aboutsummaryrefslogtreecommitdiff
path: root/contrib/libstdc++/include/bits/stl_deque.h
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/libstdc++/include/bits/stl_deque.h')
-rw-r--r--contrib/libstdc++/include/bits/stl_deque.h2965
1 files changed, 1443 insertions, 1522 deletions
diff --git a/contrib/libstdc++/include/bits/stl_deque.h b/contrib/libstdc++/include/bits/stl_deque.h
index cbe87796770f..454fed31bf73 100644
--- a/contrib/libstdc++/include/bits/stl_deque.h
+++ b/contrib/libstdc++/include/bits/stl_deque.h
@@ -1,4 +1,4 @@
-// deque implementation -*- C++ -*-
+// Deque implementation -*- C++ -*-
// Copyright (C) 2001, 2002 Free Software Foundation, Inc.
//
@@ -58,1625 +58,1546 @@
* You should not attempt to use it directly.
*/
-#include <bits/concept_check.h>
-#include <bits/stl_iterator_base_types.h>
-#include <bits/stl_iterator_base_funcs.h>
-
#ifndef __GLIBCPP_INTERNAL_DEQUE_H
#define __GLIBCPP_INTERNAL_DEQUE_H
+#include <bits/concept_check.h>
+#include <bits/stl_iterator_base_types.h>
+#include <bits/stl_iterator_base_funcs.h>
-// Since this entire file is within namespace std, there's no reason to
-// waste two spaces along the left column. Thus the leading indentation is
-// slightly violated from here on.
namespace std
{
-
-/**
- * @if maint
- * @brief This function controls the size of memory nodes.
- * @param size The size of an element.
- * @return The number (not bytesize) of elements per node.
- *
- * This function started off as a compiler kludge from SGI, but seems to
- * be a useful wrapper around a repeated constant expression.
- * @endif
-*/
-inline size_t
-__deque_buf_size(size_t __size)
-{ return __size < 512 ? size_t(512 / __size) : size_t(1); }
-
-
-/// A deque::iterator.
-/**
- * Quite a bit of intelligence here. Much of the functionality of deque is
- * actually passed off to this class. A deque holds two of these internally,
- * marking its valid range. Access to elements is done as offsets of either
- * of those two, relying on operator overloading in this class.
- *
- * @if maint
- * All the functions are op overloads except for _M_set_node.
- * @endif
-*/
-template <class _Tp, class _Ref, class _Ptr>
-struct _Deque_iterator
-{
- typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
- typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
- static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
-
- typedef random_access_iterator_tag iterator_category;
- typedef _Tp value_type;
- typedef _Ptr pointer;
- typedef _Ref reference;
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
- typedef _Tp** _Map_pointer;
- typedef _Deque_iterator _Self;
-
- _Tp* _M_cur;
- _Tp* _M_first;
- _Tp* _M_last;
- _Map_pointer _M_node;
-
- _Deque_iterator(_Tp* __x, _Map_pointer __y)
- : _M_cur(__x), _M_first(*__y),
- _M_last(*__y + _S_buffer_size()), _M_node(__y) {}
- _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
- _Deque_iterator(const iterator& __x)
- : _M_cur(__x._M_cur), _M_first(__x._M_first),
- _M_last(__x._M_last), _M_node(__x._M_node) {}
-
- reference operator*() const { return *_M_cur; }
- pointer operator->() const { return _M_cur; }
-
- _Self& operator++() {
- ++_M_cur;
- if (_M_cur == _M_last) {
- _M_set_node(_M_node + 1);
- _M_cur = _M_first;
+ /**
+ * @if maint
+ * @brief This function controls the size of memory nodes.
+ * @param size The size of an element.
+ * @return The number (not byte size) of elements per node.
+ *
+ * This function started off as a compiler kludge from SGI, but seems to
+ * be a useful wrapper around a repeated constant expression. The '512' is
+ * tuneable (and no other code needs to change), but no investigation has
+ * been done since inheriting the SGI code.
+ * @endif
+ */
+ inline size_t
+ __deque_buf_size(size_t __size)
+ { return __size < 512 ? size_t(512 / __size) : size_t(1); }
+
+
+ /**
+ * @brief A deque::iterator.
+ *
+ * Quite a bit of intelligence here. Much of the functionality of deque is
+ * actually passed off to this class. A deque holds two of these internally,
+ * marking its valid range. Access to elements is done as offsets of either
+ * of those two, relying on operator overloading in this class.
+ *
+ * @if maint
+ * All the functions are op overloads except for _M_set_node.
+ * @endif
+ */
+ template <typename _Tp, typename _Ref, typename _Ptr>
+ struct _Deque_iterator
+ {
+ typedef _Deque_iterator<_Tp, _Tp&, _Tp*> iterator;
+ typedef _Deque_iterator<_Tp, const _Tp&, const _Tp*> const_iterator;
+ static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
+
+ typedef random_access_iterator_tag iterator_category;
+ typedef _Tp value_type;
+ typedef _Ptr pointer;
+ typedef _Ref reference;
+ typedef size_t size_type;
+ typedef ptrdiff_t difference_type;
+ typedef _Tp** _Map_pointer;
+ typedef _Deque_iterator _Self;
+
+ _Tp* _M_cur;
+ _Tp* _M_first;
+ _Tp* _M_last;
+ _Map_pointer _M_node;
+
+ _Deque_iterator(_Tp* __x, _Map_pointer __y)
+ : _M_cur(__x), _M_first(*__y),
+ _M_last(*__y + _S_buffer_size()), _M_node(__y) {}
+ _Deque_iterator() : _M_cur(0), _M_first(0), _M_last(0), _M_node(0) {}
+ _Deque_iterator(const iterator& __x)
+ : _M_cur(__x._M_cur), _M_first(__x._M_first),
+ _M_last(__x._M_last), _M_node(__x._M_node) {}
+
+ reference operator*() const { return *_M_cur; }
+ pointer operator->() const { return _M_cur; }
+
+ _Self& operator++() {
+ ++_M_cur;
+ if (_M_cur == _M_last) {
+ _M_set_node(_M_node + 1);
+ _M_cur = _M_first;
+ }
+ return *this;
+ }
+ _Self operator++(int) {
+ _Self __tmp = *this;
+ ++*this;
+ return __tmp;
+ }
+
+ _Self& operator--() {
+ if (_M_cur == _M_first) {
+ _M_set_node(_M_node - 1);
+ _M_cur = _M_last;
+ }
+ --_M_cur;
+ return *this;
+ }
+ _Self operator--(int) {
+ _Self __tmp = *this;
+ --*this;
+ return __tmp;
+ }
+
+ _Self& operator+=(difference_type __n)
+ {
+ difference_type __offset = __n + (_M_cur - _M_first);
+ if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
+ _M_cur += __n;
+ else {
+ difference_type __node_offset =
+ __offset > 0 ? __offset / difference_type(_S_buffer_size())
+ : -difference_type((-__offset - 1) / _S_buffer_size()) - 1;
+ _M_set_node(_M_node + __node_offset);
+ _M_cur = _M_first +
+ (__offset - __node_offset * difference_type(_S_buffer_size()));
+ }
+ return *this;
+ }
+
+ _Self operator+(difference_type __n) const
+ {
+ _Self __tmp = *this;
+ return __tmp += __n;
+ }
+
+ _Self& operator-=(difference_type __n) { return *this += -__n; }
+
+ _Self operator-(difference_type __n) const {
+ _Self __tmp = *this;
+ return __tmp -= __n;
+ }
+
+ reference operator[](difference_type __n) const { return *(*this + __n); }
+
+ /** @if maint
+ * Prepares to traverse new_node. Sets everything except _M_cur, which
+ * should therefore be set by the caller immediately afterwards, based on
+ * _M_first and _M_last.
+ * @endif
+ */
+ void
+ _M_set_node(_Map_pointer __new_node)
+ {
+ _M_node = __new_node;
+ _M_first = *__new_node;
+ _M_last = _M_first + difference_type(_S_buffer_size());
}
- return *this;
+ };
+
+ // Note: we also provide overloads whose operands are of the same type in
+ // order to avoid ambiguous overload resolution when std::rel_ops operators
+ // are in scope (for additional details, see libstdc++/3628)
+ template <typename _Tp, typename _Ref, typename _Ptr>
+ inline bool
+ operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
+ const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
+ {
+ return __x._M_cur == __y._M_cur;
}
- _Self operator++(int) {
- _Self __tmp = *this;
- ++*this;
- return __tmp;
+
+ template <typename _Tp, typename _RefL, typename _PtrL,
+ typename _RefR, typename _PtrR>
+ inline bool
+ operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
+ const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
+ {
+ return __x._M_cur == __y._M_cur;
}
-
- _Self& operator--() {
- if (_M_cur == _M_first) {
- _M_set_node(_M_node - 1);
- _M_cur = _M_last;
- }
- --_M_cur;
- return *this;
+
+ template <typename _Tp, typename _Ref, typename _Ptr>
+ inline bool
+ operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
+ const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
+ {
+ return !(__x == __y);
}
- _Self operator--(int) {
- _Self __tmp = *this;
- --*this;
- return __tmp;
+
+ template <typename _Tp, typename _RefL, typename _PtrL,
+ typename _RefR, typename _PtrR>
+ inline bool
+ operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
+ const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
+ {
+ return !(__x == __y);
}
-
- _Self& operator+=(difference_type __n)
+
+ template <typename _Tp, typename _Ref, typename _Ptr>
+ inline bool
+ operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
+ const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
{
- difference_type __offset = __n + (_M_cur - _M_first);
- if (__offset >= 0 && __offset < difference_type(_S_buffer_size()))
- _M_cur += __n;
- else {
- difference_type __node_offset =
- __offset > 0 ? __offset / difference_type(_S_buffer_size())
- : -difference_type((-__offset - 1) / _S_buffer_size()) - 1;
- _M_set_node(_M_node + __node_offset);
- _M_cur = _M_first +
- (__offset - __node_offset * difference_type(_S_buffer_size()));
- }
- return *this;
+ return (__x._M_node == __y._M_node) ?
+ (__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
}
-
- _Self operator+(difference_type __n) const
+
+ template <typename _Tp, typename _RefL, typename _PtrL,
+ typename _RefR, typename _PtrR>
+ inline bool
+ operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
+ const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
{
- _Self __tmp = *this;
- return __tmp += __n;
+ return (__x._M_node == __y._M_node) ?
+ (__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
}
-
- _Self& operator-=(difference_type __n) { return *this += -__n; }
-
- _Self operator-(difference_type __n) const {
- _Self __tmp = *this;
- return __tmp -= __n;
+
+ template <typename _Tp, typename _Ref, typename _Ptr>
+ inline bool
+ operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
+ const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
+ {
+ return __y < __x;
}
-
- reference operator[](difference_type __n) const { return *(*this + __n); }
-
- /** @if maint
- * Prepares to traverse new_node. Sets everything except _M_cur, which
- * should therefore be set by the caller immediately afterwards, based on
- * _M_first and _M_last.
- * @endif
- */
- void _M_set_node(_Map_pointer __new_node) {
- _M_node = __new_node;
- _M_first = *__new_node;
- _M_last = _M_first + difference_type(_S_buffer_size());
+
+ template <typename _Tp, typename _RefL, typename _PtrL,
+ typename _RefR, typename _PtrR>
+ inline bool
+ operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
+ const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
+ {
+ return __y < __x;
}
-};
-
-// Note: we also provide overloads whose operands are of the same type in
-// order to avoid ambiguos overload resolution when std::rel_ops operators
-// are in scope (for additional details, see libstdc++/3628)
-template <class _Tp, class _Ref, class _Ptr>
-inline bool
-operator==(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
- const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
-{
- return __x._M_cur == __y._M_cur;
-}
-
-template <class _Tp, class _RefL, class _PtrL, class _RefR, class _PtrR>
-inline bool
-operator==(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
-{
- return __x._M_cur == __y._M_cur;
-}
-
-template <class _Tp, class _Ref, class _Ptr>
-inline bool
-operator!=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
- const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
-{
- return !(__x == __y);
-}
-
-template <class _Tp, class _RefL, class _PtrL, class _RefR, class _PtrR>
-inline bool
-operator!=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
-{
- return !(__x == __y);
-}
-
-template <class _Tp, class _Ref, class _Ptr>
-inline bool
-operator<(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
- const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
-{
- return (__x._M_node == __y._M_node) ?
- (__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
-}
-
-template <class _Tp, class _RefL, class _PtrL, class _RefR, class _PtrR>
-inline bool
-operator<(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
-{
- return (__x._M_node == __y._M_node) ?
- (__x._M_cur < __y._M_cur) : (__x._M_node < __y._M_node);
-}
-
-template <class _Tp, class _Ref, class _Ptr>
-inline bool
-operator>(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
- const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
-{
- return __y < __x;
-}
-
-template <class _Tp, class _RefL, class _PtrL, class _RefR, class _PtrR>
-inline bool
-operator>(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
-{
- return __y < __x;
-}
-
-template <class _Tp, class _Ref, class _Ptr>
-inline bool
-operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
- const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
-{
- return !(__y < __x);
-}
-
-template <class _Tp, class _RefL, class _PtrL, class _RefR, class _PtrR>
-inline bool
-operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
-{
- return !(__y < __x);
-}
-
-template <class _Tp, class _Ref, class _Ptr>
-inline bool
-operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
- const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
-{
- return !(__x < __y);
-}
-
-template <class _Tp, class _RefL, class _PtrL, class _RefR, class _PtrR>
-inline bool
-operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
-{
- return !(__x < __y);
-}
-
-// _GLIBCPP_RESOLVE_LIB_DEFECTS
-// According to the resolution of DR179 not only the various comparison
-// operators but also operator- must accept mixed iterator/const_iterator
-// parameters.
-template <typename _Tp, typename _RefL, typename _PtrL,
- typename _RefR, typename _PtrR>
-inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
-operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
- const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
-{
- return _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
- (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size()) *
- (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) +
- (__y._M_last - __y._M_cur);
-}
-
-template <class _Tp, class _Ref, class _Ptr>
-inline _Deque_iterator<_Tp, _Ref, _Ptr>
-operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
-{
- return __x + __n;
-}
-
-
-/// @if maint Primary default version. @endif
-/**
- * @if maint
- * Deque base class. It has two purposes. First, its constructor
- * and destructor allocate (but don't initialize) storage. This makes
- * exception safety easier. Second, the base class encapsulates all of
- * the differences between SGI-style allocators and standard-conforming
- * allocators. There are two versions: this ordinary one, and the
- * space-saving specialization for instanceless allocators.
- * @endif
-*/
-template <class _Tp, class _Alloc, bool __is_static>
-class _Deque_alloc_base
-{
-public:
- typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
- allocator_type get_allocator() const { return _M_node_allocator; }
-
- _Deque_alloc_base(const allocator_type& __a)
- : _M_node_allocator(__a), _M_map_allocator(__a),
- _M_map(0), _M_map_size(0)
- {}
-
-protected:
- typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type
- _Map_allocator_type;
-
- allocator_type _M_node_allocator;
- _Map_allocator_type _M_map_allocator;
-
- _Tp* _M_allocate_node() {
- return _M_node_allocator.allocate(__deque_buf_size(sizeof(_Tp)));
+
+ template <typename _Tp, typename _Ref, typename _Ptr>
+ inline bool
+ operator<=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
+ const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
+ {
+ return !(__y < __x);
}
- void _M_deallocate_node(_Tp* __p) {
- _M_node_allocator.deallocate(__p, __deque_buf_size(sizeof(_Tp)));
+
+ template <typename _Tp, typename _RefL, typename _PtrL,
+ typename _RefR, typename _PtrR>
+ inline bool
+ operator<=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
+ const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
+ {
+ return !(__y < __x);
}
- _Tp** _M_allocate_map(size_t __n)
- { return _M_map_allocator.allocate(__n); }
- void _M_deallocate_map(_Tp** __p, size_t __n)
- { _M_map_allocator.deallocate(__p, __n); }
-
- _Tp** _M_map;
- size_t _M_map_size;
-};
-
-/// @if maint Specialization for instanceless allocators. @endif
-template <class _Tp, class _Alloc>
-class _Deque_alloc_base<_Tp, _Alloc, true>
-{
-public:
- typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
- allocator_type get_allocator() const { return allocator_type(); }
-
- _Deque_alloc_base(const allocator_type&) : _M_map(0), _M_map_size(0) {}
-protected:
- typedef typename _Alloc_traits<_Tp, _Alloc>::_Alloc_type _Node_alloc_type;
- typedef typename _Alloc_traits<_Tp*, _Alloc>::_Alloc_type _Map_alloc_type;
-
- _Tp* _M_allocate_node() {
- return _Node_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
+ template <typename _Tp, typename _Ref, typename _Ptr>
+ inline bool
+ operator>=(const _Deque_iterator<_Tp, _Ref, _Ptr>& __x,
+ const _Deque_iterator<_Tp, _Ref, _Ptr>& __y)
+ {
+ return !(__x < __y);
}
- void _M_deallocate_node(_Tp* __p) {
- _Node_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
+
+ template <typename _Tp, typename _RefL, typename _PtrL,
+ typename _RefR, typename _PtrR>
+ inline bool
+ operator>=(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
+ const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
+ {
+ return !(__x < __y);
}
- _Tp** _M_allocate_map(size_t __n)
- { return _Map_alloc_type::allocate(__n); }
- void _M_deallocate_map(_Tp** __p, size_t __n)
- { _Map_alloc_type::deallocate(__p, __n); }
-
- _Tp** _M_map;
- size_t _M_map_size;
-};
-
-
-/**
- * @if maint
- * Deque base class. Using _Alloc_traits in the instantiation of the parent
- * class provides the compile-time dispatching mentioned in the parent's docs.
- * This class provides the unified face for deque's allocation.
- *
- * Nothing in this class ever constructs or destroys an actual Tp element.
- * (Deque handles that itself.) Only/All memory management is performed here.
- * @endif
-*/
-template <class _Tp, class _Alloc>
-class _Deque_base
- : public _Deque_alloc_base<_Tp,_Alloc,
- _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
-{
-public:
- typedef _Deque_alloc_base<_Tp,_Alloc,
- _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
- _Base;
- typedef typename _Base::allocator_type allocator_type;
- typedef _Deque_iterator<_Tp,_Tp&,_Tp*> iterator;
- typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
-
- _Deque_base(const allocator_type& __a, size_t __num_elements)
- : _Base(__a), _M_start(), _M_finish()
- { _M_initialize_map(__num_elements); }
- _Deque_base(const allocator_type& __a)
- : _Base(__a), _M_start(), _M_finish() {}
- ~_Deque_base();
-
-protected:
- void _M_initialize_map(size_t);
- void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
- void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
- enum { _S_initial_map_size = 8 };
-
-protected:
- iterator _M_start;
- iterator _M_finish;
-};
-
-
-template <class _Tp, class _Alloc>
-_Deque_base<_Tp,_Alloc>::~_Deque_base()
-{
- if (_M_map) {
- _M_destroy_nodes(_M_start._M_node, _M_finish._M_node + 1);
- _M_deallocate_map(_M_map, _M_map_size);
+
+ // _GLIBCPP_RESOLVE_LIB_DEFECTS
+ // According to the resolution of DR179 not only the various comparison
+ // operators but also operator- must accept mixed iterator/const_iterator
+ // parameters.
+ template <typename _Tp, typename _RefL, typename _PtrL,
+ typename _RefR, typename _PtrR>
+ inline typename _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
+ operator-(const _Deque_iterator<_Tp, _RefL, _PtrL>& __x,
+ const _Deque_iterator<_Tp, _RefR, _PtrR>& __y)
+ {
+ return _Deque_iterator<_Tp, _RefL, _PtrL>::difference_type
+ (_Deque_iterator<_Tp, _RefL, _PtrL>::_S_buffer_size()) *
+ (__x._M_node - __y._M_node - 1) + (__x._M_cur - __x._M_first) +
+ (__y._M_last - __y._M_cur);
}
-}
-
-/**
- * @if maint
- * @brief Layout storage.
- * @param num_elements The count of T's for which to allocate space at first.
- * @return Nothing.
- *
- * The initial underlying memory layout is a bit complicated...
- * @endif
-*/
-template <class _Tp, class _Alloc>
-void
-_Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements)
-{
- size_t __num_nodes =
- __num_elements / __deque_buf_size(sizeof(_Tp)) + 1;
-
- _M_map_size = max((size_t) _S_initial_map_size, __num_nodes + 2);
- _M_map = _M_allocate_map(_M_map_size);
-
- _Tp** __nstart = _M_map + (_M_map_size - __num_nodes) / 2;
- _Tp** __nfinish = __nstart + __num_nodes;
-
- try
- { _M_create_nodes(__nstart, __nfinish); }
- catch(...)
- {
- _M_deallocate_map(_M_map, _M_map_size);
- _M_map = 0;
- _M_map_size = 0;
- __throw_exception_again;
- }
- _M_start._M_set_node(__nstart);
- _M_finish._M_set_node(__nfinish - 1);
- _M_start._M_cur = _M_start._M_first;
- _M_finish._M_cur = _M_finish._M_first +
- __num_elements % __deque_buf_size(sizeof(_Tp));
-}
-
-template <class _Tp, class _Alloc>
-void _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
-{
- _Tp** __cur;
- try {
- for (__cur = __nstart; __cur < __nfinish; ++__cur)
- *__cur = _M_allocate_node();
+ template <typename _Tp, typename _Ref, typename _Ptr>
+ inline _Deque_iterator<_Tp, _Ref, _Ptr>
+ operator+(ptrdiff_t __n, const _Deque_iterator<_Tp, _Ref, _Ptr>& __x)
+ {
+ return __x + __n;
}
- catch(...)
- {
- _M_destroy_nodes(__nstart, __cur);
- __throw_exception_again;
- }
-}
-
-template <class _Tp, class _Alloc>
-void
-_Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
-{
- for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
- _M_deallocate_node(*__n);
-}
-
-
-/**
- * @ingroup Containers
- * @ingroup Sequences
- *
- * Meets the requirements of a <a href="tables.html#65">container</a>, a
- * <a href="tables.html#66">reversible container</a>, and a
- * <a href="tables.html#67">sequence</a>, including the
- * <a href="tables.html#68">optional sequence requirements</a>.
- *
- * Placeholder: see http://www.sgi.com/tech/stl/Deque.html for now.
- *
- * In previous HP/SGI versions of deque, there was an extra template parameter
- * so users could control the node size. This extension turned out to violate
- * the C++ standard (it can be detected using template template parameters),
- * and it was removed.
- *
- * @if maint
- * Here's how a deque<Tp> manages memory. Each deque has 4 members:
- *
- * - Tp** _M_map
- * - size_t _M_map_size
- * - iterator _M_start, _M_finish
- *
- * map_size is at least 8. %map is an array of map_size pointers-to-"nodes".
- * (The name has nothing to do with the std::map class.)
- *
- * A "node" has no specific type name as such, but it is referred to as
- * "node" in this file. It is a simple array-of-Tp. If Tp is very large,
- * there will be one Tp element per node (i.e., an "array" of one).
- * For non-huge Tp's, node size is inversely related to Tp size: the
- * larger the Tp, the fewer Tp's will fit in a node. The goal here is to
- * keep the total size of a node relatively small and constant over different
- * Tp's, to improve allocator efficiency.
- *
- * **** As I write this, the nodes are /not/ allocated using the high-speed
- * memory pool. There are 20 hours left in the year; perhaps I can fix
- * this before 2002.
- *
- * Not every pointer in the %map array will point to a node. If the initial
- * number of elements in the deque is small, the /middle/ %map pointers will
- * be valid, and the ones at the edges will be unused. This same situation
- * will arise as the %map grows: available %map pointers, if any, will be on
- * the ends. As new nodes are created, only a subset of the %map's pointers
- * need to be copied "outward".
- *
- * Class invariants:
- * - For any nonsingular iterator i:
- * - i.node points to a member of the %map array. (Yes, you read that
- * correctly: i.node does not actually point to a node.) The member of
- * the %map array is what actually points to the node.
- * - i.first == *(i.node) (This points to the node (first Tp element).)
- * - i.last == i.first + node_size
- * - i.cur is a pointer in the range [i.first, i.last). NOTE:
- * the implication of this is that i.cur is always a dereferenceable
- * pointer, even if i is a past-the-end iterator.
- * - Start and Finish are always nonsingular iterators. NOTE: this means that
- * an empty deque must have one node, a deque with <N elements (where N is
- * the node buffer size) must have one node, a deque with N through (2N-1)
- * elements must have two nodes, etc.
- * - For every node other than start.node and finish.node, every element in the
- * node is an initialized object. If start.node == finish.node, then
- * [start.cur, finish.cur) are initialized objects, and the elements outside
- * that range are uninitialized storage. Otherwise, [start.cur, start.last)
- * and [finish.first, finish.cur) are initialized objects, and [start.first,
- * start.cur) and [finish.cur, finish.last) are uninitialized storage.
- * - [%map, %map + map_size) is a valid, non-empty range.
- * - [start.node, finish.node] is a valid range contained within
- * [%map, %map + map_size).
- * - A pointer in the range [%map, %map + map_size) points to an allocated node
- * if and only if the pointer is in the range [start.node, finish.node].
- *
- * Here's the magic: nothing in deque is "aware" of the discontiguous storage!
- *
- * The memory setup and layout occurs in the parent, _Base, and the iterator
- * class is entirely responsible for "leaping" from one node to the next. All
- * the implementation routines for deque itself work only through the start
- * and finish iterators. This keeps the routines simple and sane, and we can
- * use other standard algorithms as well.
- * @endif
-*/
-template <class _Tp, class _Alloc = allocator<_Tp> >
-class deque : protected _Deque_base<_Tp, _Alloc>
-{
- // concept requirements
- __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
-
- typedef _Deque_base<_Tp, _Alloc> _Base;
-
-public:
- typedef _Tp value_type;
- typedef value_type* pointer;
- typedef const value_type* const_pointer;
- typedef value_type& reference;
- typedef const value_type& const_reference;
- typedef size_t size_type;
- typedef ptrdiff_t difference_type;
-
- typedef typename _Base::allocator_type allocator_type;
- allocator_type get_allocator() const { return _Base::get_allocator(); }
-
- typedef typename _Base::iterator iterator;
- typedef typename _Base::const_iterator const_iterator;
- typedef reverse_iterator<const_iterator> const_reverse_iterator;
- typedef reverse_iterator<iterator> reverse_iterator;
-
-protected:
- typedef pointer* _Map_pointer;
- static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
-
- // Functions controlling memory layout, and nothing else.
- using _Base::_M_initialize_map;
- using _Base::_M_create_nodes;
- using _Base::_M_destroy_nodes;
- using _Base::_M_allocate_node;
- using _Base::_M_deallocate_node;
- using _Base::_M_allocate_map;
- using _Base::_M_deallocate_map;
-
- /** @if maint
- * A total of four data members accumulated down the heirarchy. If the
- * _Alloc type requires separate instances, then two of them will also be
- * included in each deque.
+
+
+ /// @if maint Primary default version. @endif
+ /**
+ * @if maint
+ * Deque base class. It has two purposes. First, its constructor
+ * and destructor allocate (but don't initialize) storage. This makes
+ * %exception safety easier. Second, the base class encapsulates all of
+ * the differences between SGI-style allocators and standard-conforming
+ * allocators. (See stl_alloc.h for more on this topic.) There are two
+ * versions: this ordinary one, and the space-saving specialization for
+ * instanceless allocators.
* @endif
*/
- using _Base::_M_map;
- using _Base::_M_map_size;
- using _Base::_M_start;
- using _Base::_M_finish;
-
-public: // Basic accessors
- iterator begin() { return _M_start; }
- iterator end() { return _M_finish; }
- const_iterator begin() const { return _M_start; }
- const_iterator end() const { return _M_finish; }
-
- reverse_iterator rbegin() { return reverse_iterator(_M_finish); }
- reverse_iterator rend() { return reverse_iterator(_M_start); }
- const_reverse_iterator rbegin() const
- { return const_reverse_iterator(_M_finish); }
- const_reverse_iterator rend() const
- { return const_reverse_iterator(_M_start); }
-
- reference operator[](size_type __n)
- { return _M_start[difference_type(__n)]; }
- const_reference operator[](size_type __n) const
- { return _M_start[difference_type(__n)]; }
-
- void _M_range_check(size_type __n) const {
- if (__n >= this->size())
- __throw_out_of_range("deque");
- }
-
- reference at(size_type __n)
- { _M_range_check(__n); return (*this)[__n]; }
- const_reference at(size_type __n) const
- { _M_range_check(__n); return (*this)[__n]; }
-
- reference front() { return *_M_start; }
- reference back() {
- iterator __tmp = _M_finish;
- --__tmp;
- return *__tmp;
- }
- const_reference front() const { return *_M_start; }
- const_reference back() const {
- const_iterator __tmp = _M_finish;
- --__tmp;
- return *__tmp;
- }
-
- size_type size() const { return _M_finish - _M_start; }
- size_type max_size() const { return size_type(-1); }
- bool empty() const { return _M_finish == _M_start; }
-
-public: // Constructor, destructor.
- explicit deque(const allocator_type& __a = allocator_type())
- : _Base(__a, 0) {}
- deque(const deque& __x) : _Base(__x.get_allocator(), __x.size())
- { uninitialized_copy(__x.begin(), __x.end(), _M_start); }
- deque(size_type __n, const value_type& __value,
- const allocator_type& __a = allocator_type()) : _Base(__a, __n)
- { _M_fill_initialize(__value); }
-
- explicit
- deque(size_type __n)
- : _Base(allocator_type(), __n)
- { _M_fill_initialize(value_type()); }
-
- // Check whether it's an integral type. If so, it's not an iterator.
- template<class _InputIterator>
- deque(_InputIterator __first, _InputIterator __last,
- const allocator_type& __a = allocator_type())
- : _Base(__a)
+ template <typename _Tp, typename _Alloc, bool __is_static>
+ class _Deque_alloc_base
+ {
+ public:
+ typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
+ allocator_type get_allocator() const { return _M_node_allocator; }
+
+ _Deque_alloc_base(const allocator_type& __a)
+ : _M_node_allocator(__a), _M_map_allocator(__a),
+ _M_map(0), _M_map_size(0)
+ {}
+
+ protected:
+ typedef typename _Alloc_traits<_Tp*, _Alloc>::allocator_type
+ _Map_allocator_type;
+
+ _Tp*
+ _M_allocate_node()
{
- typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
- _M_initialize_dispatch(__first, __last, _Integral());
+ return _M_node_allocator.allocate(__deque_buf_size(sizeof(_Tp)));
}
-
- template<class _Integer>
+
void
- _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
+ _M_deallocate_node(_Tp* __p)
{
- _M_initialize_map(__n);
- _M_fill_initialize(__x);
+ _M_node_allocator.deallocate(__p, __deque_buf_size(sizeof(_Tp)));
}
-
- template<class _InputIter>
+
+ _Tp**
+ _M_allocate_map(size_t __n)
+ { return _M_map_allocator.allocate(__n); }
+
void
- _M_initialize_dispatch(_InputIter __first, _InputIter __last, __false_type)
+ _M_deallocate_map(_Tp** __p, size_t __n)
+ { _M_map_allocator.deallocate(__p, __n); }
+
+ allocator_type _M_node_allocator;
+ _Map_allocator_type _M_map_allocator;
+ _Tp** _M_map;
+ size_t _M_map_size;
+ };
+
+ /// @if maint Specialization for instanceless allocators. @endif
+ template <typename _Tp, typename _Alloc>
+ class _Deque_alloc_base<_Tp, _Alloc, true>
+ {
+ public:
+ typedef typename _Alloc_traits<_Tp,_Alloc>::allocator_type allocator_type;
+ allocator_type get_allocator() const { return allocator_type(); }
+
+ _Deque_alloc_base(const allocator_type&)
+ : _M_map(0), _M_map_size(0)
+ {}
+
+ protected:
+ typedef typename _Alloc_traits<_Tp,_Alloc>::_Alloc_type _Node_alloc_type;
+ typedef typename _Alloc_traits<_Tp*,_Alloc>::_Alloc_type _Map_alloc_type;
+
+ _Tp*
+ _M_allocate_node()
{
- typedef typename iterator_traits<_InputIter>::iterator_category _IterCategory;
- _M_range_initialize(__first, __last, _IterCategory());
- }
-
- ~deque()
- { _Destroy(_M_start, _M_finish); }
-
- deque& operator= (const deque& __x) {
- const size_type __len = size();
- if (&__x != this) {
- if (__len >= __x.size())
- erase(copy(__x.begin(), __x.end(), _M_start), _M_finish);
- else {
- const_iterator __mid = __x.begin() + difference_type(__len);
- copy(__x.begin(), __mid, _M_start);
- insert(_M_finish, __mid, __x.end());
- }
- }
- return *this;
- }
-
- void swap(deque& __x) {
- std::swap(_M_start, __x._M_start);
- std::swap(_M_finish, __x._M_finish);
- std::swap(_M_map, __x._M_map);
- std::swap(_M_map_size, __x._M_map_size);
- }
-
-public:
- // assign(), a generalized assignment member function. Two
- // versions: one that takes a count, and one that takes a range.
- // The range version is a member template, so we dispatch on whether
- // or not the type is an integer.
-
- void _M_fill_assign(size_type __n, const _Tp& __val) {
- if (__n > size()) {
- fill(begin(), end(), __val);
- insert(end(), __n - size(), __val);
- }
- else {
- erase(begin() + __n, end());
- fill(begin(), end(), __val);
+ return _Node_alloc_type::allocate(__deque_buf_size(sizeof(_Tp)));
}
- }
-
- void
- assign(size_type __n, const _Tp& __val)
- { _M_fill_assign(__n, __val); }
-
- template<class _InputIterator>
+
void
- assign(_InputIterator __first, _InputIterator __last)
+ _M_deallocate_node(_Tp* __p)
{
- typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
- _M_assign_dispatch(__first, __last, _Integral());
+ _Node_alloc_type::deallocate(__p, __deque_buf_size(sizeof(_Tp)));
}
-
-private: // helper functions for assign()
-
- template<class _Integer>
- void
- _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
- { _M_fill_assign(static_cast<size_type>(__n), static_cast<_Tp>(__val)); }
-
- template<class _InputIterator>
+
+ _Tp**
+ _M_allocate_map(size_t __n)
+ { return _Map_alloc_type::allocate(__n); }
+
void
- _M_assign_dispatch(_InputIterator __first, _InputIterator __last, __false_type)
- {
- typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
- _M_assign_aux(__first, __last, _IterCategory());
- }
-
- template <class _InputIterator>
- void _M_assign_aux(_InputIterator __first, _InputIterator __last,
- input_iterator_tag);
-
- template <class _ForwardIterator>
- void _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
- forward_iterator_tag) {
- size_type __len = distance(__first, __last);
- if (__len > size()) {
- _ForwardIterator __mid = __first;
- advance(__mid, size());
- copy(__first, __mid, begin());
- insert(end(), __mid, __last);
- }
- else
- erase(copy(__first, __last, begin()), end());
- }
-
-public: // push_* and pop_*
+ _M_deallocate_map(_Tp** __p, size_t __n)
+ { _Map_alloc_type::deallocate(__p, __n); }
- void
- push_back(const value_type& __t)
- {
- if (_M_finish._M_cur != _M_finish._M_last - 1) {
- _Construct(_M_finish._M_cur, __t);
- ++_M_finish._M_cur;
- }
- else
- _M_push_back_aux(__t);
- }
-
- void
- push_back()
+ _Tp** _M_map;
+ size_t _M_map_size;
+ };
+
+
+ /**
+ * @if maint
+ * Deque base class. Using _Alloc_traits in the instantiation of the parent
+ * class provides the compile-time dispatching mentioned in the parent's
+ * docs. This class provides the unified face for %deque's allocation.
+ *
+ * Nothing in this class ever constructs or destroys an actual Tp element.
+ * (Deque handles that itself.) Only/All memory management is performed
+ * here.
+ * @endif
+ */
+ template <typename _Tp, typename _Alloc>
+ class _Deque_base
+ : public _Deque_alloc_base<_Tp,_Alloc,
+ _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
{
- if (_M_finish._M_cur != _M_finish._M_last - 1) {
- _Construct(_M_finish._M_cur);
- ++_M_finish._M_cur;
- }
- else
- _M_push_back_aux();
- }
-
- void
- push_front(const value_type& __t)
+ public:
+ typedef _Deque_alloc_base<_Tp,_Alloc,
+ _Alloc_traits<_Tp, _Alloc>::_S_instanceless>
+ _Base;
+ typedef typename _Base::allocator_type allocator_type;
+ typedef _Deque_iterator<_Tp,_Tp&,_Tp*> iterator;
+ typedef _Deque_iterator<_Tp,const _Tp&,const _Tp*> const_iterator;
+
+ _Deque_base(const allocator_type& __a, size_t __num_elements)
+ : _Base(__a), _M_start(), _M_finish()
+ { _M_initialize_map(__num_elements); }
+ _Deque_base(const allocator_type& __a)
+ : _Base(__a), _M_start(), _M_finish() {}
+ ~_Deque_base();
+
+ protected:
+ void _M_initialize_map(size_t);
+ void _M_create_nodes(_Tp** __nstart, _Tp** __nfinish);
+ void _M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish);
+ enum { _S_initial_map_size = 8 };
+
+ iterator _M_start;
+ iterator _M_finish;
+ };
+
+
+ template <typename _Tp, typename _Alloc>
+ _Deque_base<_Tp,_Alloc>::~_Deque_base()
{
- if (_M_start._M_cur != _M_start._M_first) {
- _Construct(_M_start._M_cur - 1, __t);
- --_M_start._M_cur;
+ if (_M_map)
+ {
+ _M_destroy_nodes(_M_start._M_node, _M_finish._M_node + 1);
+ _M_deallocate_map(_M_map, _M_map_size);
}
- else
- _M_push_front_aux(__t);
}
-
+
+ /**
+ * @if maint
+ * @brief Layout storage.
+ * @param num_elements The count of T's for which to allocate space
+ * at first.
+ * @return Nothing.
+ *
+ * The initial underlying memory layout is a bit complicated...
+ * @endif
+ */
+ template <typename _Tp, typename _Alloc>
void
- push_front()
+ _Deque_base<_Tp,_Alloc>::_M_initialize_map(size_t __num_elements)
{
- if (_M_start._M_cur != _M_start._M_first) {
- _Construct(_M_start._M_cur - 1);
- --_M_start._M_cur;
- }
- else
- _M_push_front_aux();
+ size_t __num_nodes =
+ __num_elements / __deque_buf_size(sizeof(_Tp)) + 1;
+
+ _M_map_size = max((size_t) _S_initial_map_size, __num_nodes + 2);
+ _M_map = _M_allocate_map(_M_map_size);
+
+ // For "small" maps (needing less than _M_map_size nodes), allocation
+ // starts in the middle elements and grows outwards. So nstart may be the
+ // beginning of _M_map, but for small maps it may be as far in as _M_map+3.
+
+ _Tp** __nstart = _M_map + (_M_map_size - __num_nodes) / 2;
+ _Tp** __nfinish = __nstart + __num_nodes;
+
+ try
+ { _M_create_nodes(__nstart, __nfinish); }
+ catch(...)
+ {
+ _M_deallocate_map(_M_map, _M_map_size);
+ _M_map = 0;
+ _M_map_size = 0;
+ __throw_exception_again;
+ }
+
+ _M_start._M_set_node(__nstart);
+ _M_finish._M_set_node(__nfinish - 1);
+ _M_start._M_cur = _M_start._M_first;
+ _M_finish._M_cur = _M_finish._M_first +
+ __num_elements % __deque_buf_size(sizeof(_Tp));
}
-
-
- void
- pop_back()
+
+ template <typename _Tp, typename _Alloc>
+ void _Deque_base<_Tp,_Alloc>::_M_create_nodes(_Tp** __nstart, _Tp** __nfinish)
{
- if (_M_finish._M_cur != _M_finish._M_first) {
- --_M_finish._M_cur;
- _Destroy(_M_finish._M_cur);
- }
- else
- _M_pop_back_aux();
+ _Tp** __cur;
+ try
+ {
+ for (__cur = __nstart; __cur < __nfinish; ++__cur)
+ *__cur = _M_allocate_node();
+ }
+ catch(...)
+ {
+ _M_destroy_nodes(__nstart, __cur);
+ __throw_exception_again;
+ }
}
-
+
+ template <typename _Tp, typename _Alloc>
void
- pop_front()
+ _Deque_base<_Tp,_Alloc>::_M_destroy_nodes(_Tp** __nstart, _Tp** __nfinish)
{
- if (_M_start._M_cur != _M_start._M_last - 1) {
- _Destroy(_M_start._M_cur);
- ++_M_start._M_cur;
- }
- else
- _M_pop_front_aux();
+ for (_Tp** __n = __nstart; __n < __nfinish; ++__n)
+ _M_deallocate_node(*__n);
}
-
-public: // Insert
-
- iterator
- insert(iterator position, const value_type& __x)
+
+
+ /**
+ * @brief A standard container using fixed-size memory allocation and
+ * constant-time manipulation of elements at either end.
+ *
+ * @ingroup Containers
+ * @ingroup Sequences
+ *
+ * Meets the requirements of a <a href="tables.html#65">container</a>, a
+ * <a href="tables.html#66">reversible container</a>, and a
+ * <a href="tables.html#67">sequence</a>, including the
+ * <a href="tables.html#68">optional sequence requirements</a>.
+ *
+ * In previous HP/SGI versions of deque, there was an extra template
+ * parameter so users could control the node size. This extension turned
+ * out to violate the C++ standard (it can be detected using template
+ * template parameters), and it was removed.
+ *
+ * @if maint
+ * Here's how a deque<Tp> manages memory. Each deque has 4 members:
+ *
+ * - Tp** _M_map
+ * - size_t _M_map_size
+ * - iterator _M_start, _M_finish
+ *
+ * map_size is at least 8. %map is an array of map_size pointers-to-"nodes".
+ * (The name %map has nothing to do with the std::map class, and "nodes"
+ * should not be confused with std::list's usage of "node".)
+ *
+ * A "node" has no specific type name as such, but it is referred to as
+ * "node" in this file. It is a simple array-of-Tp. If Tp is very large,
+ * there will be one Tp element per node (i.e., an "array" of one).
+ * For non-huge Tp's, node size is inversely related to Tp size: the
+ * larger the Tp, the fewer Tp's will fit in a node. The goal here is to
+ * keep the total size of a node relatively small and constant over different
+ * Tp's, to improve allocator efficiency.
+ *
+ * **** As I write this, the nodes are /not/ allocated using the high-speed
+ * memory pool. There are 20 hours left in the year; perhaps I can fix
+ * this before 2002.
+ *
+ * Not every pointer in the %map array will point to a node. If the initial
+ * number of elements in the deque is small, the /middle/ %map pointers will
+ * be valid, and the ones at the edges will be unused. This same situation
+ * will arise as the %map grows: available %map pointers, if any, will be on
+ * the ends. As new nodes are created, only a subset of the %map's pointers
+ * need to be copied "outward".
+ *
+ * Class invariants:
+ * - For any nonsingular iterator i:
+ * - i.node points to a member of the %map array. (Yes, you read that
+ * correctly: i.node does not actually point to a node.) The member of
+ * the %map array is what actually points to the node.
+ * - i.first == *(i.node) (This points to the node (first Tp element).)
+ * - i.last == i.first + node_size
+ * - i.cur is a pointer in the range [i.first, i.last). NOTE:
+ * the implication of this is that i.cur is always a dereferenceable
+ * pointer, even if i is a past-the-end iterator.
+ * - Start and Finish are always nonsingular iterators. NOTE: this means that
+ * an empty deque must have one node, a deque with <N elements (where N is
+ * the node buffer size) must have one node, a deque with N through (2N-1)
+ * elements must have two nodes, etc.
+ * - For every node other than start.node and finish.node, every element in
+ * the node is an initialized object. If start.node == finish.node, then
+ * [start.cur, finish.cur) are initialized objects, and the elements outside
+ * that range are uninitialized storage. Otherwise, [start.cur, start.last)
+ * and [finish.first, finish.cur) are initialized objects, and [start.first,
+ * start.cur) and [finish.cur, finish.last) are uninitialized storage.
+ * - [%map, %map + map_size) is a valid, non-empty range.
+ * - [start.node, finish.node] is a valid range contained within
+ * [%map, %map + map_size).
+ * - A pointer in the range [%map, %map + map_size) points to an allocated
+ * node if and only if the pointer is in the range
+ * [start.node, finish.node].
+ *
+ * Here's the magic: nothing in deque is "aware" of the discontiguous
+ * storage!
+ *
+ * The memory setup and layout occurs in the parent, _Base, and the iterator
+ * class is entirely responsible for "leaping" from one node to the next.
+ * All the implementation routines for deque itself work only through the
+ * start and finish iterators. This keeps the routines simple and sane,
+ * and we can use other standard algorithms as well.
+ * @endif
+ */
+ template <typename _Tp, typename _Alloc = allocator<_Tp> >
+ class deque : protected _Deque_base<_Tp, _Alloc>
{
- if (position._M_cur == _M_start._M_cur) {
- push_front(__x);
- return _M_start;
- }
- else if (position._M_cur == _M_finish._M_cur) {
- push_back(__x);
- iterator __tmp = _M_finish;
- --__tmp;
- return __tmp;
- }
- else {
- return _M_insert_aux(position, __x);
- }
- }
-
- iterator
- insert(iterator __position)
- { return insert(__position, value_type()); }
-
- void
- insert(iterator __pos, size_type __n, const value_type& __x)
- { _M_fill_insert(__pos, __n, __x); }
-
- void
- _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
-
- // Check whether it's an integral type. If so, it's not an iterator.
- template<class _InputIterator>
+ // concept requirements
+ __glibcpp_class_requires(_Tp, _SGIAssignableConcept)
+
+ typedef _Deque_base<_Tp, _Alloc> _Base;
+
+ public:
+ typedef _Tp value_type;
+ typedef value_type* pointer;
+ typedef const value_type* const_pointer;
+ typedef typename _Base::iterator iterator;
+ typedef typename _Base::const_iterator const_iterator;
+ typedef std::reverse_iterator<const_iterator> const_reverse_iterator;
+ typedef std::reverse_iterator<iterator> reverse_iterator;
+ typedef value_type& reference;
+ typedef const value_type& const_reference;
+ typedef size_t size_type;
+ typedef ptrdiff_t difference_type;
+ typedef typename _Base::allocator_type allocator_type;
+
+ protected:
+ typedef pointer* _Map_pointer;
+ static size_t _S_buffer_size() { return __deque_buf_size(sizeof(_Tp)); }
+
+ // Functions controlling memory layout, and nothing else.
+ using _Base::_M_initialize_map;
+ using _Base::_M_create_nodes;
+ using _Base::_M_destroy_nodes;
+ using _Base::_M_allocate_node;
+ using _Base::_M_deallocate_node;
+ using _Base::_M_allocate_map;
+ using _Base::_M_deallocate_map;
+
+ /** @if maint
+ * A total of four data members accumulated down the heirarchy. If the
+ * _Alloc type requires separate instances, then two of them will also be
+ * included in each deque.
+ * @endif
+ */
+ using _Base::_M_map;
+ using _Base::_M_map_size;
+ using _Base::_M_start;
+ using _Base::_M_finish;
+
+ public:
+ // [23.2.1.1] construct/copy/destroy
+ // (assign() and get_allocator() are also listed in this section)
+ /**
+ * @brief Default constructor creates no elements.
+ */
+ explicit
+ deque(const allocator_type& __a = allocator_type())
+ : _Base(__a, 0) {}
+
+ /**
+ * @brief Create a %deque with copies of an exemplar element.
+ * @param n The number of elements to initially create.
+ * @param value An element to copy.
+ *
+ * This constructor fills the %deque with @a n copies of @a value.
+ */
+ deque(size_type __n, const value_type& __value,
+ const allocator_type& __a = allocator_type())
+ : _Base(__a, __n)
+ { _M_fill_initialize(__value); }
+
+ /**
+ * @brief Create a %deque with default elements.
+ * @param n The number of elements to initially create.
+ *
+ * This constructor fills the %deque with @a n copies of a
+ * default-constructed element.
+ */
+ explicit
+ deque(size_type __n)
+ : _Base(allocator_type(), __n)
+ { _M_fill_initialize(value_type()); }
+
+ /**
+ * @brief %Deque copy constructor.
+ * @param x A %deque of identical element and allocator types.
+ *
+ * The newly-created %deque uses a copy of the allocation object used
+ * by @a x.
+ */
+ deque(const deque& __x)
+ : _Base(__x.get_allocator(), __x.size())
+ { uninitialized_copy(__x.begin(), __x.end(), _M_start); }
+
+ /**
+ * @brief Builds a %deque from a range.
+ * @param first An input iterator.
+ * @param last An input iterator.
+ *
+ * Create a %deque consisting of copies of the elements from [first,last).
+ *
+ * If the iterators are forward, bidirectional, or random-access, then
+ * this will call the elements' copy constructor N times (where N is
+ * distance(first,last)) and do no memory reallocation. But if only
+ * input iterators are used, then this will do at most 2N calls to the
+ * copy constructor, and logN memory reallocations.
+ */
+ template<typename _InputIterator>
+ deque(_InputIterator __first, _InputIterator __last,
+ const allocator_type& __a = allocator_type())
+ : _Base(__a)
+ {
+ // Check whether it's an integral type. If so, it's not an iterator.
+ typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
+ _M_initialize_dispatch(__first, __last, _Integral());
+ }
+
+ /**
+ * The dtor only erases the elements, and note that if the elements
+ * themselves are pointers, the pointed-to memory is not touched in any
+ * way. Managing the pointer is the user's responsibilty.
+ */
+ ~deque() { _Destroy(_M_start, _M_finish); }
+
+ /**
+ * @brief %Deque assignment operator.
+ * @param x A %deque of identical element and allocator types.
+ *
+ * All the elements of @a x are copied, but unlike the copy constructor,
+ * the allocator object is not copied.
+ */
+ deque&
+ operator=(const deque& __x);
+
+ /**
+ * @brief Assigns a given value to a %deque.
+ * @param n Number of elements to be assigned.
+ * @param val Value to be assigned.
+ *
+ * This function fills a %deque with @a n copies of the given value.
+ * Note that the assignment completely changes the %deque and that the
+ * resulting %deque's size is the same as the number of elements assigned.
+ * Old data may be lost.
+ */
+ void
+ assign(size_type __n, const value_type& __val) { _M_fill_assign(__n, __val); }
+
+ /**
+ * @brief Assigns a range to a %deque.
+ * @param first An input iterator.
+ * @param last An input iterator.
+ *
+ * This function fills a %deque with copies of the elements in the
+ * range [first,last).
+ *
+ * Note that the assignment completely changes the %deque and that the
+ * resulting %deque's size is the same as the number of elements assigned.
+ * Old data may be lost.
+ */
+ template<typename _InputIterator>
+ void
+ assign(_InputIterator __first, _InputIterator __last)
+ {
+ typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
+ _M_assign_dispatch(__first, __last, _Integral());
+ }
+
+ /// Get a copy of the memory allocation object.
+ allocator_type
+ get_allocator() const { return _Base::get_allocator(); }
+
+ // iterators
+ /**
+ * Returns a read/write iterator that points to the first element in the
+ * %deque. Iteration is done in ordinary element order.
+ */
+ iterator
+ begin() { return _M_start; }
+
+ /**
+ * Returns a read-only (constant) iterator that points to the first element
+ * in the %deque. Iteration is done in ordinary element order.
+ */
+ const_iterator
+ begin() const { return _M_start; }
+
+ /**
+ * Returns a read/write iterator that points one past the last element in
+ * the %deque. Iteration is done in ordinary element order.
+ */
+ iterator
+ end() { return _M_finish; }
+
+ /**
+ * Returns a read-only (constant) iterator that points one past the last
+ * element in the %deque. Iteration is done in ordinary element order.
+ */
+ const_iterator
+ end() const { return _M_finish; }
+
+ /**
+ * Returns a read/write reverse iterator that points to the last element in
+ * the %deque. Iteration is done in reverse element order.
+ */
+ reverse_iterator
+ rbegin() { return reverse_iterator(_M_finish); }
+
+ /**
+ * Returns a read-only (constant) reverse iterator that points to the last
+ * element in the %deque. Iteration is done in reverse element order.
+ */
+ const_reverse_iterator
+ rbegin() const { return const_reverse_iterator(_M_finish); }
+
+ /**
+ * Returns a read/write reverse iterator that points to one before the
+ * first element in the %deque. Iteration is done in reverse element
+ * order.
+ */
+ reverse_iterator
+ rend() { return reverse_iterator(_M_start); }
+
+ /**
+ * Returns a read-only (constant) reverse iterator that points to one
+ * before the first element in the %deque. Iteration is done in reverse
+ * element order.
+ */
+ const_reverse_iterator
+ rend() const { return const_reverse_iterator(_M_start); }
+
+ // [23.2.1.2] capacity
+ /** Returns the number of elements in the %deque. */
+ size_type
+ size() const { return _M_finish - _M_start; }
+
+ /** Returns the size() of the largest possible %deque. */
+ size_type
+ max_size() const { return size_type(-1); }
+
+ /**
+ * @brief Resizes the %deque to the specified number of elements.
+ * @param new_size Number of elements the %deque should contain.
+ * @param x Data with which new elements should be populated.
+ *
+ * This function will %resize the %deque to the specified number of
+ * elements. If the number is smaller than the %deque's current size the
+ * %deque is truncated, otherwise the %deque is extended and new elements
+ * are populated with given data.
+ */
void
- insert(iterator __pos, _InputIterator __first, _InputIterator __last)
+ resize(size_type __new_size, const value_type& __x)
{
- typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
- _M_insert_dispatch(__pos, __first, __last, _Integral());
+ const size_type __len = size();
+ if (__new_size < __len)
+ erase(_M_start + __new_size, _M_finish);
+ else
+ insert(_M_finish, __new_size - __len, __x);
}
-
- template<class _Integer>
+
+ /**
+ * @brief Resizes the %deque to the specified number of elements.
+ * @param new_size Number of elements the %deque should contain.
+ *
+ * This function will resize the %deque to the specified number of
+ * elements. If the number is smaller than the %deque's current size the
+ * %deque is truncated, otherwise the %deque is extended and new elements
+ * are default-constructed.
+ */
void
- _M_insert_dispatch(iterator __pos, _Integer __n, _Integer __x, __true_type)
- { _M_fill_insert(__pos, static_cast<size_type>(__n), static_cast<value_type>(__x)); }
-
- template<class _InputIterator>
+ resize(size_type new_size) { resize(new_size, value_type()); }
+
+ /**
+ * Returns true if the %deque is empty. (Thus begin() would equal end().)
+ */
+ bool empty() const { return _M_finish == _M_start; }
+
+ // element access
+ /**
+ * @brief Subscript access to the data contained in the %deque.
+ * @param n The index of the element for which data should be accessed.
+ * @return Read/write reference to data.
+ *
+ * This operator allows for easy, array-style, data access.
+ * Note that data access with this operator is unchecked and out_of_range
+ * lookups are not defined. (For checked lookups see at().)
+ */
+ reference
+ operator[](size_type __n) { return _M_start[difference_type(__n)]; }
+
+ /**
+ * @brief Subscript access to the data contained in the %deque.
+ * @param n The index of the element for which data should be accessed.
+ * @return Read-only (constant) reference to data.
+ *
+ * This operator allows for easy, array-style, data access.
+ * Note that data access with this operator is unchecked and out_of_range
+ * lookups are not defined. (For checked lookups see at().)
+ */
+ const_reference
+ operator[](size_type __n) const { return _M_start[difference_type(__n)]; }
+
+ protected:
+ /// @if maint Safety check used only from at(). @endif
void
- _M_insert_dispatch(iterator __pos,
- _InputIterator __first, _InputIterator __last,
- __false_type)
+ _M_range_check(size_type __n) const
{
- typedef typename iterator_traits<_InputIterator>::iterator_category _IterCategory;
- insert(__pos, __first, __last, _IterCategory());
- }
-
- void resize(size_type __new_size, const value_type& __x) {
- const size_type __len = size();
- if (__new_size < __len)
- erase(_M_start + __new_size, _M_finish);
- else
- insert(_M_finish, __new_size - __len, __x);
- }
-
- void resize(size_type new_size) { resize(new_size, value_type()); }
-
-public: // Erase
- iterator erase(iterator __pos) {
- iterator __next = __pos;
- ++__next;
- size_type __index = __pos - _M_start;
- if (__index < (size() >> 1)) {
- copy_backward(_M_start, __pos, __next);
- pop_front();
- }
- else {
- copy(__next, _M_finish, __pos);
- pop_back();
- }
- return _M_start + __index;
- }
-
- iterator erase(iterator __first, iterator __last);
- void clear();
-
-protected: // Internal construction/destruction
-
- void _M_fill_initialize(const value_type& __value);
-
- template <class _InputIterator>
- void _M_range_initialize(_InputIterator __first, _InputIterator __last,
- input_iterator_tag);
-
- template <class _ForwardIterator>
- void _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
- forward_iterator_tag);
-
-protected: // Internal push_* and pop_*
-
- void _M_push_back_aux(const value_type&);
- void _M_push_back_aux();
- void _M_push_front_aux(const value_type&);
- void _M_push_front_aux();
- void _M_pop_back_aux();
- void _M_pop_front_aux();
-
-protected: // Internal insert functions
-
- template <class _InputIterator>
- void insert(iterator __pos, _InputIterator __first, _InputIterator __last,
- input_iterator_tag);
-
- template <class _ForwardIterator>
- void insert(iterator __pos,
- _ForwardIterator __first, _ForwardIterator __last,
- forward_iterator_tag);
-
- iterator _M_insert_aux(iterator __pos, const value_type& __x);
- iterator _M_insert_aux(iterator __pos);
- void _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
-
- template <class _ForwardIterator>
- void _M_insert_aux(iterator __pos,
- _ForwardIterator __first, _ForwardIterator __last,
- size_type __n);
-
- iterator _M_reserve_elements_at_front(size_type __n) {
- size_type __vacancies = _M_start._M_cur - _M_start._M_first;
- if (__n > __vacancies)
- _M_new_elements_at_front(__n - __vacancies);
- return _M_start - difference_type(__n);
- }
-
- iterator _M_reserve_elements_at_back(size_type __n) {
- size_type __vacancies = (_M_finish._M_last - _M_finish._M_cur) - 1;
- if (__n > __vacancies)
- _M_new_elements_at_back(__n - __vacancies);
- return _M_finish + difference_type(__n);
- }
-
- void _M_new_elements_at_front(size_type __new_elements);
- void _M_new_elements_at_back(size_type __new_elements);
-
-protected: // Allocation of _M_map and nodes
-
- // Makes sure the _M_map has space for new nodes. Does not actually
- // add the nodes. Can invalidate _M_map pointers. (And consequently,
- // deque iterators.)
-
- void _M_reserve_map_at_back (size_type __nodes_to_add = 1) {
- if (__nodes_to_add + 1 > _M_map_size - (_M_finish._M_node - _M_map))
- _M_reallocate_map(__nodes_to_add, false);
- }
-
- void _M_reserve_map_at_front (size_type __nodes_to_add = 1) {
- if (__nodes_to_add > size_type(_M_start._M_node - _M_map))
- _M_reallocate_map(__nodes_to_add, true);
- }
-
- void _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
-};
-
-// Non-inline member functions
-
-template <class _Tp, class _Alloc>
-template <class _InputIter>
-void deque<_Tp, _Alloc>
- ::_M_assign_aux(_InputIter __first, _InputIter __last, input_iterator_tag)
-{
- iterator __cur = begin();
- for ( ; __first != __last && __cur != end(); ++__cur, ++__first)
- *__cur = *__first;
- if (__first == __last)
- erase(__cur, end());
- else
- insert(end(), __first, __last);
-}
-
-template <class _Tp, class _Alloc>
-void deque<_Tp, _Alloc>::_M_fill_insert(iterator __pos,
- size_type __n, const value_type& __x)
-{
- if (__pos._M_cur == _M_start._M_cur) {
- iterator __new_start = _M_reserve_elements_at_front(__n);
- try {
- uninitialized_fill(__new_start, _M_start, __x);
- _M_start = __new_start;
- }
- catch(...)
- {
- _M_destroy_nodes(__new_start._M_node, _M_start._M_node);
- __throw_exception_again;
- }
- }
- else if (__pos._M_cur == _M_finish._M_cur) {
- iterator __new_finish = _M_reserve_elements_at_back(__n);
- try {
- uninitialized_fill(_M_finish, __new_finish, __x);
- _M_finish = __new_finish;
- }
- catch(...)
- {
- _M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1);
- __throw_exception_again;
- }
- }
- else
- _M_insert_aux(__pos, __n, __x);
-}
-
-template <class _Tp, class _Alloc>
-typename deque<_Tp,_Alloc>::iterator
-deque<_Tp,_Alloc>::erase(iterator __first, iterator __last)
-{
- if (__first == _M_start && __last == _M_finish) {
- clear();
- return _M_finish;
- }
- else {
- difference_type __n = __last - __first;
- difference_type __elems_before = __first - _M_start;
- if (static_cast<size_type>(__elems_before) < (size() - __n) / 2) {
- copy_backward(_M_start, __first, __last);
- iterator __new_start = _M_start + __n;
- _Destroy(_M_start, __new_start);
- _M_destroy_nodes(_M_start._M_node, __new_start._M_node);
- _M_start = __new_start;
- }
- else {
- copy(__last, _M_finish, __first);
- iterator __new_finish = _M_finish - __n;
- _Destroy(__new_finish, _M_finish);
- _M_destroy_nodes(__new_finish._M_node + 1, _M_finish._M_node + 1);
- _M_finish = __new_finish;
+ if (__n >= this->size())
+ __throw_out_of_range("deque [] access out of range");
}
- return _M_start + __elems_before;
- }
-}
-
-template <class _Tp, class _Alloc>
-void deque<_Tp,_Alloc>::clear()
-{
- for (_Map_pointer __node = _M_start._M_node + 1;
- __node < _M_finish._M_node;
- ++__node) {
- _Destroy(*__node, *__node + _S_buffer_size());
- _M_deallocate_node(*__node);
- }
-
- if (_M_start._M_node != _M_finish._M_node) {
- _Destroy(_M_start._M_cur, _M_start._M_last);
- _Destroy(_M_finish._M_first, _M_finish._M_cur);
- _M_deallocate_node(_M_finish._M_first);
- }
- else
- _Destroy(_M_start._M_cur, _M_finish._M_cur);
-
- _M_finish = _M_start;
-}
-
-/**
- * @if maint
- * @brief Fills the deque with copies of value.
- * @param value Initial value.
- * @return Nothing.
- * @pre _M_start and _M_finish have already been initialized, but none of the
- * deque's elements have yet been constructed.
- *
- * This function is called only when the user provides an explicit size (with
- * or without an explicit exemplar value).
- * @endif
-*/
-template <class _Tp, class _Alloc>
-void deque<_Tp,_Alloc>::_M_fill_initialize(const value_type& __value)
-{
- _Map_pointer __cur;
- try {
- for (__cur = _M_start._M_node; __cur < _M_finish._M_node; ++__cur)
- uninitialized_fill(*__cur, *__cur + _S_buffer_size(), __value);
- uninitialized_fill(_M_finish._M_first, _M_finish._M_cur, __value);
- }
- catch(...)
+
+ public:
+ /**
+ * @brief Provides access to the data contained in the %deque.
+ * @param n The index of the element for which data should be accessed.
+ * @return Read/write reference to data.
+ * @throw std::out_of_range If @a n is an invalid index.
+ *
+ * This function provides for safer data access. The parameter is first
+ * checked that it is in the range of the deque. The function throws
+ * out_of_range if the check fails.
+ */
+ reference
+ at(size_type __n) { _M_range_check(__n); return (*this)[__n]; }
+
+ /**
+ * @brief Provides access to the data contained in the %deque.
+ * @param n The index of the element for which data should be accessed.
+ * @return Read-only (constant) reference to data.
+ * @throw std::out_of_range If @a n is an invalid index.
+ *
+ * This function provides for safer data access. The parameter is first
+ * checked that it is in the range of the deque. The function throws
+ * out_of_range if the check fails.
+ */
+ const_reference
+ at(size_type __n) const { _M_range_check(__n); return (*this)[__n]; }
+
+ /**
+ * Returns a read/write reference to the data at the first element of the
+ * %deque.
+ */
+ reference
+ front() { return *_M_start; }
+
+ /**
+ * Returns a read-only (constant) reference to the data at the first
+ * element of the %deque.
+ */
+ const_reference
+ front() const { return *_M_start; }
+
+ /**
+ * Returns a read/write reference to the data at the last element of the
+ * %deque.
+ */
+ reference
+ back()
{
- _Destroy(_M_start, iterator(*__cur, __cur));
- __throw_exception_again;
+ iterator __tmp = _M_finish;
+ --__tmp;
+ return *__tmp;
}
-}
-
-/** @{
- * @if maint
- * @brief Fills the deque with whatever is in [first,last).
- * @param first An input iterator.
- * @param last An input iterator.
- * @return Nothing.
- *
- * If the iterators are actually forward iterators (or better), then the
- * memory layout can be done all at once. Else we move forward using
- * push_back on each value from the iterator.
- * @endif
-*/
-template <class _Tp, class _Alloc> template <class _InputIterator>
-void deque<_Tp,_Alloc>::_M_range_initialize(_InputIterator __first,
- _InputIterator __last,
- input_iterator_tag)
-{
- _M_initialize_map(0);
- try {
- for ( ; __first != __last; ++__first)
- push_back(*__first);
- }
- catch(...)
+
+ /**
+ * Returns a read-only (constant) reference to the data at the last
+ * element of the %deque.
+ */
+ const_reference
+ back() const
{
- clear();
- __throw_exception_again;
- }
-}
-
-template <class _Tp, class _Alloc> template <class _ForwardIterator>
-void deque<_Tp,_Alloc>::_M_range_initialize(_ForwardIterator __first,
- _ForwardIterator __last,
- forward_iterator_tag)
-{
- size_type __n = distance(__first, __last);
- _M_initialize_map(__n);
-
- _Map_pointer __cur_node;
- try {
- for (__cur_node = _M_start._M_node;
- __cur_node < _M_finish._M_node;
- ++__cur_node) {
- _ForwardIterator __mid = __first;
- advance(__mid, _S_buffer_size());
- uninitialized_copy(__first, __mid, *__cur_node);
- __first = __mid;
+ const_iterator __tmp = _M_finish;
+ --__tmp;
+ return *__tmp;
}
- uninitialized_copy(__first, __last, _M_finish._M_first);
- }
- catch(...)
+
+ // [23.2.1.2] modifiers
+ /**
+ * @brief Add data to the front of the %deque.
+ * @param x Data to be added.
+ *
+ * This is a typical stack operation. The function creates an element at
+ * the front of the %deque and assigns the given data to it. Due to the
+ * nature of a %deque this operation can be done in constant time.
+ */
+ void
+ push_front(const value_type& __x)
{
- _Destroy(_M_start, iterator(*__cur_node, __cur_node));
- __throw_exception_again;
+ if (_M_start._M_cur != _M_start._M_first) {
+ _Construct(_M_start._M_cur - 1, __x);
+ --_M_start._M_cur;
+ }
+ else
+ _M_push_front_aux(__x);
}
-}
-/** @} */
-
-// Called only if _M_finish._M_cur == _M_finish._M_last - 1.
-template <class _Tp, class _Alloc>
-void
-deque<_Tp,_Alloc>::_M_push_back_aux(const value_type& __t)
-{
- value_type __t_copy = __t;
- _M_reserve_map_at_back();
- *(_M_finish._M_node + 1) = _M_allocate_node();
- try {
- _Construct(_M_finish._M_cur, __t_copy);
- _M_finish._M_set_node(_M_finish._M_node + 1);
- _M_finish._M_cur = _M_finish._M_first;
- }
- catch(...)
+
+ #ifdef _GLIBCPP_DEPRECATED
+ /**
+ * @brief Add data to the front of the %deque.
+ *
+ * This is a typical stack operation. The function creates a
+ * default-constructed element at the front of the %deque. Due to the
+ * nature of a %deque this operation can be done in constant time. You
+ * should consider using push_front(value_type()) instead.
+ *
+ * @note This was deprecated in 3.2 and will be removed in 3.4. You must
+ * define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
+ * c++config.h.
+ */
+ void
+ push_front()
{
- _M_deallocate_node(*(_M_finish._M_node + 1));
- __throw_exception_again;
+ if (_M_start._M_cur != _M_start._M_first) {
+ _Construct(_M_start._M_cur - 1);
+ --_M_start._M_cur;
+ }
+ else
+ _M_push_front_aux();
}
-}
-
-// Called only if _M_finish._M_cur == _M_finish._M_last - 1.
-template <class _Tp, class _Alloc>
-void
-deque<_Tp,_Alloc>::_M_push_back_aux()
-{
- _M_reserve_map_at_back();
- *(_M_finish._M_node + 1) = _M_allocate_node();
- try {
- _Construct(_M_finish._M_cur);
- _M_finish._M_set_node(_M_finish._M_node + 1);
- _M_finish._M_cur = _M_finish._M_first;
- }
- catch(...)
+ #endif
+
+ /**
+ * @brief Add data to the end of the %deque.
+ * @param x Data to be added.
+ *
+ * This is a typical stack operation. The function creates an element at
+ * the end of the %deque and assigns the given data to it. Due to the
+ * nature of a %deque this operation can be done in constant time.
+ */
+ void
+ push_back(const value_type& __x)
{
- _M_deallocate_node(*(_M_finish._M_node + 1));
- __throw_exception_again;
+ if (_M_finish._M_cur != _M_finish._M_last - 1) {
+ _Construct(_M_finish._M_cur, __x);
+ ++_M_finish._M_cur;
+ }
+ else
+ _M_push_back_aux(__x);
}
-}
-
-// Called only if _M_start._M_cur == _M_start._M_first.
-template <class _Tp, class _Alloc>
-void
-deque<_Tp,_Alloc>::_M_push_front_aux(const value_type& __t)
-{
- value_type __t_copy = __t;
- _M_reserve_map_at_front();
- *(_M_start._M_node - 1) = _M_allocate_node();
- try {
- _M_start._M_set_node(_M_start._M_node - 1);
- _M_start._M_cur = _M_start._M_last - 1;
- _Construct(_M_start._M_cur, __t_copy);
- }
- catch(...)
+
+ #ifdef _GLIBCPP_DEPRECATED
+ /**
+ * @brief Add data to the end of the %deque.
+ *
+ * This is a typical stack operation. The function creates a
+ * default-constructed element at the end of the %deque. Due to the nature
+ * of a %deque this operation can be done in constant time. You should
+ * consider using push_back(value_type()) instead.
+ *
+ * @note This was deprecated in 3.2 and will be removed in 3.4. You must
+ * define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
+ * c++config.h.
+ */
+ void
+ push_back()
{
- ++_M_start;
- _M_deallocate_node(*(_M_start._M_node - 1));
- __throw_exception_again;
+ if (_M_finish._M_cur != _M_finish._M_last - 1) {
+ _Construct(_M_finish._M_cur);
+ ++_M_finish._M_cur;
+ }
+ else
+ _M_push_back_aux();
}
-}
-
-// Called only if _M_start._M_cur == _M_start._M_first.
-template <class _Tp, class _Alloc>
-void
-deque<_Tp,_Alloc>::_M_push_front_aux()
-{
- _M_reserve_map_at_front();
- *(_M_start._M_node - 1) = _M_allocate_node();
- try {
- _M_start._M_set_node(_M_start._M_node - 1);
- _M_start._M_cur = _M_start._M_last - 1;
- _Construct(_M_start._M_cur);
- }
- catch(...)
+ #endif
+
+ /**
+ * @brief Removes first element.
+ *
+ * This is a typical stack operation. It shrinks the %deque by one.
+ *
+ * Note that no data is returned, and if the first element's data is
+ * needed, it should be retrieved before pop_front() is called.
+ */
+ void
+ pop_front()
{
- ++_M_start;
- _M_deallocate_node(*(_M_start._M_node - 1));
- __throw_exception_again;
+ if (_M_start._M_cur != _M_start._M_last - 1) {
+ _Destroy(_M_start._M_cur);
+ ++_M_start._M_cur;
+ }
+ else
+ _M_pop_front_aux();
}
-}
-
-// Called only if _M_finish._M_cur == _M_finish._M_first.
-template <class _Tp, class _Alloc>
-void deque<_Tp,_Alloc>::_M_pop_back_aux()
-{
- _M_deallocate_node(_M_finish._M_first);
- _M_finish._M_set_node(_M_finish._M_node - 1);
- _M_finish._M_cur = _M_finish._M_last - 1;
- _Destroy(_M_finish._M_cur);
-}
-
-// Called only if _M_start._M_cur == _M_start._M_last - 1. Note that
-// if the deque has at least one element (a precondition for this member
-// function), and if _M_start._M_cur == _M_start._M_last, then the deque
-// must have at least two nodes.
-template <class _Tp, class _Alloc>
-void deque<_Tp,_Alloc>::_M_pop_front_aux()
-{
- _Destroy(_M_start._M_cur);
- _M_deallocate_node(_M_start._M_first);
- _M_start._M_set_node(_M_start._M_node + 1);
- _M_start._M_cur = _M_start._M_first;
-}
-
-template <class _Tp, class _Alloc> template <class _InputIterator>
-void deque<_Tp,_Alloc>::insert(iterator __pos,
- _InputIterator __first, _InputIterator __last,
- input_iterator_tag)
-{
- copy(__first, __last, inserter(*this, __pos));
-}
-
-template <class _Tp, class _Alloc> template <class _ForwardIterator>
-void
-deque<_Tp,_Alloc>::insert(iterator __pos,
- _ForwardIterator __first, _ForwardIterator __last,
- forward_iterator_tag) {
- size_type __n = distance(__first, __last);
- if (__pos._M_cur == _M_start._M_cur) {
- iterator __new_start = _M_reserve_elements_at_front(__n);
- try {
- uninitialized_copy(__first, __last, __new_start);
- _M_start = __new_start;
+
+ /**
+ * @brief Removes last element.
+ *
+ * This is a typical stack operation. It shrinks the %deque by one.
+ *
+ * Note that no data is returned, and if the last element's data is
+ * needed, it should be retrieved before pop_back() is called.
+ */
+ void
+ pop_back()
+ {
+ if (_M_finish._M_cur != _M_finish._M_first) {
+ --_M_finish._M_cur;
+ _Destroy(_M_finish._M_cur);
+ }
+ else
+ _M_pop_back_aux();
}
- catch(...)
+
+ /**
+ * @brief Inserts given value into %deque before specified iterator.
+ * @param position An iterator into the %deque.
+ * @param x Data to be inserted.
+ * @return An iterator that points to the inserted data.
+ *
+ * This function will insert a copy of the given value before the specified
+ * location.
+ */
+ iterator
+ insert(iterator position, const value_type& __x);
+
+ #ifdef _GLIBCPP_DEPRECATED
+ /**
+ * @brief Inserts an element into the %deque.
+ * @param position An iterator into the %deque.
+ * @return An iterator that points to the inserted element.
+ *
+ * This function will insert a default-constructed element before the
+ * specified location. You should consider using
+ * insert(position,value_type()) instead.
+ *
+ * @note This was deprecated in 3.2 and will be removed in 3.4. You must
+ * define @c _GLIBCPP_DEPRECATED to make this visible in 3.2; see
+ * c++config.h.
+ */
+ iterator
+ insert(iterator __position)
+ { return insert(__position, value_type()); }
+ #endif
+
+ /**
+ * @brief Inserts a number of copies of given data into the %deque.
+ * @param position An iterator into the %deque.
+ * @param n Number of elements to be inserted.
+ * @param x Data to be inserted.
+ *
+ * This function will insert a specified number of copies of the given data
+ * before the location specified by @a position.
+ */
+ void
+ insert(iterator __position, size_type __n, const value_type& __x)
+ { _M_fill_insert(__position, __n, __x); }
+
+ /**
+ * @brief Inserts a range into the %deque.
+ * @param pos An iterator into the %deque.
+ * @param first An input iterator.
+ * @param last An input iterator.
+ *
+ * This function will insert copies of the data in the range [first,last)
+ * into the %deque before the location specified by @a pos. This is
+ * known as "range insert."
+ */
+ template<typename _InputIterator>
+ void
+ insert(iterator __pos, _InputIterator __first, _InputIterator __last)
{
- _M_destroy_nodes(__new_start._M_node, _M_start._M_node);
- __throw_exception_again;
+ // Check whether it's an integral type. If so, it's not an iterator.
+ typedef typename _Is_integer<_InputIterator>::_Integral _Integral;
+ _M_insert_dispatch(__pos, __first, __last, _Integral());
}
- }
- else if (__pos._M_cur == _M_finish._M_cur) {
- iterator __new_finish = _M_reserve_elements_at_back(__n);
- try {
- uninitialized_copy(__first, __last, _M_finish);
- _M_finish = __new_finish;
+
+ /**
+ * @brief Remove element at given position.
+ * @param position Iterator pointing to element to be erased.
+ * @return An iterator pointing to the next element (or end()).
+ *
+ * This function will erase the element at the given position and thus
+ * shorten the %deque by one.
+ *
+ * The user is cautioned that
+ * this function only erases the element, and that if the element is itself
+ * a pointer, the pointed-to memory is not touched in any way. Managing
+ * the pointer is the user's responsibilty.
+ */
+ iterator
+ erase(iterator __position);
+
+ /**
+ * @brief Remove a range of elements.
+ * @param first Iterator pointing to the first element to be erased.
+ * @param last Iterator pointing to one past the last element to be
+ * erased.
+ * @return An iterator pointing to the element pointed to by @a last
+ * prior to erasing (or end()).
+ *
+ * This function will erase the elements in the range [first,last) and
+ * shorten the %deque accordingly.
+ *
+ * The user is cautioned that
+ * this function only erases the elements, and that if the elements
+ * themselves are pointers, the pointed-to memory is not touched in any
+ * way. Managing the pointer is the user's responsibilty.
+ */
+ iterator
+ erase(iterator __first, iterator __last);
+
+ /**
+ * @brief Swaps data with another %deque.
+ * @param x A %deque of the same element and allocator types.
+ *
+ * This exchanges the elements between two deques in constant time.
+ * (Four pointers, so it should be quite fast.)
+ * Note that the global std::swap() function is specialized such that
+ * std::swap(d1,d2) will feed to this function.
+ */
+ void
+ swap(deque& __x)
+ {
+ std::swap(_M_start, __x._M_start);
+ std::swap(_M_finish, __x._M_finish);
+ std::swap(_M_map, __x._M_map);
+ std::swap(_M_map_size, __x._M_map_size);
}
- catch(...)
+
+ /**
+ * Erases all the elements. Note that this function only erases the
+ * elements, and that if the elements themselves are pointers, the
+ * pointed-to memory is not touched in any way. Managing the pointer is
+ * the user's responsibilty.
+ */
+ void clear();
+
+ protected:
+ // Internal constructor functions follow.
+
+ // called by the range constructor to implement [23.1.1]/9
+ template<typename _Integer>
+ void
+ _M_initialize_dispatch(_Integer __n, _Integer __x, __true_type)
{
- _M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1);
- __throw_exception_again;
+ _M_initialize_map(__n);
+ _M_fill_initialize(__x);
}
- }
- else
- _M_insert_aux(__pos, __first, __last, __n);
-}
-
-template <class _Tp, class _Alloc>
-typename deque<_Tp, _Alloc>::iterator
-deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos, const value_type& __x)
-{
- difference_type __index = __pos - _M_start;
- value_type __x_copy = __x;
- if (static_cast<size_type>(__index) < size() / 2) {
- push_front(front());
- iterator __front1 = _M_start;
- ++__front1;
- iterator __front2 = __front1;
- ++__front2;
- __pos = _M_start + __index;
- iterator __pos1 = __pos;
- ++__pos1;
- copy(__front2, __pos1, __front1);
- }
- else {
- push_back(back());
- iterator __back1 = _M_finish;
- --__back1;
- iterator __back2 = __back1;
- --__back2;
- __pos = _M_start + __index;
- copy_backward(__pos, __back2, __back1);
- }
- *__pos = __x_copy;
- return __pos;
-}
-
-template <class _Tp, class _Alloc>
-typename deque<_Tp,_Alloc>::iterator
-deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos)
-{
- difference_type __index = __pos - _M_start;
- if (static_cast<size_type>(__index) < size() / 2) {
- push_front(front());
- iterator __front1 = _M_start;
- ++__front1;
- iterator __front2 = __front1;
- ++__front2;
- __pos = _M_start + __index;
- iterator __pos1 = __pos;
- ++__pos1;
- copy(__front2, __pos1, __front1);
- }
- else {
- push_back(back());
- iterator __back1 = _M_finish;
- --__back1;
- iterator __back2 = __back1;
- --__back2;
- __pos = _M_start + __index;
- copy_backward(__pos, __back2, __back1);
- }
- *__pos = value_type();
- return __pos;
-}
-
-template <class _Tp, class _Alloc>
-void deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos,
- size_type __n,
- const value_type& __x)
-{
- const difference_type __elems_before = __pos - _M_start;
- size_type __length = this->size();
- value_type __x_copy = __x;
- if (__elems_before < difference_type(__length / 2)) {
- iterator __new_start = _M_reserve_elements_at_front(__n);
- iterator __old_start = _M_start;
- __pos = _M_start + __elems_before;
- try {
- if (__elems_before >= difference_type(__n)) {
- iterator __start_n = _M_start + difference_type(__n);
- uninitialized_copy(_M_start, __start_n, __new_start);
- _M_start = __new_start;
- copy(__start_n, __pos, __old_start);
- fill(__pos - difference_type(__n), __pos, __x_copy);
- }
- else {
- __uninitialized_copy_fill(_M_start, __pos, __new_start,
- _M_start, __x_copy);
- _M_start = __new_start;
- fill(__old_start, __pos, __x_copy);
- }
- }
- catch(...)
- {
- _M_destroy_nodes(__new_start._M_node, _M_start._M_node);
- __throw_exception_again;
+
+ // called by the range constructor to implement [23.1.1]/9
+ template<typename _InputIter>
+ void
+ _M_initialize_dispatch(_InputIter __first, _InputIter __last,
+ __false_type)
+ {
+ typedef typename iterator_traits<_InputIter>::iterator_category
+ _IterCategory;
+ _M_range_initialize(__first, __last, _IterCategory());
}
- }
- else {
- iterator __new_finish = _M_reserve_elements_at_back(__n);
- iterator __old_finish = _M_finish;
- const difference_type __elems_after =
- difference_type(__length) - __elems_before;
- __pos = _M_finish - __elems_after;
- try {
- if (__elems_after > difference_type(__n)) {
- iterator __finish_n = _M_finish - difference_type(__n);
- uninitialized_copy(__finish_n, _M_finish, _M_finish);
- _M_finish = __new_finish;
- copy_backward(__pos, __finish_n, __old_finish);
- fill(__pos, __pos + difference_type(__n), __x_copy);
+
+ // called by the second initialize_dispatch above
+ //@{
+ /**
+ * @if maint
+ * @brief Fills the deque with whatever is in [first,last).
+ * @param first An input iterator.
+ * @param last An input iterator.
+ * @return Nothing.
+ *
+ * If the iterators are actually forward iterators (or better), then the
+ * memory layout can be done all at once. Else we move forward using
+ * push_back on each value from the iterator.
+ * @endif
+ */
+ template <typename _InputIterator>
+ void
+ _M_range_initialize(_InputIterator __first, _InputIterator __last,
+ input_iterator_tag);
+
+ // called by the second initialize_dispatch above
+ template <typename _ForwardIterator>
+ void
+ _M_range_initialize(_ForwardIterator __first, _ForwardIterator __last,
+ forward_iterator_tag);
+ //@}
+
+ /**
+ * @if maint
+ * @brief Fills the %deque with copies of value.
+ * @param value Initial value.
+ * @return Nothing.
+ * @pre _M_start and _M_finish have already been initialized, but none of
+ * the %deque's elements have yet been constructed.
+ *
+ * This function is called only when the user provides an explicit size
+ * (with or without an explicit exemplar value).
+ * @endif
+ */
+ void
+ _M_fill_initialize(const value_type& __value);
+
+
+ // Internal assign functions follow. The *_aux functions do the actual
+ // assignment work for the range versions.
+
+ // called by the range assign to implement [23.1.1]/9
+ template<typename _Integer>
+ void
+ _M_assign_dispatch(_Integer __n, _Integer __val, __true_type)
+ {
+ _M_fill_assign(static_cast<size_type>(__n),
+ static_cast<value_type>(__val));
}
- else {
- __uninitialized_fill_copy(_M_finish, __pos + difference_type(__n),
- __x_copy, __pos, _M_finish);
- _M_finish = __new_finish;
- fill(__pos, __old_finish, __x_copy);
+
+ // called by the range assign to implement [23.1.1]/9
+ template<typename _InputIter>
+ void
+ _M_assign_dispatch(_InputIter __first, _InputIter __last, __false_type)
+ {
+ typedef typename iterator_traits<_InputIter>::iterator_category
+ _IterCategory;
+ _M_assign_aux(__first, __last, _IterCategory());
}
- }
- catch(...)
- {
- _M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1);
- __throw_exception_again;
+
+ // called by the second assign_dispatch above
+ template <typename _InputIterator>
+ void
+ _M_assign_aux(_InputIterator __first, _InputIterator __last,
+ input_iterator_tag);
+
+ // called by the second assign_dispatch above
+ template <typename _ForwardIterator>
+ void
+ _M_assign_aux(_ForwardIterator __first, _ForwardIterator __last,
+ forward_iterator_tag)
+ {
+ size_type __len = distance(__first, __last);
+ if (__len > size()) {
+ _ForwardIterator __mid = __first;
+ advance(__mid, size());
+ copy(__first, __mid, begin());
+ insert(end(), __mid, __last);
+ }
+ else
+ erase(copy(__first, __last, begin()), end());
}
- }
-}
-
-template <class _Tp, class _Alloc> template <class _ForwardIterator>
-void deque<_Tp,_Alloc>::_M_insert_aux(iterator __pos,
- _ForwardIterator __first,
- _ForwardIterator __last,
- size_type __n)
-{
- const difference_type __elemsbefore = __pos - _M_start;
- size_type __length = size();
- if (static_cast<size_type>(__elemsbefore) < __length / 2) {
- iterator __new_start = _M_reserve_elements_at_front(__n);
- iterator __old_start = _M_start;
- __pos = _M_start + __elemsbefore;
- try {
- if (__elemsbefore >= difference_type(__n)) {
- iterator __start_n = _M_start + difference_type(__n);
- uninitialized_copy(_M_start, __start_n, __new_start);
- _M_start = __new_start;
- copy(__start_n, __pos, __old_start);
- copy(__first, __last, __pos - difference_type(__n));
+
+ // Called by assign(n,t), and the range assign when it turns out to be the
+ // same thing.
+ void
+ _M_fill_assign(size_type __n, const value_type& __val)
+ {
+ if (__n > size())
+ {
+ fill(begin(), end(), __val);
+ insert(end(), __n - size(), __val);
}
- else {
- _ForwardIterator __mid = __first;
- advance(__mid, difference_type(__n) - __elemsbefore);
- __uninitialized_copy_copy(_M_start, __pos, __first, __mid,
- __new_start);
- _M_start = __new_start;
- copy(__mid, __last, __old_start);
+ else
+ {
+ erase(begin() + __n, end());
+ fill(begin(), end(), __val);
}
}
- catch(...)
+
+
+ //@{
+ /**
+ * @if maint
+ * @brief Helper functions for push_* and pop_*.
+ * @endif
+ */
+ void _M_push_back_aux(const value_type&);
+ void _M_push_front_aux(const value_type&);
+ #ifdef _GLIBCPP_DEPRECATED
+ void _M_push_back_aux();
+ void _M_push_front_aux();
+ #endif
+ void _M_pop_back_aux();
+ void _M_pop_front_aux();
+ //@}
+
+
+ // Internal insert functions follow. The *_aux functions do the actual
+ // insertion work when all shortcuts fail.
+
+ // called by the range insert to implement [23.1.1]/9
+ template<typename _Integer>
+ void
+ _M_insert_dispatch(iterator __pos,
+ _Integer __n, _Integer __x, __true_type)
{
- _M_destroy_nodes(__new_start._M_node, _M_start._M_node);
- __throw_exception_again;
- }
- }
- else {
- iterator __new_finish = _M_reserve_elements_at_back(__n);
- iterator __old_finish = _M_finish;
- const difference_type __elemsafter =
- difference_type(__length) - __elemsbefore;
- __pos = _M_finish - __elemsafter;
- try {
- if (__elemsafter > difference_type(__n)) {
- iterator __finish_n = _M_finish - difference_type(__n);
- uninitialized_copy(__finish_n, _M_finish, _M_finish);
- _M_finish = __new_finish;
- copy_backward(__pos, __finish_n, __old_finish);
- copy(__first, __last, __pos);
- }
- else {
- _ForwardIterator __mid = __first;
- advance(__mid, __elemsafter);
- __uninitialized_copy_copy(__mid, __last, __pos, _M_finish, _M_finish);
- _M_finish = __new_finish;
- copy(__first, __mid, __pos);
+ _M_fill_insert(__pos, static_cast<size_type>(__n),
+ static_cast<value_type>(__x));
}
- }
- catch(...)
+
+ // called by the range insert to implement [23.1.1]/9
+ template<typename _InputIterator>
+ void
+ _M_insert_dispatch(iterator __pos,
+ _InputIterator __first, _InputIterator __last,
+ __false_type)
{
- _M_destroy_nodes(_M_finish._M_node + 1, __new_finish._M_node + 1);
- __throw_exception_again;
+ typedef typename iterator_traits<_InputIterator>::iterator_category
+ _IterCategory;
+ _M_range_insert_aux(__pos, __first, __last, _IterCategory());
}
+
+ // called by the second insert_dispatch above
+ template <typename _InputIterator>
+ void
+ _M_range_insert_aux(iterator __pos, _InputIterator __first,
+ _InputIterator __last, input_iterator_tag);
+
+ // called by the second insert_dispatch above
+ template <typename _ForwardIterator>
+ void
+ _M_range_insert_aux(iterator __pos, _ForwardIterator __first,
+ _ForwardIterator __last, forward_iterator_tag);
+
+ // Called by insert(p,n,x), and the range insert when it turns out to be
+ // the same thing. Can use fill functions in optimal situations, otherwise
+ // passes off to insert_aux(p,n,x).
+ void
+ _M_fill_insert(iterator __pos, size_type __n, const value_type& __x);
+
+ // called by insert(p,x)
+ iterator
+ _M_insert_aux(iterator __pos, const value_type& __x);
+
+ // called by insert(p,n,x) via fill_insert
+ void
+ _M_insert_aux(iterator __pos, size_type __n, const value_type& __x);
+
+ // called by range_insert_aux for forward iterators
+ template <typename _ForwardIterator>
+ void
+ _M_insert_aux(iterator __pos,
+ _ForwardIterator __first, _ForwardIterator __last,
+ size_type __n);
+
+ #ifdef _GLIBCPP_DEPRECATED
+ // unused, see comment in implementation
+ iterator _M_insert_aux(iterator __pos);
+ #endif
+
+ //@{
+ /**
+ * @if maint
+ * @brief Memory-handling helpers for the previous internal insert
+ * functions.
+ * @endif
+ */
+ iterator
+ _M_reserve_elements_at_front(size_type __n)
+ {
+ size_type __vacancies = _M_start._M_cur - _M_start._M_first;
+ if (__n > __vacancies)
+ _M_new_elements_at_front(__n - __vacancies);
+ return _M_start - difference_type(__n);
+ }
+
+ iterator
+ _M_reserve_elements_at_back(size_type __n)
+ {
+ size_type __vacancies = (_M_finish._M_last - _M_finish._M_cur) - 1;
+ if (__n > __vacancies)
+ _M_new_elements_at_back(__n - __vacancies);
+ return _M_finish + difference_type(__n);
+ }
+
+ void
+ _M_new_elements_at_front(size_type __new_elements);
+
+ void
+ _M_new_elements_at_back(size_type __new_elements);
+ //@}
+
+
+ //@{
+ /**
+ * @if maint
+ * @brief Memory-handling helpers for the major %map.
+ *
+ * Makes sure the _M_map has space for new nodes. Does not actually add
+ * the nodes. Can invalidate _M_map pointers. (And consequently, %deque
+ * iterators.)
+ * @endif
+ */
+ void
+ _M_reserve_map_at_back (size_type __nodes_to_add = 1)
+ {
+ if (__nodes_to_add + 1 > _M_map_size - (_M_finish._M_node - _M_map))
+ _M_reallocate_map(__nodes_to_add, false);
+ }
+
+ void
+ _M_reserve_map_at_front (size_type __nodes_to_add = 1)
+ {
+ if (__nodes_to_add > size_type(_M_start._M_node - _M_map))
+ _M_reallocate_map(__nodes_to_add, true);
+ }
+
+ void
+ _M_reallocate_map(size_type __nodes_to_add, bool __add_at_front);
+ //@}
+ };
+
+
+ /**
+ * @brief Deque equality comparison.
+ * @param x A %deque.
+ * @param y A %deque of the same type as @a x.
+ * @return True iff the size and elements of the deques are equal.
+ *
+ * This is an equivalence relation. It is linear in the size of the
+ * deques. Deques are considered equivalent if their sizes are equal,
+ * and if corresponding elements compare equal.
+ */
+ template <typename _Tp, typename _Alloc>
+ inline bool operator==(const deque<_Tp, _Alloc>& __x,
+ const deque<_Tp, _Alloc>& __y)
+ {
+ return __x.size() == __y.size() &&
+ equal(__x.begin(), __x.end(), __y.begin());
}
-}
-
-template <class _Tp, class _Alloc>
-void deque<_Tp,_Alloc>::_M_new_elements_at_front(size_type __new_elems)
-{
- size_type __new_nodes
- = (__new_elems + _S_buffer_size() - 1) / _S_buffer_size();
- _M_reserve_map_at_front(__new_nodes);
- size_type __i;
- try {
- for (__i = 1; __i <= __new_nodes; ++__i)
- *(_M_start._M_node - __i) = _M_allocate_node();
+
+ /**
+ * @brief Deque ordering relation.
+ * @param x A %deque.
+ * @param y A %deque of the same type as @a x.
+ * @return True iff @a x is lexographically less than @a y.
+ *
+ * This is a total ordering relation. It is linear in the size of the
+ * deques. The elements must be comparable with @c <.
+ *
+ * See std::lexographical_compare() for how the determination is made.
+ */
+ template <typename _Tp, typename _Alloc>
+ inline bool operator<(const deque<_Tp, _Alloc>& __x,
+ const deque<_Tp, _Alloc>& __y)
+ {
+ return lexicographical_compare(__x.begin(), __x.end(),
+ __y.begin(), __y.end());
}
- catch(...) {
- for (size_type __j = 1; __j < __i; ++__j)
- _M_deallocate_node(*(_M_start._M_node - __j));
- __throw_exception_again;
+
+ /// Based on operator==
+ template <typename _Tp, typename _Alloc>
+ inline bool operator!=(const deque<_Tp, _Alloc>& __x,
+ const deque<_Tp, _Alloc>& __y) {
+ return !(__x == __y);
}
-}
-
-template <class _Tp, class _Alloc>
-void deque<_Tp,_Alloc>::_M_new_elements_at_back(size_type __new_elems)
-{
- size_type __new_nodes
- = (__new_elems + _S_buffer_size() - 1) / _S_buffer_size();
- _M_reserve_map_at_back(__new_nodes);
- size_type __i;
- try {
- for (__i = 1; __i <= __new_nodes; ++__i)
- *(_M_finish._M_node + __i) = _M_allocate_node();
+
+ /// Based on operator<
+ template <typename _Tp, typename _Alloc>
+ inline bool operator>(const deque<_Tp, _Alloc>& __x,
+ const deque<_Tp, _Alloc>& __y) {
+ return __y < __x;
}
- catch(...) {
- for (size_type __j = 1; __j < __i; ++__j)
- _M_deallocate_node(*(_M_finish._M_node + __j));
- __throw_exception_again;
+
+ /// Based on operator<
+ template <typename _Tp, typename _Alloc>
+ inline bool operator<=(const deque<_Tp, _Alloc>& __x,
+ const deque<_Tp, _Alloc>& __y) {
+ return !(__y < __x);
}
-}
-
-template <class _Tp, class _Alloc>
-void deque<_Tp,_Alloc>::_M_reallocate_map(size_type __nodes_to_add,
- bool __add_at_front)
-{
- size_type __old_num_nodes = _M_finish._M_node - _M_start._M_node + 1;
- size_type __new_num_nodes = __old_num_nodes + __nodes_to_add;
-
- _Map_pointer __new_nstart;
- if (_M_map_size > 2 * __new_num_nodes) {
- __new_nstart = _M_map + (_M_map_size - __new_num_nodes) / 2
- + (__add_at_front ? __nodes_to_add : 0);
- if (__new_nstart < _M_start._M_node)
- copy(_M_start._M_node, _M_finish._M_node + 1, __new_nstart);
- else
- copy_backward(_M_start._M_node, _M_finish._M_node + 1,
- __new_nstart + __old_num_nodes);
+
+ /// Based on operator<
+ template <typename _Tp, typename _Alloc>
+ inline bool operator>=(const deque<_Tp, _Alloc>& __x,
+ const deque<_Tp, _Alloc>& __y) {
+ return !(__x < __y);
}
- else {
- size_type __new_map_size =
- _M_map_size + max(_M_map_size, __nodes_to_add) + 2;
-
- _Map_pointer __new_map = _M_allocate_map(__new_map_size);
- __new_nstart = __new_map + (__new_map_size - __new_num_nodes) / 2
- + (__add_at_front ? __nodes_to_add : 0);
- copy(_M_start._M_node, _M_finish._M_node + 1, __new_nstart);
- _M_deallocate_map(_M_map, _M_map_size);
-
- _M_map = __new_map;
- _M_map_size = __new_map_size;
+
+ /// See std::deque::swap().
+ template <typename _Tp, typename _Alloc>
+ inline void swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y)
+ {
+ __x.swap(__y);
}
-
- _M_start._M_set_node(__new_nstart);
- _M_finish._M_set_node(__new_nstart + __old_num_nodes - 1);
-}
-
-
-// Nonmember functions.
-
-template <class _Tp, class _Alloc>
-inline bool operator==(const deque<_Tp, _Alloc>& __x,
- const deque<_Tp, _Alloc>& __y) {
- return __x.size() == __y.size() &&
- equal(__x.begin(), __x.end(), __y.begin());
-}
-
-template <class _Tp, class _Alloc>
-inline bool operator<(const deque<_Tp, _Alloc>& __x,
- const deque<_Tp, _Alloc>& __y) {
- return lexicographical_compare(__x.begin(), __x.end(),
- __y.begin(), __y.end());
-}
-
-template <class _Tp, class _Alloc>
-inline bool operator!=(const deque<_Tp, _Alloc>& __x,
- const deque<_Tp, _Alloc>& __y) {
- return !(__x == __y);
-}
-
-template <class _Tp, class _Alloc>
-inline bool operator>(const deque<_Tp, _Alloc>& __x,
- const deque<_Tp, _Alloc>& __y) {
- return __y < __x;
-}
-
-template <class _Tp, class _Alloc>
-inline bool operator<=(const deque<_Tp, _Alloc>& __x,
- const deque<_Tp, _Alloc>& __y) {
- return !(__y < __x);
-}
-template <class _Tp, class _Alloc>
-inline bool operator>=(const deque<_Tp, _Alloc>& __x,
- const deque<_Tp, _Alloc>& __y) {
- return !(__x < __y);
-}
-
-template <class _Tp, class _Alloc>
-inline void swap(deque<_Tp,_Alloc>& __x, deque<_Tp,_Alloc>& __y) {
- __x.swap(__y);
-}
-
} // namespace std
#endif /* __GLIBCPP_INTERNAL_DEQUE_H */
-