aboutsummaryrefslogtreecommitdiff
path: root/sys/dev/ath/ath_hal/ah_eeprom_v3.c
diff options
context:
space:
mode:
authorSam Leffler <sam@FreeBSD.org>2008-12-01 16:43:08 +0000
committerSam Leffler <sam@FreeBSD.org>2008-12-01 16:43:08 +0000
commit1477970585cad11dfbf3ef65e1149f7004b9a005 (patch)
tree705ca36f03c4c9e53452783c2b4ccf8675a0b604 /sys/dev/ath/ath_hal/ah_eeprom_v3.c
parenta2944602577f0c7186206c2e1821d21f4d5befcb (diff)
parent190b924c81c59a263aa7c1dfb6cf20bdaf01f66f (diff)
downloadsrc-1477970585cad11dfbf3ef65e1149f7004b9a005.tar.gz
src-1477970585cad11dfbf3ef65e1149f7004b9a005.zip
import ath hal
Notes
Notes: svn path=/head/; revision=185521
Diffstat (limited to 'sys/dev/ath/ath_hal/ah_eeprom_v3.c')
-rw-r--r--sys/dev/ath/ath_hal/ah_eeprom_v3.c1876
1 files changed, 1876 insertions, 0 deletions
diff --git a/sys/dev/ath/ath_hal/ah_eeprom_v3.c b/sys/dev/ath/ath_hal/ah_eeprom_v3.c
new file mode 100644
index 000000000000..b2c304b7de1e
--- /dev/null
+++ b/sys/dev/ath/ath_hal/ah_eeprom_v3.c
@@ -0,0 +1,1876 @@
+/*
+ * Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
+ * Copyright (c) 2002-2008 Atheros Communications, Inc.
+ *
+ * Permission to use, copy, modify, and/or distribute this software for any
+ * purpose with or without fee is hereby granted, provided that the above
+ * copyright notice and this permission notice appear in all copies.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
+ * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
+ * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
+ * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
+ * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
+ * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
+ * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ *
+ * $Id: ah_eeprom_v3.c,v 1.4 2008/11/27 22:39:42 sam Exp $
+ */
+#include "opt_ah.h"
+
+#include "ah.h"
+#include "ah_internal.h"
+#include "ah_eeprom_v3.h"
+
+static void
+getPcdacInterceptsFromPcdacMinMax(HAL_EEPROM *ee,
+ uint16_t pcdacMin, uint16_t pcdacMax, uint16_t *vp)
+{
+ const static uint16_t intercepts3[] =
+ { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
+ const static uint16_t intercepts3_2[] =
+ { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
+ const uint16_t *ip = ee->ee_version < AR_EEPROM_VER3_2 ?
+ intercepts3 : intercepts3_2;
+ int i;
+
+ /* loop for the percentages in steps or 5 */
+ for (i = 0; i < NUM_INTERCEPTS; i++ )
+ *vp++ = (ip[i] * pcdacMax + (100 - ip[i]) * pcdacMin) / 100;
+}
+
+/*
+ * Get channel value from binary representation held in eeprom
+ */
+static uint16_t
+fbin2freq(HAL_EEPROM *ee, uint16_t fbin)
+{
+ if (fbin == CHANNEL_UNUSED) /* reserved value, don't convert */
+ return fbin;
+ return ee->ee_version <= AR_EEPROM_VER3_2 ?
+ (fbin > 62 ? 5100 + 10*62 + 5*(fbin-62) : 5100 + 10*fbin) :
+ 4800 + 5*fbin;
+}
+
+static uint16_t
+fbin2freq_2p4(HAL_EEPROM *ee, uint16_t fbin)
+{
+ if (fbin == CHANNEL_UNUSED) /* reserved value, don't convert */
+ return fbin;
+ return ee->ee_version <= AR_EEPROM_VER3_2 ?
+ 2400 + fbin :
+ 2300 + fbin;
+}
+
+/*
+ * Now copy EEPROM frequency pier contents into the allocated space
+ */
+static HAL_BOOL
+readEepromFreqPierInfo(struct ath_hal *ah, HAL_EEPROM *ee)
+{
+#define EEREAD(_off) do { \
+ if (!ath_hal_eepromRead(ah, _off, &eeval)) \
+ return AH_FALSE; \
+} while (0)
+ uint16_t eeval, off;
+ int i;
+
+ if (ee->ee_version >= AR_EEPROM_VER4_0 &&
+ ee->ee_eepMap && !ee->ee_Amode) {
+ /*
+ * V4.0 EEPROMs with map type 1 have frequency pier
+ * data only when 11a mode is supported.
+ */
+ return AH_TRUE;
+ }
+ if (ee->ee_version >= AR_EEPROM_VER3_3) {
+ off = GROUPS_OFFSET3_3 + GROUP1_OFFSET;
+ for (i = 0; i < ee->ee_numChannels11a; i += 2) {
+ EEREAD(off++);
+ ee->ee_channels11a[i] = (eeval >> 8) & FREQ_MASK_3_3;
+ ee->ee_channels11a[i+1] = eeval & FREQ_MASK_3_3;
+ }
+ } else {
+ off = GROUPS_OFFSET3_2 + GROUP1_OFFSET;
+
+ EEREAD(off++);
+ ee->ee_channels11a[0] = (eeval >> 9) & FREQ_MASK;
+ ee->ee_channels11a[1] = (eeval >> 2) & FREQ_MASK;
+ ee->ee_channels11a[2] = (eeval << 5) & FREQ_MASK;
+
+ EEREAD(off++);
+ ee->ee_channels11a[2] |= (eeval >> 11) & 0x1f;
+ ee->ee_channels11a[3] = (eeval >> 4) & FREQ_MASK;
+ ee->ee_channels11a[4] = (eeval << 3) & FREQ_MASK;
+
+ EEREAD(off++);
+ ee->ee_channels11a[4] |= (eeval >> 13) & 0x7;
+ ee->ee_channels11a[5] = (eeval >> 6) & FREQ_MASK;
+ ee->ee_channels11a[6] = (eeval << 1) & FREQ_MASK;
+
+ EEREAD(off++);
+ ee->ee_channels11a[6] |= (eeval >> 15) & 0x1;
+ ee->ee_channels11a[7] = (eeval >> 8) & FREQ_MASK;
+ ee->ee_channels11a[8] = (eeval >> 1) & FREQ_MASK;
+ ee->ee_channels11a[9] = (eeval << 6) & FREQ_MASK;
+
+ EEREAD(off++);
+ ee->ee_channels11a[9] |= (eeval >> 10) & 0x3f;
+ }
+
+ for (i = 0; i < ee->ee_numChannels11a; i++)
+ ee->ee_channels11a[i] = fbin2freq(ee, ee->ee_channels11a[i]);
+
+ return AH_TRUE;
+#undef EEREAD
+}
+
+/*
+ * Rev 4 Eeprom 5112 Power Extract Functions
+ */
+
+/*
+ * Allocate the power information based on the number of channels
+ * recorded by the calibration. These values are then initialized.
+ */
+static HAL_BOOL
+eepromAllocExpnPower5112(struct ath_hal *ah,
+ const EEPROM_POWER_5112 *pCalDataset,
+ EEPROM_POWER_EXPN_5112 *pPowerExpn)
+{
+ uint16_t numChannels = pCalDataset->numChannels;
+ const uint16_t *pChanList = pCalDataset->pChannels;
+ void *data;
+ int i, j;
+
+ /* Allocate the channel and Power Data arrays together */
+ data = ath_hal_malloc(
+ roundup(sizeof(uint16_t) * numChannels, sizeof(uint32_t)) +
+ sizeof(EXPN_DATA_PER_CHANNEL_5112) * numChannels);
+ if (data == AH_NULL) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s unable to allocate raw data struct (gen3)\n", __func__);
+ return AH_FALSE;
+ }
+ pPowerExpn->pChannels = data;
+ pPowerExpn->pDataPerChannel = (void *)(((char *)data) +
+ roundup(sizeof(uint16_t) * numChannels, sizeof(uint32_t)));
+
+ pPowerExpn->numChannels = numChannels;
+ for (i = 0; i < numChannels; i++) {
+ pPowerExpn->pChannels[i] =
+ pPowerExpn->pDataPerChannel[i].channelValue =
+ pChanList[i];
+ for (j = 0; j < NUM_XPD_PER_CHANNEL; j++) {
+ pPowerExpn->pDataPerChannel[i].pDataPerXPD[j].xpd_gain = j;
+ pPowerExpn->pDataPerChannel[i].pDataPerXPD[j].numPcdacs = 0;
+ }
+ pPowerExpn->pDataPerChannel[i].pDataPerXPD[0].numPcdacs = 4;
+ pPowerExpn->pDataPerChannel[i].pDataPerXPD[3].numPcdacs = 3;
+ }
+ return AH_TRUE;
+}
+
+/*
+ * Expand the dataSet from the calibration information into the
+ * final power structure for 5112
+ */
+static HAL_BOOL
+eepromExpandPower5112(struct ath_hal *ah,
+ const EEPROM_POWER_5112 *pCalDataset,
+ EEPROM_POWER_EXPN_5112 *pPowerExpn)
+{
+ int ii, jj, kk;
+ int16_t maxPower_t4;
+ EXPN_DATA_PER_XPD_5112 *pExpnXPD;
+ /* ptr to array of info held per channel */
+ const EEPROM_DATA_PER_CHANNEL_5112 *pCalCh;
+ uint16_t xgainList[2], xpdMask;
+
+ pPowerExpn->xpdMask = pCalDataset->xpdMask;
+
+ xgainList[0] = 0xDEAD;
+ xgainList[1] = 0xDEAD;
+
+ kk = 0;
+ xpdMask = pPowerExpn->xpdMask;
+ for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++) {
+ if (((xpdMask >> jj) & 1) > 0) {
+ if (kk > 1) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: too many xpdGains in dataset: %u\n",
+ __func__, kk);
+ return AH_FALSE;
+ }
+ xgainList[kk++] = jj;
+ }
+ }
+
+ pPowerExpn->numChannels = pCalDataset->numChannels;
+ if (pPowerExpn->numChannels == 0) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: no channels\n", __func__);
+ return AH_FALSE;
+ }
+
+ for (ii = 0; ii < pPowerExpn->numChannels; ii++) {
+ pCalCh = &pCalDataset->pDataPerChannel[ii];
+ pPowerExpn->pDataPerChannel[ii].channelValue =
+ pCalCh->channelValue;
+ pPowerExpn->pDataPerChannel[ii].maxPower_t4 =
+ pCalCh->maxPower_t4;
+ maxPower_t4 = pPowerExpn->pDataPerChannel[ii].maxPower_t4;
+
+ for (jj = 0; jj < NUM_XPD_PER_CHANNEL; jj++)
+ pPowerExpn->pDataPerChannel[ii].pDataPerXPD[jj].numPcdacs = 0;
+ if (xgainList[1] == 0xDEAD) {
+ jj = xgainList[0];
+ pExpnXPD = &pPowerExpn->pDataPerChannel[ii].pDataPerXPD[jj];
+ pExpnXPD->numPcdacs = 4;
+ pExpnXPD->pcdac[0] = pCalCh->pcd1_xg0;
+ pExpnXPD->pcdac[1] = (uint16_t)
+ (pExpnXPD->pcdac[0] + pCalCh->pcd2_delta_xg0);
+ pExpnXPD->pcdac[2] = (uint16_t)
+ (pExpnXPD->pcdac[1] + pCalCh->pcd3_delta_xg0);
+ pExpnXPD->pcdac[3] = (uint16_t)
+ (pExpnXPD->pcdac[2] + pCalCh->pcd4_delta_xg0);
+
+ pExpnXPD->pwr_t4[0] = pCalCh->pwr1_xg0;
+ pExpnXPD->pwr_t4[1] = pCalCh->pwr2_xg0;
+ pExpnXPD->pwr_t4[2] = pCalCh->pwr3_xg0;
+ pExpnXPD->pwr_t4[3] = pCalCh->pwr4_xg0;
+
+ } else {
+ pPowerExpn->pDataPerChannel[ii].pDataPerXPD[xgainList[0]].pcdac[0] = pCalCh->pcd1_xg0;
+ pPowerExpn->pDataPerChannel[ii].pDataPerXPD[xgainList[1]].pcdac[0] = 20;
+ pPowerExpn->pDataPerChannel[ii].pDataPerXPD[xgainList[1]].pcdac[1] = 35;
+ pPowerExpn->pDataPerChannel[ii].pDataPerXPD[xgainList[1]].pcdac[2] = 63;
+
+ jj = xgainList[0];
+ pExpnXPD = &pPowerExpn->pDataPerChannel[ii].pDataPerXPD[jj];
+ pExpnXPD->numPcdacs = 4;
+ pExpnXPD->pcdac[1] = (uint16_t)
+ (pExpnXPD->pcdac[0] + pCalCh->pcd2_delta_xg0);
+ pExpnXPD->pcdac[2] = (uint16_t)
+ (pExpnXPD->pcdac[1] + pCalCh->pcd3_delta_xg0);
+ pExpnXPD->pcdac[3] = (uint16_t)
+ (pExpnXPD->pcdac[2] + pCalCh->pcd4_delta_xg0);
+ pExpnXPD->pwr_t4[0] = pCalCh->pwr1_xg0;
+ pExpnXPD->pwr_t4[1] = pCalCh->pwr2_xg0;
+ pExpnXPD->pwr_t4[2] = pCalCh->pwr3_xg0;
+ pExpnXPD->pwr_t4[3] = pCalCh->pwr4_xg0;
+
+ jj = xgainList[1];
+ pExpnXPD = &pPowerExpn->pDataPerChannel[ii].pDataPerXPD[jj];
+ pExpnXPD->numPcdacs = 3;
+
+ pExpnXPD->pwr_t4[0] = pCalCh->pwr1_xg3;
+ pExpnXPD->pwr_t4[1] = pCalCh->pwr2_xg3;
+ pExpnXPD->pwr_t4[2] = pCalCh->pwr3_xg3;
+ }
+ }
+ return AH_TRUE;
+}
+
+static HAL_BOOL
+readEepromRawPowerCalInfo5112(struct ath_hal *ah, HAL_EEPROM *ee)
+{
+#define EEREAD(_off) do { \
+ if (!ath_hal_eepromRead(ah, _off, &eeval)) \
+ return AH_FALSE; \
+} while (0)
+ const uint16_t dbmmask = 0xff;
+ const uint16_t pcdac_delta_mask = 0x1f;
+ const uint16_t pcdac_mask = 0x3f;
+ const uint16_t freqmask = 0xff;
+
+ int i, mode, numPiers;
+ uint32_t off;
+ uint16_t eeval;
+ uint16_t freq[NUM_11A_EEPROM_CHANNELS];
+ EEPROM_POWER_5112 eePower;
+
+ HALASSERT(ee->ee_version >= AR_EEPROM_VER4_0);
+ off = GROUPS_OFFSET3_3;
+ for (mode = headerInfo11A; mode <= headerInfo11G; mode++) {
+ numPiers = 0;
+ switch (mode) {
+ case headerInfo11A:
+ if (!ee->ee_Amode) /* no 11a calibration data */
+ continue;
+ while (numPiers < NUM_11A_EEPROM_CHANNELS) {
+ EEREAD(off++);
+ if ((eeval & freqmask) == 0)
+ break;
+ freq[numPiers++] = fbin2freq(ee,
+ eeval & freqmask);
+
+ if (((eeval >> 8) & freqmask) == 0)
+ break;
+ freq[numPiers++] = fbin2freq(ee,
+ (eeval>>8) & freqmask);
+ }
+ break;
+ case headerInfo11B:
+ if (!ee->ee_Bmode) /* no 11b calibration data */
+ continue;
+ for (i = 0; i < NUM_2_4_EEPROM_CHANNELS; i++)
+ if (ee->ee_calPier11b[i] != CHANNEL_UNUSED)
+ freq[numPiers++] = ee->ee_calPier11b[i];
+ break;
+ case headerInfo11G:
+ if (!ee->ee_Gmode) /* no 11g calibration data */
+ continue;
+ for (i = 0; i < NUM_2_4_EEPROM_CHANNELS; i++)
+ if (ee->ee_calPier11g[i] != CHANNEL_UNUSED)
+ freq[numPiers++] = ee->ee_calPier11g[i];
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid mode 0x%x\n",
+ __func__, mode);
+ return AH_FALSE;
+ }
+
+ OS_MEMZERO(&eePower, sizeof(eePower));
+ eePower.numChannels = numPiers;
+
+ for (i = 0; i < numPiers; i++) {
+ eePower.pChannels[i] = freq[i];
+ eePower.pDataPerChannel[i].channelValue = freq[i];
+
+ EEREAD(off++);
+ eePower.pDataPerChannel[i].pwr1_xg0 = (int16_t)
+ ((eeval & dbmmask) - ((eeval >> 7) & 0x1)*256);
+ eePower.pDataPerChannel[i].pwr2_xg0 = (int16_t)
+ (((eeval >> 8) & dbmmask) - ((eeval >> 15) & 0x1)*256);
+
+ EEREAD(off++);
+ eePower.pDataPerChannel[i].pwr3_xg0 = (int16_t)
+ ((eeval & dbmmask) - ((eeval >> 7) & 0x1)*256);
+ eePower.pDataPerChannel[i].pwr4_xg0 = (int16_t)
+ (((eeval >> 8) & dbmmask) - ((eeval >> 15) & 0x1)*256);
+
+ EEREAD(off++);
+ eePower.pDataPerChannel[i].pcd2_delta_xg0 = (uint16_t)
+ (eeval & pcdac_delta_mask);
+ eePower.pDataPerChannel[i].pcd3_delta_xg0 = (uint16_t)
+ ((eeval >> 5) & pcdac_delta_mask);
+ eePower.pDataPerChannel[i].pcd4_delta_xg0 = (uint16_t)
+ ((eeval >> 10) & pcdac_delta_mask);
+
+ EEREAD(off++);
+ eePower.pDataPerChannel[i].pwr1_xg3 = (int16_t)
+ ((eeval & dbmmask) - ((eeval >> 7) & 0x1)*256);
+ eePower.pDataPerChannel[i].pwr2_xg3 = (int16_t)
+ (((eeval >> 8) & dbmmask) - ((eeval >> 15) & 0x1)*256);
+
+ EEREAD(off++);
+ eePower.pDataPerChannel[i].pwr3_xg3 = (int16_t)
+ ((eeval & dbmmask) - ((eeval >> 7) & 0x1)*256);
+ if (ee->ee_version >= AR_EEPROM_VER4_3) {
+ eePower.pDataPerChannel[i].maxPower_t4 =
+ eePower.pDataPerChannel[i].pwr4_xg0;
+ eePower.pDataPerChannel[i].pcd1_xg0 = (uint16_t)
+ ((eeval >> 8) & pcdac_mask);
+ } else {
+ eePower.pDataPerChannel[i].maxPower_t4 = (int16_t)
+ (((eeval >> 8) & dbmmask) -
+ ((eeval >> 15) & 0x1)*256);
+ eePower.pDataPerChannel[i].pcd1_xg0 = 1;
+ }
+ }
+ eePower.xpdMask = ee->ee_xgain[mode];
+
+ if (!eepromAllocExpnPower5112(ah, &eePower, &ee->ee_modePowerArray5112[mode])) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: did not allocate power struct\n", __func__);
+ return AH_FALSE;
+ }
+ if (!eepromExpandPower5112(ah, &eePower, &ee->ee_modePowerArray5112[mode])) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: did not expand power struct\n", __func__);
+ return AH_FALSE;
+ }
+ }
+ return AH_TRUE;
+#undef EEREAD
+}
+
+static void
+freeEepromRawPowerCalInfo5112(struct ath_hal *ah, HAL_EEPROM *ee)
+{
+ int mode;
+ void *data;
+
+ for (mode = headerInfo11A; mode <= headerInfo11G; mode++) {
+ EEPROM_POWER_EXPN_5112 *pPowerExpn =
+ &ee->ee_modePowerArray5112[mode];
+ data = pPowerExpn->pChannels;
+ if (data != AH_NULL) {
+ pPowerExpn->pChannels = AH_NULL;
+ ath_hal_free(data);
+ }
+ }
+}
+
+static void
+ar2413SetupEEPROMDataset(EEPROM_DATA_STRUCT_2413 *pEEPROMDataset2413,
+ uint16_t myNumRawChannels, uint16_t *pMyRawChanList)
+{
+ uint16_t i, channelValue;
+ uint32_t xpd_mask;
+ uint16_t numPdGainsUsed;
+
+ pEEPROMDataset2413->numChannels = myNumRawChannels;
+
+ xpd_mask = pEEPROMDataset2413->xpd_mask;
+ numPdGainsUsed = 0;
+ if ((xpd_mask >> 0) & 0x1) numPdGainsUsed++;
+ if ((xpd_mask >> 1) & 0x1) numPdGainsUsed++;
+ if ((xpd_mask >> 2) & 0x1) numPdGainsUsed++;
+ if ((xpd_mask >> 3) & 0x1) numPdGainsUsed++;
+
+ for (i = 0; i < myNumRawChannels; i++) {
+ channelValue = pMyRawChanList[i];
+ pEEPROMDataset2413->pChannels[i] = channelValue;
+ pEEPROMDataset2413->pDataPerChannel[i].channelValue = channelValue;
+ pEEPROMDataset2413->pDataPerChannel[i].numPdGains = numPdGainsUsed;
+ }
+}
+
+static HAL_BOOL
+ar2413ReadCalDataset(struct ath_hal *ah, HAL_EEPROM *ee,
+ EEPROM_DATA_STRUCT_2413 *pCalDataset,
+ uint32_t start_offset, uint32_t maxPiers, uint8_t mode)
+{
+#define EEREAD(_off) do { \
+ if (!ath_hal_eepromRead(ah, _off, &eeval)) \
+ return AH_FALSE; \
+} while (0)
+ const uint16_t dbm_I_mask = 0x1F; /* 5-bits. 1dB step. */
+ const uint16_t dbm_delta_mask = 0xF; /* 4-bits. 0.5dB step. */
+ const uint16_t Vpd_I_mask = 0x7F; /* 7-bits. 0-128 */
+ const uint16_t Vpd_delta_mask = 0x3F; /* 6-bits. 0-63 */
+ const uint16_t freqmask = 0xff;
+
+ uint16_t ii, eeval;
+ uint16_t idx, numPiers;
+ uint16_t freq[NUM_11A_EEPROM_CHANNELS];
+
+ idx = start_offset;
+ for (numPiers = 0; numPiers < maxPiers;) {
+ EEREAD(idx++);
+ if ((eeval & freqmask) == 0)
+ break;
+ if (mode == headerInfo11A)
+ freq[numPiers++] = fbin2freq(ee, (eeval & freqmask));
+ else
+ freq[numPiers++] = fbin2freq_2p4(ee, (eeval & freqmask));
+
+ if (((eeval >> 8) & freqmask) == 0)
+ break;
+ if (mode == headerInfo11A)
+ freq[numPiers++] = fbin2freq(ee, (eeval >> 8) & freqmask);
+ else
+ freq[numPiers++] = fbin2freq_2p4(ee, (eeval >> 8) & freqmask);
+ }
+ ar2413SetupEEPROMDataset(pCalDataset, numPiers, &freq[0]);
+
+ idx = start_offset + (maxPiers / 2);
+ for (ii = 0; ii < pCalDataset->numChannels; ii++) {
+ EEPROM_DATA_PER_CHANNEL_2413 *currCh =
+ &(pCalDataset->pDataPerChannel[ii]);
+
+ if (currCh->numPdGains > 0) {
+ /*
+ * Read the first NUM_POINTS_OTHER_PDGAINS pwr
+ * and Vpd values for pdgain_0
+ */
+ EEREAD(idx++);
+ currCh->pwr_I[0] = eeval & dbm_I_mask;
+ currCh->Vpd_I[0] = (eeval >> 5) & Vpd_I_mask;
+ currCh->pwr_delta_t2[0][0] =
+ (eeval >> 12) & dbm_delta_mask;
+
+ EEREAD(idx++);
+ currCh->Vpd_delta[0][0] = eeval & Vpd_delta_mask;
+ currCh->pwr_delta_t2[1][0] =
+ (eeval >> 6) & dbm_delta_mask;
+ currCh->Vpd_delta[1][0] =
+ (eeval >> 10) & Vpd_delta_mask;
+
+ EEREAD(idx++);
+ currCh->pwr_delta_t2[2][0] = eeval & dbm_delta_mask;
+ currCh->Vpd_delta[2][0] = (eeval >> 4) & Vpd_delta_mask;
+ }
+
+ if (currCh->numPdGains > 1) {
+ /*
+ * Read the first NUM_POINTS_OTHER_PDGAINS pwr
+ * and Vpd values for pdgain_1
+ */
+ currCh->pwr_I[1] = (eeval >> 10) & dbm_I_mask;
+ currCh->Vpd_I[1] = (eeval >> 15) & 0x1;
+
+ EEREAD(idx++);
+ /* upper 6 bits */
+ currCh->Vpd_I[1] |= (eeval & 0x3F) << 1;
+ currCh->pwr_delta_t2[0][1] =
+ (eeval >> 6) & dbm_delta_mask;
+ currCh->Vpd_delta[0][1] =
+ (eeval >> 10) & Vpd_delta_mask;
+
+ EEREAD(idx++);
+ currCh->pwr_delta_t2[1][1] = eeval & dbm_delta_mask;
+ currCh->Vpd_delta[1][1] = (eeval >> 4) & Vpd_delta_mask;
+ currCh->pwr_delta_t2[2][1] =
+ (eeval >> 10) & dbm_delta_mask;
+ currCh->Vpd_delta[2][1] = (eeval >> 14) & 0x3;
+
+ EEREAD(idx++);
+ /* upper 4 bits */
+ currCh->Vpd_delta[2][1] |= (eeval & 0xF) << 2;
+ } else if (currCh->numPdGains == 1) {
+ /*
+ * Read the last pwr and Vpd values for pdgain_0
+ */
+ currCh->pwr_delta_t2[3][0] =
+ (eeval >> 10) & dbm_delta_mask;
+ currCh->Vpd_delta[3][0] = (eeval >> 14) & 0x3;
+
+ EEREAD(idx++);
+ /* upper 4 bits */
+ currCh->Vpd_delta[3][0] |= (eeval & 0xF) << 2;
+
+ /* 4 words if numPdGains == 1 */
+ }
+
+ if (currCh->numPdGains > 2) {
+ /*
+ * Read the first NUM_POINTS_OTHER_PDGAINS pwr
+ * and Vpd values for pdgain_2
+ */
+ currCh->pwr_I[2] = (eeval >> 4) & dbm_I_mask;
+ currCh->Vpd_I[2] = (eeval >> 9) & Vpd_I_mask;
+
+ EEREAD(idx++);
+ currCh->pwr_delta_t2[0][2] =
+ (eeval >> 0) & dbm_delta_mask;
+ currCh->Vpd_delta[0][2] = (eeval >> 4) & Vpd_delta_mask;
+ currCh->pwr_delta_t2[1][2] =
+ (eeval >> 10) & dbm_delta_mask;
+ currCh->Vpd_delta[1][2] = (eeval >> 14) & 0x3;
+
+ EEREAD(idx++);
+ /* upper 4 bits */
+ currCh->Vpd_delta[1][2] |= (eeval & 0xF) << 2;
+ currCh->pwr_delta_t2[2][2] =
+ (eeval >> 4) & dbm_delta_mask;
+ currCh->Vpd_delta[2][2] = (eeval >> 8) & Vpd_delta_mask;
+ } else if (currCh->numPdGains == 2) {
+ /*
+ * Read the last pwr and Vpd values for pdgain_1
+ */
+ currCh->pwr_delta_t2[3][1] =
+ (eeval >> 4) & dbm_delta_mask;
+ currCh->Vpd_delta[3][1] = (eeval >> 8) & Vpd_delta_mask;
+
+ /* 6 words if numPdGains == 2 */
+ }
+
+ if (currCh->numPdGains > 3) {
+ /*
+ * Read the first NUM_POINTS_OTHER_PDGAINS pwr
+ * and Vpd values for pdgain_3
+ */
+ currCh->pwr_I[3] = (eeval >> 14) & 0x3;
+
+ EEREAD(idx++);
+ /* upper 3 bits */
+ currCh->pwr_I[3] |= ((eeval >> 0) & 0x7) << 2;
+ currCh->Vpd_I[3] = (eeval >> 3) & Vpd_I_mask;
+ currCh->pwr_delta_t2[0][3] =
+ (eeval >> 10) & dbm_delta_mask;
+ currCh->Vpd_delta[0][3] = (eeval >> 14) & 0x3;
+
+ EEREAD(idx++);
+ /* upper 4 bits */
+ currCh->Vpd_delta[0][3] |= (eeval & 0xF) << 2;
+ currCh->pwr_delta_t2[1][3] =
+ (eeval >> 4) & dbm_delta_mask;
+ currCh->Vpd_delta[1][3] = (eeval >> 8) & Vpd_delta_mask;
+ currCh->pwr_delta_t2[2][3] = (eeval >> 14) & 0x3;
+
+ EEREAD(idx++);
+ /* upper 2 bits */
+ currCh->pwr_delta_t2[2][3] |= ((eeval >> 0) & 0x3) << 2;
+ currCh->Vpd_delta[2][3] = (eeval >> 2) & Vpd_delta_mask;
+ currCh->pwr_delta_t2[3][3] =
+ (eeval >> 8) & dbm_delta_mask;
+ currCh->Vpd_delta[3][3] = (eeval >> 12) & 0xF;
+
+ EEREAD(idx++);
+ /* upper 2 bits */
+ currCh->Vpd_delta[3][3] |= ((eeval >> 0) & 0x3) << 4;
+
+ /* 12 words if numPdGains == 4 */
+ } else if (currCh->numPdGains == 3) {
+ /* read the last pwr and Vpd values for pdgain_2 */
+ currCh->pwr_delta_t2[3][2] = (eeval >> 14) & 0x3;
+
+ EEREAD(idx++);
+ /* upper 2 bits */
+ currCh->pwr_delta_t2[3][2] |= ((eeval >> 0) & 0x3) << 2;
+ currCh->Vpd_delta[3][2] = (eeval >> 2) & Vpd_delta_mask;
+
+ /* 9 words if numPdGains == 3 */
+ }
+ }
+ return AH_TRUE;
+#undef EEREAD
+}
+
+static void
+ar2413SetupRawDataset(RAW_DATA_STRUCT_2413 *pRaw, EEPROM_DATA_STRUCT_2413 *pCal)
+{
+ uint16_t i, j, kk, channelValue;
+ uint16_t xpd_mask;
+ uint16_t numPdGainsUsed;
+
+ pRaw->numChannels = pCal->numChannels;
+
+ xpd_mask = pRaw->xpd_mask;
+ numPdGainsUsed = 0;
+ if ((xpd_mask >> 0) & 0x1) numPdGainsUsed++;
+ if ((xpd_mask >> 1) & 0x1) numPdGainsUsed++;
+ if ((xpd_mask >> 2) & 0x1) numPdGainsUsed++;
+ if ((xpd_mask >> 3) & 0x1) numPdGainsUsed++;
+
+ for (i = 0; i < pCal->numChannels; i++) {
+ channelValue = pCal->pChannels[i];
+
+ pRaw->pChannels[i] = channelValue;
+
+ pRaw->pDataPerChannel[i].channelValue = channelValue;
+ pRaw->pDataPerChannel[i].numPdGains = numPdGainsUsed;
+
+ kk = 0;
+ for (j = 0; j < MAX_NUM_PDGAINS_PER_CHANNEL; j++) {
+ pRaw->pDataPerChannel[i].pDataPerPDGain[j].pd_gain = j;
+ if ((xpd_mask >> j) & 0x1) {
+ pRaw->pDataPerChannel[i].pDataPerPDGain[j].numVpd = NUM_POINTS_OTHER_PDGAINS;
+ kk++;
+ if (kk == 1) {
+ /*
+ * lowest pd_gain corresponds
+ * to highest power and thus,
+ * has one more point
+ */
+ pRaw->pDataPerChannel[i].pDataPerPDGain[j].numVpd = NUM_POINTS_LAST_PDGAIN;
+ }
+ } else {
+ pRaw->pDataPerChannel[i].pDataPerPDGain[j].numVpd = 0;
+ }
+ }
+ }
+}
+
+static HAL_BOOL
+ar2413EepromToRawDataset(struct ath_hal *ah,
+ EEPROM_DATA_STRUCT_2413 *pCal, RAW_DATA_STRUCT_2413 *pRaw)
+{
+ uint16_t ii, jj, kk, ss;
+ RAW_DATA_PER_PDGAIN_2413 *pRawXPD;
+ /* ptr to array of info held per channel */
+ EEPROM_DATA_PER_CHANNEL_2413 *pCalCh;
+ uint16_t xgain_list[MAX_NUM_PDGAINS_PER_CHANNEL];
+ uint16_t xpd_mask;
+ uint32_t numPdGainsUsed;
+
+ HALASSERT(pRaw->xpd_mask == pCal->xpd_mask);
+
+ xgain_list[0] = 0xDEAD;
+ xgain_list[1] = 0xDEAD;
+ xgain_list[2] = 0xDEAD;
+ xgain_list[3] = 0xDEAD;
+
+ numPdGainsUsed = 0;
+ xpd_mask = pRaw->xpd_mask;
+ for (jj = 0; jj < MAX_NUM_PDGAINS_PER_CHANNEL; jj++) {
+ if ((xpd_mask >> (MAX_NUM_PDGAINS_PER_CHANNEL-jj-1)) & 1)
+ xgain_list[numPdGainsUsed++] = MAX_NUM_PDGAINS_PER_CHANNEL-jj-1;
+ }
+
+ pRaw->numChannels = pCal->numChannels;
+ for (ii = 0; ii < pRaw->numChannels; ii++) {
+ pCalCh = &(pCal->pDataPerChannel[ii]);
+ pRaw->pDataPerChannel[ii].channelValue = pCalCh->channelValue;
+
+ /* numVpd has already been setup appropriately for the relevant pdGains */
+ for (jj = 0; jj < numPdGainsUsed; jj++) {
+ /* use jj for calDataset and ss for rawDataset */
+ ss = xgain_list[jj];
+ pRawXPD = &(pRaw->pDataPerChannel[ii].pDataPerPDGain[ss]);
+ HALASSERT(pRawXPD->numVpd >= 1);
+
+ pRawXPD->pwr_t4[0] = (uint16_t)(4*pCalCh->pwr_I[jj]);
+ pRawXPD->Vpd[0] = pCalCh->Vpd_I[jj];
+
+ for (kk = 1; kk < pRawXPD->numVpd; kk++) {
+ pRawXPD->pwr_t4[kk] = (int16_t)(pRawXPD->pwr_t4[kk-1] + 2*pCalCh->pwr_delta_t2[kk-1][jj]);
+ pRawXPD->Vpd[kk] = (uint16_t)(pRawXPD->Vpd[kk-1] + pCalCh->Vpd_delta[kk-1][jj]);
+ }
+ /* loop over Vpds */
+ }
+ /* loop over pd_gains */
+ }
+ /* loop over channels */
+ return AH_TRUE;
+}
+
+static HAL_BOOL
+readEepromRawPowerCalInfo2413(struct ath_hal *ah, HAL_EEPROM *ee)
+{
+ /* NB: index is 1 less than numPdgains */
+ static const uint16_t wordsForPdgains[] = { 4, 6, 9, 12 };
+ EEPROM_DATA_STRUCT_2413 *pCal = AH_NULL;
+ RAW_DATA_STRUCT_2413 *pRaw;
+ int numEEPROMWordsPerChannel;
+ uint32_t off;
+ HAL_BOOL ret = AH_FALSE;
+
+ HALASSERT(ee->ee_version >= AR_EEPROM_VER5_0);
+ HALASSERT(ee->ee_eepMap == 2);
+
+ pCal = ath_hal_malloc(sizeof(EEPROM_DATA_STRUCT_2413));
+ if (pCal == AH_NULL)
+ goto exit;
+
+ off = ee->ee_eepMap2PowerCalStart;
+ if (ee->ee_Amode) {
+ OS_MEMZERO(pCal, sizeof(EEPROM_DATA_STRUCT_2413));
+ pCal->xpd_mask = ee->ee_xgain[headerInfo11A];
+ if (!ar2413ReadCalDataset(ah, ee, pCal, off,
+ NUM_11A_EEPROM_CHANNELS_2413, headerInfo11A)) {
+ goto exit;
+ }
+ pRaw = &ee->ee_rawDataset2413[headerInfo11A];
+ pRaw->xpd_mask = ee->ee_xgain[headerInfo11A];
+ ar2413SetupRawDataset(pRaw, pCal);
+ if (!ar2413EepromToRawDataset(ah, pCal, pRaw)) {
+ goto exit;
+ }
+ /* setup offsets for mode_11a next */
+ numEEPROMWordsPerChannel = wordsForPdgains[
+ pCal->pDataPerChannel[0].numPdGains - 1];
+ off += pCal->numChannels * numEEPROMWordsPerChannel + 5;
+ }
+ if (ee->ee_Bmode) {
+ OS_MEMZERO(pCal, sizeof(EEPROM_DATA_STRUCT_2413));
+ pCal->xpd_mask = ee->ee_xgain[headerInfo11B];
+ if (!ar2413ReadCalDataset(ah, ee, pCal, off,
+ NUM_2_4_EEPROM_CHANNELS_2413 , headerInfo11B)) {
+ goto exit;
+ }
+ pRaw = &ee->ee_rawDataset2413[headerInfo11B];
+ pRaw->xpd_mask = ee->ee_xgain[headerInfo11B];
+ ar2413SetupRawDataset(pRaw, pCal);
+ if (!ar2413EepromToRawDataset(ah, pCal, pRaw)) {
+ goto exit;
+ }
+ /* setup offsets for mode_11g next */
+ numEEPROMWordsPerChannel = wordsForPdgains[
+ pCal->pDataPerChannel[0].numPdGains - 1];
+ off += pCal->numChannels * numEEPROMWordsPerChannel + 2;
+ }
+ if (ee->ee_Gmode) {
+ OS_MEMZERO(pCal, sizeof(EEPROM_DATA_STRUCT_2413));
+ pCal->xpd_mask = ee->ee_xgain[headerInfo11G];
+ if (!ar2413ReadCalDataset(ah, ee, pCal, off,
+ NUM_2_4_EEPROM_CHANNELS_2413, headerInfo11G)) {
+ goto exit;
+ }
+ pRaw = &ee->ee_rawDataset2413[headerInfo11G];
+ pRaw->xpd_mask = ee->ee_xgain[headerInfo11G];
+ ar2413SetupRawDataset(pRaw, pCal);
+ if (!ar2413EepromToRawDataset(ah, pCal, pRaw)) {
+ goto exit;
+ }
+ }
+ ret = AH_TRUE;
+ exit:
+ if (pCal != AH_NULL)
+ ath_hal_free(pCal);
+ return ret;
+}
+
+/*
+ * Now copy EEPROM Raw Power Calibration per frequency contents
+ * into the allocated space
+ */
+static HAL_BOOL
+readEepromRawPowerCalInfo(struct ath_hal *ah, HAL_EEPROM *ee)
+{
+#define EEREAD(_off) do { \
+ if (!ath_hal_eepromRead(ah, _off, &eeval)) \
+ return AH_FALSE; \
+} while (0)
+ uint16_t eeval, nchan;
+ uint32_t off;
+ int i, j, mode;
+
+ if (ee->ee_version >= AR_EEPROM_VER4_0 && ee->ee_eepMap == 1)
+ return readEepromRawPowerCalInfo5112(ah, ee);
+ if (ee->ee_version >= AR_EEPROM_VER5_0 && ee->ee_eepMap == 2)
+ return readEepromRawPowerCalInfo2413(ah, ee);
+
+ /*
+ * Group 2: read raw power data for all frequency piers
+ *
+ * NOTE: Group 2 contains the raw power calibration
+ * information for each of the channels that
+ * we recorded above.
+ */
+ for (mode = headerInfo11A; mode <= headerInfo11G; mode++) {
+ uint16_t *pChannels = AH_NULL;
+ DATA_PER_CHANNEL *pChannelData = AH_NULL;
+
+ off = ee->ee_version >= AR_EEPROM_VER3_3 ?
+ GROUPS_OFFSET3_3 : GROUPS_OFFSET3_2;
+ switch (mode) {
+ case headerInfo11A:
+ off += GROUP2_OFFSET;
+ nchan = ee->ee_numChannels11a;
+ pChannelData = ee->ee_dataPerChannel11a;
+ pChannels = ee->ee_channels11a;
+ break;
+ case headerInfo11B:
+ if (!ee->ee_Bmode)
+ continue;
+ off += GROUP3_OFFSET;
+ nchan = ee->ee_numChannels2_4;
+ pChannelData = ee->ee_dataPerChannel11b;
+ pChannels = ee->ee_channels11b;
+ break;
+ case headerInfo11G:
+ if (!ee->ee_Gmode)
+ continue;
+ off += GROUP4_OFFSET;
+ nchan = ee->ee_numChannels2_4;
+ pChannelData = ee->ee_dataPerChannel11g;
+ pChannels = ee->ee_channels11g;
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid mode 0x%x\n",
+ __func__, mode);
+ return AH_FALSE;
+ }
+ for (i = 0; i < nchan; i++) {
+ pChannelData->channelValue = pChannels[i];
+
+ EEREAD(off++);
+ pChannelData->pcdacMax = (uint16_t)((eeval >> 10) & PCDAC_MASK);
+ pChannelData->pcdacMin = (uint16_t)((eeval >> 4) & PCDAC_MASK);
+ pChannelData->PwrValues[0] = (uint16_t)((eeval << 2) & POWER_MASK);
+
+ EEREAD(off++);
+ pChannelData->PwrValues[0] |= (uint16_t)((eeval >> 14) & 0x3);
+ pChannelData->PwrValues[1] = (uint16_t)((eeval >> 8) & POWER_MASK);
+ pChannelData->PwrValues[2] = (uint16_t)((eeval >> 2) & POWER_MASK);
+ pChannelData->PwrValues[3] = (uint16_t)((eeval << 4) & POWER_MASK);
+
+ EEREAD(off++);
+ pChannelData->PwrValues[3] |= (uint16_t)((eeval >> 12) & 0xf);
+ pChannelData->PwrValues[4] = (uint16_t)((eeval >> 6) & POWER_MASK);
+ pChannelData->PwrValues[5] = (uint16_t)(eeval & POWER_MASK);
+
+ EEREAD(off++);
+ pChannelData->PwrValues[6] = (uint16_t)((eeval >> 10) & POWER_MASK);
+ pChannelData->PwrValues[7] = (uint16_t)((eeval >> 4) & POWER_MASK);
+ pChannelData->PwrValues[8] = (uint16_t)((eeval << 2) & POWER_MASK);
+
+ EEREAD(off++);
+ pChannelData->PwrValues[8] |= (uint16_t)((eeval >> 14) & 0x3);
+ pChannelData->PwrValues[9] = (uint16_t)((eeval >> 8) & POWER_MASK);
+ pChannelData->PwrValues[10] = (uint16_t)((eeval >> 2) & POWER_MASK);
+
+ getPcdacInterceptsFromPcdacMinMax(ee,
+ pChannelData->pcdacMin, pChannelData->pcdacMax,
+ pChannelData->PcdacValues) ;
+
+ for (j = 0; j < pChannelData->numPcdacValues; j++) {
+ pChannelData->PwrValues[j] = (uint16_t)(
+ PWR_STEP * pChannelData->PwrValues[j]);
+ /* Note these values are scaled up. */
+ }
+ pChannelData++;
+ }
+ }
+ return AH_TRUE;
+#undef EEREAD
+}
+
+/*
+ * Copy EEPROM Target Power Calbration per rate contents
+ * into the allocated space
+ */
+static HAL_BOOL
+readEepromTargetPowerCalInfo(struct ath_hal *ah, HAL_EEPROM *ee)
+{
+#define EEREAD(_off) do { \
+ if (!ath_hal_eepromRead(ah, _off, &eeval)) \
+ return AH_FALSE; \
+} while (0)
+ uint16_t eeval, enable24;
+ uint32_t off;
+ int i, mode, nchan;
+
+ enable24 = ee->ee_Bmode || ee->ee_Gmode;
+ for (mode = headerInfo11A; mode <= headerInfo11G; mode++) {
+ TRGT_POWER_INFO *pPowerInfo;
+ uint16_t *pNumTrgtChannels;
+
+ off = ee->ee_version >= AR_EEPROM_VER4_0 ?
+ ee->ee_targetPowersStart - GROUP5_OFFSET :
+ ee->ee_version >= AR_EEPROM_VER3_3 ?
+ GROUPS_OFFSET3_3 : GROUPS_OFFSET3_2;
+ switch (mode) {
+ case headerInfo11A:
+ off += GROUP5_OFFSET;
+ nchan = NUM_TEST_FREQUENCIES;
+ pPowerInfo = ee->ee_trgtPwr_11a;
+ pNumTrgtChannels = &ee->ee_numTargetPwr_11a;
+ break;
+ case headerInfo11B:
+ if (!enable24)
+ continue;
+ off += GROUP6_OFFSET;
+ nchan = 2;
+ pPowerInfo = ee->ee_trgtPwr_11b;
+ pNumTrgtChannels = &ee->ee_numTargetPwr_11b;
+ break;
+ case headerInfo11G:
+ if (!enable24)
+ continue;
+ off += GROUP7_OFFSET;
+ nchan = 3;
+ pPowerInfo = ee->ee_trgtPwr_11g;
+ pNumTrgtChannels = &ee->ee_numTargetPwr_11g;
+ break;
+ default:
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid mode 0x%x\n",
+ __func__, mode);
+ return AH_FALSE;
+ }
+ *pNumTrgtChannels = 0;
+ for (i = 0; i < nchan; i++) {
+ EEREAD(off++);
+ if (ee->ee_version >= AR_EEPROM_VER3_3) {
+ pPowerInfo->testChannel = (eeval >> 8) & 0xff;
+ } else {
+ pPowerInfo->testChannel = (eeval >> 9) & 0x7f;
+ }
+
+ if (pPowerInfo->testChannel != 0) {
+ /* get the channel value and read rest of info */
+ if (mode == headerInfo11A) {
+ pPowerInfo->testChannel = fbin2freq(ee, pPowerInfo->testChannel);
+ } else {
+ pPowerInfo->testChannel = fbin2freq_2p4(ee, pPowerInfo->testChannel);
+ }
+
+ if (ee->ee_version >= AR_EEPROM_VER3_3) {
+ pPowerInfo->twicePwr6_24 = (eeval >> 2) & POWER_MASK;
+ pPowerInfo->twicePwr36 = (eeval << 4) & POWER_MASK;
+ } else {
+ pPowerInfo->twicePwr6_24 = (eeval >> 3) & POWER_MASK;
+ pPowerInfo->twicePwr36 = (eeval << 3) & POWER_MASK;
+ }
+
+ EEREAD(off++);
+ if (ee->ee_version >= AR_EEPROM_VER3_3) {
+ pPowerInfo->twicePwr36 |= (eeval >> 12) & 0xf;
+ pPowerInfo->twicePwr48 = (eeval >> 6) & POWER_MASK;
+ pPowerInfo->twicePwr54 = eeval & POWER_MASK;
+ } else {
+ pPowerInfo->twicePwr36 |= (eeval >> 13) & 0x7;
+ pPowerInfo->twicePwr48 = (eeval >> 7) & POWER_MASK;
+ pPowerInfo->twicePwr54 = (eeval >> 1) & POWER_MASK;
+ }
+ (*pNumTrgtChannels)++;
+ }
+ pPowerInfo++;
+ }
+ }
+ return AH_TRUE;
+#undef EEREAD
+}
+
+/*
+ * Now copy EEPROM Coformance Testing Limits contents
+ * into the allocated space
+ */
+static HAL_BOOL
+readEepromCTLInfo(struct ath_hal *ah, HAL_EEPROM *ee)
+{
+#define EEREAD(_off) do { \
+ if (!ath_hal_eepromRead(ah, _off, &eeval)) \
+ return AH_FALSE; \
+} while (0)
+ RD_EDGES_POWER *rep;
+ uint16_t eeval;
+ uint32_t off;
+ int i, j;
+
+ rep = ee->ee_rdEdgesPower;
+
+ off = GROUP8_OFFSET +
+ (ee->ee_version >= AR_EEPROM_VER4_0 ?
+ ee->ee_targetPowersStart - GROUP5_OFFSET :
+ ee->ee_version >= AR_EEPROM_VER3_3 ?
+ GROUPS_OFFSET3_3 : GROUPS_OFFSET3_2);
+ for (i = 0; i < ee->ee_numCtls; i++) {
+ if (ee->ee_ctl[i] == 0) {
+ /* Move offset and edges */
+ off += (ee->ee_version >= AR_EEPROM_VER3_3 ? 8 : 7);
+ rep += NUM_EDGES;
+ continue;
+ }
+ if (ee->ee_version >= AR_EEPROM_VER3_3) {
+ for (j = 0; j < NUM_EDGES; j += 2) {
+ EEREAD(off++);
+ rep[j].rdEdge = (eeval >> 8) & FREQ_MASK_3_3;
+ rep[j+1].rdEdge = eeval & FREQ_MASK_3_3;
+ }
+ for (j = 0; j < NUM_EDGES; j += 2) {
+ EEREAD(off++);
+ rep[j].twice_rdEdgePower =
+ (eeval >> 8) & POWER_MASK;
+ rep[j].flag = (eeval >> 14) & 1;
+ rep[j+1].twice_rdEdgePower = eeval & POWER_MASK;
+ rep[j+1].flag = (eeval >> 6) & 1;
+ }
+ } else {
+ EEREAD(off++);
+ rep[0].rdEdge = (eeval >> 9) & FREQ_MASK;
+ rep[1].rdEdge = (eeval >> 2) & FREQ_MASK;
+ rep[2].rdEdge = (eeval << 5) & FREQ_MASK;
+
+ EEREAD(off++);
+ rep[2].rdEdge |= (eeval >> 11) & 0x1f;
+ rep[3].rdEdge = (eeval >> 4) & FREQ_MASK;
+ rep[4].rdEdge = (eeval << 3) & FREQ_MASK;
+
+ EEREAD(off++);
+ rep[4].rdEdge |= (eeval >> 13) & 0x7;
+ rep[5].rdEdge = (eeval >> 6) & FREQ_MASK;
+ rep[6].rdEdge = (eeval << 1) & FREQ_MASK;
+
+ EEREAD(off++);
+ rep[6].rdEdge |= (eeval >> 15) & 0x1;
+ rep[7].rdEdge = (eeval >> 8) & FREQ_MASK;
+
+ rep[0].twice_rdEdgePower = (eeval >> 2) & POWER_MASK;
+ rep[1].twice_rdEdgePower = (eeval << 4) & POWER_MASK;
+
+ EEREAD(off++);
+ rep[1].twice_rdEdgePower |= (eeval >> 12) & 0xf;
+ rep[2].twice_rdEdgePower = (eeval >> 6) & POWER_MASK;
+ rep[3].twice_rdEdgePower = eeval & POWER_MASK;
+
+ EEREAD(off++);
+ rep[4].twice_rdEdgePower = (eeval >> 10) & POWER_MASK;
+ rep[5].twice_rdEdgePower = (eeval >> 4) & POWER_MASK;
+ rep[6].twice_rdEdgePower = (eeval << 2) & POWER_MASK;
+
+ EEREAD(off++);
+ rep[6].twice_rdEdgePower |= (eeval >> 14) & 0x3;
+ rep[7].twice_rdEdgePower = (eeval >> 8) & POWER_MASK;
+ }
+
+ for (j = 0; j < NUM_EDGES; j++ ) {
+ if (rep[j].rdEdge != 0 || rep[j].twice_rdEdgePower != 0) {
+ if ((ee->ee_ctl[i] & CTL_MODE_M) == CTL_11A ||
+ (ee->ee_ctl[i] & CTL_MODE_M) == CTL_TURBO) {
+ rep[j].rdEdge = fbin2freq(ee, rep[j].rdEdge);
+ } else {
+ rep[j].rdEdge = fbin2freq_2p4(ee, rep[j].rdEdge);
+ }
+ }
+ }
+ rep += NUM_EDGES;
+ }
+ return AH_TRUE;
+#undef EEREAD
+}
+
+/*
+ * Read the individual header fields for a Rev 3 EEPROM
+ */
+static HAL_BOOL
+readHeaderInfo(struct ath_hal *ah, HAL_EEPROM *ee)
+{
+#define EEREAD(_off) do { \
+ if (!ath_hal_eepromRead(ah, _off, &eeval)) \
+ return AH_FALSE; \
+} while (0)
+ static const uint32_t headerOffset3_0[] = {
+ 0x00C2, /* 0 - Mode bits, device type, max turbo power */
+ 0x00C4, /* 1 - 2.4 and 5 antenna gain */
+ 0x00C5, /* 2 - Begin 11A modal section */
+ 0x00D0, /* 3 - Begin 11B modal section */
+ 0x00DA, /* 4 - Begin 11G modal section */
+ 0x00E4 /* 5 - Begin CTL section */
+ };
+ static const uint32_t headerOffset3_3[] = {
+ 0x00C2, /* 0 - Mode bits, device type, max turbo power */
+ 0x00C3, /* 1 - 2.4 and 5 antenna gain */
+ 0x00D4, /* 2 - Begin 11A modal section */
+ 0x00F2, /* 3 - Begin 11B modal section */
+ 0x010D, /* 4 - Begin 11G modal section */
+ 0x0128 /* 5 - Begin CTL section */
+ };
+
+ static const uint32_t regCapOffsetPre4_0 = 0x00CF;
+ static const uint32_t regCapOffsetPost4_0 = 0x00CA;
+
+ const uint32_t *header;
+ uint32_t off;
+ uint16_t eeval;
+ int i;
+
+ /* initialize cckOfdmGainDelta for < 4.2 eeprom */
+ ee->ee_cckOfdmGainDelta = CCK_OFDM_GAIN_DELTA;
+ ee->ee_scaledCh14FilterCckDelta = TENX_CH14_FILTER_CCK_DELTA_INIT;
+
+ if (ee->ee_version >= AR_EEPROM_VER3_3) {
+ header = headerOffset3_3;
+ ee->ee_numCtls = NUM_CTLS_3_3;
+ } else {
+ header = headerOffset3_0;
+ ee->ee_numCtls = NUM_CTLS;
+ }
+ HALASSERT(ee->ee_numCtls <= NUM_CTLS_MAX);
+
+ EEREAD(header[0]);
+ ee->ee_turbo5Disable = (eeval >> 15) & 0x01;
+ ee->ee_rfKill = (eeval >> 14) & 0x01;
+ ee->ee_deviceType = (eeval >> 11) & 0x07;
+ ee->ee_turbo2WMaxPower5 = (eeval >> 4) & 0x7F;
+ if (ee->ee_version >= AR_EEPROM_VER4_0)
+ ee->ee_turbo2Disable = (eeval >> 3) & 0x01;
+ else
+ ee->ee_turbo2Disable = 1;
+ ee->ee_Gmode = (eeval >> 2) & 0x01;
+ ee->ee_Bmode = (eeval >> 1) & 0x01;
+ ee->ee_Amode = (eeval & 0x01);
+
+ off = header[1];
+ EEREAD(off++);
+ ee->ee_antennaGainMax[0] = (int8_t)((eeval >> 8) & 0xFF);
+ ee->ee_antennaGainMax[1] = (int8_t)(eeval & 0xFF);
+ if (ee->ee_version >= AR_EEPROM_VER4_0) {
+ EEREAD(off++);
+ ee->ee_eepMap = (eeval>>14) & 0x3;
+ ee->ee_disableXr5 = (eeval>>13) & 0x1;
+ ee->ee_disableXr2 = (eeval>>12) & 0x1;
+ ee->ee_earStart = eeval & 0xfff;
+
+ EEREAD(off++);
+ ee->ee_targetPowersStart = eeval & 0xfff;
+ ee->ee_exist32kHzCrystal = (eeval>>14) & 0x1;
+
+ if (ee->ee_version >= AR_EEPROM_VER5_0) {
+ off += 2;
+ EEREAD(off);
+ ee->ee_eepMap2PowerCalStart = (eeval >> 4) & 0xfff;
+ /* Properly cal'ed 5.0 devices should be non-zero */
+ }
+ }
+
+ /* Read the moded sections of the EEPROM header in the order A, B, G */
+ for (i = headerInfo11A; i <= headerInfo11G; i++) {
+ /* Set the offset via the index */
+ off = header[2 + i];
+
+ EEREAD(off++);
+ ee->ee_switchSettling[i] = (eeval >> 8) & 0x7f;
+ ee->ee_txrxAtten[i] = (eeval >> 2) & 0x3f;
+ ee->ee_antennaControl[0][i] = (eeval << 4) & 0x3f;
+
+ EEREAD(off++);
+ ee->ee_antennaControl[0][i] |= (eeval >> 12) & 0x0f;
+ ee->ee_antennaControl[1][i] = (eeval >> 6) & 0x3f;
+ ee->ee_antennaControl[2][i] = eeval & 0x3f;
+
+ EEREAD(off++);
+ ee->ee_antennaControl[3][i] = (eeval >> 10) & 0x3f;
+ ee->ee_antennaControl[4][i] = (eeval >> 4) & 0x3f;
+ ee->ee_antennaControl[5][i] = (eeval << 2) & 0x3f;
+
+ EEREAD(off++);
+ ee->ee_antennaControl[5][i] |= (eeval >> 14) & 0x03;
+ ee->ee_antennaControl[6][i] = (eeval >> 8) & 0x3f;
+ ee->ee_antennaControl[7][i] = (eeval >> 2) & 0x3f;
+ ee->ee_antennaControl[8][i] = (eeval << 4) & 0x3f;
+
+ EEREAD(off++);
+ ee->ee_antennaControl[8][i] |= (eeval >> 12) & 0x0f;
+ ee->ee_antennaControl[9][i] = (eeval >> 6) & 0x3f;
+ ee->ee_antennaControl[10][i] = eeval & 0x3f;
+
+ EEREAD(off++);
+ ee->ee_adcDesiredSize[i] = (int8_t)((eeval >> 8) & 0xff);
+ switch (i) {
+ case headerInfo11A:
+ ee->ee_ob4 = (eeval >> 5) & 0x07;
+ ee->ee_db4 = (eeval >> 2) & 0x07;
+ ee->ee_ob3 = (eeval << 1) & 0x07;
+ break;
+ case headerInfo11B:
+ ee->ee_obFor24 = (eeval >> 4) & 0x07;
+ ee->ee_dbFor24 = eeval & 0x07;
+ break;
+ case headerInfo11G:
+ ee->ee_obFor24g = (eeval >> 4) & 0x07;
+ ee->ee_dbFor24g = eeval & 0x07;
+ break;
+ }
+
+ if (i == headerInfo11A) {
+ EEREAD(off++);
+ ee->ee_ob3 |= (eeval >> 15) & 0x01;
+ ee->ee_db3 = (eeval >> 12) & 0x07;
+ ee->ee_ob2 = (eeval >> 9) & 0x07;
+ ee->ee_db2 = (eeval >> 6) & 0x07;
+ ee->ee_ob1 = (eeval >> 3) & 0x07;
+ ee->ee_db1 = eeval & 0x07;
+ }
+
+ EEREAD(off++);
+ ee->ee_txEndToXLNAOn[i] = (eeval >> 8) & 0xff;
+ ee->ee_thresh62[i] = eeval & 0xff;
+
+ EEREAD(off++);
+ ee->ee_txEndToXPAOff[i] = (eeval >> 8) & 0xff;
+ ee->ee_txFrameToXPAOn[i] = eeval & 0xff;
+
+ EEREAD(off++);
+ ee->ee_pgaDesiredSize[i] = (int8_t)((eeval >> 8) & 0xff);
+ ee->ee_noiseFloorThresh[i] = eeval & 0xff;
+ if (ee->ee_noiseFloorThresh[i] & 0x80) {
+ ee->ee_noiseFloorThresh[i] = 0 -
+ ((ee->ee_noiseFloorThresh[i] ^ 0xff) + 1);
+ }
+
+ EEREAD(off++);
+ ee->ee_xlnaGain[i] = (eeval >> 5) & 0xff;
+ ee->ee_xgain[i] = (eeval >> 1) & 0x0f;
+ ee->ee_xpd[i] = eeval & 0x01;
+ if (ee->ee_version >= AR_EEPROM_VER4_0) {
+ switch (i) {
+ case headerInfo11A:
+ ee->ee_fixedBias5 = (eeval >> 13) & 0x1;
+ break;
+ case headerInfo11G:
+ ee->ee_fixedBias2 = (eeval >> 13) & 0x1;
+ break;
+ }
+ }
+
+ if (ee->ee_version >= AR_EEPROM_VER3_3) {
+ EEREAD(off++);
+ ee->ee_falseDetectBackoff[i] = (eeval >> 6) & 0x7F;
+ switch (i) {
+ case headerInfo11B:
+ ee->ee_ob2GHz[0] = eeval & 0x7;
+ ee->ee_db2GHz[0] = (eeval >> 3) & 0x7;
+ break;
+ case headerInfo11G:
+ ee->ee_ob2GHz[1] = eeval & 0x7;
+ ee->ee_db2GHz[1] = (eeval >> 3) & 0x7;
+ break;
+ case headerInfo11A:
+ ee->ee_xrTargetPower5 = eeval & 0x3f;
+ break;
+ }
+ }
+ if (ee->ee_version >= AR_EEPROM_VER3_4) {
+ ee->ee_gainI[i] = (eeval >> 13) & 0x07;
+
+ EEREAD(off++);
+ ee->ee_gainI[i] |= (eeval << 3) & 0x38;
+ if (i == headerInfo11G) {
+ ee->ee_cckOfdmPwrDelta = (eeval >> 3) & 0xFF;
+ if (ee->ee_version >= AR_EEPROM_VER4_6)
+ ee->ee_scaledCh14FilterCckDelta =
+ (eeval >> 11) & 0x1f;
+ }
+ if (i == headerInfo11A &&
+ ee->ee_version >= AR_EEPROM_VER4_0) {
+ ee->ee_iqCalI[0] = (eeval >> 8 ) & 0x3f;
+ ee->ee_iqCalQ[0] = (eeval >> 3 ) & 0x1f;
+ }
+ } else {
+ ee->ee_gainI[i] = 10;
+ ee->ee_cckOfdmPwrDelta = TENX_OFDM_CCK_DELTA_INIT;
+ }
+ if (ee->ee_version >= AR_EEPROM_VER4_0) {
+ switch (i) {
+ case headerInfo11B:
+ EEREAD(off++);
+ ee->ee_calPier11b[0] =
+ fbin2freq_2p4(ee, eeval&0xff);
+ ee->ee_calPier11b[1] =
+ fbin2freq_2p4(ee, (eeval >> 8)&0xff);
+ EEREAD(off++);
+ ee->ee_calPier11b[2] =
+ fbin2freq_2p4(ee, eeval&0xff);
+ if (ee->ee_version >= AR_EEPROM_VER4_1)
+ ee->ee_rxtxMargin[headerInfo11B] =
+ (eeval >> 8) & 0x3f;
+ break;
+ case headerInfo11G:
+ EEREAD(off++);
+ ee->ee_calPier11g[0] =
+ fbin2freq_2p4(ee, eeval & 0xff);
+ ee->ee_calPier11g[1] =
+ fbin2freq_2p4(ee, (eeval >> 8) & 0xff);
+
+ EEREAD(off++);
+ ee->ee_turbo2WMaxPower2 = eeval & 0x7F;
+ ee->ee_xrTargetPower2 = (eeval >> 7) & 0x3f;
+
+ EEREAD(off++);
+ ee->ee_calPier11g[2] =
+ fbin2freq_2p4(ee, eeval & 0xff);
+ if (ee->ee_version >= AR_EEPROM_VER4_1)
+ ee->ee_rxtxMargin[headerInfo11G] =
+ (eeval >> 8) & 0x3f;
+
+ EEREAD(off++);
+ ee->ee_iqCalI[1] = (eeval >> 5) & 0x3F;
+ ee->ee_iqCalQ[1] = eeval & 0x1F;
+
+ if (ee->ee_version >= AR_EEPROM_VER4_2) {
+ EEREAD(off++);
+ ee->ee_cckOfdmGainDelta =
+ (uint8_t)(eeval & 0xFF);
+ if (ee->ee_version >= AR_EEPROM_VER5_0) {
+ ee->ee_switchSettlingTurbo[1] =
+ (eeval >> 8) & 0x7f;
+ ee->ee_txrxAttenTurbo[1] =
+ (eeval >> 15) & 0x1;
+ EEREAD(off++);
+ ee->ee_txrxAttenTurbo[1] |=
+ (eeval & 0x1F) << 1;
+ ee->ee_rxtxMarginTurbo[1] =
+ (eeval >> 5) & 0x3F;
+ ee->ee_adcDesiredSizeTurbo[1] =
+ (eeval >> 11) & 0x1F;
+ EEREAD(off++);
+ ee->ee_adcDesiredSizeTurbo[1] |=
+ (eeval & 0x7) << 5;
+ ee->ee_pgaDesiredSizeTurbo[1] =
+ (eeval >> 3) & 0xFF;
+ }
+ }
+ break;
+ case headerInfo11A:
+ if (ee->ee_version >= AR_EEPROM_VER4_1) {
+ EEREAD(off++);
+ ee->ee_rxtxMargin[headerInfo11A] =
+ eeval & 0x3f;
+ if (ee->ee_version >= AR_EEPROM_VER5_0) {
+ ee->ee_switchSettlingTurbo[0] =
+ (eeval >> 6) & 0x7f;
+ ee->ee_txrxAttenTurbo[0] =
+ (eeval >> 13) & 0x7;
+ EEREAD(off++);
+ ee->ee_txrxAttenTurbo[0] |=
+ (eeval & 0x7) << 3;
+ ee->ee_rxtxMarginTurbo[0] =
+ (eeval >> 3) & 0x3F;
+ ee->ee_adcDesiredSizeTurbo[0] =
+ (eeval >> 9) & 0x7F;
+ EEREAD(off++);
+ ee->ee_adcDesiredSizeTurbo[0] |=
+ (eeval & 0x1) << 7;
+ ee->ee_pgaDesiredSizeTurbo[0] =
+ (eeval >> 1) & 0xFF;
+ }
+ }
+ break;
+ }
+ }
+ }
+ if (ee->ee_version < AR_EEPROM_VER3_3) {
+ /* Version 3.1+ specific parameters */
+ EEREAD(0xec);
+ ee->ee_ob2GHz[0] = eeval & 0x7;
+ ee->ee_db2GHz[0] = (eeval >> 3) & 0x7;
+
+ EEREAD(0xed);
+ ee->ee_ob2GHz[1] = eeval & 0x7;
+ ee->ee_db2GHz[1] = (eeval >> 3) & 0x7;
+ }
+
+ /* Initialize corner cal (thermal tx gain adjust parameters) */
+ ee->ee_cornerCal.clip = 4;
+ ee->ee_cornerCal.pd90 = 1;
+ ee->ee_cornerCal.pd84 = 1;
+ ee->ee_cornerCal.gSel = 0;
+
+ /*
+ * Read the conformance test limit identifiers
+ * These are used to match regulatory domain testing needs with
+ * the RD-specific tests that have been calibrated in the EEPROM.
+ */
+ off = header[5];
+ for (i = 0; i < ee->ee_numCtls; i += 2) {
+ EEREAD(off++);
+ ee->ee_ctl[i] = (eeval >> 8) & 0xff;
+ ee->ee_ctl[i+1] = eeval & 0xff;
+ }
+
+ if (ee->ee_version < AR_EEPROM_VER5_3) {
+ /* XXX only for 5413? */
+ ee->ee_spurChans[0][1] = AR_SPUR_5413_1;
+ ee->ee_spurChans[1][1] = AR_SPUR_5413_2;
+ ee->ee_spurChans[2][1] = AR_NO_SPUR;
+ ee->ee_spurChans[0][0] = AR_NO_SPUR;
+ } else {
+ /* Read spur mitigation data */
+ for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
+ EEREAD(off);
+ ee->ee_spurChans[i][0] = eeval;
+ EEREAD(off+AR_EEPROM_MODAL_SPURS);
+ ee->ee_spurChans[i][1] = eeval;
+ off++;
+ }
+ }
+
+ /* for recent changes to NF scale */
+ if (ee->ee_version <= AR_EEPROM_VER3_2) {
+ ee->ee_noiseFloorThresh[headerInfo11A] = -54;
+ ee->ee_noiseFloorThresh[headerInfo11B] = -1;
+ ee->ee_noiseFloorThresh[headerInfo11G] = -1;
+ }
+ /* to override thresh62 for better 2.4 and 5 operation */
+ if (ee->ee_version <= AR_EEPROM_VER3_2) {
+ ee->ee_thresh62[headerInfo11A] = 15; /* 11A */
+ ee->ee_thresh62[headerInfo11B] = 28; /* 11B */
+ ee->ee_thresh62[headerInfo11G] = 28; /* 11G */
+ }
+
+ /* Check for regulatory capabilities */
+ if (ee->ee_version >= AR_EEPROM_VER4_0) {
+ EEREAD(regCapOffsetPost4_0);
+ } else {
+ EEREAD(regCapOffsetPre4_0);
+ }
+
+ ee->ee_regCap = eeval;
+
+ if (ee->ee_Amode == 0) {
+ /* Check for valid Amode in upgraded h/w */
+ if (ee->ee_version >= AR_EEPROM_VER4_0) {
+ ee->ee_Amode = (ee->ee_regCap & AR_EEPROM_EEREGCAP_EN_KK_NEW_11A)?1:0;
+ } else {
+ ee->ee_Amode = (ee->ee_regCap & AR_EEPROM_EEREGCAP_EN_KK_NEW_11A_PRE4_0)?1:0;
+ }
+ }
+
+ if (ee->ee_version >= AR_EEPROM_VER5_1)
+ EEREAD(AR_EEPROM_CAPABILITIES_OFFSET);
+ else
+ eeval = 0;
+ ee->ee_opCap = eeval;
+
+ EEREAD(AR_EEPROM_REG_DOMAIN);
+ ee->ee_regdomain = eeval;
+
+ return AH_TRUE;
+#undef EEREAD
+}
+
+/*
+ * Now verify and copy EEPROM contents into the allocated space
+ */
+static HAL_BOOL
+legacyEepromReadContents(struct ath_hal *ah, HAL_EEPROM *ee)
+{
+ /* Read the header information here */
+ if (!readHeaderInfo(ah, ee))
+ return AH_FALSE;
+#if 0
+ /* Require 5112 devices to have EEPROM 4.0 EEP_MAP set */
+ if (IS_5112(ah) && !ee->ee_eepMap) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: 5112 devices must have EEPROM 4.0 with the "
+ "EEP_MAP set\n", __func__);
+ return AH_FALSE;
+ }
+#endif
+ /*
+ * Group 1: frequency pier locations readback
+ * check that the structure has been populated
+ * with enough space to hold the channels
+ *
+ * NOTE: Group 1 contains the 5 GHz channel numbers
+ * that have dBm->pcdac calibrated information.
+ */
+ if (!readEepromFreqPierInfo(ah, ee))
+ return AH_FALSE;
+
+ /*
+ * Group 2: readback data for all frequency piers
+ *
+ * NOTE: Group 2 contains the raw power calibration
+ * information for each of the channels that we
+ * recorded above.
+ */
+ if (!readEepromRawPowerCalInfo(ah, ee))
+ return AH_FALSE;
+
+ /*
+ * Group 5: target power values per rate
+ *
+ * NOTE: Group 5 contains the recorded maximum power
+ * in dB that can be attained for the given rate.
+ */
+ /* Read the power per rate info for test channels */
+ if (!readEepromTargetPowerCalInfo(ah, ee))
+ return AH_FALSE;
+
+ /*
+ * Group 8: Conformance Test Limits information
+ *
+ * NOTE: Group 8 contains the values to limit the
+ * maximum transmit power value based on any
+ * band edge violations.
+ */
+ /* Read the RD edge power limits */
+ return readEepromCTLInfo(ah, ee);
+}
+
+static HAL_STATUS
+legacyEepromGet(struct ath_hal *ah, int param, void *val)
+{
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ uint8_t *macaddr;
+ uint16_t eeval;
+ uint32_t sum;
+ int i;
+
+ switch (param) {
+ case AR_EEP_OPCAP:
+ *(uint16_t *) val = ee->ee_opCap;
+ return HAL_OK;
+ case AR_EEP_REGDMN_0:
+ *(uint16_t *) val = ee->ee_regdomain;
+ return HAL_OK;
+ case AR_EEP_RFSILENT:
+ if (!ath_hal_eepromRead(ah, AR_EEPROM_RFSILENT, &eeval))
+ return HAL_EEREAD;
+ *(uint16_t *) val = eeval;
+ return HAL_OK;
+ case AR_EEP_MACADDR:
+ sum = 0;
+ macaddr = val;
+ for (i = 0; i < 3; i++) {
+ if (!ath_hal_eepromRead(ah, AR_EEPROM_MAC(2-i), &eeval)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: cannot read EEPROM location %u\n",
+ __func__, i);
+ return HAL_EEREAD;
+ }
+ sum += eeval;
+ macaddr[2*i] = eeval >> 8;
+ macaddr[2*i + 1] = eeval & 0xff;
+ }
+ if (sum == 0 || sum == 0xffff*3) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: mac address read failed: %s\n", __func__,
+ ath_hal_ether_sprintf(macaddr));
+ return HAL_EEBADMAC;
+ }
+ return HAL_OK;
+ case AR_EEP_RFKILL:
+ HALASSERT(val == AH_NULL);
+ return ee->ee_rfKill ? HAL_OK : HAL_EIO;
+ case AR_EEP_AMODE:
+ HALASSERT(val == AH_NULL);
+ return ee->ee_Amode ? HAL_OK : HAL_EIO;
+ case AR_EEP_BMODE:
+ HALASSERT(val == AH_NULL);
+ return ee->ee_Bmode ? HAL_OK : HAL_EIO;
+ case AR_EEP_GMODE:
+ HALASSERT(val == AH_NULL);
+ return ee->ee_Gmode ? HAL_OK : HAL_EIO;
+ case AR_EEP_TURBO5DISABLE:
+ HALASSERT(val == AH_NULL);
+ return ee->ee_turbo5Disable ? HAL_OK : HAL_EIO;
+ case AR_EEP_TURBO2DISABLE:
+ HALASSERT(val == AH_NULL);
+ return ee->ee_turbo2Disable ? HAL_OK : HAL_EIO;
+ case AR_EEP_ISTALON: /* Talon detect */
+ HALASSERT(val == AH_NULL);
+ return (ee->ee_version >= AR_EEPROM_VER5_4 &&
+ ath_hal_eepromRead(ah, 0x0b, &eeval) && eeval == 1) ?
+ HAL_OK : HAL_EIO;
+ case AR_EEP_32KHZCRYSTAL:
+ HALASSERT(val == AH_NULL);
+ return ee->ee_exist32kHzCrystal ? HAL_OK : HAL_EIO;
+ case AR_EEP_COMPRESS:
+ HALASSERT(val == AH_NULL);
+ return (ee->ee_opCap & AR_EEPROM_EEPCAP_COMPRESS_DIS) == 0 ?
+ HAL_OK : HAL_EIO;
+ case AR_EEP_FASTFRAME:
+ HALASSERT(val == AH_NULL);
+ return (ee->ee_opCap & AR_EEPROM_EEPCAP_FASTFRAME_DIS) == 0 ?
+ HAL_OK : HAL_EIO;
+ case AR_EEP_AES:
+ HALASSERT(val == AH_NULL);
+ return (ee->ee_opCap & AR_EEPROM_EEPCAP_AES_DIS) == 0 ?
+ HAL_OK : HAL_EIO;
+ case AR_EEP_BURST:
+ HALASSERT(val == AH_NULL);
+ return (ee->ee_opCap & AR_EEPROM_EEPCAP_BURST_DIS) == 0 ?
+ HAL_OK : HAL_EIO;
+ case AR_EEP_MAXQCU:
+ if (ee->ee_opCap & AR_EEPROM_EEPCAP_MAXQCU) {
+ *(uint16_t *) val =
+ MS(ee->ee_opCap, AR_EEPROM_EEPCAP_MAXQCU);
+ return HAL_OK;
+ } else
+ return HAL_EIO;
+ case AR_EEP_KCENTRIES:
+ if (ee->ee_opCap & AR_EEPROM_EEPCAP_KC_ENTRIES) {
+ *(uint16_t *) val =
+ 1 << MS(ee->ee_opCap, AR_EEPROM_EEPCAP_KC_ENTRIES);
+ return HAL_OK;
+ } else
+ return HAL_EIO;
+ case AR_EEP_ANTGAINMAX_5:
+ *(int8_t *) val = ee->ee_antennaGainMax[0];
+ return HAL_OK;
+ case AR_EEP_ANTGAINMAX_2:
+ *(int8_t *) val = ee->ee_antennaGainMax[1];
+ return HAL_OK;
+ case AR_EEP_WRITEPROTECT:
+ HALASSERT(val == AH_NULL);
+ return (ee->ee_protect & AR_EEPROM_PROTECT_WP_128_191) ?
+ HAL_OK : HAL_EIO;
+ }
+ return HAL_EINVAL;
+}
+
+static HAL_BOOL
+legacyEepromSet(struct ath_hal *ah, int param, int v)
+{
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+
+ switch (param) {
+ case AR_EEP_AMODE:
+ ee->ee_Amode = v;
+ return HAL_OK;
+ case AR_EEP_BMODE:
+ ee->ee_Bmode = v;
+ return HAL_OK;
+ case AR_EEP_GMODE:
+ ee->ee_Gmode = v;
+ return HAL_OK;
+ case AR_EEP_TURBO5DISABLE:
+ ee->ee_turbo5Disable = v;
+ return HAL_OK;
+ case AR_EEP_TURBO2DISABLE:
+ ee->ee_turbo2Disable = v;
+ return HAL_OK;
+ case AR_EEP_COMPRESS:
+ if (v)
+ ee->ee_opCap &= ~AR_EEPROM_EEPCAP_COMPRESS_DIS;
+ else
+ ee->ee_opCap |= AR_EEPROM_EEPCAP_COMPRESS_DIS;
+ return HAL_OK;
+ case AR_EEP_FASTFRAME:
+ if (v)
+ ee->ee_opCap &= ~AR_EEPROM_EEPCAP_FASTFRAME_DIS;
+ else
+ ee->ee_opCap |= AR_EEPROM_EEPCAP_FASTFRAME_DIS;
+ return HAL_OK;
+ case AR_EEP_AES:
+ if (v)
+ ee->ee_opCap &= ~AR_EEPROM_EEPCAP_AES_DIS;
+ else
+ ee->ee_opCap |= AR_EEPROM_EEPCAP_AES_DIS;
+ return HAL_OK;
+ case AR_EEP_BURST:
+ if (v)
+ ee->ee_opCap &= ~AR_EEPROM_EEPCAP_BURST_DIS;
+ else
+ ee->ee_opCap |= AR_EEPROM_EEPCAP_BURST_DIS;
+ return HAL_OK;
+ }
+ return HAL_EINVAL;
+}
+
+static HAL_BOOL
+legacyEepromDiag(struct ath_hal *ah, int request,
+ const void *args, uint32_t argsize, void **result, uint32_t *resultsize)
+{
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ const EEPROM_POWER_EXPN_5112 *pe;
+
+ switch (request) {
+ case HAL_DIAG_EEPROM:
+ *result = ee;
+ *resultsize = sizeof(*ee);
+ return AH_TRUE;
+ case HAL_DIAG_EEPROM_EXP_11A:
+ case HAL_DIAG_EEPROM_EXP_11B:
+ case HAL_DIAG_EEPROM_EXP_11G:
+ pe = &ee->ee_modePowerArray5112[
+ request - HAL_DIAG_EEPROM_EXP_11A];
+ *result = pe->pChannels;
+ *resultsize = (*result == AH_NULL) ? 0 :
+ roundup(sizeof(uint16_t) * pe->numChannels,
+ sizeof(uint32_t)) +
+ sizeof(EXPN_DATA_PER_CHANNEL_5112) * pe->numChannels;
+ return AH_TRUE;
+ }
+ return AH_FALSE;
+}
+
+static uint16_t
+legacyEepromGetSpurChan(struct ath_hal *ah, int ix, HAL_BOOL is2GHz)
+{
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+
+ HALASSERT(0 <= ix && ix < AR_EEPROM_MODAL_SPURS);
+ return ee->ee_spurChans[ix][is2GHz];
+}
+
+/*
+ * Reclaim any EEPROM-related storage.
+ */
+static void
+legacyEepromDetach(struct ath_hal *ah)
+{
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+
+ if (ee->ee_version >= AR_EEPROM_VER4_0 && ee->ee_eepMap == 1)
+ return freeEepromRawPowerCalInfo5112(ah, ee);
+ ath_hal_free(ee);
+ AH_PRIVATE(ah)->ah_eeprom = AH_NULL;
+}
+
+/*
+ * These are not valid 2.4 channels, either we change 'em
+ * or we need to change the coding to accept them.
+ */
+static const uint16_t channels11b[] = { 2412, 2447, 2484 };
+static const uint16_t channels11g[] = { 2312, 2412, 2484 };
+
+HAL_STATUS
+ath_hal_legacyEepromAttach(struct ath_hal *ah)
+{
+ HAL_EEPROM *ee = AH_PRIVATE(ah)->ah_eeprom;
+ uint32_t sum, eepMax;
+ uint16_t eeversion, eeprotect, eeval;
+ u_int i;
+
+ HALASSERT(ee == AH_NULL);
+
+ if (!ath_hal_eepromRead(ah, AR_EEPROM_VERSION, &eeversion)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: unable to read EEPROM version\n", __func__);
+ return HAL_EEREAD;
+ }
+ if (eeversion < AR_EEPROM_VER3) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: unsupported EEPROM version "
+ "%u (0x%x) found\n", __func__, eeversion, eeversion);
+ return HAL_EEVERSION;
+ }
+
+ if (!ath_hal_eepromRead(ah, AR_EEPROM_PROTECT, &eeprotect)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: cannot read EEPROM protection "
+ "bits; read locked?\n", __func__);
+ return HAL_EEREAD;
+ }
+ HALDEBUG(ah, HAL_DEBUG_ATTACH, "EEPROM protect 0x%x\n", eeprotect);
+ /* XXX check proper access before continuing */
+
+ /*
+ * Read the Atheros EEPROM entries and calculate the checksum.
+ */
+ if (!ath_hal_eepromRead(ah, AR_EEPROM_SIZE_UPPER, &eeval)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: cannot read EEPROM upper size\n" , __func__);
+ return HAL_EEREAD;
+ }
+ if (eeval != 0) {
+ eepMax = (eeval & AR_EEPROM_SIZE_UPPER_MASK) <<
+ AR_EEPROM_SIZE_ENDLOC_SHIFT;
+ if (!ath_hal_eepromRead(ah, AR_EEPROM_SIZE_LOWER, &eeval)) {
+ HALDEBUG(ah, HAL_DEBUG_ANY,
+ "%s: cannot read EEPROM lower size\n" , __func__);
+ return HAL_EEREAD;
+ }
+ eepMax = (eepMax | eeval) - AR_EEPROM_ATHEROS_BASE;
+ } else
+ eepMax = AR_EEPROM_ATHEROS_MAX;
+ sum = 0;
+ for (i = 0; i < eepMax; i++) {
+ if (!ath_hal_eepromRead(ah, AR_EEPROM_ATHEROS(i), &eeval)) {
+ return HAL_EEREAD;
+ }
+ sum ^= eeval;
+ }
+ if (sum != 0xffff) {
+ HALDEBUG(ah, HAL_DEBUG_ANY, "%s: bad EEPROM checksum 0x%x\n",
+ __func__, sum);
+ return HAL_EEBADSUM;
+ }
+
+ ee = ath_hal_malloc(sizeof(HAL_EEPROM));
+ if (ee == AH_NULL) {
+ /* XXX message */
+ return HAL_ENOMEM;
+ }
+
+ ee->ee_protect = eeprotect;
+ ee->ee_version = eeversion;
+
+ ee->ee_numChannels11a = NUM_11A_EEPROM_CHANNELS;
+ ee->ee_numChannels2_4 = NUM_2_4_EEPROM_CHANNELS;
+
+ for (i = 0; i < NUM_11A_EEPROM_CHANNELS; i ++)
+ ee->ee_dataPerChannel11a[i].numPcdacValues = NUM_PCDAC_VALUES;
+
+ /* the channel list for 2.4 is fixed, fill this in here */
+ for (i = 0; i < NUM_2_4_EEPROM_CHANNELS; i++) {
+ ee->ee_channels11b[i] = channels11b[i];
+ /* XXX 5211 requires a hack though we don't support 11g */
+ if (ah->ah_magic == 0x19570405)
+ ee->ee_channels11g[i] = channels11b[i];
+ else
+ ee->ee_channels11g[i] = channels11g[i];
+ ee->ee_dataPerChannel11b[i].numPcdacValues = NUM_PCDAC_VALUES;
+ ee->ee_dataPerChannel11g[i].numPcdacValues = NUM_PCDAC_VALUES;
+ }
+
+ if (!legacyEepromReadContents(ah, ee)) {
+ /* XXX message */
+ ath_hal_free(ee);
+ return HAL_EEREAD; /* XXX */
+ }
+
+ AH_PRIVATE(ah)->ah_eeprom = ee;
+ AH_PRIVATE(ah)->ah_eeversion = eeversion;
+ AH_PRIVATE(ah)->ah_eepromDetach = legacyEepromDetach;
+ AH_PRIVATE(ah)->ah_eepromGet = legacyEepromGet;
+ AH_PRIVATE(ah)->ah_eepromSet = legacyEepromSet;
+ AH_PRIVATE(ah)->ah_getSpurChan = legacyEepromGetSpurChan;
+ AH_PRIVATE(ah)->ah_eepromDiag = legacyEepromDiag;
+ return HAL_OK;
+}