aboutsummaryrefslogtreecommitdiff
path: root/lib/Sema/SemaOverload.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2012-04-14 14:01:31 +0000
committerDimitry Andric <dim@FreeBSD.org>2012-04-14 14:01:31 +0000
commitdbe13110f59f48b4dbb7552b3ac2935acdeece7f (patch)
treebe1815eb79b42ff482a8562b13c2dcbf0c5dcbee /lib/Sema/SemaOverload.cpp
parent9da628931ebf2609493570f87824ca22402cc65f (diff)
downloadsrc-dbe13110f59f48b4dbb7552b3ac2935acdeece7f.tar.gz
src-dbe13110f59f48b4dbb7552b3ac2935acdeece7f.zip
Vendor import of clang trunk r154661:vendor/clang/clang-trunk-r154661
Notes
Notes: svn path=/vendor/clang/dist/; revision=234287 svn path=/vendor/clang/clang-trunk-r154661/; revision=234288; tag=vendor/clang/clang-trunk-r154661
Diffstat (limited to 'lib/Sema/SemaOverload.cpp')
-rw-r--r--lib/Sema/SemaOverload.cpp2109
1 files changed, 1651 insertions, 458 deletions
diff --git a/lib/Sema/SemaOverload.cpp b/lib/Sema/SemaOverload.cpp
index b0dd5e280ebd..284c8dec1c62 100644
--- a/lib/Sema/SemaOverload.cpp
+++ b/lib/Sema/SemaOverload.cpp
@@ -40,7 +40,7 @@ static ExprResult
CreateFunctionRefExpr(Sema &S, FunctionDecl *Fn, bool HadMultipleCandidates,
SourceLocation Loc = SourceLocation(),
const DeclarationNameLoc &LocInfo = DeclarationNameLoc()){
- DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, Fn->getType(),
+ DeclRefExpr *DRE = new (S.Context) DeclRefExpr(Fn, false, Fn->getType(),
VK_LValue, Loc, LocInfo);
if (HadMultipleCandidates)
DRE->setHadMultipleCandidates(true);
@@ -258,6 +258,172 @@ isPointerConversionToVoidPointer(ASTContext& Context) const {
return false;
}
+/// Skip any implicit casts which could be either part of a narrowing conversion
+/// or after one in an implicit conversion.
+static const Expr *IgnoreNarrowingConversion(const Expr *Converted) {
+ while (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(Converted)) {
+ switch (ICE->getCastKind()) {
+ case CK_NoOp:
+ case CK_IntegralCast:
+ case CK_IntegralToBoolean:
+ case CK_IntegralToFloating:
+ case CK_FloatingToIntegral:
+ case CK_FloatingToBoolean:
+ case CK_FloatingCast:
+ Converted = ICE->getSubExpr();
+ continue;
+
+ default:
+ return Converted;
+ }
+ }
+
+ return Converted;
+}
+
+/// Check if this standard conversion sequence represents a narrowing
+/// conversion, according to C++11 [dcl.init.list]p7.
+///
+/// \param Ctx The AST context.
+/// \param Converted The result of applying this standard conversion sequence.
+/// \param ConstantValue If this is an NK_Constant_Narrowing conversion, the
+/// value of the expression prior to the narrowing conversion.
+/// \param ConstantType If this is an NK_Constant_Narrowing conversion, the
+/// type of the expression prior to the narrowing conversion.
+NarrowingKind
+StandardConversionSequence::getNarrowingKind(ASTContext &Ctx,
+ const Expr *Converted,
+ APValue &ConstantValue,
+ QualType &ConstantType) const {
+ assert(Ctx.getLangOpts().CPlusPlus && "narrowing check outside C++");
+
+ // C++11 [dcl.init.list]p7:
+ // A narrowing conversion is an implicit conversion ...
+ QualType FromType = getToType(0);
+ QualType ToType = getToType(1);
+ switch (Second) {
+ // -- from a floating-point type to an integer type, or
+ //
+ // -- from an integer type or unscoped enumeration type to a floating-point
+ // type, except where the source is a constant expression and the actual
+ // value after conversion will fit into the target type and will produce
+ // the original value when converted back to the original type, or
+ case ICK_Floating_Integral:
+ if (FromType->isRealFloatingType() && ToType->isIntegralType(Ctx)) {
+ return NK_Type_Narrowing;
+ } else if (FromType->isIntegralType(Ctx) && ToType->isRealFloatingType()) {
+ llvm::APSInt IntConstantValue;
+ const Expr *Initializer = IgnoreNarrowingConversion(Converted);
+ if (Initializer &&
+ Initializer->isIntegerConstantExpr(IntConstantValue, Ctx)) {
+ // Convert the integer to the floating type.
+ llvm::APFloat Result(Ctx.getFloatTypeSemantics(ToType));
+ Result.convertFromAPInt(IntConstantValue, IntConstantValue.isSigned(),
+ llvm::APFloat::rmNearestTiesToEven);
+ // And back.
+ llvm::APSInt ConvertedValue = IntConstantValue;
+ bool ignored;
+ Result.convertToInteger(ConvertedValue,
+ llvm::APFloat::rmTowardZero, &ignored);
+ // If the resulting value is different, this was a narrowing conversion.
+ if (IntConstantValue != ConvertedValue) {
+ ConstantValue = APValue(IntConstantValue);
+ ConstantType = Initializer->getType();
+ return NK_Constant_Narrowing;
+ }
+ } else {
+ // Variables are always narrowings.
+ return NK_Variable_Narrowing;
+ }
+ }
+ return NK_Not_Narrowing;
+
+ // -- from long double to double or float, or from double to float, except
+ // where the source is a constant expression and the actual value after
+ // conversion is within the range of values that can be represented (even
+ // if it cannot be represented exactly), or
+ case ICK_Floating_Conversion:
+ if (FromType->isRealFloatingType() && ToType->isRealFloatingType() &&
+ Ctx.getFloatingTypeOrder(FromType, ToType) == 1) {
+ // FromType is larger than ToType.
+ const Expr *Initializer = IgnoreNarrowingConversion(Converted);
+ if (Initializer->isCXX11ConstantExpr(Ctx, &ConstantValue)) {
+ // Constant!
+ assert(ConstantValue.isFloat());
+ llvm::APFloat FloatVal = ConstantValue.getFloat();
+ // Convert the source value into the target type.
+ bool ignored;
+ llvm::APFloat::opStatus ConvertStatus = FloatVal.convert(
+ Ctx.getFloatTypeSemantics(ToType),
+ llvm::APFloat::rmNearestTiesToEven, &ignored);
+ // If there was no overflow, the source value is within the range of
+ // values that can be represented.
+ if (ConvertStatus & llvm::APFloat::opOverflow) {
+ ConstantType = Initializer->getType();
+ return NK_Constant_Narrowing;
+ }
+ } else {
+ return NK_Variable_Narrowing;
+ }
+ }
+ return NK_Not_Narrowing;
+
+ // -- from an integer type or unscoped enumeration type to an integer type
+ // that cannot represent all the values of the original type, except where
+ // the source is a constant expression and the actual value after
+ // conversion will fit into the target type and will produce the original
+ // value when converted back to the original type.
+ case ICK_Boolean_Conversion: // Bools are integers too.
+ if (!FromType->isIntegralOrUnscopedEnumerationType()) {
+ // Boolean conversions can be from pointers and pointers to members
+ // [conv.bool], and those aren't considered narrowing conversions.
+ return NK_Not_Narrowing;
+ } // Otherwise, fall through to the integral case.
+ case ICK_Integral_Conversion: {
+ assert(FromType->isIntegralOrUnscopedEnumerationType());
+ assert(ToType->isIntegralOrUnscopedEnumerationType());
+ const bool FromSigned = FromType->isSignedIntegerOrEnumerationType();
+ const unsigned FromWidth = Ctx.getIntWidth(FromType);
+ const bool ToSigned = ToType->isSignedIntegerOrEnumerationType();
+ const unsigned ToWidth = Ctx.getIntWidth(ToType);
+
+ if (FromWidth > ToWidth ||
+ (FromWidth == ToWidth && FromSigned != ToSigned)) {
+ // Not all values of FromType can be represented in ToType.
+ llvm::APSInt InitializerValue;
+ const Expr *Initializer = IgnoreNarrowingConversion(Converted);
+ if (Initializer->isIntegerConstantExpr(InitializerValue, Ctx)) {
+ ConstantValue = APValue(InitializerValue);
+
+ // Add a bit to the InitializerValue so we don't have to worry about
+ // signed vs. unsigned comparisons.
+ InitializerValue = InitializerValue.extend(
+ InitializerValue.getBitWidth() + 1);
+ // Convert the initializer to and from the target width and signed-ness.
+ llvm::APSInt ConvertedValue = InitializerValue;
+ ConvertedValue = ConvertedValue.trunc(ToWidth);
+ ConvertedValue.setIsSigned(ToSigned);
+ ConvertedValue = ConvertedValue.extend(InitializerValue.getBitWidth());
+ ConvertedValue.setIsSigned(InitializerValue.isSigned());
+ // If the result is different, this was a narrowing conversion.
+ if (ConvertedValue != InitializerValue) {
+ ConstantType = Initializer->getType();
+ return NK_Constant_Narrowing;
+ }
+ } else {
+ // Variables are always narrowings.
+ return NK_Variable_Narrowing;
+ }
+ }
+ return NK_Not_Narrowing;
+ }
+
+ default:
+ // Other kinds of conversions are not narrowings.
+ return NK_Not_Narrowing;
+ }
+}
+
/// DebugPrint - Print this standard conversion sequence to standard
/// error. Useful for debugging overloading issues.
void StandardConversionSequence::DebugPrint() const {
@@ -305,7 +471,10 @@ void UserDefinedConversionSequence::DebugPrint() const {
Before.DebugPrint();
OS << " -> ";
}
- OS << '\'' << *ConversionFunction << '\'';
+ if (ConversionFunction)
+ OS << '\'' << *ConversionFunction << '\'';
+ else
+ OS << "aggregate initialization";
if (After.First || After.Second || After.Third) {
OS << " -> ";
After.DebugPrint();
@@ -538,10 +707,85 @@ OverloadCandidate::DeductionFailureInfo::getSecondArg() {
}
void OverloadCandidateSet::clear() {
- inherited::clear();
+ for (iterator i = begin(), e = end(); i != e; ++i)
+ for (unsigned ii = 0, ie = i->NumConversions; ii != ie; ++ii)
+ i->Conversions[ii].~ImplicitConversionSequence();
+ NumInlineSequences = 0;
+ Candidates.clear();
Functions.clear();
}
+namespace {
+ class UnbridgedCastsSet {
+ struct Entry {
+ Expr **Addr;
+ Expr *Saved;
+ };
+ SmallVector<Entry, 2> Entries;
+
+ public:
+ void save(Sema &S, Expr *&E) {
+ assert(E->hasPlaceholderType(BuiltinType::ARCUnbridgedCast));
+ Entry entry = { &E, E };
+ Entries.push_back(entry);
+ E = S.stripARCUnbridgedCast(E);
+ }
+
+ void restore() {
+ for (SmallVectorImpl<Entry>::iterator
+ i = Entries.begin(), e = Entries.end(); i != e; ++i)
+ *i->Addr = i->Saved;
+ }
+ };
+}
+
+/// checkPlaceholderForOverload - Do any interesting placeholder-like
+/// preprocessing on the given expression.
+///
+/// \param unbridgedCasts a collection to which to add unbridged casts;
+/// without this, they will be immediately diagnosed as errors
+///
+/// Return true on unrecoverable error.
+static bool checkPlaceholderForOverload(Sema &S, Expr *&E,
+ UnbridgedCastsSet *unbridgedCasts = 0) {
+ if (const BuiltinType *placeholder = E->getType()->getAsPlaceholderType()) {
+ // We can't handle overloaded expressions here because overload
+ // resolution might reasonably tweak them.
+ if (placeholder->getKind() == BuiltinType::Overload) return false;
+
+ // If the context potentially accepts unbridged ARC casts, strip
+ // the unbridged cast and add it to the collection for later restoration.
+ if (placeholder->getKind() == BuiltinType::ARCUnbridgedCast &&
+ unbridgedCasts) {
+ unbridgedCasts->save(S, E);
+ return false;
+ }
+
+ // Go ahead and check everything else.
+ ExprResult result = S.CheckPlaceholderExpr(E);
+ if (result.isInvalid())
+ return true;
+
+ E = result.take();
+ return false;
+ }
+
+ // Nothing to do.
+ return false;
+}
+
+/// checkArgPlaceholdersForOverload - Check a set of call operands for
+/// placeholders.
+static bool checkArgPlaceholdersForOverload(Sema &S, Expr **args,
+ unsigned numArgs,
+ UnbridgedCastsSet &unbridged) {
+ for (unsigned i = 0; i != numArgs; ++i)
+ if (checkPlaceholderForOverload(S, args[i], &unbridged))
+ return true;
+
+ return false;
+}
+
// IsOverload - Determine whether the given New declaration is an
// overload of the declarations in Old. This routine returns false if
// New and Old cannot be overloaded, e.g., if New has the same
@@ -750,6 +994,86 @@ bool Sema::isFunctionConsideredUnavailable(FunctionDecl *FD) {
return FD->isUnavailable() && !cast<Decl>(CurContext)->isUnavailable();
}
+/// \brief Tries a user-defined conversion from From to ToType.
+///
+/// Produces an implicit conversion sequence for when a standard conversion
+/// is not an option. See TryImplicitConversion for more information.
+static ImplicitConversionSequence
+TryUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool AllowExplicit,
+ bool InOverloadResolution,
+ bool CStyle,
+ bool AllowObjCWritebackConversion) {
+ ImplicitConversionSequence ICS;
+
+ if (SuppressUserConversions) {
+ // We're not in the case above, so there is no conversion that
+ // we can perform.
+ ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
+ return ICS;
+ }
+
+ // Attempt user-defined conversion.
+ OverloadCandidateSet Conversions(From->getExprLoc());
+ OverloadingResult UserDefResult
+ = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
+ AllowExplicit);
+
+ if (UserDefResult == OR_Success) {
+ ICS.setUserDefined();
+ // C++ [over.ics.user]p4:
+ // A conversion of an expression of class type to the same class
+ // type is given Exact Match rank, and a conversion of an
+ // expression of class type to a base class of that type is
+ // given Conversion rank, in spite of the fact that a copy
+ // constructor (i.e., a user-defined conversion function) is
+ // called for those cases.
+ if (CXXConstructorDecl *Constructor
+ = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
+ QualType FromCanon
+ = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
+ QualType ToCanon
+ = S.Context.getCanonicalType(ToType).getUnqualifiedType();
+ if (Constructor->isCopyConstructor() &&
+ (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
+ // Turn this into a "standard" conversion sequence, so that it
+ // gets ranked with standard conversion sequences.
+ ICS.setStandard();
+ ICS.Standard.setAsIdentityConversion();
+ ICS.Standard.setFromType(From->getType());
+ ICS.Standard.setAllToTypes(ToType);
+ ICS.Standard.CopyConstructor = Constructor;
+ if (ToCanon != FromCanon)
+ ICS.Standard.Second = ICK_Derived_To_Base;
+ }
+ }
+
+ // C++ [over.best.ics]p4:
+ // However, when considering the argument of a user-defined
+ // conversion function that is a candidate by 13.3.1.3 when
+ // invoked for the copying of the temporary in the second step
+ // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
+ // 13.3.1.6 in all cases, only standard conversion sequences and
+ // ellipsis conversion sequences are allowed.
+ if (SuppressUserConversions && ICS.isUserDefined()) {
+ ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
+ }
+ } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
+ ICS.setAmbiguous();
+ ICS.Ambiguous.setFromType(From->getType());
+ ICS.Ambiguous.setToType(ToType);
+ for (OverloadCandidateSet::iterator Cand = Conversions.begin();
+ Cand != Conversions.end(); ++Cand)
+ if (Cand->Viable)
+ ICS.Ambiguous.addConversion(Cand->Function);
+ } else {
+ ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
+ }
+
+ return ICS;
+}
+
/// TryImplicitConversion - Attempt to perform an implicit conversion
/// from the given expression (Expr) to the given type (ToType). This
/// function returns an implicit conversion sequence that can be used
@@ -791,7 +1115,7 @@ TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
return ICS;
}
- if (!S.getLangOptions().CPlusPlus) {
+ if (!S.getLangOpts().CPlusPlus) {
ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
return ICS;
}
@@ -825,71 +1149,9 @@ TryImplicitConversion(Sema &S, Expr *From, QualType ToType,
return ICS;
}
- if (SuppressUserConversions) {
- // We're not in the case above, so there is no conversion that
- // we can perform.
- ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
- return ICS;
- }
-
- // Attempt user-defined conversion.
- OverloadCandidateSet Conversions(From->getExprLoc());
- OverloadingResult UserDefResult
- = IsUserDefinedConversion(S, From, ToType, ICS.UserDefined, Conversions,
- AllowExplicit);
-
- if (UserDefResult == OR_Success) {
- ICS.setUserDefined();
- // C++ [over.ics.user]p4:
- // A conversion of an expression of class type to the same class
- // type is given Exact Match rank, and a conversion of an
- // expression of class type to a base class of that type is
- // given Conversion rank, in spite of the fact that a copy
- // constructor (i.e., a user-defined conversion function) is
- // called for those cases.
- if (CXXConstructorDecl *Constructor
- = dyn_cast<CXXConstructorDecl>(ICS.UserDefined.ConversionFunction)) {
- QualType FromCanon
- = S.Context.getCanonicalType(From->getType().getUnqualifiedType());
- QualType ToCanon
- = S.Context.getCanonicalType(ToType).getUnqualifiedType();
- if (Constructor->isCopyConstructor() &&
- (FromCanon == ToCanon || S.IsDerivedFrom(FromCanon, ToCanon))) {
- // Turn this into a "standard" conversion sequence, so that it
- // gets ranked with standard conversion sequences.
- ICS.setStandard();
- ICS.Standard.setAsIdentityConversion();
- ICS.Standard.setFromType(From->getType());
- ICS.Standard.setAllToTypes(ToType);
- ICS.Standard.CopyConstructor = Constructor;
- if (ToCanon != FromCanon)
- ICS.Standard.Second = ICK_Derived_To_Base;
- }
- }
-
- // C++ [over.best.ics]p4:
- // However, when considering the argument of a user-defined
- // conversion function that is a candidate by 13.3.1.3 when
- // invoked for the copying of the temporary in the second step
- // of a class copy-initialization, or by 13.3.1.4, 13.3.1.5, or
- // 13.3.1.6 in all cases, only standard conversion sequences and
- // ellipsis conversion sequences are allowed.
- if (SuppressUserConversions && ICS.isUserDefined()) {
- ICS.setBad(BadConversionSequence::suppressed_user, From, ToType);
- }
- } else if (UserDefResult == OR_Ambiguous && !SuppressUserConversions) {
- ICS.setAmbiguous();
- ICS.Ambiguous.setFromType(From->getType());
- ICS.Ambiguous.setToType(ToType);
- for (OverloadCandidateSet::iterator Cand = Conversions.begin();
- Cand != Conversions.end(); ++Cand)
- if (Cand->Viable)
- ICS.Ambiguous.addConversion(Cand->Function);
- } else {
- ICS.setBad(BadConversionSequence::no_conversion, From, ToType);
- }
-
- return ICS;
+ return TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
+ AllowExplicit, InOverloadResolution, CStyle,
+ AllowObjCWritebackConversion);
}
ImplicitConversionSequence
@@ -912,21 +1174,21 @@ Sema::TryImplicitConversion(Expr *From, QualType ToType,
/// explicit user-defined conversions are permitted.
ExprResult
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
- AssignmentAction Action, bool AllowExplicit,
- bool Diagnose) {
+ AssignmentAction Action, bool AllowExplicit) {
ImplicitConversionSequence ICS;
- return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS,
- Diagnose);
+ return PerformImplicitConversion(From, ToType, Action, AllowExplicit, ICS);
}
ExprResult
Sema::PerformImplicitConversion(Expr *From, QualType ToType,
AssignmentAction Action, bool AllowExplicit,
- ImplicitConversionSequence& ICS,
- bool Diagnose) {
+ ImplicitConversionSequence& ICS) {
+ if (checkPlaceholderForOverload(*this, From))
+ return ExprError();
+
// Objective-C ARC: Determine whether we will allow the writeback conversion.
bool AllowObjCWritebackConversion
- = getLangOptions().ObjCAutoRefCount &&
+ = getLangOpts().ObjCAutoRefCount &&
(Action == AA_Passing || Action == AA_Sending);
ICS = clang::TryImplicitConversion(*this, From, ToType,
@@ -935,8 +1197,6 @@ Sema::PerformImplicitConversion(Expr *From, QualType ToType,
/*InOverloadResolution=*/false,
/*CStyle=*/false,
AllowObjCWritebackConversion);
- if (!Diagnose && ICS.isFailure())
- return ExprError();
return PerformImplicitConversion(From, ToType, ICS, Action);
}
@@ -1024,7 +1284,7 @@ static bool IsVectorConversion(ASTContext &Context, QualType FromType,
// same size
if (ToType->isVectorType() && FromType->isVectorType()) {
if (Context.areCompatibleVectorTypes(FromType, ToType) ||
- (Context.getLangOptions().LaxVectorConversions &&
+ (Context.getLangOpts().LaxVectorConversions &&
(Context.getTypeSize(FromType) == Context.getTypeSize(ToType)))) {
ICK = ICK_Vector_Conversion;
return true;
@@ -1034,6 +1294,11 @@ static bool IsVectorConversion(ASTContext &Context, QualType FromType,
return false;
}
+static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle);
+
/// IsStandardConversion - Determines whether there is a standard
/// conversion sequence (C++ [conv], C++ [over.ics.scs]) from the
/// expression From to the type ToType. Standard conversion sequences
@@ -1059,7 +1324,7 @@ static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
// There are no standard conversions for class types in C++, so
// abort early. When overloading in C, however, we do permit
if (FromType->isRecordType() || ToType->isRecordType()) {
- if (S.getLangOptions().CPlusPlus)
+ if (S.getLangOpts().CPlusPlus)
return false;
// When we're overloading in C, we allow, as standard conversions,
@@ -1129,6 +1394,12 @@ static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
S.Context.getCanonicalType(FromType) != S.Context.OverloadTy) {
SCS.First = ICK_Lvalue_To_Rvalue;
+ // C11 6.3.2.1p2:
+ // ... if the lvalue has atomic type, the value has the non-atomic version
+ // of the type of the lvalue ...
+ if (const AtomicType *Atomic = FromType->getAs<AtomicType>())
+ FromType = Atomic->getValueType();
+
// If T is a non-class type, the type of the rvalue is the
// cv-unqualified version of T. Otherwise, the type of the rvalue
// is T (C++ 4.1p1). C++ can't get here with class types; in C, we
@@ -1247,7 +1518,7 @@ static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
} else if (IsVectorConversion(S.Context, FromType, ToType, SecondICK)) {
SCS.Second = SecondICK;
FromType = ToType.getUnqualifiedType();
- } else if (!S.getLangOptions().CPlusPlus &&
+ } else if (!S.getLangOpts().CPlusPlus &&
S.Context.typesAreCompatible(ToType, FromType)) {
// Compatible conversions (Clang extension for C function overloading)
SCS.Second = ICK_Compatible_Conversion;
@@ -1260,6 +1531,11 @@ static bool IsStandardConversion(Sema &S, Expr* From, QualType ToType,
SCS, CStyle)) {
SCS.Second = ICK_TransparentUnionConversion;
FromType = ToType;
+ } else if (tryAtomicConversion(S, From, ToType, InOverloadResolution, SCS,
+ CStyle)) {
+ // tryAtomicConversion has updated the standard conversion sequence
+ // appropriately.
+ return true;
} else {
// No second conversion required.
SCS.Second = ICK_Identity;
@@ -1480,7 +1756,7 @@ bool Sema::IsFloatingPointPromotion(QualType FromType, QualType ToType) {
// C99 6.3.1.5p1:
// When a float is promoted to double or long double, or a
// double is promoted to long double [...].
- if (!getLangOptions().CPlusPlus &&
+ if (!getLangOpts().CPlusPlus &&
(FromBuiltin->getKind() == BuiltinType::Float ||
FromBuiltin->getKind() == BuiltinType::Double) &&
(ToBuiltin->getKind() == BuiltinType::LongDouble))
@@ -1646,7 +1922,7 @@ bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
// , including objective-c pointers.
QualType ToPointeeType = ToTypePtr->getPointeeType();
if (FromType->isObjCObjectPointerType() && ToPointeeType->isVoidType() &&
- !getLangOptions().ObjCAutoRefCount) {
+ !getLangOpts().ObjCAutoRefCount) {
ConvertedType = BuildSimilarlyQualifiedPointerType(
FromType->getAs<ObjCObjectPointerType>(),
ToPointeeType,
@@ -1677,7 +1953,7 @@ bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
}
// MSVC allows implicit function to void* type conversion.
- if (getLangOptions().MicrosoftExt && FromPointeeType->isFunctionType() &&
+ if (getLangOpts().MicrosoftExt && FromPointeeType->isFunctionType() &&
ToPointeeType->isVoidType()) {
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
ToPointeeType,
@@ -1687,7 +1963,7 @@ bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
// When we're overloading in C, we allow a special kind of pointer
// conversion for compatible-but-not-identical pointee types.
- if (!getLangOptions().CPlusPlus &&
+ if (!getLangOpts().CPlusPlus &&
Context.typesAreCompatible(FromPointeeType, ToPointeeType)) {
ConvertedType = BuildSimilarlyQualifiedPointerType(FromTypePtr,
ToPointeeType,
@@ -1708,7 +1984,7 @@ bool Sema::IsPointerConversion(Expr *From, QualType FromType, QualType ToType,
//
// Note that we do not check for ambiguity or inaccessibility
// here. That is handled by CheckPointerConversion.
- if (getLangOptions().CPlusPlus &&
+ if (getLangOpts().CPlusPlus &&
FromPointeeType->isRecordType() && ToPointeeType->isRecordType() &&
!Context.hasSameUnqualifiedType(FromPointeeType, ToPointeeType) &&
!RequireCompleteType(From->getLocStart(), FromPointeeType, PDiag()) &&
@@ -1750,7 +2026,7 @@ static QualType AdoptQualifiers(ASTContext &Context, QualType T, Qualifiers Qs){
bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
QualType& ConvertedType,
bool &IncompatibleObjC) {
- if (!getLangOptions().ObjC1)
+ if (!getLangOpts().ObjC1)
return false;
// The set of qualifiers on the type we're converting from.
@@ -1789,7 +2065,7 @@ bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
if (Context.canAssignObjCInterfaces(ToObjCPtr, FromObjCPtr)) {
const ObjCInterfaceType* LHS = ToObjCPtr->getInterfaceType();
const ObjCInterfaceType* RHS = FromObjCPtr->getInterfaceType();
- if (getLangOptions().CPlusPlus && LHS && RHS &&
+ if (getLangOpts().CPlusPlus && LHS && RHS &&
!ToObjCPtr->getPointeeType().isAtLeastAsQualifiedAs(
FromObjCPtr->getPointeeType()))
return false;
@@ -1945,7 +2221,7 @@ bool Sema::isObjCPointerConversion(QualType FromType, QualType ToType,
/// this conversion.
bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
QualType &ConvertedType) {
- if (!getLangOptions().ObjCAutoRefCount ||
+ if (!getLangOpts().ObjCAutoRefCount ||
Context.hasSameUnqualifiedType(FromType, ToType))
return false;
@@ -1959,7 +2235,7 @@ bool Sema::isObjCWritebackConversion(QualType FromType, QualType ToType,
Qualifiers ToQuals = ToPointee.getQualifiers();
if (!ToPointee->isObjCLifetimeType() ||
ToQuals.getObjCLifetime() != Qualifiers::OCL_Autoreleasing ||
- !ToQuals.withoutObjCGLifetime().empty())
+ !ToQuals.withoutObjCLifetime().empty())
return false;
// Argument must be a pointer to __strong to __weak.
@@ -2049,7 +2325,7 @@ bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
} else {
QualType RHS = FromFunctionType->getResultType();
QualType LHS = ToFunctionType->getResultType();
- if ((!getLangOptions().CPlusPlus || !RHS->isRecordType()) &&
+ if ((!getLangOpts().CPlusPlus || !RHS->isRecordType()) &&
!RHS.hasQualifiers() && LHS.hasQualifiers())
LHS = LHS.getUnqualifiedType();
@@ -2091,22 +2367,131 @@ bool Sema::IsBlockPointerConversion(QualType FromType, QualType ToType,
return true;
}
+enum {
+ ft_default,
+ ft_different_class,
+ ft_parameter_arity,
+ ft_parameter_mismatch,
+ ft_return_type,
+ ft_qualifer_mismatch
+};
+
+/// HandleFunctionTypeMismatch - Gives diagnostic information for differeing
+/// function types. Catches different number of parameter, mismatch in
+/// parameter types, and different return types.
+void Sema::HandleFunctionTypeMismatch(PartialDiagnostic &PDiag,
+ QualType FromType, QualType ToType) {
+ // If either type is not valid, include no extra info.
+ if (FromType.isNull() || ToType.isNull()) {
+ PDiag << ft_default;
+ return;
+ }
+
+ // Get the function type from the pointers.
+ if (FromType->isMemberPointerType() && ToType->isMemberPointerType()) {
+ const MemberPointerType *FromMember = FromType->getAs<MemberPointerType>(),
+ *ToMember = ToType->getAs<MemberPointerType>();
+ if (FromMember->getClass() != ToMember->getClass()) {
+ PDiag << ft_different_class << QualType(ToMember->getClass(), 0)
+ << QualType(FromMember->getClass(), 0);
+ return;
+ }
+ FromType = FromMember->getPointeeType();
+ ToType = ToMember->getPointeeType();
+ }
+
+ if (FromType->isPointerType())
+ FromType = FromType->getPointeeType();
+ if (ToType->isPointerType())
+ ToType = ToType->getPointeeType();
+
+ // Remove references.
+ FromType = FromType.getNonReferenceType();
+ ToType = ToType.getNonReferenceType();
+
+ // Don't print extra info for non-specialized template functions.
+ if (FromType->isInstantiationDependentType() &&
+ !FromType->getAs<TemplateSpecializationType>()) {
+ PDiag << ft_default;
+ return;
+ }
+
+ // No extra info for same types.
+ if (Context.hasSameType(FromType, ToType)) {
+ PDiag << ft_default;
+ return;
+ }
+
+ const FunctionProtoType *FromFunction = FromType->getAs<FunctionProtoType>(),
+ *ToFunction = ToType->getAs<FunctionProtoType>();
+
+ // Both types need to be function types.
+ if (!FromFunction || !ToFunction) {
+ PDiag << ft_default;
+ return;
+ }
+
+ if (FromFunction->getNumArgs() != ToFunction->getNumArgs()) {
+ PDiag << ft_parameter_arity << ToFunction->getNumArgs()
+ << FromFunction->getNumArgs();
+ return;
+ }
+
+ // Handle different parameter types.
+ unsigned ArgPos;
+ if (!FunctionArgTypesAreEqual(FromFunction, ToFunction, &ArgPos)) {
+ PDiag << ft_parameter_mismatch << ArgPos + 1
+ << ToFunction->getArgType(ArgPos)
+ << FromFunction->getArgType(ArgPos);
+ return;
+ }
+
+ // Handle different return type.
+ if (!Context.hasSameType(FromFunction->getResultType(),
+ ToFunction->getResultType())) {
+ PDiag << ft_return_type << ToFunction->getResultType()
+ << FromFunction->getResultType();
+ return;
+ }
+
+ unsigned FromQuals = FromFunction->getTypeQuals(),
+ ToQuals = ToFunction->getTypeQuals();
+ if (FromQuals != ToQuals) {
+ PDiag << ft_qualifer_mismatch << ToQuals << FromQuals;
+ return;
+ }
+
+ // Unable to find a difference, so add no extra info.
+ PDiag << ft_default;
+}
+
/// FunctionArgTypesAreEqual - This routine checks two function proto types
-/// for equlity of their argument types. Caller has already checked that
+/// for equality of their argument types. Caller has already checked that
/// they have same number of arguments. This routine assumes that Objective-C
/// pointer types which only differ in their protocol qualifiers are equal.
+/// If the parameters are different, ArgPos will have the the parameter index
+/// of the first different parameter.
bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
- const FunctionProtoType *NewType) {
- if (!getLangOptions().ObjC1)
- return std::equal(OldType->arg_type_begin(), OldType->arg_type_end(),
- NewType->arg_type_begin());
+ const FunctionProtoType *NewType,
+ unsigned *ArgPos) {
+ if (!getLangOpts().ObjC1) {
+ for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
+ N = NewType->arg_type_begin(),
+ E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
+ if (!Context.hasSameType(*O, *N)) {
+ if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
+ return false;
+ }
+ }
+ return true;
+ }
for (FunctionProtoType::arg_type_iterator O = OldType->arg_type_begin(),
N = NewType->arg_type_begin(),
E = OldType->arg_type_end(); O && (O != E); ++O, ++N) {
QualType ToType = (*O);
QualType FromType = (*N);
- if (ToType != FromType) {
+ if (!Context.hasSameType(ToType, FromType)) {
if (const PointerType *PTTo = ToType->getAs<PointerType>()) {
if (const PointerType *PTFr = FromType->getAs<PointerType>())
if ((PTTo->getPointeeType()->isObjCQualifiedIdType() &&
@@ -2119,9 +2504,12 @@ bool Sema::FunctionArgTypesAreEqual(const FunctionProtoType *OldType,
ToType->getAs<ObjCObjectPointerType>()) {
if (const ObjCObjectPointerType *PTFr =
FromType->getAs<ObjCObjectPointerType>())
- if (PTTo->getInterfaceDecl() == PTFr->getInterfaceDecl())
+ if (Context.hasSameUnqualifiedType(
+ PTTo->getObjectType()->getBaseType(),
+ PTFr->getObjectType()->getBaseType()))
continue;
}
+ if (ArgPos) *ArgPos = O - OldType->arg_type_begin();
return false;
}
}
@@ -2386,6 +2774,121 @@ Sema::IsQualificationConversion(QualType FromType, QualType ToType,
return UnwrappedAnyPointer && Context.hasSameUnqualifiedType(FromType,ToType);
}
+/// \brief - Determine whether this is a conversion from a scalar type to an
+/// atomic type.
+///
+/// If successful, updates \c SCS's second and third steps in the conversion
+/// sequence to finish the conversion.
+static bool tryAtomicConversion(Sema &S, Expr *From, QualType ToType,
+ bool InOverloadResolution,
+ StandardConversionSequence &SCS,
+ bool CStyle) {
+ const AtomicType *ToAtomic = ToType->getAs<AtomicType>();
+ if (!ToAtomic)
+ return false;
+
+ StandardConversionSequence InnerSCS;
+ if (!IsStandardConversion(S, From, ToAtomic->getValueType(),
+ InOverloadResolution, InnerSCS,
+ CStyle, /*AllowObjCWritebackConversion=*/false))
+ return false;
+
+ SCS.Second = InnerSCS.Second;
+ SCS.setToType(1, InnerSCS.getToType(1));
+ SCS.Third = InnerSCS.Third;
+ SCS.QualificationIncludesObjCLifetime
+ = InnerSCS.QualificationIncludesObjCLifetime;
+ SCS.setToType(2, InnerSCS.getToType(2));
+ return true;
+}
+
+static bool isFirstArgumentCompatibleWithType(ASTContext &Context,
+ CXXConstructorDecl *Constructor,
+ QualType Type) {
+ const FunctionProtoType *CtorType =
+ Constructor->getType()->getAs<FunctionProtoType>();
+ if (CtorType->getNumArgs() > 0) {
+ QualType FirstArg = CtorType->getArgType(0);
+ if (Context.hasSameUnqualifiedType(Type, FirstArg.getNonReferenceType()))
+ return true;
+ }
+ return false;
+}
+
+static OverloadingResult
+IsInitializerListConstructorConversion(Sema &S, Expr *From, QualType ToType,
+ CXXRecordDecl *To,
+ UserDefinedConversionSequence &User,
+ OverloadCandidateSet &CandidateSet,
+ bool AllowExplicit) {
+ DeclContext::lookup_iterator Con, ConEnd;
+ for (llvm::tie(Con, ConEnd) = S.LookupConstructors(To);
+ Con != ConEnd; ++Con) {
+ NamedDecl *D = *Con;
+ DeclAccessPair FoundDecl = DeclAccessPair::make(D, D->getAccess());
+
+ // Find the constructor (which may be a template).
+ CXXConstructorDecl *Constructor = 0;
+ FunctionTemplateDecl *ConstructorTmpl
+ = dyn_cast<FunctionTemplateDecl>(D);
+ if (ConstructorTmpl)
+ Constructor
+ = cast<CXXConstructorDecl>(ConstructorTmpl->getTemplatedDecl());
+ else
+ Constructor = cast<CXXConstructorDecl>(D);
+
+ bool Usable = !Constructor->isInvalidDecl() &&
+ S.isInitListConstructor(Constructor) &&
+ (AllowExplicit || !Constructor->isExplicit());
+ if (Usable) {
+ // If the first argument is (a reference to) the target type,
+ // suppress conversions.
+ bool SuppressUserConversions =
+ isFirstArgumentCompatibleWithType(S.Context, Constructor, ToType);
+ if (ConstructorTmpl)
+ S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
+ /*ExplicitArgs*/ 0,
+ From, CandidateSet,
+ SuppressUserConversions);
+ else
+ S.AddOverloadCandidate(Constructor, FoundDecl,
+ From, CandidateSet,
+ SuppressUserConversions);
+ }
+ }
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(S, From->getLocStart(), Best, true)) {
+ case OR_Success: {
+ // Record the standard conversion we used and the conversion function.
+ CXXConstructorDecl *Constructor = cast<CXXConstructorDecl>(Best->Function);
+ S.MarkFunctionReferenced(From->getLocStart(), Constructor);
+
+ QualType ThisType = Constructor->getThisType(S.Context);
+ // Initializer lists don't have conversions as such.
+ User.Before.setAsIdentityConversion();
+ User.HadMultipleCandidates = HadMultipleCandidates;
+ User.ConversionFunction = Constructor;
+ User.FoundConversionFunction = Best->FoundDecl;
+ User.After.setAsIdentityConversion();
+ User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
+ User.After.setAllToTypes(ToType);
+ return OR_Success;
+ }
+
+ case OR_No_Viable_Function:
+ return OR_No_Viable_Function;
+ case OR_Deleted:
+ return OR_Deleted;
+ case OR_Ambiguous:
+ return OR_Ambiguous;
+ }
+
+ llvm_unreachable("Invalid OverloadResult!");
+}
+
/// Determines whether there is a user-defined conversion sequence
/// (C++ [over.ics.user]) that converts expression From to the type
/// ToType. If such a conversion exists, User will contain the
@@ -2398,8 +2901,8 @@ Sema::IsQualificationConversion(QualType FromType, QualType ToType,
/// functions (C++0x [class.conv.fct]p2).
static OverloadingResult
IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
- UserDefinedConversionSequence& User,
- OverloadCandidateSet& CandidateSet,
+ UserDefinedConversionSequence &User,
+ OverloadCandidateSet &CandidateSet,
bool AllowExplicit) {
// Whether we will only visit constructors.
bool ConstructorsOnly = false;
@@ -2428,6 +2931,26 @@ IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
// We're not going to find any constructors.
} else if (CXXRecordDecl *ToRecordDecl
= dyn_cast<CXXRecordDecl>(ToRecordType->getDecl())) {
+
+ Expr **Args = &From;
+ unsigned NumArgs = 1;
+ bool ListInitializing = false;
+ if (InitListExpr *InitList = dyn_cast<InitListExpr>(From)) {
+ // But first, see if there is an init-list-contructor that will work.
+ OverloadingResult Result = IsInitializerListConstructorConversion(
+ S, From, ToType, ToRecordDecl, User, CandidateSet, AllowExplicit);
+ if (Result != OR_No_Viable_Function)
+ return Result;
+ // Never mind.
+ CandidateSet.clear();
+
+ // If we're list-initializing, we pass the individual elements as
+ // arguments, not the entire list.
+ Args = InitList->getInits();
+ NumArgs = InitList->getNumInits();
+ ListInitializing = true;
+ }
+
DeclContext::lookup_iterator Con, ConEnd;
for (llvm::tie(Con, ConEnd) = S.LookupConstructors(ToRecordDecl);
Con != ConEnd; ++Con) {
@@ -2444,28 +2967,40 @@ IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
else
Constructor = cast<CXXConstructorDecl>(D);
- if (!Constructor->isInvalidDecl() &&
- Constructor->isConvertingConstructor(AllowExplicit)) {
+ bool Usable = !Constructor->isInvalidDecl();
+ if (ListInitializing)
+ Usable = Usable && (AllowExplicit || !Constructor->isExplicit());
+ else
+ Usable = Usable &&Constructor->isConvertingConstructor(AllowExplicit);
+ if (Usable) {
+ bool SuppressUserConversions = !ConstructorsOnly;
+ if (SuppressUserConversions && ListInitializing) {
+ SuppressUserConversions = false;
+ if (NumArgs == 1) {
+ // If the first argument is (a reference to) the target type,
+ // suppress conversions.
+ SuppressUserConversions = isFirstArgumentCompatibleWithType(
+ S.Context, Constructor, ToType);
+ }
+ }
if (ConstructorTmpl)
S.AddTemplateOverloadCandidate(ConstructorTmpl, FoundDecl,
/*ExplicitArgs*/ 0,
- &From, 1, CandidateSet,
- /*SuppressUserConversions=*/
- !ConstructorsOnly);
+ llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet, SuppressUserConversions);
else
// Allow one user-defined conversion when user specifies a
// From->ToType conversion via an static cast (c-style, etc).
S.AddOverloadCandidate(Constructor, FoundDecl,
- &From, 1, CandidateSet,
- /*SuppressUserConversions=*/
- !ConstructorsOnly);
+ llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet, SuppressUserConversions);
}
}
}
}
// Enumerate conversion functions, if we're allowed to.
- if (ConstructorsOnly) {
+ if (ConstructorsOnly || isa<InitListExpr>(From)) {
} else if (S.RequireCompleteType(From->getLocStart(), From->getType(),
S.PDiag(0) << From->getSourceRange())) {
// No conversion functions from incomplete types.
@@ -2512,7 +3047,7 @@ IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
// Record the standard conversion we used and the conversion function.
if (CXXConstructorDecl *Constructor
= dyn_cast<CXXConstructorDecl>(Best->Function)) {
- S.MarkDeclarationReferenced(From->getLocStart(), Constructor);
+ S.MarkFunctionReferenced(From->getLocStart(), Constructor);
// C++ [over.ics.user]p1:
// If the user-defined conversion is specified by a
@@ -2521,11 +3056,16 @@ IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
// the argument of the constructor.
//
QualType ThisType = Constructor->getThisType(S.Context);
- if (Best->Conversions[0].isEllipsis())
- User.EllipsisConversion = true;
- else {
- User.Before = Best->Conversions[0].Standard;
- User.EllipsisConversion = false;
+ if (isa<InitListExpr>(From)) {
+ // Initializer lists don't have conversions as such.
+ User.Before.setAsIdentityConversion();
+ } else {
+ if (Best->Conversions[0].isEllipsis())
+ User.EllipsisConversion = true;
+ else {
+ User.Before = Best->Conversions[0].Standard;
+ User.EllipsisConversion = false;
+ }
}
User.HadMultipleCandidates = HadMultipleCandidates;
User.ConversionFunction = Constructor;
@@ -2534,9 +3074,10 @@ IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
User.After.setFromType(ThisType->getAs<PointerType>()->getPointeeType());
User.After.setAllToTypes(ToType);
return OR_Success;
- } else if (CXXConversionDecl *Conversion
+ }
+ if (CXXConversionDecl *Conversion
= dyn_cast<CXXConversionDecl>(Best->Function)) {
- S.MarkDeclarationReferenced(From->getLocStart(), Conversion);
+ S.MarkFunctionReferenced(From->getLocStart(), Conversion);
// C++ [over.ics.user]p1:
//
@@ -2561,10 +3102,8 @@ IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
// 13.3.3.1).
User.After = Best->FinalConversion;
return OR_Success;
- } else {
- llvm_unreachable("Not a constructor or conversion function?");
- return OR_No_Viable_Function;
}
+ llvm_unreachable("Not a constructor or conversion function?");
case OR_No_Viable_Function:
return OR_No_Viable_Function;
@@ -2576,7 +3115,7 @@ IsUserDefinedConversion(Sema &S, Expr *From, QualType ToType,
return OR_Ambiguous;
}
- return OR_No_Viable_Function;
+ llvm_unreachable("Invalid OverloadResult!");
}
bool
@@ -2587,19 +3126,54 @@ Sema::DiagnoseMultipleUserDefinedConversion(Expr *From, QualType ToType) {
IsUserDefinedConversion(*this, From, ToType, ICS.UserDefined,
CandidateSet, false);
if (OvResult == OR_Ambiguous)
- Diag(From->getSourceRange().getBegin(),
+ Diag(From->getLocStart(),
diag::err_typecheck_ambiguous_condition)
<< From->getType() << ToType << From->getSourceRange();
else if (OvResult == OR_No_Viable_Function && !CandidateSet.empty())
- Diag(From->getSourceRange().getBegin(),
+ Diag(From->getLocStart(),
diag::err_typecheck_nonviable_condition)
<< From->getType() << ToType << From->getSourceRange();
else
return false;
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &From, 1);
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, From);
return true;
}
+/// \brief Compare the user-defined conversion functions or constructors
+/// of two user-defined conversion sequences to determine whether any ordering
+/// is possible.
+static ImplicitConversionSequence::CompareKind
+compareConversionFunctions(Sema &S,
+ FunctionDecl *Function1,
+ FunctionDecl *Function2) {
+ if (!S.getLangOpts().ObjC1 || !S.getLangOpts().CPlusPlus0x)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ // Objective-C++:
+ // If both conversion functions are implicitly-declared conversions from
+ // a lambda closure type to a function pointer and a block pointer,
+ // respectively, always prefer the conversion to a function pointer,
+ // because the function pointer is more lightweight and is more likely
+ // to keep code working.
+ CXXConversionDecl *Conv1 = dyn_cast<CXXConversionDecl>(Function1);
+ if (!Conv1)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ CXXConversionDecl *Conv2 = dyn_cast<CXXConversionDecl>(Function2);
+ if (!Conv2)
+ return ImplicitConversionSequence::Indistinguishable;
+
+ if (Conv1->getParent()->isLambda() && Conv2->getParent()->isLambda()) {
+ bool Block1 = Conv1->getConversionType()->isBlockPointerType();
+ bool Block2 = Conv2->getConversionType()->isBlockPointerType();
+ if (Block1 != Block2)
+ return Block1? ImplicitConversionSequence::Worse
+ : ImplicitConversionSequence::Better;
+ }
+
+ return ImplicitConversionSequence::Indistinguishable;
+}
+
/// CompareImplicitConversionSequences - Compare two implicit
/// conversion sequences to determine whether one is better than the
/// other or if they are indistinguishable (C++ 13.3.3.2).
@@ -2624,7 +3198,7 @@ CompareImplicitConversionSequences(Sema &S,
// from any other user-defined conversion sequence.
if (ICS1.getKindRank() < ICS2.getKindRank())
return ImplicitConversionSequence::Better;
- else if (ICS2.getKindRank() < ICS1.getKindRank())
+ if (ICS2.getKindRank() < ICS1.getKindRank())
return ImplicitConversionSequence::Worse;
// The following checks require both conversion sequences to be of
@@ -2632,11 +3206,15 @@ CompareImplicitConversionSequences(Sema &S,
if (ICS1.getKind() != ICS2.getKind())
return ImplicitConversionSequence::Indistinguishable;
+ ImplicitConversionSequence::CompareKind Result =
+ ImplicitConversionSequence::Indistinguishable;
+
// Two implicit conversion sequences of the same form are
// indistinguishable conversion sequences unless one of the
// following rules apply: (C++ 13.3.3.2p3):
if (ICS1.isStandard())
- return CompareStandardConversionSequences(S, ICS1.Standard, ICS2.Standard);
+ Result = CompareStandardConversionSequences(S,
+ ICS1.Standard, ICS2.Standard);
else if (ICS1.isUserDefined()) {
// User-defined conversion sequence U1 is a better conversion
// sequence than another user-defined conversion sequence U2 if
@@ -2646,12 +3224,31 @@ CompareImplicitConversionSequences(Sema &S,
// U2 (C++ 13.3.3.2p3).
if (ICS1.UserDefined.ConversionFunction ==
ICS2.UserDefined.ConversionFunction)
- return CompareStandardConversionSequences(S,
- ICS1.UserDefined.After,
- ICS2.UserDefined.After);
+ Result = CompareStandardConversionSequences(S,
+ ICS1.UserDefined.After,
+ ICS2.UserDefined.After);
+ else
+ Result = compareConversionFunctions(S,
+ ICS1.UserDefined.ConversionFunction,
+ ICS2.UserDefined.ConversionFunction);
+ }
+
+ // List-initialization sequence L1 is a better conversion sequence than
+ // list-initialization sequence L2 if L1 converts to std::initializer_list<X>
+ // for some X and L2 does not.
+ if (Result == ImplicitConversionSequence::Indistinguishable &&
+ !ICS1.isBad() &&
+ ICS1.isListInitializationSequence() &&
+ ICS2.isListInitializationSequence()) {
+ if (ICS1.isStdInitializerListElement() &&
+ !ICS2.isStdInitializerListElement())
+ return ImplicitConversionSequence::Better;
+ if (!ICS1.isStdInitializerListElement() &&
+ ICS2.isStdInitializerListElement())
+ return ImplicitConversionSequence::Worse;
}
- return ImplicitConversionSequence::Indistinguishable;
+ return Result;
}
static bool hasSimilarType(ASTContext &Context, QualType T1, QualType T2) {
@@ -2899,7 +3496,7 @@ CompareStandardConversionSequences(Sema &S,
// }
// Here, MSVC will call f(int) instead of generating a compile error
// as clang will do in standard mode.
- if (S.getLangOptions().MicrosoftMode &&
+ if (S.getLangOpts().MicrosoftMode &&
SCS1.Second == ICK_Integral_Conversion &&
SCS2.Second == ICK_Floating_Integral &&
S.Context.getTypeSize(SCS1.getFromType()) ==
@@ -3395,7 +3992,7 @@ FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
return false;
if (Best->Function)
- S.MarkDeclarationReferenced(DeclLoc, Best->Function);
+ S.MarkFunctionReferenced(DeclLoc, Best->Function);
ICS.setUserDefined();
ICS.UserDefined.Before = Best->Conversions[0].Standard;
ICS.UserDefined.After = Best->FinalConversion;
@@ -3423,13 +4020,13 @@ FindConversionForRefInit(Sema &S, ImplicitConversionSequence &ICS,
return false;
}
- return false;
+ llvm_unreachable("Invalid OverloadResult!");
}
/// \brief Compute an implicit conversion sequence for reference
/// initialization.
static ImplicitConversionSequence
-TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
+TryReferenceInit(Sema &S, Expr *Init, QualType DeclType,
SourceLocation DeclLoc,
bool SuppressUserConversions,
bool AllowExplicit) {
@@ -3566,7 +4163,7 @@ TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
// allow the use of rvalue references in C++98/03 for the benefit of
// standard library implementors; therefore, we need the xvalue check here.
ICS.Standard.DirectBinding =
- S.getLangOptions().CPlusPlus0x ||
+ S.getLangOpts().CPlusPlus0x ||
(InitCategory.isPRValue() && !T2->isRecordType());
ICS.Standard.IsLvalueReference = !isRValRef;
ICS.Standard.BindsToFunctionLvalue = T2->isFunctionType();
@@ -3692,6 +4289,216 @@ TryReferenceInit(Sema &S, Expr *&Init, QualType DeclType,
return ICS;
}
+static ImplicitConversionSequence
+TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool InOverloadResolution,
+ bool AllowObjCWritebackConversion,
+ bool AllowExplicit = false);
+
+/// TryListConversion - Try to copy-initialize a value of type ToType from the
+/// initializer list From.
+static ImplicitConversionSequence
+TryListConversion(Sema &S, InitListExpr *From, QualType ToType,
+ bool SuppressUserConversions,
+ bool InOverloadResolution,
+ bool AllowObjCWritebackConversion) {
+ // C++11 [over.ics.list]p1:
+ // When an argument is an initializer list, it is not an expression and
+ // special rules apply for converting it to a parameter type.
+
+ ImplicitConversionSequence Result;
+ Result.setBad(BadConversionSequence::no_conversion, From, ToType);
+ Result.setListInitializationSequence();
+
+ // We need a complete type for what follows. Incomplete types can never be
+ // initialized from init lists.
+ if (S.RequireCompleteType(From->getLocStart(), ToType, S.PDiag()))
+ return Result;
+
+ // C++11 [over.ics.list]p2:
+ // If the parameter type is std::initializer_list<X> or "array of X" and
+ // all the elements can be implicitly converted to X, the implicit
+ // conversion sequence is the worst conversion necessary to convert an
+ // element of the list to X.
+ bool toStdInitializerList = false;
+ QualType X;
+ if (ToType->isArrayType())
+ X = S.Context.getBaseElementType(ToType);
+ else
+ toStdInitializerList = S.isStdInitializerList(ToType, &X);
+ if (!X.isNull()) {
+ for (unsigned i = 0, e = From->getNumInits(); i < e; ++i) {
+ Expr *Init = From->getInit(i);
+ ImplicitConversionSequence ICS =
+ TryCopyInitialization(S, Init, X, SuppressUserConversions,
+ InOverloadResolution,
+ AllowObjCWritebackConversion);
+ // If a single element isn't convertible, fail.
+ if (ICS.isBad()) {
+ Result = ICS;
+ break;
+ }
+ // Otherwise, look for the worst conversion.
+ if (Result.isBad() ||
+ CompareImplicitConversionSequences(S, ICS, Result) ==
+ ImplicitConversionSequence::Worse)
+ Result = ICS;
+ }
+
+ // For an empty list, we won't have computed any conversion sequence.
+ // Introduce the identity conversion sequence.
+ if (From->getNumInits() == 0) {
+ Result.setStandard();
+ Result.Standard.setAsIdentityConversion();
+ Result.Standard.setFromType(ToType);
+ Result.Standard.setAllToTypes(ToType);
+ }
+
+ Result.setListInitializationSequence();
+ Result.setStdInitializerListElement(toStdInitializerList);
+ return Result;
+ }
+
+ // C++11 [over.ics.list]p3:
+ // Otherwise, if the parameter is a non-aggregate class X and overload
+ // resolution chooses a single best constructor [...] the implicit
+ // conversion sequence is a user-defined conversion sequence. If multiple
+ // constructors are viable but none is better than the others, the
+ // implicit conversion sequence is a user-defined conversion sequence.
+ if (ToType->isRecordType() && !ToType->isAggregateType()) {
+ // This function can deal with initializer lists.
+ Result = TryUserDefinedConversion(S, From, ToType, SuppressUserConversions,
+ /*AllowExplicit=*/false,
+ InOverloadResolution, /*CStyle=*/false,
+ AllowObjCWritebackConversion);
+ Result.setListInitializationSequence();
+ return Result;
+ }
+
+ // C++11 [over.ics.list]p4:
+ // Otherwise, if the parameter has an aggregate type which can be
+ // initialized from the initializer list [...] the implicit conversion
+ // sequence is a user-defined conversion sequence.
+ if (ToType->isAggregateType()) {
+ // Type is an aggregate, argument is an init list. At this point it comes
+ // down to checking whether the initialization works.
+ // FIXME: Find out whether this parameter is consumed or not.
+ InitializedEntity Entity =
+ InitializedEntity::InitializeParameter(S.Context, ToType,
+ /*Consumed=*/false);
+ if (S.CanPerformCopyInitialization(Entity, S.Owned(From))) {
+ Result.setUserDefined();
+ Result.UserDefined.Before.setAsIdentityConversion();
+ // Initializer lists don't have a type.
+ Result.UserDefined.Before.setFromType(QualType());
+ Result.UserDefined.Before.setAllToTypes(QualType());
+
+ Result.UserDefined.After.setAsIdentityConversion();
+ Result.UserDefined.After.setFromType(ToType);
+ Result.UserDefined.After.setAllToTypes(ToType);
+ Result.UserDefined.ConversionFunction = 0;
+ }
+ return Result;
+ }
+
+ // C++11 [over.ics.list]p5:
+ // Otherwise, if the parameter is a reference, see 13.3.3.1.4.
+ if (ToType->isReferenceType()) {
+ // The standard is notoriously unclear here, since 13.3.3.1.4 doesn't
+ // mention initializer lists in any way. So we go by what list-
+ // initialization would do and try to extrapolate from that.
+
+ QualType T1 = ToType->getAs<ReferenceType>()->getPointeeType();
+
+ // If the initializer list has a single element that is reference-related
+ // to the parameter type, we initialize the reference from that.
+ if (From->getNumInits() == 1) {
+ Expr *Init = From->getInit(0);
+
+ QualType T2 = Init->getType();
+
+ // If the initializer is the address of an overloaded function, try
+ // to resolve the overloaded function. If all goes well, T2 is the
+ // type of the resulting function.
+ if (S.Context.getCanonicalType(T2) == S.Context.OverloadTy) {
+ DeclAccessPair Found;
+ if (FunctionDecl *Fn = S.ResolveAddressOfOverloadedFunction(
+ Init, ToType, false, Found))
+ T2 = Fn->getType();
+ }
+
+ // Compute some basic properties of the types and the initializer.
+ bool dummy1 = false;
+ bool dummy2 = false;
+ bool dummy3 = false;
+ Sema::ReferenceCompareResult RefRelationship
+ = S.CompareReferenceRelationship(From->getLocStart(), T1, T2, dummy1,
+ dummy2, dummy3);
+
+ if (RefRelationship >= Sema::Ref_Related)
+ return TryReferenceInit(S, Init, ToType,
+ /*FIXME:*/From->getLocStart(),
+ SuppressUserConversions,
+ /*AllowExplicit=*/false);
+ }
+
+ // Otherwise, we bind the reference to a temporary created from the
+ // initializer list.
+ Result = TryListConversion(S, From, T1, SuppressUserConversions,
+ InOverloadResolution,
+ AllowObjCWritebackConversion);
+ if (Result.isFailure())
+ return Result;
+ assert(!Result.isEllipsis() &&
+ "Sub-initialization cannot result in ellipsis conversion.");
+
+ // Can we even bind to a temporary?
+ if (ToType->isRValueReferenceType() ||
+ (T1.isConstQualified() && !T1.isVolatileQualified())) {
+ StandardConversionSequence &SCS = Result.isStandard() ? Result.Standard :
+ Result.UserDefined.After;
+ SCS.ReferenceBinding = true;
+ SCS.IsLvalueReference = ToType->isLValueReferenceType();
+ SCS.BindsToRvalue = true;
+ SCS.BindsToFunctionLvalue = false;
+ SCS.BindsImplicitObjectArgumentWithoutRefQualifier = false;
+ SCS.ObjCLifetimeConversionBinding = false;
+ } else
+ Result.setBad(BadConversionSequence::lvalue_ref_to_rvalue,
+ From, ToType);
+ return Result;
+ }
+
+ // C++11 [over.ics.list]p6:
+ // Otherwise, if the parameter type is not a class:
+ if (!ToType->isRecordType()) {
+ // - if the initializer list has one element, the implicit conversion
+ // sequence is the one required to convert the element to the
+ // parameter type.
+ unsigned NumInits = From->getNumInits();
+ if (NumInits == 1)
+ Result = TryCopyInitialization(S, From->getInit(0), ToType,
+ SuppressUserConversions,
+ InOverloadResolution,
+ AllowObjCWritebackConversion);
+ // - if the initializer list has no elements, the implicit conversion
+ // sequence is the identity conversion.
+ else if (NumInits == 0) {
+ Result.setStandard();
+ Result.Standard.setAsIdentityConversion();
+ Result.Standard.setFromType(ToType);
+ Result.Standard.setAllToTypes(ToType);
+ }
+ Result.setListInitializationSequence();
+ return Result;
+ }
+
+ // C++11 [over.ics.list]p7:
+ // In all cases other than those enumerated above, no conversion is possible
+ return Result;
+}
+
/// TryCopyInitialization - Try to copy-initialize a value of type
/// ToType from the expression From. Return the implicit conversion
/// sequence required to pass this argument, which may be a bad
@@ -3702,12 +4509,17 @@ static ImplicitConversionSequence
TryCopyInitialization(Sema &S, Expr *From, QualType ToType,
bool SuppressUserConversions,
bool InOverloadResolution,
- bool AllowObjCWritebackConversion) {
+ bool AllowObjCWritebackConversion,
+ bool AllowExplicit) {
+ if (InitListExpr *FromInitList = dyn_cast<InitListExpr>(From))
+ return TryListConversion(S, FromInitList, ToType, SuppressUserConversions,
+ InOverloadResolution,AllowObjCWritebackConversion);
+
if (ToType->isReferenceType())
return TryReferenceInit(S, From, ToType,
/*FIXME:*/From->getLocStart(),
SuppressUserConversions,
- /*AllowExplicit=*/false);
+ AllowExplicit);
return TryImplicitConversion(S, From, ToType,
SuppressUserConversions,
@@ -3877,7 +4689,7 @@ Sema::PerformObjectArgumentInitialization(Expr *From,
Qualifiers ToQs = DestType.getQualifiers();
unsigned CVR = FromQs.getCVRQualifiers() & ~ToQs.getCVRQualifiers();
if (CVR) {
- Diag(From->getSourceRange().getBegin(),
+ Diag(From->getLocStart(),
diag::err_member_function_call_bad_cvr)
<< Method->getDeclName() << FromRecordType << (CVR - 1)
<< From->getSourceRange();
@@ -3887,7 +4699,7 @@ Sema::PerformObjectArgumentInitialization(Expr *From,
}
}
- return Diag(From->getSourceRange().getBegin(),
+ return Diag(From->getLocStart(),
diag::err_implicit_object_parameter_init)
<< ImplicitParamRecordType << FromRecordType << From->getSourceRange();
}
@@ -3902,7 +4714,7 @@ Sema::PerformObjectArgumentInitialization(Expr *From,
if (!Context.hasSameType(From->getType(), DestType))
From = ImpCastExprToType(From, DestType, CK_NoOp,
- From->getType()->isPointerType() ? VK_RValue : VK_LValue).take();
+ From->getValueKind()).take();
return Owned(From);
}
@@ -3923,17 +4735,190 @@ TryContextuallyConvertToBool(Sema &S, Expr *From) {
/// PerformContextuallyConvertToBool - Perform a contextual conversion
/// of the expression From to bool (C++0x [conv]p3).
ExprResult Sema::PerformContextuallyConvertToBool(Expr *From) {
+ if (checkPlaceholderForOverload(*this, From))
+ return ExprError();
+
ImplicitConversionSequence ICS = TryContextuallyConvertToBool(*this, From);
if (!ICS.isBad())
return PerformImplicitConversion(From, Context.BoolTy, ICS, AA_Converting);
if (!DiagnoseMultipleUserDefinedConversion(From, Context.BoolTy))
- return Diag(From->getSourceRange().getBegin(),
+ return Diag(From->getLocStart(),
diag::err_typecheck_bool_condition)
<< From->getType() << From->getSourceRange();
return ExprError();
}
+/// Check that the specified conversion is permitted in a converted constant
+/// expression, according to C++11 [expr.const]p3. Return true if the conversion
+/// is acceptable.
+static bool CheckConvertedConstantConversions(Sema &S,
+ StandardConversionSequence &SCS) {
+ // Since we know that the target type is an integral or unscoped enumeration
+ // type, most conversion kinds are impossible. All possible First and Third
+ // conversions are fine.
+ switch (SCS.Second) {
+ case ICK_Identity:
+ case ICK_Integral_Promotion:
+ case ICK_Integral_Conversion:
+ return true;
+
+ case ICK_Boolean_Conversion:
+ // Conversion from an integral or unscoped enumeration type to bool is
+ // classified as ICK_Boolean_Conversion, but it's also an integral
+ // conversion, so it's permitted in a converted constant expression.
+ return SCS.getFromType()->isIntegralOrUnscopedEnumerationType() &&
+ SCS.getToType(2)->isBooleanType();
+
+ case ICK_Floating_Integral:
+ case ICK_Complex_Real:
+ return false;
+
+ case ICK_Lvalue_To_Rvalue:
+ case ICK_Array_To_Pointer:
+ case ICK_Function_To_Pointer:
+ case ICK_NoReturn_Adjustment:
+ case ICK_Qualification:
+ case ICK_Compatible_Conversion:
+ case ICK_Vector_Conversion:
+ case ICK_Vector_Splat:
+ case ICK_Derived_To_Base:
+ case ICK_Pointer_Conversion:
+ case ICK_Pointer_Member:
+ case ICK_Block_Pointer_Conversion:
+ case ICK_Writeback_Conversion:
+ case ICK_Floating_Promotion:
+ case ICK_Complex_Promotion:
+ case ICK_Complex_Conversion:
+ case ICK_Floating_Conversion:
+ case ICK_TransparentUnionConversion:
+ llvm_unreachable("unexpected second conversion kind");
+
+ case ICK_Num_Conversion_Kinds:
+ break;
+ }
+
+ llvm_unreachable("unknown conversion kind");
+}
+
+/// CheckConvertedConstantExpression - Check that the expression From is a
+/// converted constant expression of type T, perform the conversion and produce
+/// the converted expression, per C++11 [expr.const]p3.
+ExprResult Sema::CheckConvertedConstantExpression(Expr *From, QualType T,
+ llvm::APSInt &Value,
+ CCEKind CCE) {
+ assert(LangOpts.CPlusPlus0x && "converted constant expression outside C++11");
+ assert(T->isIntegralOrEnumerationType() && "unexpected converted const type");
+
+ if (checkPlaceholderForOverload(*this, From))
+ return ExprError();
+
+ // C++11 [expr.const]p3 with proposed wording fixes:
+ // A converted constant expression of type T is a core constant expression,
+ // implicitly converted to a prvalue of type T, where the converted
+ // expression is a literal constant expression and the implicit conversion
+ // sequence contains only user-defined conversions, lvalue-to-rvalue
+ // conversions, integral promotions, and integral conversions other than
+ // narrowing conversions.
+ ImplicitConversionSequence ICS =
+ TryImplicitConversion(From, T,
+ /*SuppressUserConversions=*/false,
+ /*AllowExplicit=*/false,
+ /*InOverloadResolution=*/false,
+ /*CStyle=*/false,
+ /*AllowObjcWritebackConversion=*/false);
+ StandardConversionSequence *SCS = 0;
+ switch (ICS.getKind()) {
+ case ImplicitConversionSequence::StandardConversion:
+ if (!CheckConvertedConstantConversions(*this, ICS.Standard))
+ return Diag(From->getLocStart(),
+ diag::err_typecheck_converted_constant_expression_disallowed)
+ << From->getType() << From->getSourceRange() << T;
+ SCS = &ICS.Standard;
+ break;
+ case ImplicitConversionSequence::UserDefinedConversion:
+ // We are converting from class type to an integral or enumeration type, so
+ // the Before sequence must be trivial.
+ if (!CheckConvertedConstantConversions(*this, ICS.UserDefined.After))
+ return Diag(From->getLocStart(),
+ diag::err_typecheck_converted_constant_expression_disallowed)
+ << From->getType() << From->getSourceRange() << T;
+ SCS = &ICS.UserDefined.After;
+ break;
+ case ImplicitConversionSequence::AmbiguousConversion:
+ case ImplicitConversionSequence::BadConversion:
+ if (!DiagnoseMultipleUserDefinedConversion(From, T))
+ return Diag(From->getLocStart(),
+ diag::err_typecheck_converted_constant_expression)
+ << From->getType() << From->getSourceRange() << T;
+ return ExprError();
+
+ case ImplicitConversionSequence::EllipsisConversion:
+ llvm_unreachable("ellipsis conversion in converted constant expression");
+ }
+
+ ExprResult Result = PerformImplicitConversion(From, T, ICS, AA_Converting);
+ if (Result.isInvalid())
+ return Result;
+
+ // Check for a narrowing implicit conversion.
+ APValue PreNarrowingValue;
+ QualType PreNarrowingType;
+ switch (SCS->getNarrowingKind(Context, Result.get(), PreNarrowingValue,
+ PreNarrowingType)) {
+ case NK_Variable_Narrowing:
+ // Implicit conversion to a narrower type, and the value is not a constant
+ // expression. We'll diagnose this in a moment.
+ case NK_Not_Narrowing:
+ break;
+
+ case NK_Constant_Narrowing:
+ Diag(From->getLocStart(),
+ isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
+ diag::err_cce_narrowing)
+ << CCE << /*Constant*/1
+ << PreNarrowingValue.getAsString(Context, PreNarrowingType) << T;
+ break;
+
+ case NK_Type_Narrowing:
+ Diag(From->getLocStart(),
+ isSFINAEContext() ? diag::err_cce_narrowing_sfinae :
+ diag::err_cce_narrowing)
+ << CCE << /*Constant*/0 << From->getType() << T;
+ break;
+ }
+
+ // Check the expression is a constant expression.
+ llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
+ Expr::EvalResult Eval;
+ Eval.Diag = &Notes;
+
+ if (!Result.get()->EvaluateAsRValue(Eval, Context)) {
+ // The expression can't be folded, so we can't keep it at this position in
+ // the AST.
+ Result = ExprError();
+ } else {
+ Value = Eval.Val.getInt();
+
+ if (Notes.empty()) {
+ // It's a constant expression.
+ return Result;
+ }
+ }
+
+ // It's not a constant expression. Produce an appropriate diagnostic.
+ if (Notes.size() == 1 &&
+ Notes[0].second.getDiagID() == diag::note_invalid_subexpr_in_const_expr)
+ Diag(Notes[0].first, diag::err_expr_not_cce) << CCE;
+ else {
+ Diag(From->getLocStart(), diag::err_expr_not_cce)
+ << CCE << From->getSourceRange();
+ for (unsigned I = 0; I < Notes.size(); ++I)
+ Diag(Notes[I].first, Notes[I].second);
+ }
+ return Result;
+}
+
/// dropPointerConversions - If the given standard conversion sequence
/// involves any pointer conversions, remove them. This may change
/// the result type of the conversion sequence.
@@ -3982,6 +4967,9 @@ TryContextuallyConvertToObjCPointer(Sema &S, Expr *From) {
/// PerformContextuallyConvertToObjCPointer - Perform a contextual
/// conversion of the expression From to an Objective-C pointer type.
ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
+ if (checkPlaceholderForOverload(*this, From))
+ return ExprError();
+
QualType Ty = Context.getObjCIdType();
ImplicitConversionSequence ICS =
TryContextuallyConvertToObjCPointer(*this, From);
@@ -3990,6 +4978,13 @@ ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
return ExprError();
}
+/// Determine whether the provided type is an integral type, or an enumeration
+/// type of a permitted flavor.
+static bool isIntegralOrEnumerationType(QualType T, bool AllowScopedEnum) {
+ return AllowScopedEnum ? T->isIntegralOrEnumerationType()
+ : T->isIntegralOrUnscopedEnumerationType();
+}
+
/// \brief Attempt to convert the given expression to an integral or
/// enumeration type.
///
@@ -4024,6 +5019,9 @@ ExprResult Sema::PerformContextuallyConvertToObjCPointer(Expr *From) {
/// \param ConvDiag The diagnostic to be emitted if we are calling a conversion
/// function, which may be an extension in this case.
///
+/// \param AllowScopedEnumerations Specifies whether conversions to scoped
+/// enumerations should be considered.
+///
/// \returns The expression, converted to an integral or enumeration type if
/// successful.
ExprResult
@@ -4034,24 +5032,32 @@ Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
const PartialDiagnostic &ExplicitConvNote,
const PartialDiagnostic &AmbigDiag,
const PartialDiagnostic &AmbigNote,
- const PartialDiagnostic &ConvDiag) {
+ const PartialDiagnostic &ConvDiag,
+ bool AllowScopedEnumerations) {
// We can't perform any more checking for type-dependent expressions.
if (From->isTypeDependent())
return Owned(From);
+ // Process placeholders immediately.
+ if (From->hasPlaceholderType()) {
+ ExprResult result = CheckPlaceholderExpr(From);
+ if (result.isInvalid()) return result;
+ From = result.take();
+ }
+
// If the expression already has integral or enumeration type, we're golden.
QualType T = From->getType();
- if (T->isIntegralOrEnumerationType())
- return Owned(From);
+ if (isIntegralOrEnumerationType(T, AllowScopedEnumerations))
+ return DefaultLvalueConversion(From);
// FIXME: Check for missing '()' if T is a function type?
// If we don't have a class type in C++, there's no way we can get an
// expression of integral or enumeration type.
const RecordType *RecordTy = T->getAs<RecordType>();
- if (!RecordTy || !getLangOptions().CPlusPlus) {
- Diag(Loc, NotIntDiag)
- << T << From->getSourceRange();
+ if (!RecordTy || !getLangOpts().CPlusPlus) {
+ if (NotIntDiag.getDiagID())
+ Diag(Loc, NotIntDiag) << T << From->getSourceRange();
return Owned(From);
}
@@ -4072,19 +5078,21 @@ Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
I != E;
++I) {
if (CXXConversionDecl *Conversion
- = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl()))
- if (Conversion->getConversionType().getNonReferenceType()
- ->isIntegralOrEnumerationType()) {
+ = dyn_cast<CXXConversionDecl>((*I)->getUnderlyingDecl())) {
+ if (isIntegralOrEnumerationType(
+ Conversion->getConversionType().getNonReferenceType(),
+ AllowScopedEnumerations)) {
if (Conversion->isExplicit())
ExplicitConversions.addDecl(I.getDecl(), I.getAccess());
else
ViableConversions.addDecl(I.getDecl(), I.getAccess());
}
+ }
}
switch (ViableConversions.size()) {
case 0:
- if (ExplicitConversions.size() == 1) {
+ if (ExplicitConversions.size() == 1 && ExplicitConvDiag.getDiagID()) {
DeclAccessPair Found = ExplicitConversions[0];
CXXConversionDecl *Conversion
= cast<CXXConversionDecl>(Found->getUnderlyingDecl());
@@ -4115,8 +5123,11 @@ Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
HadMultipleCandidates);
if (Result.isInvalid())
return ExprError();
-
- From = Result.get();
+ // Record usage of conversion in an implicit cast.
+ From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
+ CK_UserDefinedConversion,
+ Result.get(), 0,
+ Result.get()->getValueKind());
}
// We'll complain below about a non-integral condition type.
@@ -4143,12 +5154,18 @@ Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
HadMultipleCandidates);
if (Result.isInvalid())
return ExprError();
-
- From = Result.get();
+ // Record usage of conversion in an implicit cast.
+ From = ImplicitCastExpr::Create(Context, Result.get()->getType(),
+ CK_UserDefinedConversion,
+ Result.get(), 0,
+ Result.get()->getValueKind());
break;
}
default:
+ if (!AmbigDiag.getDiagID())
+ return Owned(From);
+
Diag(Loc, AmbigDiag)
<< T << From->getSourceRange();
for (unsigned I = 0, N = ViableConversions.size(); I != N; ++I) {
@@ -4161,11 +5178,11 @@ Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
return Owned(From);
}
- if (!From->getType()->isIntegralOrEnumerationType())
- Diag(Loc, NotIntDiag)
- << From->getType() << From->getSourceRange();
+ if (!isIntegralOrEnumerationType(From->getType(), AllowScopedEnumerations) &&
+ NotIntDiag.getDiagID())
+ Diag(Loc, NotIntDiag) << From->getType() << From->getSourceRange();
- return Owned(From);
+ return DefaultLvalueConversion(From);
}
/// AddOverloadCandidate - Adds the given function to the set of
@@ -4179,10 +5196,11 @@ Sema::ConvertToIntegralOrEnumerationType(SourceLocation Loc, Expr *From,
void
Sema::AddOverloadCandidate(FunctionDecl *Function,
DeclAccessPair FoundDecl,
- Expr **Args, unsigned NumArgs,
+ llvm::ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions,
- bool PartialOverloading) {
+ bool PartialOverloading,
+ bool AllowExplicit) {
const FunctionProtoType* Proto
= dyn_cast<FunctionProtoType>(Function->getType()->getAs<FunctionType>());
assert(Proto && "Functions without a prototype cannot be overloaded");
@@ -4200,8 +5218,7 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
// is irrelevant.
AddMethodCandidate(Method, FoundDecl, Method->getParent(),
QualType(), Expr::Classification::makeSimpleLValue(),
- Args, NumArgs, CandidateSet,
- SuppressUserConversions);
+ Args, CandidateSet, SuppressUserConversions);
return;
}
// We treat a constructor like a non-member function, since its object
@@ -4219,7 +5236,7 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
// A member function template is never instantiated to perform the copy
// of a class object to an object of its class type.
QualType ClassType = Context.getTypeDeclType(Constructor->getParent());
- if (NumArgs == 1 &&
+ if (Args.size() == 1 &&
Constructor->isSpecializationCopyingObject() &&
(Context.hasSameUnqualifiedType(ClassType, Args[0]->getType()) ||
IsDerivedFrom(Args[0]->getType(), ClassType)))
@@ -4227,21 +5244,20 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
}
// Add this candidate
- CandidateSet.push_back(OverloadCandidate());
- OverloadCandidate& Candidate = CandidateSet.back();
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size());
Candidate.FoundDecl = FoundDecl;
Candidate.Function = Function;
Candidate.Viable = true;
Candidate.IsSurrogate = false;
Candidate.IgnoreObjectArgument = false;
- Candidate.ExplicitCallArguments = NumArgs;
+ Candidate.ExplicitCallArguments = Args.size();
unsigned NumArgsInProto = Proto->getNumArgs();
// (C++ 13.3.2p2): A candidate function having fewer than m
// parameters is viable only if it has an ellipsis in its parameter
// list (8.3.5).
- if ((NumArgs + (PartialOverloading && NumArgs)) > NumArgsInProto &&
+ if ((Args.size() + (PartialOverloading && Args.size())) > NumArgsInProto &&
!Proto->isVariadic()) {
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_too_many_arguments;
@@ -4254,7 +5270,7 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
// parameter list is truncated on the right, so that there are
// exactly m parameters.
unsigned MinRequiredArgs = Function->getMinRequiredArguments();
- if (NumArgs < MinRequiredArgs && !PartialOverloading) {
+ if (Args.size() < MinRequiredArgs && !PartialOverloading) {
// Not enough arguments.
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_too_few_arguments;
@@ -4262,7 +5278,7 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
}
// (CUDA B.1): Check for invalid calls between targets.
- if (getLangOptions().CUDA)
+ if (getLangOpts().CUDA)
if (const FunctionDecl *Caller = dyn_cast<FunctionDecl>(CurContext))
if (CheckCUDATarget(Caller, Function)) {
Candidate.Viable = false;
@@ -4272,8 +5288,7 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
// Determine the implicit conversion sequences for each of the
// arguments.
- Candidate.Conversions.resize(NumArgs);
- for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
if (ArgIdx < NumArgsInProto) {
// (C++ 13.3.2p3): for F to be a viable function, there shall
// exist for each argument an implicit conversion sequence
@@ -4285,7 +5300,8 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
SuppressUserConversions,
/*InOverloadResolution=*/true,
/*AllowObjCWritebackConversion=*/
- getLangOptions().ObjCAutoRefCount);
+ getLangOpts().ObjCAutoRefCount,
+ AllowExplicit);
if (Candidate.Conversions[ArgIdx].isBad()) {
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_bad_conversion;
@@ -4303,9 +5319,10 @@ Sema::AddOverloadCandidate(FunctionDecl *Function,
/// \brief Add all of the function declarations in the given function set to
/// the overload canddiate set.
void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
- Expr **Args, unsigned NumArgs,
+ llvm::ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
- bool SuppressUserConversions) {
+ bool SuppressUserConversions,
+ TemplateArgumentListInfo *ExplicitTemplateArgs) {
for (UnresolvedSetIterator F = Fns.begin(), E = Fns.end(); F != E; ++F) {
NamedDecl *D = F.getDecl()->getUnderlyingDecl();
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
@@ -4313,10 +5330,10 @@ void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
AddMethodCandidate(cast<CXXMethodDecl>(FD), F.getPair(),
cast<CXXMethodDecl>(FD)->getParent(),
Args[0]->getType(), Args[0]->Classify(Context),
- Args + 1, NumArgs - 1,
- CandidateSet, SuppressUserConversions);
+ Args.slice(1), CandidateSet,
+ SuppressUserConversions);
else
- AddOverloadCandidate(FD, F.getPair(), Args, NumArgs, CandidateSet,
+ AddOverloadCandidate(FD, F.getPair(), Args, CandidateSet,
SuppressUserConversions);
} else {
FunctionTemplateDecl *FunTmpl = cast<FunctionTemplateDecl>(D);
@@ -4324,17 +5341,14 @@ void Sema::AddFunctionCandidates(const UnresolvedSetImpl &Fns,
!cast<CXXMethodDecl>(FunTmpl->getTemplatedDecl())->isStatic())
AddMethodTemplateCandidate(FunTmpl, F.getPair(),
cast<CXXRecordDecl>(FunTmpl->getDeclContext()),
- /*FIXME: explicit args */ 0,
+ ExplicitTemplateArgs,
Args[0]->getType(),
- Args[0]->Classify(Context),
- Args + 1, NumArgs - 1,
- CandidateSet,
- SuppressUserConversions);
+ Args[0]->Classify(Context), Args.slice(1),
+ CandidateSet, SuppressUserConversions);
else
AddTemplateOverloadCandidate(FunTmpl, F.getPair(),
- /*FIXME: explicit args */ 0,
- Args, NumArgs, CandidateSet,
- SuppressUserConversions);
+ ExplicitTemplateArgs, Args,
+ CandidateSet, SuppressUserConversions);
}
}
}
@@ -4358,12 +5372,13 @@ void Sema::AddMethodCandidate(DeclAccessPair FoundDecl,
"Expected a member function template");
AddMethodTemplateCandidate(TD, FoundDecl, ActingContext,
/*ExplicitArgs*/ 0,
- ObjectType, ObjectClassification, Args, NumArgs,
- CandidateSet,
+ ObjectType, ObjectClassification,
+ llvm::makeArrayRef(Args, NumArgs), CandidateSet,
SuppressUserConversions);
} else {
AddMethodCandidate(cast<CXXMethodDecl>(Decl), FoundDecl, ActingContext,
- ObjectType, ObjectClassification, Args, NumArgs,
+ ObjectType, ObjectClassification,
+ llvm::makeArrayRef(Args, NumArgs),
CandidateSet, SuppressUserConversions);
}
}
@@ -4379,7 +5394,7 @@ void
Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
CXXRecordDecl *ActingContext, QualType ObjectType,
Expr::Classification ObjectClassification,
- Expr **Args, unsigned NumArgs,
+ llvm::ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions) {
const FunctionProtoType* Proto
@@ -4395,20 +5410,19 @@ Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
// Add this candidate
- CandidateSet.push_back(OverloadCandidate());
- OverloadCandidate& Candidate = CandidateSet.back();
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
Candidate.FoundDecl = FoundDecl;
Candidate.Function = Method;
Candidate.IsSurrogate = false;
Candidate.IgnoreObjectArgument = false;
- Candidate.ExplicitCallArguments = NumArgs;
+ Candidate.ExplicitCallArguments = Args.size();
unsigned NumArgsInProto = Proto->getNumArgs();
// (C++ 13.3.2p2): A candidate function having fewer than m
// parameters is viable only if it has an ellipsis in its parameter
// list (8.3.5).
- if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
+ if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_too_many_arguments;
return;
@@ -4420,7 +5434,7 @@ Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
// parameter list is truncated on the right, so that there are
// exactly m parameters.
unsigned MinRequiredArgs = Method->getMinRequiredArguments();
- if (NumArgs < MinRequiredArgs) {
+ if (Args.size() < MinRequiredArgs) {
// Not enough arguments.
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_too_few_arguments;
@@ -4428,7 +5442,6 @@ Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
}
Candidate.Viable = true;
- Candidate.Conversions.resize(NumArgs + 1);
if (Method->isStatic() || ObjectType.isNull())
// The implicit object argument is ignored.
@@ -4448,7 +5461,7 @@ Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
// Determine the implicit conversion sequences for each of the
// arguments.
- for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
if (ArgIdx < NumArgsInProto) {
// (C++ 13.3.2p3): for F to be a viable function, there shall
// exist for each argument an implicit conversion sequence
@@ -4460,7 +5473,7 @@ Sema::AddMethodCandidate(CXXMethodDecl *Method, DeclAccessPair FoundDecl,
SuppressUserConversions,
/*InOverloadResolution=*/true,
/*AllowObjCWritebackConversion=*/
- getLangOptions().ObjCAutoRefCount);
+ getLangOpts().ObjCAutoRefCount);
if (Candidate.Conversions[ArgIdx + 1].isBad()) {
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_bad_conversion;
@@ -4485,7 +5498,7 @@ Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
TemplateArgumentListInfo *ExplicitTemplateArgs,
QualType ObjectType,
Expr::Classification ObjectClassification,
- Expr **Args, unsigned NumArgs,
+ llvm::ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions) {
if (!CandidateSet.isNewCandidate(MethodTmpl))
@@ -4503,17 +5516,16 @@ Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
FunctionDecl *Specialization = 0;
if (TemplateDeductionResult Result
- = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs,
- Args, NumArgs, Specialization, Info)) {
- CandidateSet.push_back(OverloadCandidate());
- OverloadCandidate &Candidate = CandidateSet.back();
+ = DeduceTemplateArguments(MethodTmpl, ExplicitTemplateArgs, Args,
+ Specialization, Info)) {
+ OverloadCandidate &Candidate = CandidateSet.addCandidate();
Candidate.FoundDecl = FoundDecl;
Candidate.Function = MethodTmpl->getTemplatedDecl();
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_bad_deduction;
Candidate.IsSurrogate = false;
Candidate.IgnoreObjectArgument = false;
- Candidate.ExplicitCallArguments = NumArgs;
+ Candidate.ExplicitCallArguments = Args.size();
Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
Info);
return;
@@ -4525,8 +5537,8 @@ Sema::AddMethodTemplateCandidate(FunctionTemplateDecl *MethodTmpl,
assert(isa<CXXMethodDecl>(Specialization) &&
"Specialization is not a member function?");
AddMethodCandidate(cast<CXXMethodDecl>(Specialization), FoundDecl,
- ActingContext, ObjectType, ObjectClassification,
- Args, NumArgs, CandidateSet, SuppressUserConversions);
+ ActingContext, ObjectType, ObjectClassification, Args,
+ CandidateSet, SuppressUserConversions);
}
/// \brief Add a C++ function template specialization as a candidate
@@ -4536,7 +5548,7 @@ void
Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
DeclAccessPair FoundDecl,
TemplateArgumentListInfo *ExplicitTemplateArgs,
- Expr **Args, unsigned NumArgs,
+ llvm::ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet,
bool SuppressUserConversions) {
if (!CandidateSet.isNewCandidate(FunctionTemplate))
@@ -4554,17 +5566,16 @@ Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
TemplateDeductionInfo Info(Context, CandidateSet.getLocation());
FunctionDecl *Specialization = 0;
if (TemplateDeductionResult Result
- = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
- Args, NumArgs, Specialization, Info)) {
- CandidateSet.push_back(OverloadCandidate());
- OverloadCandidate &Candidate = CandidateSet.back();
+ = DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs, Args,
+ Specialization, Info)) {
+ OverloadCandidate &Candidate = CandidateSet.addCandidate();
Candidate.FoundDecl = FoundDecl;
Candidate.Function = FunctionTemplate->getTemplatedDecl();
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_bad_deduction;
Candidate.IsSurrogate = false;
Candidate.IgnoreObjectArgument = false;
- Candidate.ExplicitCallArguments = NumArgs;
+ Candidate.ExplicitCallArguments = Args.size();
Candidate.DeductionFailure = MakeDeductionFailureInfo(Context, Result,
Info);
return;
@@ -4573,7 +5584,7 @@ Sema::AddTemplateOverloadCandidate(FunctionTemplateDecl *FunctionTemplate,
// Add the function template specialization produced by template argument
// deduction as a candidate.
assert(Specialization && "Missing function template specialization?");
- AddOverloadCandidate(Specialization, FoundDecl, Args, NumArgs, CandidateSet,
+ AddOverloadCandidate(Specialization, FoundDecl, Args, CandidateSet,
SuppressUserConversions);
}
@@ -4599,8 +5610,7 @@ Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
// Add this candidate
- CandidateSet.push_back(OverloadCandidate());
- OverloadCandidate& Candidate = CandidateSet.back();
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(1);
Candidate.FoundDecl = FoundDecl;
Candidate.Function = Conversion;
Candidate.IsSurrogate = false;
@@ -4609,7 +5619,6 @@ Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
Candidate.FinalConversion.setFromType(ConvType);
Candidate.FinalConversion.setAllToTypes(ToType);
Candidate.Viable = true;
- Candidate.Conversions.resize(1);
Candidate.ExplicitCallArguments = 1;
// C++ [over.match.funcs]p4:
@@ -4656,7 +5665,7 @@ Sema::AddConversionCandidate(CXXConversionDecl *Conversion,
// lvalues/rvalues and the type. Fortunately, we can allocate this
// call on the stack and we don't need its arguments to be
// well-formed.
- DeclRefExpr ConversionRef(Conversion, Conversion->getType(),
+ DeclRefExpr ConversionRef(Conversion, false, Conversion->getType(),
VK_LValue, From->getLocStart());
ImplicitCastExpr ConversionFn(ImplicitCastExpr::OnStack,
Context.getPointerType(Conversion->getType()),
@@ -4743,8 +5752,7 @@ Sema::AddTemplateConversionCandidate(FunctionTemplateDecl *FunctionTemplate,
if (TemplateDeductionResult Result
= DeduceTemplateArguments(FunctionTemplate, ToType,
Specialization, Info)) {
- CandidateSet.push_back(OverloadCandidate());
- OverloadCandidate &Candidate = CandidateSet.back();
+ OverloadCandidate &Candidate = CandidateSet.addCandidate();
Candidate.FoundDecl = FoundDecl;
Candidate.Function = FunctionTemplate->getTemplatedDecl();
Candidate.Viable = false;
@@ -4774,7 +5782,7 @@ void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
CXXRecordDecl *ActingContext,
const FunctionProtoType *Proto,
Expr *Object,
- Expr **Args, unsigned NumArgs,
+ llvm::ArrayRef<Expr *> Args,
OverloadCandidateSet& CandidateSet) {
if (!CandidateSet.isNewCandidate(Conversion))
return;
@@ -4782,16 +5790,14 @@ void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
// Overload resolution is always an unevaluated context.
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
- CandidateSet.push_back(OverloadCandidate());
- OverloadCandidate& Candidate = CandidateSet.back();
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(Args.size() + 1);
Candidate.FoundDecl = FoundDecl;
Candidate.Function = 0;
Candidate.Surrogate = Conversion;
Candidate.Viable = true;
Candidate.IsSurrogate = true;
Candidate.IgnoreObjectArgument = false;
- Candidate.Conversions.resize(NumArgs + 1);
- Candidate.ExplicitCallArguments = NumArgs;
+ Candidate.ExplicitCallArguments = Args.size();
// Determine the implicit conversion sequence for the implicit
// object parameter.
@@ -4825,7 +5831,7 @@ void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
// (C++ 13.3.2p2): A candidate function having fewer than m
// parameters is viable only if it has an ellipsis in its parameter
// list (8.3.5).
- if (NumArgs > NumArgsInProto && !Proto->isVariadic()) {
+ if (Args.size() > NumArgsInProto && !Proto->isVariadic()) {
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_too_many_arguments;
return;
@@ -4833,7 +5839,7 @@ void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
// Function types don't have any default arguments, so just check if
// we have enough arguments.
- if (NumArgs < NumArgsInProto) {
+ if (Args.size() < NumArgsInProto) {
// Not enough arguments.
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_too_few_arguments;
@@ -4842,7 +5848,7 @@ void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
// Determine the implicit conversion sequences for each of the
// arguments.
- for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
+ for (unsigned ArgIdx = 0; ArgIdx < Args.size(); ++ArgIdx) {
if (ArgIdx < NumArgsInProto) {
// (C++ 13.3.2p3): for F to be a viable function, there shall
// exist for each argument an implicit conversion sequence
@@ -4854,7 +5860,7 @@ void Sema::AddSurrogateCandidate(CXXConversionDecl *Conversion,
/*SuppressUserConversions=*/false,
/*InOverloadResolution=*/false,
/*AllowObjCWritebackConversion=*/
- getLangOptions().ObjCAutoRefCount);
+ getLangOpts().ObjCAutoRefCount);
if (Candidate.Conversions[ArgIdx + 1].isBad()) {
Candidate.Viable = false;
Candidate.FailureKind = ovl_fail_bad_conversion;
@@ -4935,8 +5941,7 @@ void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
// Add this candidate
- CandidateSet.push_back(OverloadCandidate());
- OverloadCandidate& Candidate = CandidateSet.back();
+ OverloadCandidate &Candidate = CandidateSet.addCandidate(NumArgs);
Candidate.FoundDecl = DeclAccessPair::make(0, AS_none);
Candidate.Function = 0;
Candidate.IsSurrogate = false;
@@ -4948,7 +5953,6 @@ void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
// Determine the implicit conversion sequences for each of the
// arguments.
Candidate.Viable = true;
- Candidate.Conversions.resize(NumArgs);
Candidate.ExplicitCallArguments = NumArgs;
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx) {
// C++ [over.match.oper]p4:
@@ -4974,7 +5978,7 @@ void Sema::AddBuiltinCandidate(QualType ResultTy, QualType *ParamTys,
ArgIdx == 0 && IsAssignmentOperator,
/*InOverloadResolution=*/false,
/*AllowObjCWritebackConversion=*/
- getLangOptions().ObjCAutoRefCount);
+ getLangOpts().ObjCAutoRefCount);
}
if (Candidate.Conversions[ArgIdx].isBad()) {
Candidate.Viable = false;
@@ -6319,7 +7323,7 @@ public:
S.AddBuiltinCandidate(*MemPtr, ParamTypes, Args, 2, CandidateSet);
}
- if (S.getLangOptions().CPlusPlus0x) {
+ if (S.getLangOpts().CPlusPlus0x) {
for (BuiltinCandidateTypeSet::iterator
Enum = CandidateTypes[ArgIdx].enumeration_begin(),
EnumEnd = CandidateTypes[ArgIdx].enumeration_end();
@@ -6536,8 +7540,8 @@ Sema::AddBuiltinOperatorCandidates(OverloadedOperatorKind Op,
/// candidate set (C++ [basic.lookup.argdep]).
void
Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
- bool Operator,
- Expr **Args, unsigned NumArgs,
+ bool Operator, SourceLocation Loc,
+ llvm::ArrayRef<Expr *> Args,
TemplateArgumentListInfo *ExplicitTemplateArgs,
OverloadCandidateSet& CandidateSet,
bool PartialOverloading,
@@ -6552,7 +7556,7 @@ Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
// we supposed to consider on ADL candidates, anyway?
// FIXME: Pass in the explicit template arguments?
- ArgumentDependentLookup(Name, Operator, Args, NumArgs, Fns,
+ ArgumentDependentLookup(Name, Operator, Loc, Args, Fns,
StdNamespaceIsAssociated);
// Erase all of the candidates we already knew about.
@@ -6573,12 +7577,12 @@ Sema::AddArgumentDependentLookupCandidates(DeclarationName Name,
if (ExplicitTemplateArgs)
continue;
- AddOverloadCandidate(FD, FoundDecl, Args, NumArgs, CandidateSet,
- false, PartialOverloading);
+ AddOverloadCandidate(FD, FoundDecl, Args, CandidateSet, false,
+ PartialOverloading);
} else
AddTemplateOverloadCandidate(cast<FunctionTemplateDecl>(*I),
FoundDecl, ExplicitTemplateArgs,
- Args, NumArgs, CandidateSet);
+ Args, CandidateSet);
}
}
@@ -6611,8 +7615,8 @@ isBetterOverloadCandidate(Sema &S,
// A viable function F1 is defined to be a better function than another
// viable function F2 if for all arguments i, ICSi(F1) is not a worse
// conversion sequence than ICSi(F2), and then...
- unsigned NumArgs = Cand1.Conversions.size();
- assert(Cand2.Conversions.size() == NumArgs && "Overload candidate mismatch");
+ unsigned NumArgs = Cand1.NumConversions;
+ assert(Cand2.NumConversions == NumArgs && "Overload candidate mismatch");
bool HasBetterConversion = false;
for (unsigned ArgIdx = StartArg; ArgIdx < NumArgs; ++ArgIdx) {
switch (CompareImplicitConversionSequences(S,
@@ -6669,6 +7673,15 @@ isBetterOverloadCandidate(Sema &S,
if (UserDefinedConversion && Cand1.Function && Cand2.Function &&
isa<CXXConversionDecl>(Cand1.Function) &&
isa<CXXConversionDecl>(Cand2.Function)) {
+ // First check whether we prefer one of the conversion functions over the
+ // other. This only distinguishes the results in non-standard, extension
+ // cases such as the conversion from a lambda closure type to a function
+ // pointer or block.
+ ImplicitConversionSequence::CompareKind FuncResult
+ = compareConversionFunctions(S, Cand1.Function, Cand2.Function);
+ if (FuncResult != ImplicitConversionSequence::Indistinguishable)
+ return FuncResult;
+
switch (CompareStandardConversionSequences(S,
Cand1.FinalConversion,
Cand2.FinalConversion)) {
@@ -6794,9 +7807,11 @@ OverloadCandidateKind ClassifyOverloadCandidate(Sema &S,
if (Meth->isMoveAssignmentOperator())
return oc_implicit_move_assignment;
- assert(Meth->isCopyAssignmentOperator()
- && "implicit method is not copy assignment operator?");
- return oc_implicit_copy_assignment;
+ if (Meth->isCopyAssignmentOperator())
+ return oc_implicit_copy_assignment;
+
+ assert(isa<CXXConversionDecl>(Meth) && "expected conversion");
+ return oc_method;
}
return isTemplate ? oc_function_template : oc_function;
@@ -6815,17 +7830,19 @@ void MaybeEmitInheritedConstructorNote(Sema &S, FunctionDecl *Fn) {
} // end anonymous namespace
// Notes the location of an overload candidate.
-void Sema::NoteOverloadCandidate(FunctionDecl *Fn) {
+void Sema::NoteOverloadCandidate(FunctionDecl *Fn, QualType DestType) {
std::string FnDesc;
OverloadCandidateKind K = ClassifyOverloadCandidate(*this, Fn, FnDesc);
- Diag(Fn->getLocation(), diag::note_ovl_candidate)
- << (unsigned) K << FnDesc;
+ PartialDiagnostic PD = PDiag(diag::note_ovl_candidate)
+ << (unsigned) K << FnDesc;
+ HandleFunctionTypeMismatch(PD, Fn->getType(), DestType);
+ Diag(Fn->getLocation(), PD);
MaybeEmitInheritedConstructorNote(*this, Fn);
}
//Notes the location of all overload candidates designated through
// OverloadedExpr
-void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr) {
+void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr, QualType DestType) {
assert(OverloadedExpr->getType() == Context.OverloadTy);
OverloadExpr::FindResult Ovl = OverloadExpr::find(OverloadedExpr);
@@ -6836,10 +7853,10 @@ void Sema::NoteAllOverloadCandidates(Expr* OverloadedExpr) {
I != IEnd; ++I) {
if (FunctionTemplateDecl *FunTmpl =
dyn_cast<FunctionTemplateDecl>((*I)->getUnderlyingDecl()) ) {
- NoteOverloadCandidate(FunTmpl->getTemplatedDecl());
+ NoteOverloadCandidate(FunTmpl->getTemplatedDecl(), DestType);
} else if (FunctionDecl *Fun
= dyn_cast<FunctionDecl>((*I)->getUnderlyingDecl()) ) {
- NoteOverloadCandidate(Fun);
+ NoteOverloadCandidate(Fun, DestType);
}
}
}
@@ -6915,12 +7932,6 @@ void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
if (CToTy.getUnqualifiedType() == CFromTy.getUnqualifiedType() &&
!CToTy.isAtLeastAsQualifiedAs(CFromTy)) {
- // It is dumb that we have to do this here.
- while (isa<ArrayType>(CFromTy))
- CFromTy = CFromTy->getAs<ArrayType>()->getElementType();
- while (isa<ArrayType>(CToTy))
- CToTy = CFromTy->getAs<ArrayType>()->getElementType();
-
Qualifiers FromQs = CFromTy.getQualifiers();
Qualifiers ToQs = CToTy.getQualifiers();
@@ -7064,9 +8075,8 @@ void DiagnoseBadConversion(Sema &S, OverloadCandidate *Cand, unsigned I) {
<< (unsigned) (Cand->Fix.Kind);
// If we can fix the conversion, suggest the FixIts.
- for (SmallVector<FixItHint, 1>::iterator
- HI = Cand->Fix.Hints.begin(), HE = Cand->Fix.Hints.end();
- HI != HE; ++HI)
+ for (std::vector<FixItHint>::iterator HI = Cand->Fix.Hints.begin(),
+ HE = Cand->Fix.Hints.end(); HI != HE; ++HI)
FDiag << *HI;
S.Diag(Fn->getLocation(), FDiag);
@@ -7125,7 +8135,7 @@ void DiagnoseArityMismatch(Sema &S, OverloadCandidate *Cand,
/// Diagnose a failed template-argument deduction.
void DiagnoseBadDeduction(Sema &S, OverloadCandidate *Cand,
- Expr **Args, unsigned NumArgs) {
+ unsigned NumArgs) {
FunctionDecl *Fn = Cand->Function; // pattern
TemplateParameter Param = Cand->DeductionFailure.getTemplateParameter();
@@ -7273,7 +8283,7 @@ void DiagnoseBadTarget(Sema &S, OverloadCandidate *Cand) {
/// more richly for those diagnostic clients that cared, but we'd
/// still have to be just as careful with the default diagnostics.
void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
- Expr **Args, unsigned NumArgs) {
+ unsigned NumArgs) {
FunctionDecl *Fn = Cand->Function;
// Note deleted candidates, but only if they're viable.
@@ -7283,7 +8293,8 @@ void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
OverloadCandidateKind FnKind = ClassifyOverloadCandidate(S, Fn, FnDesc);
S.Diag(Fn->getLocation(), diag::note_ovl_candidate_deleted)
- << FnKind << FnDesc << Fn->isDeleted();
+ << FnKind << FnDesc
+ << (Fn->isDeleted() ? (Fn->isDeletedAsWritten() ? 1 : 2) : 0);
MaybeEmitInheritedConstructorNote(S, Fn);
return;
}
@@ -7300,7 +8311,7 @@ void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
return DiagnoseArityMismatch(S, Cand, NumArgs);
case ovl_fail_bad_deduction:
- return DiagnoseBadDeduction(S, Cand, Args, NumArgs);
+ return DiagnoseBadDeduction(S, Cand, NumArgs);
case ovl_fail_trivial_conversion:
case ovl_fail_bad_final_conversion:
@@ -7309,7 +8320,7 @@ void NoteFunctionCandidate(Sema &S, OverloadCandidate *Cand,
case ovl_fail_bad_conversion: {
unsigned I = (Cand->IgnoreObjectArgument ? 1 : 0);
- for (unsigned N = Cand->Conversions.size(); I != N; ++I)
+ for (unsigned N = Cand->NumConversions; I != N; ++I)
if (Cand->Conversions[I].isBad())
return DiagnoseBadConversion(S, Cand, I);
@@ -7361,12 +8372,12 @@ void NoteBuiltinOperatorCandidate(Sema &S,
const char *Opc,
SourceLocation OpLoc,
OverloadCandidate *Cand) {
- assert(Cand->Conversions.size() <= 2 && "builtin operator is not binary");
+ assert(Cand->NumConversions <= 2 && "builtin operator is not binary");
std::string TypeStr("operator");
TypeStr += Opc;
TypeStr += "(";
TypeStr += Cand->BuiltinTypes.ParamTypes[0].getAsString();
- if (Cand->Conversions.size() == 1) {
+ if (Cand->NumConversions == 1) {
TypeStr += ")";
S.Diag(OpLoc, diag::note_ovl_builtin_unary_candidate) << TypeStr;
} else {
@@ -7379,7 +8390,7 @@ void NoteBuiltinOperatorCandidate(Sema &S,
void NoteAmbiguousUserConversions(Sema &S, SourceLocation OpLoc,
OverloadCandidate *Cand) {
- unsigned NoOperands = Cand->Conversions.size();
+ unsigned NoOperands = Cand->NumConversions;
for (unsigned ArgIdx = 0; ArgIdx < NoOperands; ++ArgIdx) {
const ImplicitConversionSequence &ICS = Cand->Conversions[ArgIdx];
if (ICS.isBad()) break; // all meaningless after first invalid
@@ -7483,11 +8494,11 @@ struct CompareOverloadCandidatesForDisplay {
// If there's any ordering between the defined conversions...
// FIXME: this might not be transitive.
- assert(L->Conversions.size() == R->Conversions.size());
+ assert(L->NumConversions == R->NumConversions);
int leftBetter = 0;
unsigned I = (L->IgnoreObjectArgument || R->IgnoreObjectArgument);
- for (unsigned E = L->Conversions.size(); I != E; ++I) {
+ for (unsigned E = L->NumConversions; I != E; ++I) {
switch (CompareImplicitConversionSequences(S,
L->Conversions[I],
R->Conversions[I])) {
@@ -7537,7 +8548,7 @@ struct CompareOverloadCandidatesForDisplay {
/// CompleteNonViableCandidate - Normally, overload resolution only
/// computes up to the first. Produces the FixIt set if possible.
void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
- Expr **Args, unsigned NumArgs) {
+ llvm::ArrayRef<Expr *> Args) {
assert(!Cand->Viable);
// Don't do anything on failures other than bad conversion.
@@ -7550,7 +8561,7 @@ void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
// Skip forward to the first bad conversion.
unsigned ConvIdx = (Cand->IgnoreObjectArgument ? 1 : 0);
- unsigned ConvCount = Cand->Conversions.size();
+ unsigned ConvCount = Cand->NumConversions;
while (true) {
assert(ConvIdx != ConvCount && "no bad conversion in candidate");
ConvIdx++;
@@ -7595,7 +8606,7 @@ void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
SuppressUserConversions,
/*InOverloadResolution*/ true,
/*AllowObjCWritebackConversion=*/
- S.getLangOptions().ObjCAutoRefCount);
+ S.getLangOpts().ObjCAutoRefCount);
return;
}
@@ -7608,7 +8619,7 @@ void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
SuppressUserConversions,
/*InOverloadResolution=*/true,
/*AllowObjCWritebackConversion=*/
- S.getLangOptions().ObjCAutoRefCount);
+ S.getLangOpts().ObjCAutoRefCount);
// Store the FixIt in the candidate if it exists.
if (!Unfixable && Cand->Conversions[ConvIdx].isBad())
Unfixable = !Cand->TryToFixBadConversion(ConvIdx, S);
@@ -7625,7 +8636,7 @@ void CompleteNonViableCandidate(Sema &S, OverloadCandidate *Cand,
/// set.
void OverloadCandidateSet::NoteCandidates(Sema &S,
OverloadCandidateDisplayKind OCD,
- Expr **Args, unsigned NumArgs,
+ llvm::ArrayRef<Expr *> Args,
const char *Opc,
SourceLocation OpLoc) {
// Sort the candidates by viability and position. Sorting directly would
@@ -7636,7 +8647,7 @@ void OverloadCandidateSet::NoteCandidates(Sema &S,
if (Cand->Viable)
Cands.push_back(Cand);
else if (OCD == OCD_AllCandidates) {
- CompleteNonViableCandidate(S, Cand, Args, NumArgs);
+ CompleteNonViableCandidate(S, Cand, Args);
if (Cand->Function || Cand->IsSurrogate)
Cands.push_back(Cand);
// Otherwise, this a non-viable builtin candidate. We do not, in general,
@@ -7665,7 +8676,7 @@ void OverloadCandidateSet::NoteCandidates(Sema &S,
++CandsShown;
if (Cand->Function)
- NoteFunctionCandidate(S, Cand, Args, NumArgs);
+ NoteFunctionCandidate(S, Cand, Args.size());
else if (Cand->IsSurrogate)
NoteSurrogateCandidate(S, Cand);
else {
@@ -7854,7 +8865,7 @@ private:
return false;
if (FunctionDecl *FunDecl = dyn_cast<FunctionDecl>(Fn)) {
- if (S.getLangOptions().CUDA)
+ if (S.getLangOpts().CUDA)
if (FunctionDecl *Caller = dyn_cast<FunctionDecl>(S.CurContext))
if (S.CheckCUDATarget(Caller, FunDecl))
return false;
@@ -7932,7 +8943,7 @@ private:
<< Matches[0].second->getDeclName(),
S.PDiag(diag::note_ovl_candidate)
<< (unsigned) oc_function_template,
- Complain);
+ Complain, TargetFunctionType);
if (Result != MatchesCopy.end()) {
// Make it the first and only element
@@ -7961,7 +8972,7 @@ public:
S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_no_viable)
<< OvlExpr->getName() << TargetFunctionType
<< OvlExpr->getSourceRange();
- S.NoteAllOverloadCandidates(OvlExpr);
+ S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
}
bool IsInvalidFormOfPointerToMemberFunction() const {
@@ -7987,9 +8998,11 @@ public:
S.Diag(OvlExpr->getLocStart(), diag::err_addr_ovl_ambiguous)
<< OvlExpr->getName()
<< OvlExpr->getSourceRange();
- S.NoteAllOverloadCandidates(OvlExpr);
+ S.NoteAllOverloadCandidates(OvlExpr, TargetFunctionType);
}
-
+
+ bool hadMultipleCandidates() const { return (OvlExpr->getNumDecls() > 1); }
+
int getNumMatches() const { return Matches.size(); }
FunctionDecl* getMatchingFunctionDecl() const {
@@ -8019,16 +9032,18 @@ public:
/// resolved, and NULL otherwise. When @p Complain is true, this
/// routine will emit diagnostics if there is an error.
FunctionDecl *
-Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetType,
- bool Complain,
- DeclAccessPair &FoundResult) {
-
+Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr,
+ QualType TargetType,
+ bool Complain,
+ DeclAccessPair &FoundResult,
+ bool *pHadMultipleCandidates) {
assert(AddressOfExpr->getType() == Context.OverloadTy);
-
- AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType, Complain);
+
+ AddressOfFunctionResolver Resolver(*this, AddressOfExpr, TargetType,
+ Complain);
int NumMatches = Resolver.getNumMatches();
FunctionDecl* Fn = 0;
- if ( NumMatches == 0 && Complain) {
+ if (NumMatches == 0 && Complain) {
if (Resolver.IsInvalidFormOfPointerToMemberFunction())
Resolver.ComplainIsInvalidFormOfPointerToMemberFunction();
else
@@ -8040,11 +9055,13 @@ Sema::ResolveAddressOfOverloadedFunction(Expr *AddressOfExpr, QualType TargetTyp
Fn = Resolver.getMatchingFunctionDecl();
assert(Fn);
FoundResult = *Resolver.getMatchingFunctionAccessPair();
- MarkDeclarationReferenced(AddressOfExpr->getLocStart(), Fn);
+ MarkFunctionReferenced(AddressOfExpr->getLocStart(), Fn);
if (Complain)
CheckAddressOfMemberAccess(AddressOfExpr, FoundResult);
}
-
+
+ if (pHadMultipleCandidates)
+ *pHadMultipleCandidates = Resolver.hadMultipleCandidates();
return Fn;
}
@@ -8146,7 +9163,7 @@ bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
ExprResult SingleFunctionExpression;
if (FunctionDecl *fn = ResolveSingleFunctionTemplateSpecialization(
ovl.Expression, /*complain*/ false, &found)) {
- if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getSourceRange().getBegin())) {
+ if (DiagnoseUseOfDecl(fn, SrcExpr.get()->getLocStart())) {
SrcExpr = ExprError();
return true;
}
@@ -8212,7 +9229,7 @@ bool Sema::ResolveAndFixSingleFunctionTemplateSpecialization(
static void AddOverloadedCallCandidate(Sema &S,
DeclAccessPair FoundDecl,
TemplateArgumentListInfo *ExplicitTemplateArgs,
- Expr **Args, unsigned NumArgs,
+ llvm::ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
bool PartialOverloading,
bool KnownValid) {
@@ -8225,16 +9242,15 @@ static void AddOverloadedCallCandidate(Sema &S,
assert(!KnownValid && "Explicit template arguments?");
return;
}
- S.AddOverloadCandidate(Func, FoundDecl, Args, NumArgs, CandidateSet,
- false, PartialOverloading);
+ S.AddOverloadCandidate(Func, FoundDecl, Args, CandidateSet, false,
+ PartialOverloading);
return;
}
if (FunctionTemplateDecl *FuncTemplate
= dyn_cast<FunctionTemplateDecl>(Callee)) {
S.AddTemplateOverloadCandidate(FuncTemplate, FoundDecl,
- ExplicitTemplateArgs,
- Args, NumArgs, CandidateSet);
+ ExplicitTemplateArgs, Args, CandidateSet);
return;
}
@@ -8244,7 +9260,7 @@ static void AddOverloadedCallCandidate(Sema &S,
/// \brief Add the overload candidates named by callee and/or found by argument
/// dependent lookup to the given overload set.
void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
- Expr **Args, unsigned NumArgs,
+ llvm::ArrayRef<Expr *> Args,
OverloadCandidateSet &CandidateSet,
bool PartialOverloading) {
@@ -8287,16 +9303,15 @@ void Sema::AddOverloadedCallCandidates(UnresolvedLookupExpr *ULE,
for (UnresolvedLookupExpr::decls_iterator I = ULE->decls_begin(),
E = ULE->decls_end(); I != E; ++I)
- AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs,
- Args, NumArgs, CandidateSet,
- PartialOverloading, /*KnownValid*/ true);
+ AddOverloadedCallCandidate(*this, I.getPair(), ExplicitTemplateArgs, Args,
+ CandidateSet, PartialOverloading,
+ /*KnownValid*/ true);
if (ULE->requiresADL())
AddArgumentDependentLookupCandidates(ULE->getName(), /*Operator*/ false,
- Args, NumArgs,
- ExplicitTemplateArgs,
- CandidateSet,
- PartialOverloading,
+ ULE->getExprLoc(),
+ Args, ExplicitTemplateArgs,
+ CandidateSet, PartialOverloading,
ULE->isStdAssociatedNamespace());
}
@@ -8310,11 +9325,14 @@ static bool
DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
const CXXScopeSpec &SS, LookupResult &R,
TemplateArgumentListInfo *ExplicitTemplateArgs,
- Expr **Args, unsigned NumArgs) {
+ llvm::ArrayRef<Expr *> Args) {
if (SemaRef.ActiveTemplateInstantiations.empty() || !SS.isEmpty())
return false;
for (DeclContext *DC = SemaRef.CurContext; DC; DC = DC->getParent()) {
+ if (DC->isTransparentContext())
+ continue;
+
SemaRef.LookupQualifiedName(R, DC);
if (!R.empty()) {
@@ -8330,7 +9348,7 @@ DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
OverloadCandidateSet Candidates(FnLoc);
for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I)
AddOverloadedCallCandidate(SemaRef, I.getPair(),
- ExplicitTemplateArgs, Args, NumArgs,
+ ExplicitTemplateArgs, Args,
Candidates, false, /*KnownValid*/ false);
OverloadCandidateSet::iterator Best;
@@ -8345,7 +9363,7 @@ DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
// declaring the function there instead.
Sema::AssociatedNamespaceSet AssociatedNamespaces;
Sema::AssociatedClassSet AssociatedClasses;
- SemaRef.FindAssociatedClassesAndNamespaces(Args, NumArgs,
+ SemaRef.FindAssociatedClassesAndNamespaces(Args,
AssociatedNamespaces,
AssociatedClasses);
// Never suggest declaring a function within namespace 'std'.
@@ -8399,12 +9417,75 @@ DiagnoseTwoPhaseLookup(Sema &SemaRef, SourceLocation FnLoc,
static bool
DiagnoseTwoPhaseOperatorLookup(Sema &SemaRef, OverloadedOperatorKind Op,
SourceLocation OpLoc,
- Expr **Args, unsigned NumArgs) {
+ llvm::ArrayRef<Expr *> Args) {
DeclarationName OpName =
SemaRef.Context.DeclarationNames.getCXXOperatorName(Op);
LookupResult R(SemaRef, OpName, OpLoc, Sema::LookupOperatorName);
return DiagnoseTwoPhaseLookup(SemaRef, OpLoc, CXXScopeSpec(), R,
- /*ExplicitTemplateArgs=*/0, Args, NumArgs);
+ /*ExplicitTemplateArgs=*/0, Args);
+}
+
+namespace {
+// Callback to limit the allowed keywords and to only accept typo corrections
+// that are keywords or whose decls refer to functions (or template functions)
+// that accept the given number of arguments.
+class RecoveryCallCCC : public CorrectionCandidateCallback {
+ public:
+ RecoveryCallCCC(Sema &SemaRef, unsigned NumArgs, bool HasExplicitTemplateArgs)
+ : NumArgs(NumArgs), HasExplicitTemplateArgs(HasExplicitTemplateArgs) {
+ WantTypeSpecifiers = SemaRef.getLangOpts().CPlusPlus;
+ WantRemainingKeywords = false;
+ }
+
+ virtual bool ValidateCandidate(const TypoCorrection &candidate) {
+ if (!candidate.getCorrectionDecl())
+ return candidate.isKeyword();
+
+ for (TypoCorrection::const_decl_iterator DI = candidate.begin(),
+ DIEnd = candidate.end(); DI != DIEnd; ++DI) {
+ FunctionDecl *FD = 0;
+ NamedDecl *ND = (*DI)->getUnderlyingDecl();
+ if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(ND))
+ FD = FTD->getTemplatedDecl();
+ if (!HasExplicitTemplateArgs && !FD) {
+ if (!(FD = dyn_cast<FunctionDecl>(ND)) && isa<ValueDecl>(ND)) {
+ // If the Decl is neither a function nor a template function,
+ // determine if it is a pointer or reference to a function. If so,
+ // check against the number of arguments expected for the pointee.
+ QualType ValType = cast<ValueDecl>(ND)->getType();
+ if (ValType->isAnyPointerType() || ValType->isReferenceType())
+ ValType = ValType->getPointeeType();
+ if (const FunctionProtoType *FPT = ValType->getAs<FunctionProtoType>())
+ if (FPT->getNumArgs() == NumArgs)
+ return true;
+ }
+ }
+ if (FD && FD->getNumParams() >= NumArgs &&
+ FD->getMinRequiredArguments() <= NumArgs)
+ return true;
+ }
+ return false;
+ }
+
+ private:
+ unsigned NumArgs;
+ bool HasExplicitTemplateArgs;
+};
+
+// Callback that effectively disabled typo correction
+class NoTypoCorrectionCCC : public CorrectionCandidateCallback {
+ public:
+ NoTypoCorrectionCCC() {
+ WantTypeSpecifiers = false;
+ WantExpressionKeywords = false;
+ WantCXXNamedCasts = false;
+ WantRemainingKeywords = false;
+ }
+
+ virtual bool ValidateCandidate(const TypoCorrection &candidate) {
+ return false;
+ }
+};
}
/// Attempts to recover from a call where no functions were found.
@@ -8414,12 +9495,13 @@ static ExprResult
BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
UnresolvedLookupExpr *ULE,
SourceLocation LParenLoc,
- Expr **Args, unsigned NumArgs,
+ llvm::MutableArrayRef<Expr *> Args,
SourceLocation RParenLoc,
- bool EmptyLookup) {
+ bool EmptyLookup, bool AllowTypoCorrection) {
CXXScopeSpec SS;
SS.Adopt(ULE->getQualifierLoc());
+ SourceLocation TemplateKWLoc = ULE->getTemplateKeywordLoc();
TemplateArgumentListInfo TABuffer;
TemplateArgumentListInfo *ExplicitTemplateArgs = 0;
@@ -8430,11 +9512,16 @@ BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
LookupResult R(SemaRef, ULE->getName(), ULE->getNameLoc(),
Sema::LookupOrdinaryName);
+ RecoveryCallCCC Validator(SemaRef, Args.size(), ExplicitTemplateArgs != 0);
+ NoTypoCorrectionCCC RejectAll;
+ CorrectionCandidateCallback *CCC = AllowTypoCorrection ?
+ (CorrectionCandidateCallback*)&Validator :
+ (CorrectionCandidateCallback*)&RejectAll;
if (!DiagnoseTwoPhaseLookup(SemaRef, Fn->getExprLoc(), SS, R,
- ExplicitTemplateArgs, Args, NumArgs) &&
+ ExplicitTemplateArgs, Args) &&
(!EmptyLookup ||
- SemaRef.DiagnoseEmptyLookup(S, SS, R, Sema::CTC_Expression,
- ExplicitTemplateArgs, Args, NumArgs)))
+ SemaRef.DiagnoseEmptyLookup(S, SS, R, *CCC,
+ ExplicitTemplateArgs, Args)))
return ExprError();
assert(!R.empty() && "lookup results empty despite recovery");
@@ -8443,10 +9530,11 @@ BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
// casts and such from the call, we don't really care.
ExprResult NewFn = ExprError();
if ((*R.begin())->isCXXClassMember())
- NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, R,
- ExplicitTemplateArgs);
- else if (ExplicitTemplateArgs)
- NewFn = SemaRef.BuildTemplateIdExpr(SS, R, false, *ExplicitTemplateArgs);
+ NewFn = SemaRef.BuildPossibleImplicitMemberExpr(SS, TemplateKWLoc,
+ R, ExplicitTemplateArgs);
+ else if (ExplicitTemplateArgs || TemplateKWLoc.isValid())
+ NewFn = SemaRef.BuildTemplateIdExpr(SS, TemplateKWLoc, R, false,
+ ExplicitTemplateArgs);
else
NewFn = SemaRef.BuildDeclarationNameExpr(SS, R, false);
@@ -8457,7 +9545,8 @@ BuildRecoveryCallExpr(Sema &SemaRef, Scope *S, Expr *Fn,
// an expression with viable lookup results, which should never
// end up here.
return SemaRef.ActOnCallExpr(/*Scope*/ 0, NewFn.take(), LParenLoc,
- MultiExprArg(Args, NumArgs), RParenLoc);
+ MultiExprArg(Args.data(), Args.size()),
+ RParenLoc);
}
/// ResolveOverloadedCallFn - Given the call expression that calls Fn
@@ -8472,7 +9561,8 @@ Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc,
- Expr *ExecConfig) {
+ Expr *ExecConfig,
+ bool AllowTypoCorrection) {
#ifndef NDEBUG
if (ULE->requiresADL()) {
// To do ADL, we must have found an unqualified name.
@@ -8487,17 +9577,22 @@ Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
llvm_unreachable("performing ADL for builtin");
// We don't perform ADL in C.
- assert(getLangOptions().CPlusPlus && "ADL enabled in C");
+ assert(getLangOpts().CPlusPlus && "ADL enabled in C");
} else
assert(!ULE->isStdAssociatedNamespace() &&
"std is associated namespace but not doing ADL");
#endif
+ UnbridgedCastsSet UnbridgedCasts;
+ if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
+ return ExprError();
+
OverloadCandidateSet CandidateSet(Fn->getExprLoc());
// Add the functions denoted by the callee to the set of candidate
// functions, including those from argument-dependent lookup.
- AddOverloadedCallCandidates(ULE, Args, NumArgs, CandidateSet);
+ AddOverloadedCallCandidates(ULE, llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet);
// If we found nothing, try to recover.
// BuildRecoveryCallExpr diagnoses the error itself, so we just bail
@@ -8507,26 +9602,29 @@ Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
// create a type dependent CallExpr. The goal is to postpone name lookup
// to instantiation time to be able to search into type dependent base
// classes.
- if (getLangOptions().MicrosoftExt && CurContext->isDependentContext() &&
- isa<CXXMethodDecl>(CurContext)) {
+ if (getLangOpts().MicrosoftMode && CurContext->isDependentContext() &&
+ (isa<FunctionDecl>(CurContext) || isa<CXXRecordDecl>(CurContext))) {
CallExpr *CE = new (Context) CallExpr(Context, Fn, Args, NumArgs,
Context.DependentTy, VK_RValue,
RParenLoc);
CE->setTypeDependent(true);
return Owned(CE);
}
- return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc, Args, NumArgs,
- RParenLoc, /*EmptyLookup=*/true);
+ return BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
+ llvm::MutableArrayRef<Expr *>(Args, NumArgs),
+ RParenLoc, /*EmptyLookup=*/true,
+ AllowTypoCorrection);
}
+ UnbridgedCasts.restore();
+
OverloadCandidateSet::iterator Best;
switch (CandidateSet.BestViableFunction(*this, Fn->getLocStart(), Best)) {
case OR_Success: {
FunctionDecl *FDecl = Best->Function;
- MarkDeclarationReferenced(Fn->getExprLoc(), FDecl);
+ MarkFunctionReferenced(Fn->getExprLoc(), FDecl);
CheckUnresolvedLookupAccess(ULE, Best->FoundDecl);
- DiagnoseUseOfDecl(FDecl? FDecl : Best->FoundDecl.getDecl(),
- ULE->getNameLoc());
+ DiagnoseUseOfDecl(FDecl, ULE->getNameLoc());
Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs, RParenLoc,
ExecConfig);
@@ -8536,34 +9634,45 @@ Sema::BuildOverloadedCallExpr(Scope *S, Expr *Fn, UnresolvedLookupExpr *ULE,
// Try to recover by looking for viable functions which the user might
// have meant to call.
ExprResult Recovery = BuildRecoveryCallExpr(*this, S, Fn, ULE, LParenLoc,
- Args, NumArgs, RParenLoc,
- /*EmptyLookup=*/false);
+ llvm::MutableArrayRef<Expr *>(Args, NumArgs),
+ RParenLoc,
+ /*EmptyLookup=*/false,
+ AllowTypoCorrection);
if (!Recovery.isInvalid())
return Recovery;
- Diag(Fn->getSourceRange().getBegin(),
+ Diag(Fn->getLocStart(),
diag::err_ovl_no_viable_function_in_call)
<< ULE->getName() << Fn->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
break;
}
case OR_Ambiguous:
- Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_ambiguous_call)
+ Diag(Fn->getLocStart(), diag::err_ovl_ambiguous_call)
<< ULE->getName() << Fn->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
break;
case OR_Deleted:
{
- Diag(Fn->getSourceRange().getBegin(), diag::err_ovl_deleted_call)
+ Diag(Fn->getLocStart(), diag::err_ovl_deleted_call)
<< Best->Function->isDeleted()
<< ULE->getName()
<< getDeletedOrUnavailableSuffix(Best->Function)
<< Fn->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
+
+ // We emitted an error for the unvailable/deleted function call but keep
+ // the call in the AST.
+ FunctionDecl *FDecl = Best->Function;
+ Fn = FixOverloadedFunctionReference(Fn, Best->FoundDecl, FDecl);
+ return BuildResolvedCallExpr(Fn, FDecl, LParenLoc, Args, NumArgs,
+ RParenLoc, ExecConfig);
}
- break;
}
// Overload resolution failed.
@@ -8603,12 +9712,8 @@ Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
// TODO: provide better source location info.
DeclarationNameInfo OpNameInfo(OpName, OpLoc);
- if (Input->getObjectKind() == OK_ObjCProperty) {
- ExprResult Result = ConvertPropertyForRValue(Input);
- if (Result.isInvalid())
- return ExprError();
- Input = Result.take();
- }
+ if (checkPlaceholderForOverload(*this, Input))
+ return ExprError();
Expr *Args[2] = { Input, 0 };
unsigned NumArgs = 1;
@@ -8648,14 +9753,15 @@ Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
OverloadCandidateSet CandidateSet(OpLoc);
// Add the candidates from the given function set.
- AddFunctionCandidates(Fns, &Args[0], NumArgs, CandidateSet, false);
+ AddFunctionCandidates(Fns, llvm::makeArrayRef(Args, NumArgs), CandidateSet,
+ false);
// Add operator candidates that are member functions.
AddMemberOperatorCandidates(Op, OpLoc, &Args[0], NumArgs, CandidateSet);
// Add candidates from ADL.
AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
- Args, NumArgs,
+ OpLoc, llvm::makeArrayRef(Args, NumArgs),
/*ExplicitTemplateArgs*/ 0,
CandidateSet);
@@ -8675,7 +9781,7 @@ Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
// We matched an overloaded operator. Build a call to that
// operator.
- MarkDeclarationReferenced(OpLoc, FnDecl);
+ MarkFunctionReferenced(OpLoc, FnDecl);
// Convert the arguments.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
@@ -8709,7 +9815,7 @@ Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
// Build the actual expression node.
ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
- HadMultipleCandidates);
+ HadMultipleCandidates, OpLoc);
if (FnExpr.isInvalid())
return ExprError();
@@ -8741,7 +9847,8 @@ Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
// This is an erroneous use of an operator which can be overloaded by
// a non-member function. Check for non-member operators which were
// defined too late to be candidates.
- if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, NumArgs))
+ if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc,
+ llvm::makeArrayRef(Args, NumArgs)))
// FIXME: Recover by calling the found function.
return ExprError();
@@ -8754,7 +9861,8 @@ Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
<< UnaryOperator::getOpcodeStr(Opc)
<< Input->getType()
<< Input->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs,
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
+ llvm::makeArrayRef(Args, NumArgs),
UnaryOperator::getOpcodeStr(Opc), OpLoc);
return ExprError();
@@ -8764,7 +9872,8 @@ Sema::CreateOverloadedUnaryOp(SourceLocation OpLoc, unsigned OpcIn,
<< UnaryOperator::getOpcodeStr(Opc)
<< getDeletedOrUnavailableSuffix(Best->Function)
<< Input->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs,
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs),
UnaryOperator::getOpcodeStr(Opc), OpLoc);
return ExprError();
}
@@ -8841,45 +9950,15 @@ Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
OpLoc));
}
- // Always do property rvalue conversions on the RHS.
- if (Args[1]->getObjectKind() == OK_ObjCProperty) {
- ExprResult Result = ConvertPropertyForRValue(Args[1]);
- if (Result.isInvalid())
- return ExprError();
- Args[1] = Result.take();
- }
-
- // The LHS is more complicated.
- if (Args[0]->getObjectKind() == OK_ObjCProperty) {
-
- // There's a tension for assignment operators between primitive
- // property assignment and the overloaded operators.
- if (BinaryOperator::isAssignmentOp(Opc)) {
- const ObjCPropertyRefExpr *PRE = LHS->getObjCProperty();
-
- // Is the property "logically" settable?
- bool Settable = (PRE->isExplicitProperty() ||
- PRE->getImplicitPropertySetter());
-
- // To avoid gratuitously inventing semantics, use the primitive
- // unless it isn't. Thoughts in case we ever really care:
- // - If the property isn't logically settable, we have to
- // load and hope.
- // - If the property is settable and this is simple assignment,
- // we really should use the primitive.
- // - If the property is settable, then we could try overloading
- // on a generic lvalue of the appropriate type; if it works
- // out to a builtin candidate, we would do that same operation
- // on the property, and otherwise just error.
- if (Settable)
- return CreateBuiltinBinOp(OpLoc, Opc, Args[0], Args[1]);
- }
+ // Always do placeholder-like conversions on the RHS.
+ if (checkPlaceholderForOverload(*this, Args[1]))
+ return ExprError();
- ExprResult Result = ConvertPropertyForRValue(Args[0]);
- if (Result.isInvalid())
- return ExprError();
- Args[0] = Result.take();
- }
+ // Do placeholder-like conversion on the LHS; note that we should
+ // not get here with a PseudoObject LHS.
+ assert(Args[0]->getObjectKind() != OK_ObjCProperty);
+ if (checkPlaceholderForOverload(*this, Args[0]))
+ return ExprError();
// If this is the assignment operator, we only perform overload resolution
// if the left-hand side is a class or enumeration type. This is actually
@@ -8899,14 +9978,14 @@ Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
OverloadCandidateSet CandidateSet(OpLoc);
// Add the candidates from the given function set.
- AddFunctionCandidates(Fns, Args, 2, CandidateSet, false);
+ AddFunctionCandidates(Fns, Args, CandidateSet, false);
// Add operator candidates that are member functions.
AddMemberOperatorCandidates(Op, OpLoc, Args, 2, CandidateSet);
// Add candidates from ADL.
AddArgumentDependentLookupCandidates(OpName, /*Operator*/ true,
- Args, 2,
+ OpLoc, Args,
/*ExplicitTemplateArgs*/ 0,
CandidateSet);
@@ -8926,7 +10005,7 @@ Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
// We matched an overloaded operator. Build a call to that
// operator.
- MarkDeclarationReferenced(OpLoc, FnDecl);
+ MarkFunctionReferenced(OpLoc, FnDecl);
// Convert the arguments.
if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FnDecl)) {
@@ -9032,7 +10111,7 @@ Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
// This is an erroneous use of an operator which can be overloaded by
// a non-member function. Check for non-member operators which were
// defined too late to be candidates.
- if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args, 2))
+ if (DiagnoseTwoPhaseOperatorLookup(*this, Op, OpLoc, Args))
// FIXME: Recover by calling the found function.
return ExprError();
@@ -9043,7 +10122,7 @@ Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
assert(Result.isInvalid() &&
"C++ binary operator overloading is missing candidates!");
if (Result.isInvalid())
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
BinaryOperator::getOpcodeStr(Opc), OpLoc);
return move(Result);
}
@@ -9053,17 +10132,32 @@ Sema::CreateOverloadedBinOp(SourceLocation OpLoc,
<< BinaryOperator::getOpcodeStr(Opc)
<< Args[0]->getType() << Args[1]->getType()
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
BinaryOperator::getOpcodeStr(Opc), OpLoc);
return ExprError();
case OR_Deleted:
- Diag(OpLoc, diag::err_ovl_deleted_oper)
- << Best->Function->isDeleted()
- << BinaryOperator::getOpcodeStr(Opc)
- << getDeletedOrUnavailableSuffix(Best->Function)
- << Args[0]->getSourceRange() << Args[1]->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
+ if (isImplicitlyDeleted(Best->Function)) {
+ CXXMethodDecl *Method = cast<CXXMethodDecl>(Best->Function);
+ Diag(OpLoc, diag::err_ovl_deleted_special_oper)
+ << getSpecialMember(Method)
+ << BinaryOperator::getOpcodeStr(Opc)
+ << getDeletedOrUnavailableSuffix(Best->Function);
+
+ if (getSpecialMember(Method) != CXXInvalid) {
+ // The user probably meant to call this special member. Just
+ // explain why it's deleted.
+ NoteDeletedFunction(Method);
+ return ExprError();
+ }
+ } else {
+ Diag(OpLoc, diag::err_ovl_deleted_oper)
+ << Best->Function->isDeleted()
+ << BinaryOperator::getOpcodeStr(Opc)
+ << getDeletedOrUnavailableSuffix(Best->Function)
+ << Args[0]->getSourceRange() << Args[1]->getSourceRange();
+ }
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
BinaryOperator::getOpcodeStr(Opc), OpLoc);
return ExprError();
}
@@ -9103,18 +10197,11 @@ Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
RLoc));
}
- if (Args[0]->getObjectKind() == OK_ObjCProperty) {
- ExprResult Result = ConvertPropertyForRValue(Args[0]);
- if (Result.isInvalid())
- return ExprError();
- Args[0] = Result.take();
- }
- if (Args[1]->getObjectKind() == OK_ObjCProperty) {
- ExprResult Result = ConvertPropertyForRValue(Args[1]);
- if (Result.isInvalid())
- return ExprError();
- Args[1] = Result.take();
- }
+ // Handle placeholders on both operands.
+ if (checkPlaceholderForOverload(*this, Args[0]))
+ return ExprError();
+ if (checkPlaceholderForOverload(*this, Args[1]))
+ return ExprError();
// Build an empty overload set.
OverloadCandidateSet CandidateSet(LLoc);
@@ -9140,7 +10227,7 @@ Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
// We matched an overloaded operator. Build a call to that
// operator.
- MarkDeclarationReferenced(LLoc, FnDecl);
+ MarkFunctionReferenced(LLoc, FnDecl);
CheckMemberOperatorAccess(LLoc, Args[0], Args[1], Best->FoundDecl);
DiagnoseUseOfDecl(Best->FoundDecl, LLoc);
@@ -9172,12 +10259,12 @@ Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
ResultTy = ResultTy.getNonLValueExprType(Context);
// Build the actual expression node.
- DeclarationNameLoc LocInfo;
- LocInfo.CXXOperatorName.BeginOpNameLoc = LLoc.getRawEncoding();
- LocInfo.CXXOperatorName.EndOpNameLoc = RLoc.getRawEncoding();
+ DeclarationNameInfo OpLocInfo(OpName, LLoc);
+ OpLocInfo.setCXXOperatorNameRange(SourceRange(LLoc, RLoc));
ExprResult FnExpr = CreateFunctionRefExpr(*this, FnDecl,
HadMultipleCandidates,
- LLoc, LocInfo);
+ OpLocInfo.getLoc(),
+ OpLocInfo.getInfo());
if (FnExpr.isInvalid())
return ExprError();
@@ -9222,7 +10309,7 @@ Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
Diag(LLoc, diag::err_ovl_no_viable_subscript)
<< Args[0]->getType()
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
"[]", LLoc);
return ExprError();
}
@@ -9232,7 +10319,7 @@ Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
<< "[]"
<< Args[0]->getType() << Args[1]->getType()
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, 2,
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args,
"[]", LLoc);
return ExprError();
@@ -9241,7 +10328,7 @@ Sema::CreateOverloadedArraySubscriptExpr(SourceLocation LLoc,
<< Best->Function->isDeleted() << "[]"
<< getDeletedOrUnavailableSuffix(Best->Function)
<< Args[0]->getSourceRange() << Args[1]->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, 2,
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args,
"[]", LLoc);
return ExprError();
}
@@ -9305,7 +10392,7 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
resultType, valueKind, RParenLoc);
if (CheckCallReturnType(proto->getResultType(),
- op->getRHS()->getSourceRange().getBegin(),
+ op->getRHS()->getLocStart(),
call, 0))
return ExprError();
@@ -9315,6 +10402,10 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
return MaybeBindToTemporary(call);
}
+ UnbridgedCastsSet UnbridgedCasts;
+ if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
+ return ExprError();
+
MemberExpr *MemExpr;
CXXMethodDecl *Method = 0;
DeclAccessPair FoundDecl = DeclAccessPair::make(0, AS_public);
@@ -9324,6 +10415,7 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
Method = cast<CXXMethodDecl>(MemExpr->getMemberDecl());
FoundDecl = MemExpr->getFoundDecl();
Qualifier = MemExpr->getQualifier();
+ UnbridgedCasts.restore();
} else {
UnresolvedMemberExpr *UnresExpr = cast<UnresolvedMemberExpr>(NakedMemExpr);
Qualifier = UnresExpr->getQualifier();
@@ -9353,9 +10445,9 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
// Microsoft supports direct constructor calls.
- if (getLangOptions().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
- AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(), Args, NumArgs,
- CandidateSet);
+ if (getLangOpts().MicrosoftExt && isa<CXXConstructorDecl>(Func)) {
+ AddOverloadCandidate(cast<CXXConstructorDecl>(Func), I.getPair(),
+ llvm::makeArrayRef(Args, NumArgs), CandidateSet);
} else if ((Method = dyn_cast<CXXMethodDecl>(Func))) {
// If explicit template arguments were provided, we can't call a
// non-template member function.
@@ -9364,25 +10456,28 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
AddMethodCandidate(Method, I.getPair(), ActingDC, ObjectType,
ObjectClassification,
- Args, NumArgs, CandidateSet,
+ llvm::makeArrayRef(Args, NumArgs), CandidateSet,
/*SuppressUserConversions=*/false);
} else {
AddMethodTemplateCandidate(cast<FunctionTemplateDecl>(Func),
I.getPair(), ActingDC, TemplateArgs,
ObjectType, ObjectClassification,
- Args, NumArgs, CandidateSet,
+ llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet,
/*SuppressUsedConversions=*/false);
}
}
DeclarationName DeclName = UnresExpr->getMemberName();
+ UnbridgedCasts.restore();
+
OverloadCandidateSet::iterator Best;
switch (CandidateSet.BestViableFunction(*this, UnresExpr->getLocStart(),
Best)) {
case OR_Success:
Method = cast<CXXMethodDecl>(Best->Function);
- MarkDeclarationReferenced(UnresExpr->getMemberLoc(), Method);
+ MarkFunctionReferenced(UnresExpr->getMemberLoc(), Method);
FoundDecl = Best->FoundDecl;
CheckUnresolvedMemberAccess(UnresExpr, Best->FoundDecl);
DiagnoseUseOfDecl(Best->FoundDecl, UnresExpr->getNameLoc());
@@ -9392,14 +10487,16 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
Diag(UnresExpr->getMemberLoc(),
diag::err_ovl_no_viable_member_function_in_call)
<< DeclName << MemExprE->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
// FIXME: Leaking incoming expressions!
return ExprError();
case OR_Ambiguous:
Diag(UnresExpr->getMemberLoc(), diag::err_ovl_ambiguous_member_call)
<< DeclName << MemExprE->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
// FIXME: Leaking incoming expressions!
return ExprError();
@@ -9409,7 +10506,8 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
<< DeclName
<< getDeletedOrUnavailableSuffix(Best->Function)
<< MemExprE->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
// FIXME: Leaking incoming expressions!
return ExprError();
}
@@ -9459,6 +10557,8 @@ Sema::BuildCallToMemberFunction(Scope *S, Expr *MemExprE,
RParenLoc))
return ExprError();
+ DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
+
if (CheckFunctionCall(Method, TheCall))
return ExprError();
@@ -9488,12 +10588,13 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
SourceLocation LParenLoc,
Expr **Args, unsigned NumArgs,
SourceLocation RParenLoc) {
+ if (checkPlaceholderForOverload(*this, Obj))
+ return ExprError();
ExprResult Object = Owned(Obj);
- if (Object.get()->getObjectKind() == OK_ObjCProperty) {
- Object = ConvertPropertyForRValue(Object.take());
- if (Object.isInvalid())
- return ExprError();
- }
+
+ UnbridgedCastsSet UnbridgedCasts;
+ if (checkArgPlaceholdersForOverload(*this, Args, NumArgs, UnbridgedCasts))
+ return ExprError();
assert(Object.get()->getType()->isRecordType() && "Requires object type argument");
const RecordType *Record = Object.get()->getType()->getAs<RecordType>();
@@ -9566,7 +10667,8 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
if (const FunctionProtoType *Proto = ConvType->getAs<FunctionProtoType>())
{
AddSurrogateCandidate(Conv, I.getPair(), ActingContext, Proto,
- Object.get(), Args, NumArgs, CandidateSet);
+ Object.get(), llvm::makeArrayRef(Args, NumArgs),
+ CandidateSet);
}
}
}
@@ -9584,37 +10686,42 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
case OR_No_Viable_Function:
if (CandidateSet.empty())
- Diag(Object.get()->getSourceRange().getBegin(), diag::err_ovl_no_oper)
+ Diag(Object.get()->getLocStart(), diag::err_ovl_no_oper)
<< Object.get()->getType() << /*call*/ 1
<< Object.get()->getSourceRange();
else
- Diag(Object.get()->getSourceRange().getBegin(),
+ Diag(Object.get()->getLocStart(),
diag::err_ovl_no_viable_object_call)
<< Object.get()->getType() << Object.get()->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
break;
case OR_Ambiguous:
- Diag(Object.get()->getSourceRange().getBegin(),
+ Diag(Object.get()->getLocStart(),
diag::err_ovl_ambiguous_object_call)
<< Object.get()->getType() << Object.get()->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args, NumArgs);
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
break;
case OR_Deleted:
- Diag(Object.get()->getSourceRange().getBegin(),
+ Diag(Object.get()->getLocStart(),
diag::err_ovl_deleted_object_call)
<< Best->Function->isDeleted()
<< Object.get()->getType()
<< getDeletedOrUnavailableSuffix(Best->Function)
<< Object.get()->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args, NumArgs);
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates,
+ llvm::makeArrayRef(Args, NumArgs));
break;
}
if (Best == CandidateSet.end())
return true;
+ UnbridgedCasts.restore();
+
if (Best->Function == 0) {
// Since there is no function declaration, this is one of the
// surrogate candidates. Dig out the conversion function.
@@ -9635,12 +10742,16 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
Conv, HadMultipleCandidates);
if (Call.isInvalid())
return ExprError();
+ // Record usage of conversion in an implicit cast.
+ Call = Owned(ImplicitCastExpr::Create(Context, Call.get()->getType(),
+ CK_UserDefinedConversion,
+ Call.get(), 0, VK_RValue));
return ActOnCallExpr(S, Call.get(), LParenLoc, MultiExprArg(Args, NumArgs),
RParenLoc);
}
- MarkDeclarationReferenced(LParenLoc, Best->Function);
+ MarkFunctionReferenced(LParenLoc, Best->Function);
CheckMemberOperatorAccess(LParenLoc, Object.get(), 0, Best->FoundDecl);
DiagnoseUseOfDecl(Best->FoundDecl, LParenLoc);
@@ -9668,8 +10779,13 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
for (unsigned ArgIdx = 0; ArgIdx < NumArgs; ++ArgIdx)
MethodArgs[ArgIdx + 1] = Args[ArgIdx];
+ DeclarationNameInfo OpLocInfo(
+ Context.DeclarationNames.getCXXOperatorName(OO_Call), LParenLoc);
+ OpLocInfo.setCXXOperatorNameRange(SourceRange(LParenLoc, RParenLoc));
ExprResult NewFn = CreateFunctionRefExpr(*this, Method,
- HadMultipleCandidates);
+ HadMultipleCandidates,
+ OpLocInfo.getLoc(),
+ OpLocInfo.getInfo());
if (NewFn.isInvalid())
return true;
@@ -9750,6 +10866,8 @@ Sema::BuildCallToObjectOfClassType(Scope *S, Expr *Obj,
if (IsError) return true;
+ DiagnoseSentinelCalls(Method, LParenLoc, Args, NumArgs);
+
if (CheckFunctionCall(Method, TheCall))
return true;
@@ -9764,12 +10882,8 @@ Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
assert(Base->getType()->isRecordType() &&
"left-hand side must have class type");
- if (Base->getObjectKind() == OK_ObjCProperty) {
- ExprResult Result = ConvertPropertyForRValue(Base);
- if (Result.isInvalid())
- return ExprError();
- Base = Result.take();
- }
+ if (checkPlaceholderForOverload(*this, Base))
+ return ExprError();
SourceLocation Loc = Base->getExprLoc();
@@ -9815,13 +10929,13 @@ Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
else
Diag(OpLoc, diag::err_ovl_no_viable_oper)
<< "operator->" << Base->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
return ExprError();
case OR_Ambiguous:
Diag(OpLoc, diag::err_ovl_ambiguous_oper_unary)
<< "->" << Base->getType() << Base->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, &Base, 1);
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Base);
return ExprError();
case OR_Deleted:
@@ -9830,11 +10944,11 @@ Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
<< "->"
<< getDeletedOrUnavailableSuffix(Best->Function)
<< Base->getSourceRange();
- CandidateSet.NoteCandidates(*this, OCD_AllCandidates, &Base, 1);
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Base);
return ExprError();
}
- MarkDeclarationReferenced(OpLoc, Best->Function);
+ MarkFunctionReferenced(OpLoc, Best->Function);
CheckMemberOperatorAccess(OpLoc, Base, 0, Best->FoundDecl);
DiagnoseUseOfDecl(Best->FoundDecl, OpLoc);
@@ -9849,7 +10963,7 @@ Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
// Build the operator call.
ExprResult FnExpr = CreateFunctionRefExpr(*this, Method,
- HadMultipleCandidates);
+ HadMultipleCandidates, OpLoc);
if (FnExpr.isInvalid())
return ExprError();
@@ -9867,6 +10981,80 @@ Sema::BuildOverloadedArrowExpr(Scope *S, Expr *Base, SourceLocation OpLoc) {
return MaybeBindToTemporary(TheCall);
}
+/// BuildLiteralOperatorCall - Build a UserDefinedLiteral by creating a call to
+/// a literal operator described by the provided lookup results.
+ExprResult Sema::BuildLiteralOperatorCall(LookupResult &R,
+ DeclarationNameInfo &SuffixInfo,
+ ArrayRef<Expr*> Args,
+ SourceLocation LitEndLoc,
+ TemplateArgumentListInfo *TemplateArgs) {
+ SourceLocation UDSuffixLoc = SuffixInfo.getCXXLiteralOperatorNameLoc();
+
+ OverloadCandidateSet CandidateSet(UDSuffixLoc);
+ AddFunctionCandidates(R.asUnresolvedSet(), Args, CandidateSet, true,
+ TemplateArgs);
+
+ bool HadMultipleCandidates = (CandidateSet.size() > 1);
+
+ // Perform overload resolution. This will usually be trivial, but might need
+ // to perform substitutions for a literal operator template.
+ OverloadCandidateSet::iterator Best;
+ switch (CandidateSet.BestViableFunction(*this, UDSuffixLoc, Best)) {
+ case OR_Success:
+ case OR_Deleted:
+ break;
+
+ case OR_No_Viable_Function:
+ Diag(UDSuffixLoc, diag::err_ovl_no_viable_function_in_call)
+ << R.getLookupName();
+ CandidateSet.NoteCandidates(*this, OCD_AllCandidates, Args);
+ return ExprError();
+
+ case OR_Ambiguous:
+ Diag(R.getNameLoc(), diag::err_ovl_ambiguous_call) << R.getLookupName();
+ CandidateSet.NoteCandidates(*this, OCD_ViableCandidates, Args);
+ return ExprError();
+ }
+
+ FunctionDecl *FD = Best->Function;
+ MarkFunctionReferenced(UDSuffixLoc, FD);
+ DiagnoseUseOfDecl(Best->FoundDecl, UDSuffixLoc);
+
+ ExprResult Fn = CreateFunctionRefExpr(*this, FD, HadMultipleCandidates,
+ SuffixInfo.getLoc(),
+ SuffixInfo.getInfo());
+ if (Fn.isInvalid())
+ return true;
+
+ // Check the argument types. This should almost always be a no-op, except
+ // that array-to-pointer decay is applied to string literals.
+ Expr *ConvArgs[2];
+ for (unsigned ArgIdx = 0; ArgIdx != Args.size(); ++ArgIdx) {
+ ExprResult InputInit = PerformCopyInitialization(
+ InitializedEntity::InitializeParameter(Context, FD->getParamDecl(ArgIdx)),
+ SourceLocation(), Args[ArgIdx]);
+ if (InputInit.isInvalid())
+ return true;
+ ConvArgs[ArgIdx] = InputInit.take();
+ }
+
+ QualType ResultTy = FD->getResultType();
+ ExprValueKind VK = Expr::getValueKindForType(ResultTy);
+ ResultTy = ResultTy.getNonLValueExprType(Context);
+
+ UserDefinedLiteral *UDL =
+ new (Context) UserDefinedLiteral(Context, Fn.take(), ConvArgs, Args.size(),
+ ResultTy, VK, LitEndLoc, UDSuffixLoc);
+
+ if (CheckCallReturnType(FD->getResultType(), UDSuffixLoc, UDL, FD))
+ return ExprError();
+
+ if (CheckFunctionCall(FD, UDL))
+ return ExprError();
+
+ return MaybeBindToTemporary(UDL);
+}
+
/// FixOverloadedFunctionReference - E is an expression that refers to
/// a C++ overloaded function (possibly with some parentheses and
/// perhaps a '&' around it). We have resolved the overloaded function
@@ -9954,7 +11142,9 @@ Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
DeclRefExpr *DRE = DeclRefExpr::Create(Context,
ULE->getQualifierLoc(),
+ ULE->getTemplateKeywordLoc(),
Fn,
+ /*enclosing*/ false, // FIXME?
ULE->getNameLoc(),
Fn->getType(),
VK_LValue,
@@ -9980,7 +11170,9 @@ Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
if (cast<CXXMethodDecl>(Fn)->isStatic()) {
DeclRefExpr *DRE = DeclRefExpr::Create(Context,
MemExpr->getQualifierLoc(),
+ MemExpr->getTemplateKeywordLoc(),
Fn,
+ /*enclosing*/ false,
MemExpr->getMemberLoc(),
Fn->getType(),
VK_LValue,
@@ -9992,6 +11184,7 @@ Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
SourceLocation Loc = MemExpr->getMemberLoc();
if (MemExpr->getQualifier())
Loc = MemExpr->getQualifierLoc().getBeginLoc();
+ CheckCXXThisCapture(Loc);
Base = new (Context) CXXThisExpr(Loc,
MemExpr->getBaseType(),
/*isImplicit=*/true);
@@ -10012,6 +11205,7 @@ Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
MemberExpr *ME = MemberExpr::Create(Context, Base,
MemExpr->isArrow(),
MemExpr->getQualifierLoc(),
+ MemExpr->getTemplateKeywordLoc(),
Fn,
Found,
MemExpr->getMemberNameInfo(),
@@ -10022,7 +11216,6 @@ Expr *Sema::FixOverloadedFunctionReference(Expr *E, DeclAccessPair Found,
}
llvm_unreachable("Invalid reference to overloaded function");
- return E;
}
ExprResult Sema::FixOverloadedFunctionReference(ExprResult E,