index + 2;
+ ElemIdx3 = Index + 3;
+ }
+
+ Constant *ShuffleElts[4] = {ConstantInt::get(Int32Ty, ElemIdx0),
+ ConstantInt::get(Int32Ty, ElemIdx1),
+ ConstantInt::get(Int32Ty, ElemIdx2),
+ ConstantInt::get(Int32Ty, ElemIdx3)};
+
+ Constant *ShuffleMask = llvm::ConstantVector::get(ShuffleElts);
+ Value *ShuffleCall =
+ Builder.CreateShuffleVector(Ops[0], Ops[1], ShuffleMask);
+ QualType BIRetType = E->getType();
+ auto RetTy = ConvertType(BIRetType);
+ return Builder.CreateBitCast(ShuffleCall, RetTy);
+ }
+
+ case PPC::BI__builtin_pack_vector_int128: {
+ bool isLittleEndian = getTarget().isLittleEndian();
+ Value *UndefValue =
+ llvm::UndefValue::get(llvm::VectorType::get(Ops[0]->getType(), 2));
+ Value *Res = Builder.CreateInsertElement(
+ UndefValue, Ops[0], (uint64_t)(isLittleEndian ? 1 : 0));
+ Res = Builder.CreateInsertElement(Res, Ops[1],
+ (uint64_t)(isLittleEndian ? 0 : 1));
+ return Builder.CreateBitCast(Res, ConvertType(E->getType()));
+ }
+
+ case PPC::BI__builtin_unpack_vector_int128: {
+ ConstantInt *Index = cast<ConstantInt>(Ops[1]);
+ Value *Unpacked = Builder.CreateBitCast(
+ Ops[0], llvm::VectorType::get(ConvertType(E->getType()), 2));
+
+ if (getTarget().isLittleEndian())
+ Index = ConstantInt::get(Index->getType(), 1 - Index->getZExtValue());
+
+ return Builder.CreateExtractElement(Unpacked, Index);
+ }
+ }
+}
+
+Value *CodeGenFunction::EmitAMDGPUBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ switch (BuiltinID) {
+ case AMDGPU::BI__builtin_amdgcn_div_scale:
+ case AMDGPU::BI__builtin_amdgcn_div_scalef: {
+ // Translate from the intrinsics's struct return to the builtin's out
+ // argument.
+
+ Address FlagOutPtr = EmitPointerWithAlignment(E->getArg(3));
+
+ llvm::Value *X = EmitScalarExpr(E->getArg(0));
+ llvm::Value *Y = EmitScalarExpr(E->getArg(1));
+ llvm::Value *Z = EmitScalarExpr(E->getArg(2));
+
+ llvm::Function *Callee = CGM.getIntrinsic(Intrinsic::amdgcn_div_scale,
+ X->getType());
+
+ llvm::Value *Tmp = Builder.CreateCall(Callee, {X, Y, Z});
+
+ llvm::Value *Result = Builder.CreateExtractValue(Tmp, 0);
+ llvm::Value *Flag = Builder.CreateExtractValue(Tmp, 1);
+
+ llvm::Type *RealFlagType
+ = FlagOutPtr.getPointer()->getType()->getPointerElementType();
+
+ llvm::Value *FlagExt = Builder.CreateZExt(Flag, RealFlagType);
+ Builder.CreateStore(FlagExt, FlagOutPtr);
+ return Result;
+ }
+ case AMDGPU::BI__builtin_amdgcn_div_fmas:
+ case AMDGPU::BI__builtin_amdgcn_div_fmasf: {
+ llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
+ llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
+ llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
+ llvm::Value *Src3 = EmitScalarExpr(E->getArg(3));
+
+ llvm::Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_div_fmas,
+ Src0->getType());
+ llvm::Value *Src3ToBool = Builder.CreateIsNotNull(Src3);
+ return Builder.CreateCall(F, {Src0, Src1, Src2, Src3ToBool});
+ }
+
+ case AMDGPU::BI__builtin_amdgcn_ds_swizzle:
+ return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_ds_swizzle);
+ case AMDGPU::BI__builtin_amdgcn_mov_dpp8:
+ return emitBinaryBuiltin(*this, E, Intrinsic::amdgcn_mov_dpp8);
+ case AMDGPU::BI__builtin_amdgcn_mov_dpp:
+ case AMDGPU::BI__builtin_amdgcn_update_dpp: {
+ llvm::SmallVector<llvm::Value *, 6> Args;
+ for (unsigned I = 0; I != E->getNumArgs(); ++I)
+ Args.push_back(EmitScalarExpr(E->getArg(I)));
+ assert(Args.size() == 5 || Args.size() == 6);
+ if (Args.size() == 5)
+ Args.insert(Args.begin(), llvm::UndefValue::get(Args[0]->getType()));
+ Function *F =
+ CGM.getIntrinsic(Intrinsic::amdgcn_update_dpp, Args[0]->getType());
+ return Builder.CreateCall(F, Args);
+ }
+ case AMDGPU::BI__builtin_amdgcn_div_fixup:
+ case AMDGPU::BI__builtin_amdgcn_div_fixupf:
+ case AMDGPU::BI__builtin_amdgcn_div_fixuph:
+ return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_div_fixup);
+ case AMDGPU::BI__builtin_amdgcn_trig_preop:
+ case AMDGPU::BI__builtin_amdgcn_trig_preopf:
+ return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_trig_preop);
+ case AMDGPU::BI__builtin_amdgcn_rcp:
+ case AMDGPU::BI__builtin_amdgcn_rcpf:
+ case AMDGPU::BI__builtin_amdgcn_rcph:
+ return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rcp);
+ case AMDGPU::BI__builtin_amdgcn_rsq:
+ case AMDGPU::BI__builtin_amdgcn_rsqf:
+ case AMDGPU::BI__builtin_amdgcn_rsqh:
+ return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq);
+ case AMDGPU::BI__builtin_amdgcn_rsq_clamp:
+ case AMDGPU::BI__builtin_amdgcn_rsq_clampf:
+ return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_rsq_clamp);
+ case AMDGPU::BI__builtin_amdgcn_sinf:
+ case AMDGPU::BI__builtin_amdgcn_sinh:
+ return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_sin);
+ case AMDGPU::BI__builtin_amdgcn_cosf:
+ case AMDGPU::BI__builtin_amdgcn_cosh:
+ return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_cos);
+ case AMDGPU::BI__builtin_amdgcn_log_clampf:
+ return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_log_clamp);
+ case AMDGPU::BI__builtin_amdgcn_ldexp:
+ case AMDGPU::BI__builtin_amdgcn_ldexpf:
+ case AMDGPU::BI__builtin_amdgcn_ldexph:
+ return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_ldexp);
+ case AMDGPU::BI__builtin_amdgcn_frexp_mant:
+ case AMDGPU::BI__builtin_amdgcn_frexp_mantf:
+ case AMDGPU::BI__builtin_amdgcn_frexp_manth:
+ return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_frexp_mant);
+ case AMDGPU::BI__builtin_amdgcn_frexp_exp:
+ case AMDGPU::BI__builtin_amdgcn_frexp_expf: {
+ Value *Src0 = EmitScalarExpr(E->getArg(0));
+ Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
+ { Builder.getInt32Ty(), Src0->getType() });
+ return Builder.CreateCall(F, Src0);
+ }
+ case AMDGPU::BI__builtin_amdgcn_frexp_exph: {
+ Value *Src0 = EmitScalarExpr(E->getArg(0));
+ Function *F = CGM.getIntrinsic(Intrinsic::amdgcn_frexp_exp,
+ { Builder.getInt16Ty(), Src0->getType() });
+ return Builder.CreateCall(F, Src0);
+ }
+ case AMDGPU::BI__builtin_amdgcn_fract:
+ case AMDGPU::BI__builtin_amdgcn_fractf:
+ case AMDGPU::BI__builtin_amdgcn_fracth:
+ return emitUnaryBuiltin(*this, E, Intrinsic::amdgcn_fract);
+ case AMDGPU::BI__builtin_amdgcn_lerp:
+ return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_lerp);
+ case AMDGPU::BI__builtin_amdgcn_ubfe:
+ return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_ubfe);
+ case AMDGPU::BI__builtin_amdgcn_sbfe:
+ return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_sbfe);
+ case AMDGPU::BI__builtin_amdgcn_uicmp:
+ case AMDGPU::BI__builtin_amdgcn_uicmpl:
+ case AMDGPU::BI__builtin_amdgcn_sicmp:
+ case AMDGPU::BI__builtin_amdgcn_sicmpl: {
+ llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
+ llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
+ llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
+
+ // FIXME-GFX10: How should 32 bit mask be handled?
+ Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_icmp,
+ { Builder.getInt64Ty(), Src0->getType() });
+ return Builder.CreateCall(F, { Src0, Src1, Src2 });
+ }
+ case AMDGPU::BI__builtin_amdgcn_fcmp:
+ case AMDGPU::BI__builtin_amdgcn_fcmpf: {
+ llvm::Value *Src0 = EmitScalarExpr(E->getArg(0));
+ llvm::Value *Src1 = EmitScalarExpr(E->getArg(1));
+ llvm::Value *Src2 = EmitScalarExpr(E->getArg(2));
+
+ // FIXME-GFX10: How should 32 bit mask be handled?
+ Value *F = CGM.getIntrinsic(Intrinsic::amdgcn_fcmp,
+ { Builder.getInt64Ty(), Src0->getType() });
+ return Builder.CreateCall(F, { Src0, Src1, Src2 });
+ }
+ case AMDGPU::BI__builtin_amdgcn_class:
+ case AMDGPU::BI__builtin_amdgcn_classf:
+ case AMDGPU::BI__builtin_amdgcn_classh:
+ return emitFPIntBuiltin(*this, E, Intrinsic::amdgcn_class);
+ case AMDGPU::BI__builtin_amdgcn_fmed3f:
+ case AMDGPU::BI__builtin_amdgcn_fmed3h:
+ return emitTernaryBuiltin(*this, E, Intrinsic::amdgcn_fmed3);
+ case AMDGPU::BI__builtin_amdgcn_ds_append:
+ case AMDGPU::BI__builtin_amdgcn_ds_consume: {
+ Intrinsic::ID Intrin = BuiltinID == AMDGPU::BI__builtin_amdgcn_ds_append ?
+ Intrinsic::amdgcn_ds_append : Intrinsic::amdgcn_ds_consume;
+ Value *Src0 = EmitScalarExpr(E->getArg(0));
+ Function *F = CGM.getIntrinsic(Intrin, { Src0->getType() });
+ return Builder.CreateCall(F, { Src0, Builder.getFalse() });
+ }
+ case AMDGPU::BI__builtin_amdgcn_read_exec: {
+ CallInst *CI = cast<CallInst>(
+ EmitSpecialRegisterBuiltin(*this, E, Int64Ty, Int64Ty, true, "exec"));
+ CI->setConvergent();
+ return CI;
+ }
+ case AMDGPU::BI__builtin_amdgcn_read_exec_lo:
+ case AMDGPU::BI__builtin_amdgcn_read_exec_hi: {
+ StringRef RegName = BuiltinID == AMDGPU::BI__builtin_amdgcn_read_exec_lo ?
+ "exec_lo" : "exec_hi";
+ CallInst *CI = cast<CallInst>(
+ EmitSpecialRegisterBuiltin(*this, E, Int32Ty, Int32Ty, true, RegName));
+ CI->setConvergent();
+ return CI;
+ }
+ // amdgcn workitem
+ case AMDGPU::BI__builtin_amdgcn_workitem_id_x:
+ return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_x, 0, 1024);
+ case AMDGPU::BI__builtin_amdgcn_workitem_id_y:
+ return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_y, 0, 1024);
+ case AMDGPU::BI__builtin_amdgcn_workitem_id_z:
+ return emitRangedBuiltin(*this, Intrinsic::amdgcn_workitem_id_z, 0, 1024);
+
+ // r600 intrinsics
+ case AMDGPU::BI__builtin_r600_recipsqrt_ieee:
+ case AMDGPU::BI__builtin_r600_recipsqrt_ieeef:
+ return emitUnaryBuiltin(*this, E, Intrinsic::r600_recipsqrt_ieee);
+ case AMDGPU::BI__builtin_r600_read_tidig_x:
+ return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_x, 0, 1024);
+ case AMDGPU::BI__builtin_r600_read_tidig_y:
+ return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_y, 0, 1024);
+ case AMDGPU::BI__builtin_r600_read_tidig_z:
+ return emitRangedBuiltin(*this, Intrinsic::r600_read_tidig_z, 0, 1024);
+ default:
+ return nullptr;
+ }
+}
+
+/// Handle a SystemZ function in which the final argument is a pointer
+/// to an int that receives the post-instruction CC value. At the LLVM level
+/// this is represented as a function that returns a {result, cc} pair.
+static Value *EmitSystemZIntrinsicWithCC(CodeGenFunction &CGF,
+ unsigned IntrinsicID,
+ const CallExpr *E) {
+ unsigned NumArgs = E->getNumArgs() - 1;
+ SmallVector<Value *, 8> Args(NumArgs);
+ for (unsigned I = 0; I < NumArgs; ++I)
+ Args[I] = CGF.EmitScalarExpr(E->getArg(I));
+ Address CCPtr = CGF.EmitPointerWithAlignment(E->getArg(NumArgs));
+ Function *F = CGF.CGM.getIntrinsic(IntrinsicID);
+ Value *Call = CGF.Builder.CreateCall(F, Args);
+ Value *CC = CGF.Builder.CreateExtractValue(Call, 1);
+ CGF.Builder.CreateStore(CC, CCPtr);
+ return CGF.Builder.CreateExtractValue(Call, 0);
+}
+
+Value *CodeGenFunction::EmitSystemZBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ switch (BuiltinID) {
+ case SystemZ::BI__builtin_tbegin: {
+ Value *TDB = EmitScalarExpr(E->getArg(0));
+ Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
+ Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin);
+ return Builder.CreateCall(F, {TDB, Control});
+ }
+ case SystemZ::BI__builtin_tbegin_nofloat: {
+ Value *TDB = EmitScalarExpr(E->getArg(0));
+ Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff0c);
+ Function *F = CGM.getIntrinsic(Intrinsic::s390_tbegin_nofloat);
+ return Builder.CreateCall(F, {TDB, Control});
+ }
+ case SystemZ::BI__builtin_tbeginc: {
+ Value *TDB = llvm::ConstantPointerNull::get(Int8PtrTy);
+ Value *Control = llvm::ConstantInt::get(Int32Ty, 0xff08);
+ Function *F = CGM.getIntrinsic(Intrinsic::s390_tbeginc);
+ return Builder.CreateCall(F, {TDB, Control});
+ }
+ case SystemZ::BI__builtin_tabort: {
+ Value *Data = EmitScalarExpr(E->getArg(0));
+ Function *F = CGM.getIntrinsic(Intrinsic::s390_tabort);
+ return Builder.CreateCall(F, Builder.CreateSExt(Data, Int64Ty, "tabort"));
+ }
+ case SystemZ::BI__builtin_non_tx_store: {
+ Value *Address = EmitScalarExpr(E->getArg(0));
+ Value *Data = EmitScalarExpr(E->getArg(1));
+ Function *F = CGM.getIntrinsic(Intrinsic::s390_ntstg);
+ return Builder.CreateCall(F, {Data, Address});
+ }
+
+ // Vector builtins. Note that most vector builtins are mapped automatically
+ // to target-specific LLVM intrinsics. The ones handled specially here can
+ // be represented via standard LLVM IR, which is preferable to enable common
+ // LLVM optimizations.
+
+ case SystemZ::BI__builtin_s390_vpopctb:
+ case SystemZ::BI__builtin_s390_vpopcth:
+ case SystemZ::BI__builtin_s390_vpopctf:
+ case SystemZ::BI__builtin_s390_vpopctg: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Function *F = CGM.getIntrinsic(Intrinsic::ctpop, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+
+ case SystemZ::BI__builtin_s390_vclzb:
+ case SystemZ::BI__builtin_s390_vclzh:
+ case SystemZ::BI__builtin_s390_vclzf:
+ case SystemZ::BI__builtin_s390_vclzg: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
+ Function *F = CGM.getIntrinsic(Intrinsic::ctlz, ResultType);
+ return Builder.CreateCall(F, {X, Undef});
+ }
+
+ case SystemZ::BI__builtin_s390_vctzb:
+ case SystemZ::BI__builtin_s390_vctzh:
+ case SystemZ::BI__builtin_s390_vctzf:
+ case SystemZ::BI__builtin_s390_vctzg: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Undef = ConstantInt::get(Builder.getInt1Ty(), false);
+ Function *F = CGM.getIntrinsic(Intrinsic::cttz, ResultType);
+ return Builder.CreateCall(F, {X, Undef});
+ }
+
+ case SystemZ::BI__builtin_s390_vfsqsb:
+ case SystemZ::BI__builtin_s390_vfsqdb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Function *F = CGM.getIntrinsic(Intrinsic::sqrt, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+ case SystemZ::BI__builtin_s390_vfmasb:
+ case SystemZ::BI__builtin_s390_vfmadb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ Value *Z = EmitScalarExpr(E->getArg(2));
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
+ return Builder.CreateCall(F, {X, Y, Z});
+ }
+ case SystemZ::BI__builtin_s390_vfmssb:
+ case SystemZ::BI__builtin_s390_vfmsdb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ Value *Z = EmitScalarExpr(E->getArg(2));
+ Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
+ return Builder.CreateCall(F, {X, Y, Builder.CreateFSub(Zero, Z, "sub")});
+ }
+ case SystemZ::BI__builtin_s390_vfnmasb:
+ case SystemZ::BI__builtin_s390_vfnmadb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ Value *Z = EmitScalarExpr(E->getArg(2));
+ Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
+ return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, Z}), "sub");
+ }
+ case SystemZ::BI__builtin_s390_vfnmssb:
+ case SystemZ::BI__builtin_s390_vfnmsdb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ Value *Z = EmitScalarExpr(E->getArg(2));
+ Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
+ Function *F = CGM.getIntrinsic(Intrinsic::fma, ResultType);
+ Value *NegZ = Builder.CreateFSub(Zero, Z, "sub");
+ return Builder.CreateFSub(Zero, Builder.CreateCall(F, {X, Y, NegZ}));
+ }
+ case SystemZ::BI__builtin_s390_vflpsb:
+ case SystemZ::BI__builtin_s390_vflpdb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+ case SystemZ::BI__builtin_s390_vflnsb:
+ case SystemZ::BI__builtin_s390_vflndb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Zero = llvm::ConstantFP::getZeroValueForNegation(ResultType);
+ Function *F = CGM.getIntrinsic(Intrinsic::fabs, ResultType);
+ return Builder.CreateFSub(Zero, Builder.CreateCall(F, X), "sub");
+ }
+ case SystemZ::BI__builtin_s390_vfisb:
+ case SystemZ::BI__builtin_s390_vfidb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ // Constant-fold the M4 and M5 mask arguments.
+ llvm::APSInt M4, M5;
+ bool IsConstM4 = E->getArg(1)->isIntegerConstantExpr(M4, getContext());
+ bool IsConstM5 = E->getArg(2)->isIntegerConstantExpr(M5, getContext());
+ assert(IsConstM4 && IsConstM5 && "Constant arg isn't actually constant?");
+ (void)IsConstM4; (void)IsConstM5;
+ // Check whether this instance can be represented via a LLVM standard
+ // intrinsic. We only support some combinations of M4 and M5.
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+ switch (M4.getZExtValue()) {
+ default: break;
+ case 0: // IEEE-inexact exception allowed
+ switch (M5.getZExtValue()) {
+ default: break;
+ case 0: ID = Intrinsic::rint; break;
+ }
+ break;
+ case 4: // IEEE-inexact exception suppressed
+ switch (M5.getZExtValue()) {
+ default: break;
+ case 0: ID = Intrinsic::nearbyint; break;
+ case 1: ID = Intrinsic::round; break;
+ case 5: ID = Intrinsic::trunc; break;
+ case 6: ID = Intrinsic::ceil; break;
+ case 7: ID = Intrinsic::floor; break;
+ }
+ break;
+ }
+ if (ID != Intrinsic::not_intrinsic) {
+ Function *F = CGM.getIntrinsic(ID, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+ switch (BuiltinID) {
+ case SystemZ::BI__builtin_s390_vfisb: ID = Intrinsic::s390_vfisb; break;
+ case SystemZ::BI__builtin_s390_vfidb: ID = Intrinsic::s390_vfidb; break;
+ default: llvm_unreachable("Unknown BuiltinID");
+ }
+ Function *F = CGM.getIntrinsic(ID);
+ Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
+ Value *M5Value = llvm::ConstantInt::get(getLLVMContext(), M5);
+ return Builder.CreateCall(F, {X, M4Value, M5Value});
+ }
+ case SystemZ::BI__builtin_s390_vfmaxsb:
+ case SystemZ::BI__builtin_s390_vfmaxdb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ // Constant-fold the M4 mask argument.
+ llvm::APSInt M4;
+ bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
+ assert(IsConstM4 && "Constant arg isn't actually constant?");
+ (void)IsConstM4;
+ // Check whether this instance can be represented via a LLVM standard
+ // intrinsic. We only support some values of M4.
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+ switch (M4.getZExtValue()) {
+ default: break;
+ case 4: ID = Intrinsic::maxnum; break;
+ }
+ if (ID != Intrinsic::not_intrinsic) {
+ Function *F = CGM.getIntrinsic(ID, ResultType);
+ return Builder.CreateCall(F, {X, Y});
+ }
+ switch (BuiltinID) {
+ case SystemZ::BI__builtin_s390_vfmaxsb: ID = Intrinsic::s390_vfmaxsb; break;
+ case SystemZ::BI__builtin_s390_vfmaxdb: ID = Intrinsic::s390_vfmaxdb; break;
+ default: llvm_unreachable("Unknown BuiltinID");
+ }
+ Function *F = CGM.getIntrinsic(ID);
+ Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
+ return Builder.CreateCall(F, {X, Y, M4Value});
+ }
+ case SystemZ::BI__builtin_s390_vfminsb:
+ case SystemZ::BI__builtin_s390_vfmindb: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Value *Y = EmitScalarExpr(E->getArg(1));
+ // Constant-fold the M4 mask argument.
+ llvm::APSInt M4;
+ bool IsConstM4 = E->getArg(2)->isIntegerConstantExpr(M4, getContext());
+ assert(IsConstM4 && "Constant arg isn't actually constant?");
+ (void)IsConstM4;
+ // Check whether this instance can be represented via a LLVM standard
+ // intrinsic. We only support some values of M4.
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+ switch (M4.getZExtValue()) {
+ default: break;
+ case 4: ID = Intrinsic::minnum; break;
+ }
+ if (ID != Intrinsic::not_intrinsic) {
+ Function *F = CGM.getIntrinsic(ID, ResultType);
+ return Builder.CreateCall(F, {X, Y});
+ }
+ switch (BuiltinID) {
+ case SystemZ::BI__builtin_s390_vfminsb: ID = Intrinsic::s390_vfminsb; break;
+ case SystemZ::BI__builtin_s390_vfmindb: ID = Intrinsic::s390_vfmindb; break;
+ default: llvm_unreachable("Unknown BuiltinID");
+ }
+ Function *F = CGM.getIntrinsic(ID);
+ Value *M4Value = llvm::ConstantInt::get(getLLVMContext(), M4);
+ return Builder.CreateCall(F, {X, Y, M4Value});
+ }
+
+ case SystemZ::BI__builtin_s390_vlbrh:
+ case SystemZ::BI__builtin_s390_vlbrf:
+ case SystemZ::BI__builtin_s390_vlbrg: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *X = EmitScalarExpr(E->getArg(0));
+ Function *F = CGM.getIntrinsic(Intrinsic::bswap, ResultType);
+ return Builder.CreateCall(F, X);
+ }
+
+ // Vector intrinsics that output the post-instruction CC value.
+
+#define INTRINSIC_WITH_CC(NAME) \
+ case SystemZ::BI__builtin_##NAME: \
+ return EmitSystemZIntrinsicWithCC(*this, Intrinsic::NAME, E)
+
+ INTRINSIC_WITH_CC(s390_vpkshs);
+ INTRINSIC_WITH_CC(s390_vpksfs);
+ INTRINSIC_WITH_CC(s390_vpksgs);
+
+ INTRINSIC_WITH_CC(s390_vpklshs);
+ INTRINSIC_WITH_CC(s390_vpklsfs);
+ INTRINSIC_WITH_CC(s390_vpklsgs);
+
+ INTRINSIC_WITH_CC(s390_vceqbs);
+ INTRINSIC_WITH_CC(s390_vceqhs);
+ INTRINSIC_WITH_CC(s390_vceqfs);
+ INTRINSIC_WITH_CC(s390_vceqgs);
+
+ INTRINSIC_WITH_CC(s390_vchbs);
+ INTRINSIC_WITH_CC(s390_vchhs);
+ INTRINSIC_WITH_CC(s390_vchfs);
+ INTRINSIC_WITH_CC(s390_vchgs);
+
+ INTRINSIC_WITH_CC(s390_vchlbs);
+ INTRINSIC_WITH_CC(s390_vchlhs);
+ INTRINSIC_WITH_CC(s390_vchlfs);
+ INTRINSIC_WITH_CC(s390_vchlgs);
+
+ INTRINSIC_WITH_CC(s390_vfaebs);
+ INTRINSIC_WITH_CC(s390_vfaehs);
+ INTRINSIC_WITH_CC(s390_vfaefs);
+
+ INTRINSIC_WITH_CC(s390_vfaezbs);
+ INTRINSIC_WITH_CC(s390_vfaezhs);
+ INTRINSIC_WITH_CC(s390_vfaezfs);
+
+ INTRINSIC_WITH_CC(s390_vfeebs);
+ INTRINSIC_WITH_CC(s390_vfeehs);
+ INTRINSIC_WITH_CC(s390_vfeefs);
+
+ INTRINSIC_WITH_CC(s390_vfeezbs);
+ INTRINSIC_WITH_CC(s390_vfeezhs);
+ INTRINSIC_WITH_CC(s390_vfeezfs);
+
+ INTRINSIC_WITH_CC(s390_vfenebs);
+ INTRINSIC_WITH_CC(s390_vfenehs);
+ INTRINSIC_WITH_CC(s390_vfenefs);
+
+ INTRINSIC_WITH_CC(s390_vfenezbs);
+ INTRINSIC_WITH_CC(s390_vfenezhs);
+ INTRINSIC_WITH_CC(s390_vfenezfs);
+
+ INTRINSIC_WITH_CC(s390_vistrbs);
+ INTRINSIC_WITH_CC(s390_vistrhs);
+ INTRINSIC_WITH_CC(s390_vistrfs);
+
+ INTRINSIC_WITH_CC(s390_vstrcbs);
+ INTRINSIC_WITH_CC(s390_vstrchs);
+ INTRINSIC_WITH_CC(s390_vstrcfs);
+
+ INTRINSIC_WITH_CC(s390_vstrczbs);
+ INTRINSIC_WITH_CC(s390_vstrczhs);
+ INTRINSIC_WITH_CC(s390_vstrczfs);
+
+ INTRINSIC_WITH_CC(s390_vfcesbs);
+ INTRINSIC_WITH_CC(s390_vfcedbs);
+ INTRINSIC_WITH_CC(s390_vfchsbs);
+ INTRINSIC_WITH_CC(s390_vfchdbs);
+ INTRINSIC_WITH_CC(s390_vfchesbs);
+ INTRINSIC_WITH_CC(s390_vfchedbs);
+
+ INTRINSIC_WITH_CC(s390_vftcisb);
+ INTRINSIC_WITH_CC(s390_vftcidb);
+
+ INTRINSIC_WITH_CC(s390_vstrsb);
+ INTRINSIC_WITH_CC(s390_vstrsh);
+ INTRINSIC_WITH_CC(s390_vstrsf);
+
+ INTRINSIC_WITH_CC(s390_vstrszb);
+ INTRINSIC_WITH_CC(s390_vstrszh);
+ INTRINSIC_WITH_CC(s390_vstrszf);
+
+#undef INTRINSIC_WITH_CC
+
+ default:
+ return nullptr;
+ }
+}
+
+namespace {
+// Helper classes for mapping MMA builtins to particular LLVM intrinsic variant.
+struct NVPTXMmaLdstInfo {
+ unsigned NumResults; // Number of elements to load/store
+ // Intrinsic IDs for row/col variants. 0 if particular layout is unsupported.
+ unsigned IID_col;
+ unsigned IID_row;
+};
+
+#define MMA_INTR(geom_op_type, layout) \
+ Intrinsic::nvvm_wmma_##geom_op_type##_##layout##_stride
+#define MMA_LDST(n, geom_op_type) \
+ { n, MMA_INTR(geom_op_type, col), MMA_INTR(geom_op_type, row) }
+
+static NVPTXMmaLdstInfo getNVPTXMmaLdstInfo(unsigned BuiltinID) {
+ switch (BuiltinID) {
+ // FP MMA loads
+ case NVPTX::BI__hmma_m16n16k16_ld_a:
+ return MMA_LDST(8, m16n16k16_load_a_f16);
+ case NVPTX::BI__hmma_m16n16k16_ld_b:
+ return MMA_LDST(8, m16n16k16_load_b_f16);
+ case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
+ return MMA_LDST(4, m16n16k16_load_c_f16);
+ case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
+ return MMA_LDST(8, m16n16k16_load_c_f32);
+ case NVPTX::BI__hmma_m32n8k16_ld_a:
+ return MMA_LDST(8, m32n8k16_load_a_f16);
+ case NVPTX::BI__hmma_m32n8k16_ld_b:
+ return MMA_LDST(8, m32n8k16_load_b_f16);
+ case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
+ return MMA_LDST(4, m32n8k16_load_c_f16);
+ case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
+ return MMA_LDST(8, m32n8k16_load_c_f32);
+ case NVPTX::BI__hmma_m8n32k16_ld_a:
+ return MMA_LDST(8, m8n32k16_load_a_f16);
+ case NVPTX::BI__hmma_m8n32k16_ld_b:
+ return MMA_LDST(8, m8n32k16_load_b_f16);
+ case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
+ return MMA_LDST(4, m8n32k16_load_c_f16);
+ case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
+ return MMA_LDST(8, m8n32k16_load_c_f32);
+
+ // Integer MMA loads
+ case NVPTX::BI__imma_m16n16k16_ld_a_s8:
+ return MMA_LDST(2, m16n16k16_load_a_s8);
+ case NVPTX::BI__imma_m16n16k16_ld_a_u8:
+ return MMA_LDST(2, m16n16k16_load_a_u8);
+ case NVPTX::BI__imma_m16n16k16_ld_b_s8:
+ return MMA_LDST(2, m16n16k16_load_b_s8);
+ case NVPTX::BI__imma_m16n16k16_ld_b_u8:
+ return MMA_LDST(2, m16n16k16_load_b_u8);
+ case NVPTX::BI__imma_m16n16k16_ld_c:
+ return MMA_LDST(8, m16n16k16_load_c_s32);
+ case NVPTX::BI__imma_m32n8k16_ld_a_s8:
+ return MMA_LDST(4, m32n8k16_load_a_s8);
+ case NVPTX::BI__imma_m32n8k16_ld_a_u8:
+ return MMA_LDST(4, m32n8k16_load_a_u8);
+ case NVPTX::BI__imma_m32n8k16_ld_b_s8:
+ return MMA_LDST(1, m32n8k16_load_b_s8);
+ case NVPTX::BI__imma_m32n8k16_ld_b_u8:
+ return MMA_LDST(1, m32n8k16_load_b_u8);
+ case NVPTX::BI__imma_m32n8k16_ld_c:
+ return MMA_LDST(8, m32n8k16_load_c_s32);
+ case NVPTX::BI__imma_m8n32k16_ld_a_s8:
+ return MMA_LDST(1, m8n32k16_load_a_s8);
+ case NVPTX::BI__imma_m8n32k16_ld_a_u8:
+ return MMA_LDST(1, m8n32k16_load_a_u8);
+ case NVPTX::BI__imma_m8n32k16_ld_b_s8:
+ return MMA_LDST(4, m8n32k16_load_b_s8);
+ case NVPTX::BI__imma_m8n32k16_ld_b_u8:
+ return MMA_LDST(4, m8n32k16_load_b_u8);
+ case NVPTX::BI__imma_m8n32k16_ld_c:
+ return MMA_LDST(8, m8n32k16_load_c_s32);
+
+ // Sub-integer MMA loads.
+ // Only row/col layout is supported by A/B fragments.
+ case NVPTX::BI__imma_m8n8k32_ld_a_s4:
+ return {1, 0, MMA_INTR(m8n8k32_load_a_s4, row)};
+ case NVPTX::BI__imma_m8n8k32_ld_a_u4:
+ return {1, 0, MMA_INTR(m8n8k32_load_a_u4, row)};
+ case NVPTX::BI__imma_m8n8k32_ld_b_s4:
+ return {1, MMA_INTR(m8n8k32_load_b_s4, col), 0};
+ case NVPTX::BI__imma_m8n8k32_ld_b_u4:
+ return {1, MMA_INTR(m8n8k32_load_b_u4, col), 0};
+ case NVPTX::BI__imma_m8n8k32_ld_c:
+ return MMA_LDST(2, m8n8k32_load_c_s32);
+ case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
+ return {1, 0, MMA_INTR(m8n8k128_load_a_b1, row)};
+ case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
+ return {1, MMA_INTR(m8n8k128_load_b_b1, col), 0};
+ case NVPTX::BI__bmma_m8n8k128_ld_c:
+ return MMA_LDST(2, m8n8k128_load_c_s32);
+
+ // NOTE: We need to follow inconsitent naming scheme used by NVCC. Unlike
+ // PTX and LLVM IR where stores always use fragment D, NVCC builtins always
+ // use fragment C for both loads and stores.
+ // FP MMA stores.
+ case NVPTX::BI__hmma_m16n16k16_st_c_f16:
+ return MMA_LDST(4, m16n16k16_store_d_f16);
+ case NVPTX::BI__hmma_m16n16k16_st_c_f32:
+ return MMA_LDST(8, m16n16k16_store_d_f32);
+ case NVPTX::BI__hmma_m32n8k16_st_c_f16:
+ return MMA_LDST(4, m32n8k16_store_d_f16);
+ case NVPTX::BI__hmma_m32n8k16_st_c_f32:
+ return MMA_LDST(8, m32n8k16_store_d_f32);
+ case NVPTX::BI__hmma_m8n32k16_st_c_f16:
+ return MMA_LDST(4, m8n32k16_store_d_f16);
+ case NVPTX::BI__hmma_m8n32k16_st_c_f32:
+ return MMA_LDST(8, m8n32k16_store_d_f32);
+
+ // Integer and sub-integer MMA stores.
+ // Another naming quirk. Unlike other MMA builtins that use PTX types in the
+ // name, integer loads/stores use LLVM's i32.
+ case NVPTX::BI__imma_m16n16k16_st_c_i32:
+ return MMA_LDST(8, m16n16k16_store_d_s32);
+ case NVPTX::BI__imma_m32n8k16_st_c_i32:
+ return MMA_LDST(8, m32n8k16_store_d_s32);
+ case NVPTX::BI__imma_m8n32k16_st_c_i32:
+ return MMA_LDST(8, m8n32k16_store_d_s32);
+ case NVPTX::BI__imma_m8n8k32_st_c_i32:
+ return MMA_LDST(2, m8n8k32_store_d_s32);
+ case NVPTX::BI__bmma_m8n8k128_st_c_i32:
+ return MMA_LDST(2, m8n8k128_store_d_s32);
+
+ default:
+ llvm_unreachable("Unknown MMA builtin");
+ }
+}
+#undef MMA_LDST
+#undef MMA_INTR
+
+
+struct NVPTXMmaInfo {
+ unsigned NumEltsA;
+ unsigned NumEltsB;
+ unsigned NumEltsC;
+ unsigned NumEltsD;
+ std::array<unsigned, 8> Variants;
+
+ unsigned getMMAIntrinsic(int Layout, bool Satf) {
+ unsigned Index = Layout * 2 + Satf;
+ if (Index >= Variants.size())
+ return 0;
+ return Variants[Index];
+ }
+};
+
+ // Returns an intrinsic that matches Layout and Satf for valid combinations of
+ // Layout and Satf, 0 otherwise.
+static NVPTXMmaInfo getNVPTXMmaInfo(unsigned BuiltinID) {
+ // clang-format off
+#define MMA_VARIANTS(geom, type) {{ \
+ Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type, \
+ Intrinsic::nvvm_wmma_##geom##_mma_row_row_##type##_satfinite, \
+ Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
+ Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
+ Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type, \
+ Intrinsic::nvvm_wmma_##geom##_mma_col_row_##type##_satfinite, \
+ Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type, \
+ Intrinsic::nvvm_wmma_##geom##_mma_col_col_##type##_satfinite \
+ }}
+// Sub-integer MMA only supports row.col layout.
+#define MMA_VARIANTS_I4(geom, type) {{ \
+ 0, \
+ 0, \
+ Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
+ Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type##_satfinite, \
+ 0, \
+ 0, \
+ 0, \
+ 0 \
+ }}
+// b1 MMA does not support .satfinite.
+#define MMA_VARIANTS_B1(geom, type) {{ \
+ 0, \
+ 0, \
+ Intrinsic::nvvm_wmma_##geom##_mma_row_col_##type, \
+ 0, \
+ 0, \
+ 0, \
+ 0, \
+ 0 \
+ }}
+ // clang-format on
+ switch (BuiltinID) {
+ // FP MMA
+ // Note that 'type' argument of MMA_VARIANT uses D_C notation, while
+ // NumEltsN of return value are ordered as A,B,C,D.
+ case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
+ return {8, 8, 4, 4, MMA_VARIANTS(m16n16k16, f16_f16)};
+ case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
+ return {8, 8, 4, 8, MMA_VARIANTS(m16n16k16, f32_f16)};
+ case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
+ return {8, 8, 8, 4, MMA_VARIANTS(m16n16k16, f16_f32)};
+ case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
+ return {8, 8, 8, 8, MMA_VARIANTS(m16n16k16, f32_f32)};
+ case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
+ return {8, 8, 4, 4, MMA_VARIANTS(m32n8k16, f16_f16)};
+ case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
+ return {8, 8, 4, 8, MMA_VARIANTS(m32n8k16, f32_f16)};
+ case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
+ return {8, 8, 8, 4, MMA_VARIANTS(m32n8k16, f16_f32)};
+ case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
+ return {8, 8, 8, 8, MMA_VARIANTS(m32n8k16, f32_f32)};
+ case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
+ return {8, 8, 4, 4, MMA_VARIANTS(m8n32k16, f16_f16)};
+ case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
+ return {8, 8, 4, 8, MMA_VARIANTS(m8n32k16, f32_f16)};
+ case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
+ return {8, 8, 8, 4, MMA_VARIANTS(m8n32k16, f16_f32)};
+ case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
+ return {8, 8, 8, 8, MMA_VARIANTS(m8n32k16, f32_f32)};
+
+ // Integer MMA
+ case NVPTX::BI__imma_m16n16k16_mma_s8:
+ return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, s8)};
+ case NVPTX::BI__imma_m16n16k16_mma_u8:
+ return {2, 2, 8, 8, MMA_VARIANTS(m16n16k16, u8)};
+ case NVPTX::BI__imma_m32n8k16_mma_s8:
+ return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, s8)};
+ case NVPTX::BI__imma_m32n8k16_mma_u8:
+ return {4, 1, 8, 8, MMA_VARIANTS(m32n8k16, u8)};
+ case NVPTX::BI__imma_m8n32k16_mma_s8:
+ return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, s8)};
+ case NVPTX::BI__imma_m8n32k16_mma_u8:
+ return {1, 4, 8, 8, MMA_VARIANTS(m8n32k16, u8)};
+
+ // Sub-integer MMA
+ case NVPTX::BI__imma_m8n8k32_mma_s4:
+ return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, s4)};
+ case NVPTX::BI__imma_m8n8k32_mma_u4:
+ return {1, 1, 2, 2, MMA_VARIANTS_I4(m8n8k32, u4)};
+ case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1:
+ return {1, 1, 2, 2, MMA_VARIANTS_B1(m8n8k128, b1)};
+ default:
+ llvm_unreachable("Unexpected builtin ID.");
+ }
+#undef MMA_VARIANTS
+#undef MMA_VARIANTS_I4
+#undef MMA_VARIANTS_B1
+}
+
+} // namespace
+
+Value *
+CodeGenFunction::EmitNVPTXBuiltinExpr(unsigned BuiltinID, const CallExpr *E) {
+ auto MakeLdg = [&](unsigned IntrinsicID) {
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ clang::CharUnits Align =
+ getNaturalPointeeTypeAlignment(E->getArg(0)->getType());
+ return Builder.CreateCall(
+ CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
+ Ptr->getType()}),
+ {Ptr, ConstantInt::get(Builder.getInt32Ty(), Align.getQuantity())});
+ };
+ auto MakeScopedAtomic = [&](unsigned IntrinsicID) {
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ return Builder.CreateCall(
+ CGM.getIntrinsic(IntrinsicID, {Ptr->getType()->getPointerElementType(),
+ Ptr->getType()}),
+ {Ptr, EmitScalarExpr(E->getArg(1))});
+ };
+ switch (BuiltinID) {
+ case NVPTX::BI__nvvm_atom_add_gen_i:
+ case NVPTX::BI__nvvm_atom_add_gen_l:
+ case NVPTX::BI__nvvm_atom_add_gen_ll:
+ return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Add, E);
+
+ case NVPTX::BI__nvvm_atom_sub_gen_i:
+ case NVPTX::BI__nvvm_atom_sub_gen_l:
+ case NVPTX::BI__nvvm_atom_sub_gen_ll:
+ return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Sub, E);
+
+ case NVPTX::BI__nvvm_atom_and_gen_i:
+ case NVPTX::BI__nvvm_atom_and_gen_l:
+ case NVPTX::BI__nvvm_atom_and_gen_ll:
+ return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::And, E);
+
+ case NVPTX::BI__nvvm_atom_or_gen_i:
+ case NVPTX::BI__nvvm_atom_or_gen_l:
+ case NVPTX::BI__nvvm_atom_or_gen_ll:
+ return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Or, E);
+
+ case NVPTX::BI__nvvm_atom_xor_gen_i:
+ case NVPTX::BI__nvvm_atom_xor_gen_l:
+ case NVPTX::BI__nvvm_atom_xor_gen_ll:
+ return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xor, E);
+
+ case NVPTX::BI__nvvm_atom_xchg_gen_i:
+ case NVPTX::BI__nvvm_atom_xchg_gen_l:
+ case NVPTX::BI__nvvm_atom_xchg_gen_ll:
+ return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Xchg, E);
+
+ case NVPTX::BI__nvvm_atom_max_gen_i:
+ case NVPTX::BI__nvvm_atom_max_gen_l:
+ case NVPTX::BI__nvvm_atom_max_gen_ll:
+ return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Max, E);
+
+ case NVPTX::BI__nvvm_atom_max_gen_ui:
+ case NVPTX::BI__nvvm_atom_max_gen_ul:
+ case NVPTX::BI__nvvm_atom_max_gen_ull:
+ return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMax, E);
+
+ case NVPTX::BI__nvvm_atom_min_gen_i:
+ case NVPTX::BI__nvvm_atom_min_gen_l:
+ case NVPTX::BI__nvvm_atom_min_gen_ll:
+ return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::Min, E);
+
+ case NVPTX::BI__nvvm_atom_min_gen_ui:
+ case NVPTX::BI__nvvm_atom_min_gen_ul:
+ case NVPTX::BI__nvvm_atom_min_gen_ull:
+ return MakeBinaryAtomicValue(*this, llvm::AtomicRMWInst::UMin, E);
+
+ case NVPTX::BI__nvvm_atom_cas_gen_i:
+ case NVPTX::BI__nvvm_atom_cas_gen_l:
+ case NVPTX::BI__nvvm_atom_cas_gen_ll:
+ // __nvvm_atom_cas_gen_* should return the old value rather than the
+ // success flag.
+ return MakeAtomicCmpXchgValue(*this, E, /*ReturnBool=*/false);
+
+ case NVPTX::BI__nvvm_atom_add_gen_f:
+ case NVPTX::BI__nvvm_atom_add_gen_d: {
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ Value *Val = EmitScalarExpr(E->getArg(1));
+ return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::FAdd, Ptr, Val,
+ AtomicOrdering::SequentiallyConsistent);
+ }
+
+ case NVPTX::BI__nvvm_atom_inc_gen_ui: {
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ Value *Val = EmitScalarExpr(E->getArg(1));
+ Function *FnALI32 =
+ CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_inc_32, Ptr->getType());
+ return Builder.CreateCall(FnALI32, {Ptr, Val});
+ }
+
+ case NVPTX::BI__nvvm_atom_dec_gen_ui: {
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ Value *Val = EmitScalarExpr(E->getArg(1));
+ Function *FnALD32 =
+ CGM.getIntrinsic(Intrinsic::nvvm_atomic_load_dec_32, Ptr->getType());
+ return Builder.CreateCall(FnALD32, {Ptr, Val});
+ }
+
+ case NVPTX::BI__nvvm_ldg_c:
+ case NVPTX::BI__nvvm_ldg_c2:
+ case NVPTX::BI__nvvm_ldg_c4:
+ case NVPTX::BI__nvvm_ldg_s:
+ case NVPTX::BI__nvvm_ldg_s2:
+ case NVPTX::BI__nvvm_ldg_s4:
+ case NVPTX::BI__nvvm_ldg_i:
+ case NVPTX::BI__nvvm_ldg_i2:
+ case NVPTX::BI__nvvm_ldg_i4:
+ case NVPTX::BI__nvvm_ldg_l:
+ case NVPTX::BI__nvvm_ldg_ll:
+ case NVPTX::BI__nvvm_ldg_ll2:
+ case NVPTX::BI__nvvm_ldg_uc:
+ case NVPTX::BI__nvvm_ldg_uc2:
+ case NVPTX::BI__nvvm_ldg_uc4:
+ case NVPTX::BI__nvvm_ldg_us:
+ case NVPTX::BI__nvvm_ldg_us2:
+ case NVPTX::BI__nvvm_ldg_us4:
+ case NVPTX::BI__nvvm_ldg_ui:
+ case NVPTX::BI__nvvm_ldg_ui2:
+ case NVPTX::BI__nvvm_ldg_ui4:
+ case NVPTX::BI__nvvm_ldg_ul:
+ case NVPTX::BI__nvvm_ldg_ull:
+ case NVPTX::BI__nvvm_ldg_ull2:
+ // PTX Interoperability section 2.2: "For a vector with an even number of
+ // elements, its alignment is set to number of elements times the alignment
+ // of its member: n*alignof(t)."
+ return MakeLdg(Intrinsic::nvvm_ldg_global_i);
+ case NVPTX::BI__nvvm_ldg_f:
+ case NVPTX::BI__nvvm_ldg_f2:
+ case NVPTX::BI__nvvm_ldg_f4:
+ case NVPTX::BI__nvvm_ldg_d:
+ case NVPTX::BI__nvvm_ldg_d2:
+ return MakeLdg(Intrinsic::nvvm_ldg_global_f);
+
+ case NVPTX::BI__nvvm_atom_cta_add_gen_i:
+ case NVPTX::BI__nvvm_atom_cta_add_gen_l:
+ case NVPTX::BI__nvvm_atom_cta_add_gen_ll:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_cta);
+ case NVPTX::BI__nvvm_atom_sys_add_gen_i:
+ case NVPTX::BI__nvvm_atom_sys_add_gen_l:
+ case NVPTX::BI__nvvm_atom_sys_add_gen_ll:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_i_sys);
+ case NVPTX::BI__nvvm_atom_cta_add_gen_f:
+ case NVPTX::BI__nvvm_atom_cta_add_gen_d:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_cta);
+ case NVPTX::BI__nvvm_atom_sys_add_gen_f:
+ case NVPTX::BI__nvvm_atom_sys_add_gen_d:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_add_gen_f_sys);
+ case NVPTX::BI__nvvm_atom_cta_xchg_gen_i:
+ case NVPTX::BI__nvvm_atom_cta_xchg_gen_l:
+ case NVPTX::BI__nvvm_atom_cta_xchg_gen_ll:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_cta);
+ case NVPTX::BI__nvvm_atom_sys_xchg_gen_i:
+ case NVPTX::BI__nvvm_atom_sys_xchg_gen_l:
+ case NVPTX::BI__nvvm_atom_sys_xchg_gen_ll:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_exch_gen_i_sys);
+ case NVPTX::BI__nvvm_atom_cta_max_gen_i:
+ case NVPTX::BI__nvvm_atom_cta_max_gen_ui:
+ case NVPTX::BI__nvvm_atom_cta_max_gen_l:
+ case NVPTX::BI__nvvm_atom_cta_max_gen_ul:
+ case NVPTX::BI__nvvm_atom_cta_max_gen_ll:
+ case NVPTX::BI__nvvm_atom_cta_max_gen_ull:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_cta);
+ case NVPTX::BI__nvvm_atom_sys_max_gen_i:
+ case NVPTX::BI__nvvm_atom_sys_max_gen_ui:
+ case NVPTX::BI__nvvm_atom_sys_max_gen_l:
+ case NVPTX::BI__nvvm_atom_sys_max_gen_ul:
+ case NVPTX::BI__nvvm_atom_sys_max_gen_ll:
+ case NVPTX::BI__nvvm_atom_sys_max_gen_ull:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_max_gen_i_sys);
+ case NVPTX::BI__nvvm_atom_cta_min_gen_i:
+ case NVPTX::BI__nvvm_atom_cta_min_gen_ui:
+ case NVPTX::BI__nvvm_atom_cta_min_gen_l:
+ case NVPTX::BI__nvvm_atom_cta_min_gen_ul:
+ case NVPTX::BI__nvvm_atom_cta_min_gen_ll:
+ case NVPTX::BI__nvvm_atom_cta_min_gen_ull:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_cta);
+ case NVPTX::BI__nvvm_atom_sys_min_gen_i:
+ case NVPTX::BI__nvvm_atom_sys_min_gen_ui:
+ case NVPTX::BI__nvvm_atom_sys_min_gen_l:
+ case NVPTX::BI__nvvm_atom_sys_min_gen_ul:
+ case NVPTX::BI__nvvm_atom_sys_min_gen_ll:
+ case NVPTX::BI__nvvm_atom_sys_min_gen_ull:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_min_gen_i_sys);
+ case NVPTX::BI__nvvm_atom_cta_inc_gen_ui:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_cta);
+ case NVPTX::BI__nvvm_atom_cta_dec_gen_ui:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_cta);
+ case NVPTX::BI__nvvm_atom_sys_inc_gen_ui:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_inc_gen_i_sys);
+ case NVPTX::BI__nvvm_atom_sys_dec_gen_ui:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_dec_gen_i_sys);
+ case NVPTX::BI__nvvm_atom_cta_and_gen_i:
+ case NVPTX::BI__nvvm_atom_cta_and_gen_l:
+ case NVPTX::BI__nvvm_atom_cta_and_gen_ll:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_cta);
+ case NVPTX::BI__nvvm_atom_sys_and_gen_i:
+ case NVPTX::BI__nvvm_atom_sys_and_gen_l:
+ case NVPTX::BI__nvvm_atom_sys_and_gen_ll:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_and_gen_i_sys);
+ case NVPTX::BI__nvvm_atom_cta_or_gen_i:
+ case NVPTX::BI__nvvm_atom_cta_or_gen_l:
+ case NVPTX::BI__nvvm_atom_cta_or_gen_ll:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_cta);
+ case NVPTX::BI__nvvm_atom_sys_or_gen_i:
+ case NVPTX::BI__nvvm_atom_sys_or_gen_l:
+ case NVPTX::BI__nvvm_atom_sys_or_gen_ll:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_or_gen_i_sys);
+ case NVPTX::BI__nvvm_atom_cta_xor_gen_i:
+ case NVPTX::BI__nvvm_atom_cta_xor_gen_l:
+ case NVPTX::BI__nvvm_atom_cta_xor_gen_ll:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_cta);
+ case NVPTX::BI__nvvm_atom_sys_xor_gen_i:
+ case NVPTX::BI__nvvm_atom_sys_xor_gen_l:
+ case NVPTX::BI__nvvm_atom_sys_xor_gen_ll:
+ return MakeScopedAtomic(Intrinsic::nvvm_atomic_xor_gen_i_sys);
+ case NVPTX::BI__nvvm_atom_cta_cas_gen_i:
+ case NVPTX::BI__nvvm_atom_cta_cas_gen_l:
+ case NVPTX::BI__nvvm_atom_cta_cas_gen_ll: {
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ return Builder.CreateCall(
+ CGM.getIntrinsic(
+ Intrinsic::nvvm_atomic_cas_gen_i_cta,
+ {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
+ {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
+ }
+ case NVPTX::BI__nvvm_atom_sys_cas_gen_i:
+ case NVPTX::BI__nvvm_atom_sys_cas_gen_l:
+ case NVPTX::BI__nvvm_atom_sys_cas_gen_ll: {
+ Value *Ptr = EmitScalarExpr(E->getArg(0));
+ return Builder.CreateCall(
+ CGM.getIntrinsic(
+ Intrinsic::nvvm_atomic_cas_gen_i_sys,
+ {Ptr->getType()->getPointerElementType(), Ptr->getType()}),
+ {Ptr, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2))});
+ }
+ case NVPTX::BI__nvvm_match_all_sync_i32p:
+ case NVPTX::BI__nvvm_match_all_sync_i64p: {
+ Value *Mask = EmitScalarExpr(E->getArg(0));
+ Value *Val = EmitScalarExpr(E->getArg(1));
+ Address PredOutPtr = EmitPointerWithAlignment(E->getArg(2));
+ Value *ResultPair = Builder.CreateCall(
+ CGM.getIntrinsic(BuiltinID == NVPTX::BI__nvvm_match_all_sync_i32p
+ ? Intrinsic::nvvm_match_all_sync_i32p
+ : Intrinsic::nvvm_match_all_sync_i64p),
+ {Mask, Val});
+ Value *Pred = Builder.CreateZExt(Builder.CreateExtractValue(ResultPair, 1),
+ PredOutPtr.getElementType());
+ Builder.CreateStore(Pred, PredOutPtr);
+ return Builder.CreateExtractValue(ResultPair, 0);
+ }
+
+ // FP MMA loads
+ case NVPTX::BI__hmma_m16n16k16_ld_a:
+ case NVPTX::BI__hmma_m16n16k16_ld_b:
+ case NVPTX::BI__hmma_m16n16k16_ld_c_f16:
+ case NVPTX::BI__hmma_m16n16k16_ld_c_f32:
+ case NVPTX::BI__hmma_m32n8k16_ld_a:
+ case NVPTX::BI__hmma_m32n8k16_ld_b:
+ case NVPTX::BI__hmma_m32n8k16_ld_c_f16:
+ case NVPTX::BI__hmma_m32n8k16_ld_c_f32:
+ case NVPTX::BI__hmma_m8n32k16_ld_a:
+ case NVPTX::BI__hmma_m8n32k16_ld_b:
+ case NVPTX::BI__hmma_m8n32k16_ld_c_f16:
+ case NVPTX::BI__hmma_m8n32k16_ld_c_f32:
+ // Integer MMA loads.
+ case NVPTX::BI__imma_m16n16k16_ld_a_s8:
+ case NVPTX::BI__imma_m16n16k16_ld_a_u8:
+ case NVPTX::BI__imma_m16n16k16_ld_b_s8:
+ case NVPTX::BI__imma_m16n16k16_ld_b_u8:
+ case NVPTX::BI__imma_m16n16k16_ld_c:
+ case NVPTX::BI__imma_m32n8k16_ld_a_s8:
+ case NVPTX::BI__imma_m32n8k16_ld_a_u8:
+ case NVPTX::BI__imma_m32n8k16_ld_b_s8:
+ case NVPTX::BI__imma_m32n8k16_ld_b_u8:
+ case NVPTX::BI__imma_m32n8k16_ld_c:
+ case NVPTX::BI__imma_m8n32k16_ld_a_s8:
+ case NVPTX::BI__imma_m8n32k16_ld_a_u8:
+ case NVPTX::BI__imma_m8n32k16_ld_b_s8:
+ case NVPTX::BI__imma_m8n32k16_ld_b_u8:
+ case NVPTX::BI__imma_m8n32k16_ld_c:
+ // Sub-integer MMA loads.
+ case NVPTX::BI__imma_m8n8k32_ld_a_s4:
+ case NVPTX::BI__imma_m8n8k32_ld_a_u4:
+ case NVPTX::BI__imma_m8n8k32_ld_b_s4:
+ case NVPTX::BI__imma_m8n8k32_ld_b_u4:
+ case NVPTX::BI__imma_m8n8k32_ld_c:
+ case NVPTX::BI__bmma_m8n8k128_ld_a_b1:
+ case NVPTX::BI__bmma_m8n8k128_ld_b_b1:
+ case NVPTX::BI__bmma_m8n8k128_ld_c:
+ {
+ Address Dst = EmitPointerWithAlignment(E->getArg(0));
+ Value *Src = EmitScalarExpr(E->getArg(1));
+ Value *Ldm = EmitScalarExpr(E->getArg(2));
+ llvm::APSInt isColMajorArg;
+ if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
+ return nullptr;
+ bool isColMajor = isColMajorArg.getSExtValue();
+ NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
+ unsigned IID = isColMajor ? II.IID_col : II.IID_row;
+ if (IID == 0)
+ return nullptr;
+
+ Value *Result =
+ Builder.CreateCall(CGM.getIntrinsic(IID, Src->getType()), {Src, Ldm});
+
+ // Save returned values.
+ assert(II.NumResults);
+ if (II.NumResults == 1) {
+ Builder.CreateAlignedStore(Result, Dst.getPointer(),
+ CharUnits::fromQuantity(4));
+ } else {
+ for (unsigned i = 0; i < II.NumResults; ++i) {
+ Builder.CreateAlignedStore(
+ Builder.CreateBitCast(Builder.CreateExtractValue(Result, i),
+ Dst.getElementType()),
+ Builder.CreateGEP(Dst.getPointer(),
+ llvm::ConstantInt::get(IntTy, i)),
+ CharUnits::fromQuantity(4));
+ }
+ }
+ return Result;
+ }
+
+ case NVPTX::BI__hmma_m16n16k16_st_c_f16:
+ case NVPTX::BI__hmma_m16n16k16_st_c_f32:
+ case NVPTX::BI__hmma_m32n8k16_st_c_f16:
+ case NVPTX::BI__hmma_m32n8k16_st_c_f32:
+ case NVPTX::BI__hmma_m8n32k16_st_c_f16:
+ case NVPTX::BI__hmma_m8n32k16_st_c_f32:
+ case NVPTX::BI__imma_m16n16k16_st_c_i32:
+ case NVPTX::BI__imma_m32n8k16_st_c_i32:
+ case NVPTX::BI__imma_m8n32k16_st_c_i32:
+ case NVPTX::BI__imma_m8n8k32_st_c_i32:
+ case NVPTX::BI__bmma_m8n8k128_st_c_i32: {
+ Value *Dst = EmitScalarExpr(E->getArg(0));
+ Address Src = EmitPointerWithAlignment(E->getArg(1));
+ Value *Ldm = EmitScalarExpr(E->getArg(2));
+ llvm::APSInt isColMajorArg;
+ if (!E->getArg(3)->isIntegerConstantExpr(isColMajorArg, getContext()))
+ return nullptr;
+ bool isColMajor = isColMajorArg.getSExtValue();
+ NVPTXMmaLdstInfo II = getNVPTXMmaLdstInfo(BuiltinID);
+ unsigned IID = isColMajor ? II.IID_col : II.IID_row;
+ if (IID == 0)
+ return nullptr;
+ Function *Intrinsic =
+ CGM.getIntrinsic(IID, Dst->getType());
+ llvm::Type *ParamType = Intrinsic->getFunctionType()->getParamType(1);
+ SmallVector<Value *, 10> Values = {Dst};
+ for (unsigned i = 0; i < II.NumResults; ++i) {
+ Value *V = Builder.CreateAlignedLoad(
+ Builder.CreateGEP(Src.getPointer(), llvm::ConstantInt::get(IntTy, i)),
+ CharUnits::fromQuantity(4));
+ Values.push_back(Builder.CreateBitCast(V, ParamType));
+ }
+ Values.push_back(Ldm);
+ Value *Result = Builder.CreateCall(Intrinsic, Values);
+ return Result;
+ }
+
+ // BI__hmma_m16n16k16_mma_<Dtype><CType>(d, a, b, c, layout, satf) -->
+ // Intrinsic::nvvm_wmma_m16n16k16_mma_sync<layout A,B><DType><CType><Satf>
+ case NVPTX::BI__hmma_m16n16k16_mma_f16f16:
+ case NVPTX::BI__hmma_m16n16k16_mma_f32f16:
+ case NVPTX::BI__hmma_m16n16k16_mma_f32f32:
+ case NVPTX::BI__hmma_m16n16k16_mma_f16f32:
+ case NVPTX::BI__hmma_m32n8k16_mma_f16f16:
+ case NVPTX::BI__hmma_m32n8k16_mma_f32f16:
+ case NVPTX::BI__hmma_m32n8k16_mma_f32f32:
+ case NVPTX::BI__hmma_m32n8k16_mma_f16f32:
+ case NVPTX::BI__hmma_m8n32k16_mma_f16f16:
+ case NVPTX::BI__hmma_m8n32k16_mma_f32f16:
+ case NVPTX::BI__hmma_m8n32k16_mma_f32f32:
+ case NVPTX::BI__hmma_m8n32k16_mma_f16f32:
+ case NVPTX::BI__imma_m16n16k16_mma_s8:
+ case NVPTX::BI__imma_m16n16k16_mma_u8:
+ case NVPTX::BI__imma_m32n8k16_mma_s8:
+ case NVPTX::BI__imma_m32n8k16_mma_u8:
+ case NVPTX::BI__imma_m8n32k16_mma_s8:
+ case NVPTX::BI__imma_m8n32k16_mma_u8:
+ case NVPTX::BI__imma_m8n8k32_mma_s4:
+ case NVPTX::BI__imma_m8n8k32_mma_u4:
+ case NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1: {
+ Address Dst = EmitPointerWithAlignment(E->getArg(0));
+ Address SrcA = EmitPointerWithAlignment(E->getArg(1));
+ Address SrcB = EmitPointerWithAlignment(E->getArg(2));
+ Address SrcC = EmitPointerWithAlignment(E->getArg(3));
+ llvm::APSInt LayoutArg;
+ if (!E->getArg(4)->isIntegerConstantExpr(LayoutArg, getContext()))
+ return nullptr;
+ int Layout = LayoutArg.getSExtValue();
+ if (Layout < 0 || Layout > 3)
+ return nullptr;
+ llvm::APSInt SatfArg;
+ if (BuiltinID == NVPTX::BI__bmma_m8n8k128_mma_xor_popc_b1)
+ SatfArg = 0; // .b1 does not have satf argument.
+ else if (!E->getArg(5)->isIntegerConstantExpr(SatfArg, getContext()))
+ return nullptr;
+ bool Satf = SatfArg.getSExtValue();
+ NVPTXMmaInfo MI = getNVPTXMmaInfo(BuiltinID);
+ unsigned IID = MI.getMMAIntrinsic(Layout, Satf);
+ if (IID == 0) // Unsupported combination of Layout/Satf.
+ return nullptr;
+
+ SmallVector<Value *, 24> Values;
+ Function *Intrinsic = CGM.getIntrinsic(IID);
+ llvm::Type *AType = Intrinsic->getFunctionType()->getParamType(0);
+ // Load A
+ for (unsigned i = 0; i < MI.NumEltsA; ++i) {
+ Value *V = Builder.CreateAlignedLoad(
+ Builder.CreateGEP(SrcA.getPointer(),
+ llvm::ConstantInt::get(IntTy, i)),
+ CharUnits::fromQuantity(4));
+ Values.push_back(Builder.CreateBitCast(V, AType));
+ }
+ // Load B
+ llvm::Type *BType = Intrinsic->getFunctionType()->getParamType(MI.NumEltsA);
+ for (unsigned i = 0; i < MI.NumEltsB; ++i) {
+ Value *V = Builder.CreateAlignedLoad(
+ Builder.CreateGEP(SrcB.getPointer(),
+ llvm::ConstantInt::get(IntTy, i)),
+ CharUnits::fromQuantity(4));
+ Values.push_back(Builder.CreateBitCast(V, BType));
+ }
+ // Load C
+ llvm::Type *CType =
+ Intrinsic->getFunctionType()->getParamType(MI.NumEltsA + MI.NumEltsB);
+ for (unsigned i = 0; i < MI.NumEltsC; ++i) {
+ Value *V = Builder.CreateAlignedLoad(
+ Builder.CreateGEP(SrcC.getPointer(),
+ llvm::ConstantInt::get(IntTy, i)),
+ CharUnits::fromQuantity(4));
+ Values.push_back(Builder.CreateBitCast(V, CType));
+ }
+ Value *Result = Builder.CreateCall(Intrinsic, Values);
+ llvm::Type *DType = Dst.getElementType();
+ for (unsigned i = 0; i < MI.NumEltsD; ++i)
+ Builder.CreateAlignedStore(
+ Builder.CreateBitCast(Builder.CreateExtractValue(Result, i), DType),
+ Builder.CreateGEP(Dst.getPointer(), llvm::ConstantInt::get(IntTy, i)),
+ CharUnits::fromQuantity(4));
+ return Result;
+ }
+ default:
+ return nullptr;
+ }
+}
+
+Value *CodeGenFunction::EmitWebAssemblyBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ switch (BuiltinID) {
+ case WebAssembly::BI__builtin_wasm_memory_size: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *I = EmitScalarExpr(E->getArg(0));
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_size, ResultType);
+ return Builder.CreateCall(Callee, I);
+ }
+ case WebAssembly::BI__builtin_wasm_memory_grow: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Value *Args[] = {
+ EmitScalarExpr(E->getArg(0)),
+ EmitScalarExpr(E->getArg(1))
+ };
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_grow, ResultType);
+ return Builder.CreateCall(Callee, Args);
+ }
+ case WebAssembly::BI__builtin_wasm_memory_init: {
+ llvm::APSInt SegConst;
+ if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
+ llvm_unreachable("Constant arg isn't actually constant?");
+ llvm::APSInt MemConst;
+ if (!E->getArg(1)->isIntegerConstantExpr(MemConst, getContext()))
+ llvm_unreachable("Constant arg isn't actually constant?");
+ if (!MemConst.isNullValue())
+ ErrorUnsupported(E, "non-zero memory index");
+ Value *Args[] = {llvm::ConstantInt::get(getLLVMContext(), SegConst),
+ llvm::ConstantInt::get(getLLVMContext(), MemConst),
+ EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)),
+ EmitScalarExpr(E->getArg(4))};
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_memory_init);
+ return Builder.CreateCall(Callee, Args);
+ }
+ case WebAssembly::BI__builtin_wasm_data_drop: {
+ llvm::APSInt SegConst;
+ if (!E->getArg(0)->isIntegerConstantExpr(SegConst, getContext()))
+ llvm_unreachable("Constant arg isn't actually constant?");
+ Value *Arg = llvm::ConstantInt::get(getLLVMContext(), SegConst);
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_data_drop);
+ return Builder.CreateCall(Callee, {Arg});
+ }
+ case WebAssembly::BI__builtin_wasm_tls_size: {
+ llvm::Type *ResultType = ConvertType(E->getType());
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_tls_size, ResultType);
+ return Builder.CreateCall(Callee);
+ }
+ case WebAssembly::BI__builtin_wasm_throw: {
+ Value *Tag = EmitScalarExpr(E->getArg(0));
+ Value *Obj = EmitScalarExpr(E->getArg(1));
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_throw);
+ return Builder.CreateCall(Callee, {Tag, Obj});
+ }
+ case WebAssembly::BI__builtin_wasm_rethrow_in_catch: {
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_rethrow_in_catch);
+ return Builder.CreateCall(Callee);
+ }
+ case WebAssembly::BI__builtin_wasm_atomic_wait_i32: {
+ Value *Addr = EmitScalarExpr(E->getArg(0));
+ Value *Expected = EmitScalarExpr(E->getArg(1));
+ Value *Timeout = EmitScalarExpr(E->getArg(2));
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i32);
+ return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
+ }
+ case WebAssembly::BI__builtin_wasm_atomic_wait_i64: {
+ Value *Addr = EmitScalarExpr(E->getArg(0));
+ Value *Expected = EmitScalarExpr(E->getArg(1));
+ Value *Timeout = EmitScalarExpr(E->getArg(2));
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_wait_i64);
+ return Builder.CreateCall(Callee, {Addr, Expected, Timeout});
+ }
+ case WebAssembly::BI__builtin_wasm_atomic_notify: {
+ Value *Addr = EmitScalarExpr(E->getArg(0));
+ Value *Count = EmitScalarExpr(E->getArg(1));
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_atomic_notify);
+ return Builder.CreateCall(Callee, {Addr, Count});
+ }
+ case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f32:
+ case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32_f64:
+ case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f32:
+ case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64_f64:
+ case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i32x4_f32x4:
+ case WebAssembly::BI__builtin_wasm_trunc_saturate_s_i64x2_f64x2: {
+ Value *Src = EmitScalarExpr(E->getArg(0));
+ llvm::Type *ResT = ConvertType(E->getType());
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_signed,
+ {ResT, Src->getType()});
+ return Builder.CreateCall(Callee, {Src});
+ }
+ case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f32:
+ case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32_f64:
+ case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f32:
+ case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64_f64:
+ case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i32x4_f32x4:
+ case WebAssembly::BI__builtin_wasm_trunc_saturate_u_i64x2_f64x2: {
+ Value *Src = EmitScalarExpr(E->getArg(0));
+ llvm::Type *ResT = ConvertType(E->getType());
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_trunc_saturate_unsigned,
+ {ResT, Src->getType()});
+ return Builder.CreateCall(Callee, {Src});
+ }
+ case WebAssembly::BI__builtin_wasm_min_f32:
+ case WebAssembly::BI__builtin_wasm_min_f64:
+ case WebAssembly::BI__builtin_wasm_min_f32x4:
+ case WebAssembly::BI__builtin_wasm_min_f64x2: {
+ Value *LHS = EmitScalarExpr(E->getArg(0));
+ Value *RHS = EmitScalarExpr(E->getArg(1));
+ Function *Callee = CGM.getIntrinsic(Intrinsic::minimum,
+ ConvertType(E->getType()));
+ return Builder.CreateCall(Callee, {LHS, RHS});
+ }
+ case WebAssembly::BI__builtin_wasm_max_f32:
+ case WebAssembly::BI__builtin_wasm_max_f64:
+ case WebAssembly::BI__builtin_wasm_max_f32x4:
+ case WebAssembly::BI__builtin_wasm_max_f64x2: {
+ Value *LHS = EmitScalarExpr(E->getArg(0));
+ Value *RHS = EmitScalarExpr(E->getArg(1));
+ Function *Callee = CGM.getIntrinsic(Intrinsic::maximum,
+ ConvertType(E->getType()));
+ return Builder.CreateCall(Callee, {LHS, RHS});
+ }
+ case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
+ case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
+ case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
+ case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
+ case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
+ case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
+ case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
+ case WebAssembly::BI__builtin_wasm_extract_lane_f64x2: {
+ llvm::APSInt LaneConst;
+ if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
+ llvm_unreachable("Constant arg isn't actually constant?");
+ Value *Vec = EmitScalarExpr(E->getArg(0));
+ Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
+ Value *Extract = Builder.CreateExtractElement(Vec, Lane);
+ switch (BuiltinID) {
+ case WebAssembly::BI__builtin_wasm_extract_lane_s_i8x16:
+ case WebAssembly::BI__builtin_wasm_extract_lane_s_i16x8:
+ return Builder.CreateSExt(Extract, ConvertType(E->getType()));
+ case WebAssembly::BI__builtin_wasm_extract_lane_u_i8x16:
+ case WebAssembly::BI__builtin_wasm_extract_lane_u_i16x8:
+ return Builder.CreateZExt(Extract, ConvertType(E->getType()));
+ case WebAssembly::BI__builtin_wasm_extract_lane_i32x4:
+ case WebAssembly::BI__builtin_wasm_extract_lane_i64x2:
+ case WebAssembly::BI__builtin_wasm_extract_lane_f32x4:
+ case WebAssembly::BI__builtin_wasm_extract_lane_f64x2:
+ return Extract;
+ default:
+ llvm_unreachable("unexpected builtin ID");
+ }
+ }
+ case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
+ case WebAssembly::BI__builtin_wasm_replace_lane_i16x8:
+ case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
+ case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
+ case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
+ case WebAssembly::BI__builtin_wasm_replace_lane_f64x2: {
+ llvm::APSInt LaneConst;
+ if (!E->getArg(1)->isIntegerConstantExpr(LaneConst, getContext()))
+ llvm_unreachable("Constant arg isn't actually constant?");
+ Value *Vec = EmitScalarExpr(E->getArg(0));
+ Value *Lane = llvm::ConstantInt::get(getLLVMContext(), LaneConst);
+ Value *Val = EmitScalarExpr(E->getArg(2));
+ switch (BuiltinID) {
+ case WebAssembly::BI__builtin_wasm_replace_lane_i8x16:
+ case WebAssembly::BI__builtin_wasm_replace_lane_i16x8: {
+ llvm::Type *ElemType = ConvertType(E->getType())->getVectorElementType();
+ Value *Trunc = Builder.CreateTrunc(Val, ElemType);
+ return Builder.CreateInsertElement(Vec, Trunc, Lane);
+ }
+ case WebAssembly::BI__builtin_wasm_replace_lane_i32x4:
+ case WebAssembly::BI__builtin_wasm_replace_lane_i64x2:
+ case WebAssembly::BI__builtin_wasm_replace_lane_f32x4:
+ case WebAssembly::BI__builtin_wasm_replace_lane_f64x2:
+ return Builder.CreateInsertElement(Vec, Val, Lane);
+ default:
+ llvm_unreachable("unexpected builtin ID");
+ }
+ }
+ case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
+ case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
+ case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
+ case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
+ case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
+ case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
+ case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
+ case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8: {
+ unsigned IntNo;
+ switch (BuiltinID) {
+ case WebAssembly::BI__builtin_wasm_add_saturate_s_i8x16:
+ case WebAssembly::BI__builtin_wasm_add_saturate_s_i16x8:
+ IntNo = Intrinsic::sadd_sat;
+ break;
+ case WebAssembly::BI__builtin_wasm_add_saturate_u_i8x16:
+ case WebAssembly::BI__builtin_wasm_add_saturate_u_i16x8:
+ IntNo = Intrinsic::uadd_sat;
+ break;
+ case WebAssembly::BI__builtin_wasm_sub_saturate_s_i8x16:
+ case WebAssembly::BI__builtin_wasm_sub_saturate_s_i16x8:
+ IntNo = Intrinsic::wasm_sub_saturate_signed;
+ break;
+ case WebAssembly::BI__builtin_wasm_sub_saturate_u_i8x16:
+ case WebAssembly::BI__builtin_wasm_sub_saturate_u_i16x8:
+ IntNo = Intrinsic::wasm_sub_saturate_unsigned;
+ break;
+ default:
+ llvm_unreachable("unexpected builtin ID");
+ }
+ Value *LHS = EmitScalarExpr(E->getArg(0));
+ Value *RHS = EmitScalarExpr(E->getArg(1));
+ Function *Callee = CGM.getIntrinsic(IntNo, ConvertType(E->getType()));
+ return Builder.CreateCall(Callee, {LHS, RHS});
+ }
+ case WebAssembly::BI__builtin_wasm_bitselect: {
+ Value *V1 = EmitScalarExpr(E->getArg(0));
+ Value *V2 = EmitScalarExpr(E->getArg(1));
+ Value *C = EmitScalarExpr(E->getArg(2));
+ Function *Callee = CGM.getIntrinsic(Intrinsic::wasm_bitselect,
+ ConvertType(E->getType()));
+ return Builder.CreateCall(Callee, {V1, V2, C});
+ }
+ case WebAssembly::BI__builtin_wasm_any_true_i8x16:
+ case WebAssembly::BI__builtin_wasm_any_true_i16x8:
+ case WebAssembly::BI__builtin_wasm_any_true_i32x4:
+ case WebAssembly::BI__builtin_wasm_any_true_i64x2:
+ case WebAssembly::BI__builtin_wasm_all_true_i8x16:
+ case WebAssembly::BI__builtin_wasm_all_true_i16x8:
+ case WebAssembly::BI__builtin_wasm_all_true_i32x4:
+ case WebAssembly::BI__builtin_wasm_all_true_i64x2: {
+ unsigned IntNo;
+ switch (BuiltinID) {
+ case WebAssembly::BI__builtin_wasm_any_true_i8x16:
+ case WebAssembly::BI__builtin_wasm_any_true_i16x8:
+ case WebAssembly::BI__builtin_wasm_any_true_i32x4:
+ case WebAssembly::BI__builtin_wasm_any_true_i64x2:
+ IntNo = Intrinsic::wasm_anytrue;
+ break;
+ case WebAssembly::BI__builtin_wasm_all_true_i8x16:
+ case WebAssembly::BI__builtin_wasm_all_true_i16x8:
+ case WebAssembly::BI__builtin_wasm_all_true_i32x4:
+ case WebAssembly::BI__builtin_wasm_all_true_i64x2:
+ IntNo = Intrinsic::wasm_alltrue;
+ break;
+ default:
+ llvm_unreachable("unexpected builtin ID");
+ }
+ Value *Vec = EmitScalarExpr(E->getArg(0));
+ Function *Callee = CGM.getIntrinsic(IntNo, Vec->getType());
+ return Builder.CreateCall(Callee, {Vec});
+ }
+ case WebAssembly::BI__builtin_wasm_abs_f32x4:
+ case WebAssembly::BI__builtin_wasm_abs_f64x2: {
+ Value *Vec = EmitScalarExpr(E->getArg(0));
+ Function *Callee = CGM.getIntrinsic(Intrinsic::fabs, Vec->getType());
+ return Builder.CreateCall(Callee, {Vec});
+ }
+ case WebAssembly::BI__builtin_wasm_sqrt_f32x4:
+ case WebAssembly::BI__builtin_wasm_sqrt_f64x2: {
+ Value *Vec = EmitScalarExpr(E->getArg(0));
+ Function *Callee = CGM.getIntrinsic(Intrinsic::sqrt, Vec->getType());
+ return Builder.CreateCall(Callee, {Vec});
+ }
+
+ default:
+ return nullptr;
+ }
+}
+
+Value *CodeGenFunction::EmitHexagonBuiltinExpr(unsigned BuiltinID,
+ const CallExpr *E) {
+ SmallVector<llvm::Value *, 4> Ops;
+ Intrinsic::ID ID = Intrinsic::not_intrinsic;
+
+ auto MakeCircLd = [&](unsigned IntID, bool HasImm) {
+ // The base pointer is passed by address, so it needs to be loaded.
+ Address BP = EmitPointerWithAlignment(E->getArg(0));
+ BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
+ BP.getAlignment());
+ llvm::Value *Base = Builder.CreateLoad(BP);
+ // Operands are Base, Increment, Modifier, Start.
+ if (HasImm)
+ Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
+ EmitScalarExpr(E->getArg(3)) };
+ else
+ Ops = { Base, EmitScalarExpr(E->getArg(1)),
+ EmitScalarExpr(E->getArg(2)) };
+
+ llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
+ llvm::Value *NewBase = Builder.CreateExtractValue(Result, 1);
+ llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
+ NewBase->getType()->getPointerTo());
+ Address Dest = EmitPointerWithAlignment(E->getArg(0));
+ // The intrinsic generates two results. The new value for the base pointer
+ // needs to be stored.
+ Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
+ return Builder.CreateExtractValue(Result, 0);
+ };
+
+ auto MakeCircSt = [&](unsigned IntID, bool HasImm) {
+ // The base pointer is passed by address, so it needs to be loaded.
+ Address BP = EmitPointerWithAlignment(E->getArg(0));
+ BP = Address(Builder.CreateBitCast(BP.getPointer(), Int8PtrPtrTy),
+ BP.getAlignment());
+ llvm::Value *Base = Builder.CreateLoad(BP);
+ // Operands are Base, Increment, Modifier, Value, Start.
+ if (HasImm)
+ Ops = { Base, EmitScalarExpr(E->getArg(1)), EmitScalarExpr(E->getArg(2)),
+ EmitScalarExpr(E->getArg(3)), EmitScalarExpr(E->getArg(4)) };
+ else
+ Ops = { Base, EmitScalarExpr(E->getArg(1)),
+ EmitScalarExpr(E->getArg(2)), EmitScalarExpr(E->getArg(3)) };
+
+ llvm::Value *NewBase = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
+ llvm::Value *LV = Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)),
+ NewBase->getType()->getPointerTo());
+ Address Dest = EmitPointerWithAlignment(E->getArg(0));
+ // The intrinsic generates one result, which is the new value for the base
+ // pointer. It needs to be stored.
+ return Builder.CreateAlignedStore(NewBase, LV, Dest.getAlignment());
+ };
+
+ // Handle the conversion of bit-reverse load intrinsics to bit code.
+ // The intrinsic call after this function only reads from memory and the
+ // write to memory is dealt by the store instruction.
+ auto MakeBrevLd = [&](unsigned IntID, llvm::Type *DestTy) {
+ // The intrinsic generates one result, which is the new value for the base
+ // pointer. It needs to be returned. The result of the load instruction is
+ // passed to intrinsic by address, so the value needs to be stored.
+ llvm::Value *BaseAddress =
+ Builder.CreateBitCast(EmitScalarExpr(E->getArg(0)), Int8PtrTy);
+
+ // Expressions like &(*pt++) will be incremented per evaluation.
+ // EmitPointerWithAlignment and EmitScalarExpr evaluates the expression
+ // per call.
+ Address DestAddr = EmitPointerWithAlignment(E->getArg(1));
+ DestAddr = Address(Builder.CreateBitCast(DestAddr.getPointer(), Int8PtrTy),
+ DestAddr.getAlignment());
+ llvm::Value *DestAddress = DestAddr.getPointer();
+
+ // Operands are Base, Dest, Modifier.
+ // The intrinsic format in LLVM IR is defined as
+ // { ValueType, i8* } (i8*, i32).
+ Ops = {BaseAddress, EmitScalarExpr(E->getArg(2))};
+
+ llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(IntID), Ops);
+ // The value needs to be stored as the variable is passed by reference.
+ llvm::Value *DestVal = Builder.CreateExtractValue(Result, 0);
+
+ // The store needs to be truncated to fit the destination type.
+ // While i32 and i64 are natively supported on Hexagon, i8 and i16 needs
+ // to be handled with stores of respective destination type.
+ DestVal = Builder.CreateTrunc(DestVal, DestTy);
+
+ llvm::Value *DestForStore =
+ Builder.CreateBitCast(DestAddress, DestVal->getType()->getPointerTo());
+ Builder.CreateAlignedStore(DestVal, DestForStore, DestAddr.getAlignment());
+ // The updated value of the base pointer is returned.
+ return Builder.CreateExtractValue(Result, 1);
+ };
+
+ switch (BuiltinID) {
+ case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry:
+ case Hexagon::BI__builtin_HEXAGON_V6_vaddcarry_128B: {
+ Address Dest = EmitPointerWithAlignment(E->getArg(2));
+ unsigned Size;
+ if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vaddcarry) {
+ Size = 512;
+ ID = Intrinsic::hexagon_V6_vaddcarry;
+ } else {
+ Size = 1024;
+ ID = Intrinsic::hexagon_V6_vaddcarry_128B;
+ }
+ Dest = Builder.CreateBitCast(Dest,
+ llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
+ LoadInst *QLd = Builder.CreateLoad(Dest);
+ Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
+ llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
+ llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
+ llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
+ Vprd->getType()->getPointerTo(0));
+ Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
+ return Builder.CreateExtractValue(Result, 0);
+ }
+ case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry:
+ case Hexagon::BI__builtin_HEXAGON_V6_vsubcarry_128B: {
+ Address Dest = EmitPointerWithAlignment(E->getArg(2));
+ unsigned Size;
+ if (BuiltinID == Hexagon::BI__builtin_HEXAGON_V6_vsubcarry) {
+ Size = 512;
+ ID = Intrinsic::hexagon_V6_vsubcarry;
+ } else {
+ Size = 1024;
+ ID = Intrinsic::hexagon_V6_vsubcarry_128B;
+ }
+ Dest = Builder.CreateBitCast(Dest,
+ llvm::VectorType::get(Builder.getInt1Ty(), Size)->getPointerTo(0));
+ LoadInst *QLd = Builder.CreateLoad(Dest);
+ Ops = { EmitScalarExpr(E->getArg(0)), EmitScalarExpr(E->getArg(1)), QLd };
+ llvm::Value *Result = Builder.CreateCall(CGM.getIntrinsic(ID), Ops);
+ llvm::Value *Vprd = Builder.CreateExtractValue(Result, 1);
+ llvm::Value *Base = Builder.CreateBitCast(EmitScalarExpr(E->getArg(2)),
+ Vprd->getType()->getPointerTo(0));
+ Builder.CreateAlignedStore(Vprd, Base, Dest.getAlignment());
+ return Builder.CreateExtractValue(Result, 0);
+ }
+ case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pci:
+ return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pci, /*HasImm*/true);
+ case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pci:
+ return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pci, /*HasImm*/true);
+ case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pci:
+ return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pci, /*HasImm*/true);
+ case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pci:
+ return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pci, /*HasImm*/true);
+ case Hexagon::BI__builtin_HEXAGON_L2_loadri_pci:
+ return MakeCircLd(Intrinsic::hexagon_L2_loadri_pci, /*HasImm*/true);
+ case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pci:
+ return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pci, /*HasImm*/true);
+ case Hexagon::BI__builtin_HEXAGON_L2_loadrub_pcr:
+ return MakeCircLd(Intrinsic::hexagon_L2_loadrub_pcr, /*HasImm*/false);
+ case Hexagon::BI__builtin_HEXAGON_L2_loadrb_pcr:
+ return MakeCircLd(Intrinsic::hexagon_L2_loadrb_pcr, /*HasImm*/false);
+ case Hexagon::BI__builtin_HEXAGON_L2_loadruh_pcr:
+ return MakeCircLd(Intrinsic::hexagon_L2_loadruh_pcr, /*HasImm*/false);
+ case Hexagon::BI__builtin_HEXAGON_L2_loadrh_pcr:
+ return MakeCircLd(Intrinsic::hexagon_L2_loadrh_pcr, /*HasImm*/false);
+ case Hexagon::BI__builtin_HEXAGON_L2_loadri_pcr:
+ return MakeCircLd(Intrinsic::hexagon_L2_loadri_pcr, /*HasImm*/false);
+ case Hexagon::BI__builtin_HEXAGON_L2_loadrd_pcr:
+ return MakeCircLd(Intrinsic::hexagon_L2_loadrd_pcr, /*HasImm*/false);
+ case Hexagon::BI__builtin_HEXAGON_S2_storerb_pci:
+ return MakeCircSt(Intrinsic::hexagon_S2_storerb_pci, /*HasImm*/true);
+ case Hexagon::BI__builtin_HEXAGON_S2_storerh_pci:
+ return MakeCircSt(Intrinsic::hexagon_S2_storerh_pci, /*HasImm*/true);
+ case Hexagon::BI__builtin_HEXAGON_S2_storerf_pci:
+ return MakeCircSt(Intrinsic::hexagon_S2_storerf_pci, /*HasImm*/true);
+ case Hexagon::BI__builtin_HEXAGON_S2_storeri_pci:
+ return MakeCircSt(Intrinsic::hexagon_S2_storeri_pci, /*HasImm*/true);
+ case Hexagon::BI__builtin_HEXAGON_S2_storerd_pci:
+ return MakeCircSt(Intrinsic::hexagon_S2_storerd_pci, /*HasImm*/true);
+ case Hexagon::BI__builtin_HEXAGON_S2_storerb_pcr:
+ return MakeCircSt(Intrinsic::hexagon_S2_storerb_pcr, /*HasImm*/false);
+ case Hexagon::BI__builtin_HEXAGON_S2_storerh_pcr:
+ return MakeCircSt(Intrinsic::hexagon_S2_storerh_pcr, /*HasImm*/false);
+ case Hexagon::BI__builtin_HEXAGON_S2_storerf_pcr:
+ return MakeCircSt(Intrinsic::hexagon_S2_storerf_pcr, /*HasImm*/false);
+ case Hexagon::BI__builtin_HEXAGON_S2_storeri_pcr:
+ return MakeCircSt(Intrinsic::hexagon_S2_storeri_pcr, /*HasImm*/false);
+ case Hexagon::BI__builtin_HEXAGON_S2_storerd_pcr:
+ return MakeCircSt(Intrinsic::hexagon_S2_storerd_pcr, /*HasImm*/false);
+ case Hexagon::BI__builtin_brev_ldub:
+ return MakeBrevLd(Intrinsic::hexagon_L2_loadrub_pbr, Int8Ty);
+ case Hexagon::BI__builtin_brev_ldb:
+ return MakeBrevLd(Intrinsic::hexagon_L2_loadrb_pbr, Int8Ty);
+ case Hexagon::BI__builtin_brev_lduh:
+ return MakeBrevLd(Intrinsic::hexagon_L2_loadruh_pbr, Int16Ty);
+ case Hexagon::BI__builtin_brev_ldh:
+ return MakeBrevLd(Intrinsic::hexagon_L2_loadrh_pbr, Int16Ty);
+ case Hexagon::BI__builtin_brev_ldw:
+ return MakeBrevLd(Intrinsic::hexagon_L2_loadri_pbr, Int32Ty);
+ case Hexagon::BI__builtin_brev_ldd:
+ return MakeBrevLd(Intrinsic::hexagon_L2_loadrd_pbr, Int64Ty);
+ default:
+ break;
+ } // switch
+
+ return nullptr;
+}