aboutsummaryrefslogtreecommitdiff
path: root/clang/lib/Basic/FixedPoint.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'clang/lib/Basic/FixedPoint.cpp')
-rw-r--r--clang/lib/Basic/FixedPoint.cpp136
1 files changed, 136 insertions, 0 deletions
diff --git a/clang/lib/Basic/FixedPoint.cpp b/clang/lib/Basic/FixedPoint.cpp
index 05600dfc6d21..ed8b92c98fdb 100644
--- a/clang/lib/Basic/FixedPoint.cpp
+++ b/clang/lib/Basic/FixedPoint.cpp
@@ -173,6 +173,142 @@ APFixedPoint APFixedPoint::add(const APFixedPoint &Other,
return APFixedPoint(Result, CommonFXSema);
}
+APFixedPoint APFixedPoint::sub(const APFixedPoint &Other,
+ bool *Overflow) const {
+ auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
+ APFixedPoint ConvertedThis = convert(CommonFXSema);
+ APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
+ llvm::APSInt ThisVal = ConvertedThis.getValue();
+ llvm::APSInt OtherVal = ConvertedOther.getValue();
+ bool Overflowed = false;
+
+ llvm::APSInt Result;
+ if (CommonFXSema.isSaturated()) {
+ Result = CommonFXSema.isSigned() ? ThisVal.ssub_sat(OtherVal)
+ : ThisVal.usub_sat(OtherVal);
+ } else {
+ Result = ThisVal.isSigned() ? ThisVal.ssub_ov(OtherVal, Overflowed)
+ : ThisVal.usub_ov(OtherVal, Overflowed);
+ }
+
+ if (Overflow)
+ *Overflow = Overflowed;
+
+ return APFixedPoint(Result, CommonFXSema);
+}
+
+APFixedPoint APFixedPoint::mul(const APFixedPoint &Other,
+ bool *Overflow) const {
+ auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
+ APFixedPoint ConvertedThis = convert(CommonFXSema);
+ APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
+ llvm::APSInt ThisVal = ConvertedThis.getValue();
+ llvm::APSInt OtherVal = ConvertedOther.getValue();
+ bool Overflowed = false;
+
+ // Widen the LHS and RHS so we can perform a full multiplication.
+ unsigned Wide = CommonFXSema.getWidth() * 2;
+ if (CommonFXSema.isSigned()) {
+ ThisVal = ThisVal.sextOrSelf(Wide);
+ OtherVal = OtherVal.sextOrSelf(Wide);
+ } else {
+ ThisVal = ThisVal.zextOrSelf(Wide);
+ OtherVal = OtherVal.zextOrSelf(Wide);
+ }
+
+ // Perform the full multiplication and downscale to get the same scale.
+ //
+ // Note that the right shifts here perform an implicit downwards rounding.
+ // This rounding could discard bits that would technically place the result
+ // outside the representable range. We interpret the spec as allowing us to
+ // perform the rounding step first, avoiding the overflow case that would
+ // arise.
+ llvm::APSInt Result;
+ if (CommonFXSema.isSigned())
+ Result = ThisVal.smul_ov(OtherVal, Overflowed)
+ .ashr(CommonFXSema.getScale());
+ else
+ Result = ThisVal.umul_ov(OtherVal, Overflowed)
+ .lshr(CommonFXSema.getScale());
+ assert(!Overflowed && "Full multiplication cannot overflow!");
+ Result.setIsSigned(CommonFXSema.isSigned());
+
+ // If our result lies outside of the representative range of the common
+ // semantic, we either have overflow or saturation.
+ llvm::APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue()
+ .extOrTrunc(Wide);
+ llvm::APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue()
+ .extOrTrunc(Wide);
+ if (CommonFXSema.isSaturated()) {
+ if (Result < Min)
+ Result = Min;
+ else if (Result > Max)
+ Result = Max;
+ } else
+ Overflowed = Result < Min || Result > Max;
+
+ if (Overflow)
+ *Overflow = Overflowed;
+
+ return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()),
+ CommonFXSema);
+}
+
+APFixedPoint APFixedPoint::div(const APFixedPoint &Other,
+ bool *Overflow) const {
+ auto CommonFXSema = Sema.getCommonSemantics(Other.getSemantics());
+ APFixedPoint ConvertedThis = convert(CommonFXSema);
+ APFixedPoint ConvertedOther = Other.convert(CommonFXSema);
+ llvm::APSInt ThisVal = ConvertedThis.getValue();
+ llvm::APSInt OtherVal = ConvertedOther.getValue();
+ bool Overflowed = false;
+
+ // Widen the LHS and RHS so we can perform a full division.
+ unsigned Wide = CommonFXSema.getWidth() * 2;
+ if (CommonFXSema.isSigned()) {
+ ThisVal = ThisVal.sextOrSelf(Wide);
+ OtherVal = OtherVal.sextOrSelf(Wide);
+ } else {
+ ThisVal = ThisVal.zextOrSelf(Wide);
+ OtherVal = OtherVal.zextOrSelf(Wide);
+ }
+
+ // Upscale to compensate for the loss of precision from division, and
+ // perform the full division.
+ ThisVal = ThisVal.shl(CommonFXSema.getScale());
+ llvm::APSInt Result;
+ if (CommonFXSema.isSigned()) {
+ llvm::APInt Rem;
+ llvm::APInt::sdivrem(ThisVal, OtherVal, Result, Rem);
+ // If the quotient is negative and the remainder is nonzero, round
+ // towards negative infinity by subtracting epsilon from the result.
+ if (ThisVal.isNegative() != OtherVal.isNegative() && !Rem.isNullValue())
+ Result = Result - 1;
+ } else
+ Result = ThisVal.udiv(OtherVal);
+ Result.setIsSigned(CommonFXSema.isSigned());
+
+ // If our result lies outside of the representative range of the common
+ // semantic, we either have overflow or saturation.
+ llvm::APSInt Max = APFixedPoint::getMax(CommonFXSema).getValue()
+ .extOrTrunc(Wide);
+ llvm::APSInt Min = APFixedPoint::getMin(CommonFXSema).getValue()
+ .extOrTrunc(Wide);
+ if (CommonFXSema.isSaturated()) {
+ if (Result < Min)
+ Result = Min;
+ else if (Result > Max)
+ Result = Max;
+ } else
+ Overflowed = Result < Min || Result > Max;
+
+ if (Overflow)
+ *Overflow = Overflowed;
+
+ return APFixedPoint(Result.sextOrTrunc(CommonFXSema.getWidth()),
+ CommonFXSema);
+}
+
void APFixedPoint::toString(llvm::SmallVectorImpl<char> &Str) const {
llvm::APSInt Val = getValue();
unsigned Scale = getScale();