aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
diff options
context:
space:
mode:
authorDimitry Andric <dim@FreeBSD.org>2015-12-30 13:13:10 +0000
committerDimitry Andric <dim@FreeBSD.org>2015-12-30 13:13:10 +0000
commit7d523365ff1a3cc95bc058b33102500f61e8166d (patch)
treeb466a4817f79516eb1df8eae92bccf62ecc84003 /contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
parente3b65fde506060bec5cd110fcf03b440bd0eea1d (diff)
parentdd58ef019b700900793a1eb48b52123db01b654e (diff)
Update llvm to trunk r256633.
Notes
Notes: svn path=/projects/clang380-import/; revision=292941
Diffstat (limited to 'contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp')
-rw-r--r--contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp3980
1 files changed, 2896 insertions, 1084 deletions
diff --git a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
index 3cb082349b41..eb3590cb1076 100644
--- a/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
+++ b/contrib/llvm/lib/Target/Hexagon/HexagonInstrInfo.cpp
@@ -23,9 +23,11 @@
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
+#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
+#include <cctype>
using namespace llvm;
@@ -36,9 +38,41 @@ using namespace llvm;
#include "HexagonGenInstrInfo.inc"
#include "HexagonGenDFAPacketizer.inc"
+using namespace llvm;
+
+cl::opt<bool> ScheduleInlineAsm("hexagon-sched-inline-asm", cl::Hidden,
+ cl::init(false), cl::desc("Do not consider inline-asm a scheduling/"
+ "packetization boundary."));
+
+static cl::opt<bool> EnableBranchPrediction("hexagon-enable-branch-prediction",
+ cl::Hidden, cl::init(true), cl::desc("Enable branch prediction"));
+
+static cl::opt<bool> DisableNVSchedule("disable-hexagon-nv-schedule",
+ cl::Hidden, cl::ZeroOrMore, cl::init(false),
+ cl::desc("Disable schedule adjustment for new value stores."));
+
+static cl::opt<bool> EnableTimingClassLatency(
+ "enable-timing-class-latency", cl::Hidden, cl::init(false),
+ cl::desc("Enable timing class latency"));
+
+static cl::opt<bool> EnableALUForwarding(
+ "enable-alu-forwarding", cl::Hidden, cl::init(true),
+ cl::desc("Enable vec alu forwarding"));
+
+static cl::opt<bool> EnableACCForwarding(
+ "enable-acc-forwarding", cl::Hidden, cl::init(true),
+ cl::desc("Enable vec acc forwarding"));
+
+static cl::opt<bool> BranchRelaxAsmLarge("branch-relax-asm-large",
+ cl::init(true), cl::Hidden, cl::ZeroOrMore, cl::desc("branch relax asm"));
+
///
/// Constants for Hexagon instructions.
///
+const int Hexagon_MEMV_OFFSET_MAX_128B = 2047; // #s7
+const int Hexagon_MEMV_OFFSET_MIN_128B = -2048; // #s7
+const int Hexagon_MEMV_OFFSET_MAX = 1023; // #s6
+const int Hexagon_MEMV_OFFSET_MIN = -1024; // #s6
const int Hexagon_MEMW_OFFSET_MAX = 4095;
const int Hexagon_MEMW_OFFSET_MIN = -4096;
const int Hexagon_MEMD_OFFSET_MAX = 8191;
@@ -57,71 +91,49 @@ const int Hexagon_MEMH_AUTOINC_MAX = 14;
const int Hexagon_MEMH_AUTOINC_MIN = -16;
const int Hexagon_MEMB_AUTOINC_MAX = 7;
const int Hexagon_MEMB_AUTOINC_MIN = -8;
+const int Hexagon_MEMV_AUTOINC_MAX = 192;
+const int Hexagon_MEMV_AUTOINC_MIN = -256;
+const int Hexagon_MEMV_AUTOINC_MAX_128B = 384;
+const int Hexagon_MEMV_AUTOINC_MIN_128B = -512;
// Pin the vtable to this file.
void HexagonInstrInfo::anchor() {}
HexagonInstrInfo::HexagonInstrInfo(HexagonSubtarget &ST)
: HexagonGenInstrInfo(Hexagon::ADJCALLSTACKDOWN, Hexagon::ADJCALLSTACKUP),
- RI(), Subtarget(ST) {}
+ RI() {}
-/// isLoadFromStackSlot - If the specified machine instruction is a direct
-/// load from a stack slot, return the virtual or physical register number of
-/// the destination along with the FrameIndex of the loaded stack slot. If
-/// not, return 0. This predicate must return 0 if the instruction has
-/// any side effects other than loading from the stack slot.
-unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
- int &FrameIndex) const {
+static bool isIntRegForSubInst(unsigned Reg) {
+ return (Reg >= Hexagon::R0 && Reg <= Hexagon::R7) ||
+ (Reg >= Hexagon::R16 && Reg <= Hexagon::R23);
+}
- switch (MI->getOpcode()) {
- default: break;
- case Hexagon::L2_loadri_io:
- case Hexagon::L2_loadrd_io:
- case Hexagon::L2_loadrh_io:
- case Hexagon::L2_loadrb_io:
- case Hexagon::L2_loadrub_io:
- if (MI->getOperand(2).isFI() &&
- MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
- FrameIndex = MI->getOperand(2).getIndex();
- return MI->getOperand(0).getReg();
- }
- break;
- }
- return 0;
+
+static bool isDblRegForSubInst(unsigned Reg, const HexagonRegisterInfo &HRI) {
+ return isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_loreg)) &&
+ isIntRegForSubInst(HRI.getSubReg(Reg, Hexagon::subreg_hireg));
}
-/// isStoreToStackSlot - If the specified machine instruction is a direct
-/// store to a stack slot, return the virtual or physical register number of
-/// the source reg along with the FrameIndex of the loaded stack slot. If
-/// not, return 0. This predicate must return 0 if the instruction has
-/// any side effects other than storing to the stack slot.
-unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
- int &FrameIndex) const {
- switch (MI->getOpcode()) {
- default: break;
- case Hexagon::S2_storeri_io:
- case Hexagon::S2_storerd_io:
- case Hexagon::S2_storerh_io:
- case Hexagon::S2_storerb_io:
- if (MI->getOperand(2).isFI() &&
- MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
- FrameIndex = MI->getOperand(0).getIndex();
- return MI->getOperand(2).getReg();
- }
- break;
+/// Calculate number of instructions excluding the debug instructions.
+static unsigned nonDbgMICount(MachineBasicBlock::const_instr_iterator MIB,
+ MachineBasicBlock::const_instr_iterator MIE) {
+ unsigned Count = 0;
+ for (; MIB != MIE; ++MIB) {
+ if (!MIB->isDebugValue())
+ ++Count;
}
- return 0;
+ return Count;
}
-// Find the hardware loop instruction used to set-up the specified loop.
-// On Hexagon, we have two instructions used to set-up the hardware loop
-// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
-// to indicate the end of a loop.
-static MachineInstr *
-findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
- SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
+
+/// Find the hardware loop instruction used to set-up the specified loop.
+/// On Hexagon, we have two instructions used to set-up the hardware loop
+/// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
+/// to indicate the end of a loop.
+static MachineInstr *findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
+ SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
int LOOPi;
int LOOPr;
if (EndLoopOp == Hexagon::ENDLOOP0) {
@@ -157,100 +169,108 @@ findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
return 0;
}
-unsigned HexagonInstrInfo::InsertBranch(
- MachineBasicBlock &MBB,MachineBasicBlock *TBB, MachineBasicBlock *FBB,
- ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
- Opcode_t BOpc = Hexagon::J2_jump;
- Opcode_t BccOpc = Hexagon::J2_jumpt;
+/// Gather register def/uses from MI.
+/// This treats possible (predicated) defs as actually happening ones
+/// (conservatively).
+static inline void parseOperands(const MachineInstr *MI,
+ SmallVector<unsigned, 4> &Defs, SmallVector<unsigned, 8> &Uses) {
+ Defs.clear();
+ Uses.clear();
- assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+ for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
+ const MachineOperand &MO = MI->getOperand(i);
- // Check if ReverseBranchCondition has asked to reverse this branch
- // If we want to reverse the branch an odd number of times, we want
- // J2_jumpf.
- if (!Cond.empty() && Cond[0].isImm())
- BccOpc = Cond[0].getImm();
+ if (!MO.isReg())
+ continue;
- if (!FBB) {
- if (Cond.empty()) {
- // Due to a bug in TailMerging/CFG Optimization, we need to add a
- // special case handling of a predicated jump followed by an
- // unconditional jump. If not, Tail Merging and CFG Optimization go
- // into an infinite loop.
- MachineBasicBlock *NewTBB, *NewFBB;
- SmallVector<MachineOperand, 4> Cond;
- MachineInstr *Term = MBB.getFirstTerminator();
- if (Term != MBB.end() && isPredicated(Term) &&
- !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
- MachineBasicBlock *NextBB =
- std::next(MachineFunction::iterator(&MBB));
- if (NewTBB == NextBB) {
- ReverseBranchCondition(Cond);
- RemoveBranch(MBB);
- return InsertBranch(MBB, TBB, nullptr, Cond, DL);
- }
- }
- BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
- } else if (isEndLoopN(Cond[0].getImm())) {
- int EndLoopOp = Cond[0].getImm();
- assert(Cond[1].isMBB());
- // Since we're adding an ENDLOOP, there better be a LOOP instruction.
- // Check for it, and change the BB target if needed.
- SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
- MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
- assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
- Loop->getOperand(0).setMBB(TBB);
- // Add the ENDLOOP after the finding the LOOP0.
- BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
- } else if (isNewValueJump(Cond[0].getImm())) {
- assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
- // New value jump
- // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
- // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
- unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
- DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
- if (Cond[2].isReg()) {
- unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
- BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
- addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
- } else if(Cond[2].isImm()) {
- BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
- addImm(Cond[2].getImm()).addMBB(TBB);
- } else
- llvm_unreachable("Invalid condition for branching");
- } else {
- assert((Cond.size() == 2) && "Malformed cond vector");
- const MachineOperand &RO = Cond[1];
- unsigned Flags = getUndefRegState(RO.isUndef());
- BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
- }
- return 1;
+ unsigned Reg = MO.getReg();
+ if (!Reg)
+ continue;
+
+ if (MO.isUse())
+ Uses.push_back(MO.getReg());
+
+ if (MO.isDef())
+ Defs.push_back(MO.getReg());
}
- assert((!Cond.empty()) &&
- "Cond. cannot be empty when multiple branchings are required");
- assert((!isNewValueJump(Cond[0].getImm())) &&
- "NV-jump cannot be inserted with another branch");
- // Special case for hardware loops. The condition is a basic block.
- if (isEndLoopN(Cond[0].getImm())) {
- int EndLoopOp = Cond[0].getImm();
- assert(Cond[1].isMBB());
- // Since we're adding an ENDLOOP, there better be a LOOP instruction.
- // Check for it, and change the BB target if needed.
- SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
- MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
- assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
- Loop->getOperand(0).setMBB(TBB);
- // Add the ENDLOOP after the finding the LOOP0.
- BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
- } else {
- const MachineOperand &RO = Cond[1];
- unsigned Flags = getUndefRegState(RO.isUndef());
- BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
+}
+
+
+// Position dependent, so check twice for swap.
+static bool isDuplexPairMatch(unsigned Ga, unsigned Gb) {
+ switch (Ga) {
+ case HexagonII::HSIG_None:
+ default:
+ return false;
+ case HexagonII::HSIG_L1:
+ return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_A);
+ case HexagonII::HSIG_L2:
+ return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
+ Gb == HexagonII::HSIG_A);
+ case HexagonII::HSIG_S1:
+ return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
+ Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_A);
+ case HexagonII::HSIG_S2:
+ return (Gb == HexagonII::HSIG_L1 || Gb == HexagonII::HSIG_L2 ||
+ Gb == HexagonII::HSIG_S1 || Gb == HexagonII::HSIG_S2 ||
+ Gb == HexagonII::HSIG_A);
+ case HexagonII::HSIG_A:
+ return (Gb == HexagonII::HSIG_A);
+ case HexagonII::HSIG_Compound:
+ return (Gb == HexagonII::HSIG_Compound);
}
- BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
+ return false;
+}
- return 2;
+
+
+/// isLoadFromStackSlot - If the specified machine instruction is a direct
+/// load from a stack slot, return the virtual or physical register number of
+/// the destination along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than loading from the stack slot.
+unsigned HexagonInstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case Hexagon::L2_loadri_io:
+ case Hexagon::L2_loadrd_io:
+ case Hexagon::L2_loadrh_io:
+ case Hexagon::L2_loadrb_io:
+ case Hexagon::L2_loadrub_io:
+ if (MI->getOperand(2).isFI() &&
+ MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
+ FrameIndex = MI->getOperand(2).getIndex();
+ return MI->getOperand(0).getReg();
+ }
+ break;
+ }
+ return 0;
+}
+
+
+/// isStoreToStackSlot - If the specified machine instruction is a direct
+/// store to a stack slot, return the virtual or physical register number of
+/// the source reg along with the FrameIndex of the loaded stack slot. If
+/// not, return 0. This predicate must return 0 if the instruction has
+/// any side effects other than storing to the stack slot.
+unsigned HexagonInstrInfo::isStoreToStackSlot(const MachineInstr *MI,
+ int &FrameIndex) const {
+ switch (MI->getOpcode()) {
+ default: break;
+ case Hexagon::S2_storeri_io:
+ case Hexagon::S2_storerd_io:
+ case Hexagon::S2_storerh_io:
+ case Hexagon::S2_storerb_io:
+ if (MI->getOperand(2).isFI() &&
+ MI->getOperand(1).isImm() && (MI->getOperand(1).getImm() == 0)) {
+ FrameIndex = MI->getOperand(0).getIndex();
+ return MI->getOperand(2).getReg();
+ }
+ break;
+ }
+ return 0;
}
@@ -269,9 +289,6 @@ unsigned HexagonInstrInfo::InsertBranch(
/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
/// Cond[1] = R
/// Cond[2] = Imm
-/// @note Related function is \fn findInstrPredicate which fills in
-/// Cond. vector when a predicated instruction is passed to it.
-/// We follow same protocol in that case too.
///
bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
@@ -314,7 +331,7 @@ bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
return false;
--I;
}
-
+
bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
I->getOperand(0).isMBB();
// Delete the J2_jump if it's equivalent to a fall-through.
@@ -327,17 +344,17 @@ bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
return false;
--I;
}
- if (!isUnpredicatedTerminator(I))
+ if (!isUnpredicatedTerminator(&*I))
return false;
// Get the last instruction in the block.
- MachineInstr *LastInst = I;
+ MachineInstr *LastInst = &*I;
MachineInstr *SecondLastInst = nullptr;
// Find one more terminator if present.
- do {
- if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(I)) {
+ for (;;) {
+ if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
if (!SecondLastInst)
- SecondLastInst = I;
+ SecondLastInst = &*I;
else
// This is a third branch.
return true;
@@ -345,7 +362,7 @@ bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
if (I == MBB.instr_begin())
break;
--I;
- } while(I);
+ }
int LastOpcode = LastInst->getOpcode();
int SecLastOpcode = SecondLastInst ? SecondLastInst->getOpcode() : 0;
@@ -418,7 +435,7 @@ bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
// executed, so remove it.
if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
TBB = SecondLastInst->getOperand(0).getMBB();
- I = LastInst;
+ I = LastInst->getIterator();
if (AllowModify)
I->eraseFromParent();
return false;
@@ -438,6 +455,7 @@ bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
return true;
}
+
unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
MachineBasicBlock::iterator I = MBB.end();
@@ -458,100 +476,127 @@ unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
return Count;
}
-/// \brief For a comparison instruction, return the source registers in
-/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
-/// compares against in CmpValue. Return true if the comparison instruction
-/// can be analyzed.
-bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
- unsigned &SrcReg, unsigned &SrcReg2,
- int &Mask, int &Value) const {
- unsigned Opc = MI->getOpcode();
- // Set mask and the first source register.
- switch (Opc) {
- case Hexagon::C2_cmpeq:
- case Hexagon::C2_cmpeqp:
- case Hexagon::C2_cmpgt:
- case Hexagon::C2_cmpgtp:
- case Hexagon::C2_cmpgtu:
- case Hexagon::C2_cmpgtup:
- case Hexagon::C4_cmpneq:
- case Hexagon::C4_cmplte:
- case Hexagon::C4_cmplteu:
- case Hexagon::C2_cmpeqi:
- case Hexagon::C2_cmpgti:
- case Hexagon::C2_cmpgtui:
- case Hexagon::C4_cmpneqi:
- case Hexagon::C4_cmplteui:
- case Hexagon::C4_cmpltei:
- SrcReg = MI->getOperand(1).getReg();
- Mask = ~0;
- break;
- case Hexagon::A4_cmpbeq:
- case Hexagon::A4_cmpbgt:
- case Hexagon::A4_cmpbgtu:
- case Hexagon::A4_cmpbeqi:
- case Hexagon::A4_cmpbgti:
- case Hexagon::A4_cmpbgtui:
- SrcReg = MI->getOperand(1).getReg();
- Mask = 0xFF;
- break;
- case Hexagon::A4_cmpheq:
- case Hexagon::A4_cmphgt:
- case Hexagon::A4_cmphgtu:
- case Hexagon::A4_cmpheqi:
- case Hexagon::A4_cmphgti:
- case Hexagon::A4_cmphgtui:
- SrcReg = MI->getOperand(1).getReg();
- Mask = 0xFFFF;
- break;
- }
+unsigned HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,
+ MachineBasicBlock *TBB, MachineBasicBlock *FBB,
+ ArrayRef<MachineOperand> Cond, DebugLoc DL) const {
+ unsigned BOpc = Hexagon::J2_jump;
+ unsigned BccOpc = Hexagon::J2_jumpt;
+ assert(validateBranchCond(Cond) && "Invalid branching condition");
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
- // Set the value/second source register.
- switch (Opc) {
- case Hexagon::C2_cmpeq:
- case Hexagon::C2_cmpeqp:
- case Hexagon::C2_cmpgt:
- case Hexagon::C2_cmpgtp:
- case Hexagon::C2_cmpgtu:
- case Hexagon::C2_cmpgtup:
- case Hexagon::A4_cmpbeq:
- case Hexagon::A4_cmpbgt:
- case Hexagon::A4_cmpbgtu:
- case Hexagon::A4_cmpheq:
- case Hexagon::A4_cmphgt:
- case Hexagon::A4_cmphgtu:
- case Hexagon::C4_cmpneq:
- case Hexagon::C4_cmplte:
- case Hexagon::C4_cmplteu:
- SrcReg2 = MI->getOperand(2).getReg();
- return true;
+ // Check if ReverseBranchCondition has asked to reverse this branch
+ // If we want to reverse the branch an odd number of times, we want
+ // J2_jumpf.
+ if (!Cond.empty() && Cond[0].isImm())
+ BccOpc = Cond[0].getImm();
- case Hexagon::C2_cmpeqi:
- case Hexagon::C2_cmpgtui:
- case Hexagon::C2_cmpgti:
- case Hexagon::C4_cmpneqi:
- case Hexagon::C4_cmplteui:
- case Hexagon::C4_cmpltei:
- case Hexagon::A4_cmpbeqi:
- case Hexagon::A4_cmpbgti:
- case Hexagon::A4_cmpbgtui:
- case Hexagon::A4_cmpheqi:
- case Hexagon::A4_cmphgti:
- case Hexagon::A4_cmphgtui:
- SrcReg2 = 0;
- Value = MI->getOperand(2).getImm();
- return true;
+ if (!FBB) {
+ if (Cond.empty()) {
+ // Due to a bug in TailMerging/CFG Optimization, we need to add a
+ // special case handling of a predicated jump followed by an
+ // unconditional jump. If not, Tail Merging and CFG Optimization go
+ // into an infinite loop.
+ MachineBasicBlock *NewTBB, *NewFBB;
+ SmallVector<MachineOperand, 4> Cond;
+ MachineInstr *Term = MBB.getFirstTerminator();
+ if (Term != MBB.end() && isPredicated(Term) &&
+ !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
+ MachineBasicBlock *NextBB = &*++MBB.getIterator();
+ if (NewTBB == NextBB) {
+ ReverseBranchCondition(Cond);
+ RemoveBranch(MBB);
+ return InsertBranch(MBB, TBB, nullptr, Cond, DL);
+ }
+ }
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
+ } else if (isEndLoopN(Cond[0].getImm())) {
+ int EndLoopOp = Cond[0].getImm();
+ assert(Cond[1].isMBB());
+ // Since we're adding an ENDLOOP, there better be a LOOP instruction.
+ // Check for it, and change the BB target if needed.
+ SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
+ MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
+ assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
+ Loop->getOperand(0).setMBB(TBB);
+ // Add the ENDLOOP after the finding the LOOP0.
+ BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
+ } else if (isNewValueJump(Cond[0].getImm())) {
+ assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
+ // New value jump
+ // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
+ // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
+ unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
+ DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
+ if (Cond[2].isReg()) {
+ unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
+ BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
+ addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
+ } else if(Cond[2].isImm()) {
+ BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
+ addImm(Cond[2].getImm()).addMBB(TBB);
+ } else
+ llvm_unreachable("Invalid condition for branching");
+ } else {
+ assert((Cond.size() == 2) && "Malformed cond vector");
+ const MachineOperand &RO = Cond[1];
+ unsigned Flags = getUndefRegState(RO.isUndef());
+ BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
+ }
+ return 1;
}
+ assert((!Cond.empty()) &&
+ "Cond. cannot be empty when multiple branchings are required");
+ assert((!isNewValueJump(Cond[0].getImm())) &&
+ "NV-jump cannot be inserted with another branch");
+ // Special case for hardware loops. The condition is a basic block.
+ if (isEndLoopN(Cond[0].getImm())) {
+ int EndLoopOp = Cond[0].getImm();
+ assert(Cond[1].isMBB());
+ // Since we're adding an ENDLOOP, there better be a LOOP instruction.
+ // Check for it, and change the BB target if needed.
+ SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
+ MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
+ assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
+ Loop->getOperand(0).setMBB(TBB);
+ // Add the ENDLOOP after the finding the LOOP0.
+ BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
+ } else {
+ const MachineOperand &RO = Cond[1];
+ unsigned Flags = getUndefRegState(RO.isUndef());
+ BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
+ }
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
- return false;
+ return 2;
+}
+
+
+bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
+ unsigned NumCycles, unsigned ExtraPredCycles,
+ BranchProbability Probability) const {
+ return nonDbgBBSize(&MBB) <= 3;
+}
+
+
+bool HexagonInstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
+ unsigned NumTCycles, unsigned ExtraTCycles, MachineBasicBlock &FMBB,
+ unsigned NumFCycles, unsigned ExtraFCycles, BranchProbability Probability)
+ const {
+ return nonDbgBBSize(&TMBB) <= 3 && nonDbgBBSize(&FMBB) <= 3;
+}
+
+
+bool HexagonInstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
+ unsigned NumInstrs, BranchProbability Probability) const {
+ return NumInstrs <= 4;
}
void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
- MachineBasicBlock::iterator I, DebugLoc DL,
- unsigned DestReg, unsigned SrcReg,
- bool KillSrc) const {
+ MachineBasicBlock::iterator I, DebugLoc DL, unsigned DestReg,
+ unsigned SrcReg, bool KillSrc) const {
+ auto &HRI = getRegisterInfo();
if (Hexagon::IntRegsRegClass.contains(SrcReg, DestReg)) {
BuildMI(MBB, I, DL, get(Hexagon::A2_tfr), DestReg).addReg(SrcReg);
return;
@@ -599,28 +644,74 @@ void HexagonInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
addReg(SrcReg, getKillRegState(KillSrc));
return;
}
+ if (Hexagon::PredRegsRegClass.contains(SrcReg) &&
+ Hexagon::IntRegsRegClass.contains(DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::C2_tfrpr), DestReg).
+ addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ if (Hexagon::VectorRegsRegClass.contains(SrcReg, DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::V6_vassign), DestReg).
+ addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ if (Hexagon::VecDblRegsRegClass.contains(SrcReg, DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::V6_vcombine), DestReg).
+ addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
+ getKillRegState(KillSrc)).
+ addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
+ getKillRegState(KillSrc));
+ return;
+ }
+ if (Hexagon::VecPredRegsRegClass.contains(SrcReg, DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and), DestReg).
+ addReg(SrcReg).
+ addReg(SrcReg, getKillRegState(KillSrc));
+ return;
+ }
+ if (Hexagon::VecPredRegsRegClass.contains(SrcReg) &&
+ Hexagon::VectorRegsRegClass.contains(DestReg)) {
+ llvm_unreachable("Unimplemented pred to vec");
+ return;
+ }
+ if (Hexagon::VecPredRegsRegClass.contains(DestReg) &&
+ Hexagon::VectorRegsRegClass.contains(SrcReg)) {
+ llvm_unreachable("Unimplemented vec to pred");
+ return;
+ }
+ if (Hexagon::VecPredRegs128BRegClass.contains(SrcReg, DestReg)) {
+ BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
+ HRI.getSubReg(DestReg, Hexagon::subreg_hireg)).
+ addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_hireg),
+ getKillRegState(KillSrc));
+ BuildMI(MBB, I, DL, get(Hexagon::V6_pred_and),
+ HRI.getSubReg(DestReg, Hexagon::subreg_loreg)).
+ addReg(HRI.getSubReg(SrcReg, Hexagon::subreg_loreg),
+ getKillRegState(KillSrc));
+ return;
+ }
+#ifndef NDEBUG
+ // Show the invalid registers to ease debugging.
+ dbgs() << "Invalid registers for copy in BB#" << MBB.getNumber()
+ << ": " << PrintReg(DestReg, &HRI)
+ << " = " << PrintReg(SrcReg, &HRI) << '\n';
+#endif
llvm_unreachable("Unimplemented");
}
-void HexagonInstrInfo::
-storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
- unsigned SrcReg, bool isKill, int FI,
- const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI) const {
-
+void HexagonInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, unsigned SrcReg, bool isKill, int FI,
+ const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
DebugLoc DL = MBB.findDebugLoc(I);
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
unsigned Align = MFI.getObjectAlignment(FI);
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(
- MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
- MachineMemOperand::MOStore,
- MFI.getObjectSize(FI),
- Align);
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOStore,
+ MFI.getObjectSize(FI), Align);
if (Hexagon::IntRegsRegClass.hasSubClassEq(RC)) {
BuildMI(MBB, I, DL, get(Hexagon::S2_storeri_io))
@@ -640,33 +731,17 @@ storeRegToStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
}
-void HexagonInstrInfo::storeRegToAddr(
- MachineFunction &MF, unsigned SrcReg,
- bool isKill,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const
-{
- llvm_unreachable("Unimplemented");
-}
-
-
-void HexagonInstrInfo::
-loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
- unsigned DestReg, int FI,
- const TargetRegisterClass *RC,
- const TargetRegisterInfo *TRI) const {
+void HexagonInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator I, unsigned DestReg, int FI,
+ const TargetRegisterClass *RC, const TargetRegisterInfo *TRI) const {
DebugLoc DL = MBB.findDebugLoc(I);
MachineFunction &MF = *MBB.getParent();
MachineFrameInfo &MFI = *MF.getFrameInfo();
unsigned Align = MFI.getObjectAlignment(FI);
- MachineMemOperand *MMO =
- MF.getMachineMemOperand(
- MachinePointerInfo(PseudoSourceValue::getFixedStack(FI)),
- MachineMemOperand::MOLoad,
- MFI.getObjectSize(FI),
- Align);
+ MachineMemOperand *MMO = MF.getMachineMemOperand(
+ MachinePointerInfo::getFixedStack(MF, FI), MachineMemOperand::MOLoad,
+ MFI.getObjectSize(FI), Align);
if (RC == &Hexagon::IntRegsRegClass) {
BuildMI(MBB, I, DL, get(Hexagon::L2_loadri_io), DestReg)
.addFrameIndex(FI).addImm(0).addMemOperand(MMO);
@@ -682,27 +757,136 @@ loadRegFromStackSlot(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
}
-void HexagonInstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
- SmallVectorImpl<MachineOperand> &Addr,
- const TargetRegisterClass *RC,
- SmallVectorImpl<MachineInstr*> &NewMIs) const {
- llvm_unreachable("Unimplemented");
-}
-bool
-HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
- const HexagonRegisterInfo &TRI = getRegisterInfo();
+/// expandPostRAPseudo - This function is called for all pseudo instructions
+/// that remain after register allocation. Many pseudo instructions are
+/// created to help register allocation. This is the place to convert them
+/// into real instructions. The target can edit MI in place, or it can insert
+/// new instructions and erase MI. The function should return true if
+/// anything was changed.
+bool HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI)
+ const {
+ const HexagonRegisterInfo &HRI = getRegisterInfo();
MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
MachineBasicBlock &MBB = *MI->getParent();
DebugLoc DL = MI->getDebugLoc();
unsigned Opc = MI->getOpcode();
+ const unsigned VecOffset = 1;
+ bool Is128B = false;
switch (Opc) {
case Hexagon::ALIGNA:
BuildMI(MBB, MI, DL, get(Hexagon::A2_andir), MI->getOperand(0).getReg())
- .addReg(TRI.getFrameRegister())
+ .addReg(HRI.getFrameRegister())
.addImm(-MI->getOperand(1).getImm());
MBB.erase(MI);
return true;
+ case Hexagon::HEXAGON_V6_vassignp_128B:
+ case Hexagon::HEXAGON_V6_vassignp: {
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ unsigned DstReg = MI->getOperand(0).getReg();
+ if (SrcReg != DstReg)
+ copyPhysReg(MBB, MI, DL, DstReg, SrcReg, MI->getOperand(1).isKill());
+ MBB.erase(MI);
+ return true;
+ }
+ case Hexagon::HEXAGON_V6_lo_128B:
+ case Hexagon::HEXAGON_V6_lo: {
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
+ copyPhysReg(MBB, MI, DL, DstReg, SrcSubLo, MI->getOperand(1).isKill());
+ MBB.erase(MI);
+ MRI.clearKillFlags(SrcSubLo);
+ return true;
+ }
+ case Hexagon::HEXAGON_V6_hi_128B:
+ case Hexagon::HEXAGON_V6_hi: {
+ unsigned SrcReg = MI->getOperand(1).getReg();
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
+ copyPhysReg(MBB, MI, DL, DstReg, SrcSubHi, MI->getOperand(1).isKill());
+ MBB.erase(MI);
+ MRI.clearKillFlags(SrcSubHi);
+ return true;
+ }
+ case Hexagon::STrivv_indexed_128B:
+ Is128B = true;
+ case Hexagon::STrivv_indexed: {
+ unsigned SrcReg = MI->getOperand(2).getReg();
+ unsigned SrcSubHi = HRI.getSubReg(SrcReg, Hexagon::subreg_hireg);
+ unsigned SrcSubLo = HRI.getSubReg(SrcReg, Hexagon::subreg_loreg);
+ unsigned NewOpcd = Is128B ? Hexagon::V6_vS32b_ai_128B
+ : Hexagon::V6_vS32b_ai;
+ unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
+ MachineInstr *MI1New = BuildMI(MBB, MI, DL, get(NewOpcd))
+ .addOperand(MI->getOperand(0))
+ .addImm(MI->getOperand(1).getImm())
+ .addReg(SrcSubLo)
+ .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+ MI1New->getOperand(0).setIsKill(false);
+ BuildMI(MBB, MI, DL, get(NewOpcd))
+ .addOperand(MI->getOperand(0))
+ // The Vectors are indexed in multiples of vector size.
+ .addImm(MI->getOperand(1).getImm()+Offset)
+ .addReg(SrcSubHi)
+ .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+ MBB.erase(MI);
+ return true;
+ }
+ case Hexagon::LDrivv_pseudo_V6_128B:
+ case Hexagon::LDrivv_indexed_128B:
+ Is128B = true;
+ case Hexagon::LDrivv_pseudo_V6:
+ case Hexagon::LDrivv_indexed: {
+ unsigned NewOpcd = Is128B ? Hexagon::V6_vL32b_ai_128B
+ : Hexagon::V6_vL32b_ai;
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned Offset = Is128B ? VecOffset << 7 : VecOffset << 6;
+ MachineInstr *MI1New =
+ BuildMI(MBB, MI, DL, get(NewOpcd),
+ HRI.getSubReg(DstReg, Hexagon::subreg_loreg))
+ .addOperand(MI->getOperand(1))
+ .addImm(MI->getOperand(2).getImm());
+ MI1New->getOperand(1).setIsKill(false);
+ BuildMI(MBB, MI, DL, get(NewOpcd),
+ HRI.getSubReg(DstReg, Hexagon::subreg_hireg))
+ .addOperand(MI->getOperand(1))
+ // The Vectors are indexed in multiples of vector size.
+ .addImm(MI->getOperand(2).getImm() + Offset)
+ .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+ MBB.erase(MI);
+ return true;
+ }
+ case Hexagon::LDriv_pseudo_V6_128B:
+ Is128B = true;
+ case Hexagon::LDriv_pseudo_V6: {
+ unsigned DstReg = MI->getOperand(0).getReg();
+ unsigned NewOpc = Is128B ? Hexagon::V6_vL32b_ai_128B
+ : Hexagon::V6_vL32b_ai;
+ int32_t Off = MI->getOperand(2).getImm();
+ int32_t Idx = Off;
+ BuildMI(MBB, MI, DL, get(NewOpc), DstReg)
+ .addOperand(MI->getOperand(1))
+ .addImm(Idx)
+ .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+ MBB.erase(MI);
+ return true;
+ }
+ case Hexagon::STriv_pseudo_V6_128B:
+ Is128B = true;
+ case Hexagon::STriv_pseudo_V6: {
+ unsigned NewOpc = Is128B ? Hexagon::V6_vS32b_ai_128B
+ : Hexagon::V6_vS32b_ai;
+ int32_t Off = MI->getOperand(1).getImm();
+ int32_t Idx = Is128B ? (Off >> 7) : (Off >> 6);
+ BuildMI(MBB, MI, DL, get(NewOpc))
+ .addOperand(MI->getOperand(0))
+ .addImm(Idx)
+ .addOperand(MI->getOperand(2))
+ .setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
+ MBB.erase(MI);
+ return true;
+ }
case Hexagon::TFR_PdTrue: {
unsigned Reg = MI->getOperand(0).getReg();
BuildMI(MBB, MI, DL, get(Hexagon::C2_orn), Reg)
@@ -724,15 +908,15 @@ HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
unsigned DstReg = MI->getOperand(0).getReg();
unsigned Src1Reg = MI->getOperand(1).getReg();
unsigned Src2Reg = MI->getOperand(2).getReg();
- unsigned Src1SubHi = TRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
- unsigned Src1SubLo = TRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
- unsigned Src2SubHi = TRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
- unsigned Src2SubLo = TRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
+ unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
+ unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
+ unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
+ unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
- TRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
+ HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
.addReg(Src2SubHi);
BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_mpyi),
- TRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
+ HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
.addReg(Src2SubLo);
MBB.erase(MI);
MRI.clearKillFlags(Src1SubHi);
@@ -747,17 +931,17 @@ HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
unsigned Src1Reg = MI->getOperand(1).getReg();
unsigned Src2Reg = MI->getOperand(2).getReg();
unsigned Src3Reg = MI->getOperand(3).getReg();
- unsigned Src1SubHi = TRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
- unsigned Src1SubLo = TRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
- unsigned Src2SubHi = TRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
- unsigned Src2SubLo = TRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
- unsigned Src3SubHi = TRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
- unsigned Src3SubLo = TRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
+ unsigned Src1SubHi = HRI.getSubReg(Src1Reg, Hexagon::subreg_hireg);
+ unsigned Src1SubLo = HRI.getSubReg(Src1Reg, Hexagon::subreg_loreg);
+ unsigned Src2SubHi = HRI.getSubReg(Src2Reg, Hexagon::subreg_hireg);
+ unsigned Src2SubLo = HRI.getSubReg(Src2Reg, Hexagon::subreg_loreg);
+ unsigned Src3SubHi = HRI.getSubReg(Src3Reg, Hexagon::subreg_hireg);
+ unsigned Src3SubLo = HRI.getSubReg(Src3Reg, Hexagon::subreg_loreg);
BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
- TRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
+ HRI.getSubReg(DstReg, Hexagon::subreg_hireg)).addReg(Src1SubHi)
.addReg(Src2SubHi).addReg(Src3SubHi);
BuildMI(MBB, MI, MI->getDebugLoc(), get(Hexagon::M2_maci),
- TRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
+ HRI.getSubReg(DstReg, Hexagon::subreg_loreg)).addReg(Src1SubLo)
.addReg(Src2SubLo).addReg(Src3SubLo);
MBB.erase(MI);
MRI.clearKillFlags(Src1SubHi);
@@ -768,104 +952,168 @@ HexagonInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
MRI.clearKillFlags(Src3SubLo);
return true;
}
+ case Hexagon::MUX64_rr: {
+ const MachineOperand &Op0 = MI->getOperand(0);
+ const MachineOperand &Op1 = MI->getOperand(1);
+ const MachineOperand &Op2 = MI->getOperand(2);
+ const MachineOperand &Op3 = MI->getOperand(3);
+ unsigned Rd = Op0.getReg();
+ unsigned Pu = Op1.getReg();
+ unsigned Rs = Op2.getReg();
+ unsigned Rt = Op3.getReg();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned K1 = getKillRegState(Op1.isKill());
+ unsigned K2 = getKillRegState(Op2.isKill());
+ unsigned K3 = getKillRegState(Op3.isKill());
+ if (Rd != Rs)
+ BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpt), Rd)
+ .addReg(Pu, (Rd == Rt) ? K1 : 0)
+ .addReg(Rs, K2);
+ if (Rd != Rt)
+ BuildMI(MBB, MI, DL, get(Hexagon::A2_tfrpf), Rd)
+ .addReg(Pu, K1)
+ .addReg(Rt, K3);
+ MBB.erase(MI);
+ return true;
+ }
case Hexagon::TCRETURNi:
MI->setDesc(get(Hexagon::J2_jump));
return true;
case Hexagon::TCRETURNr:
MI->setDesc(get(Hexagon::J2_jumpr));
return true;
+ case Hexagon::TFRI_f:
+ case Hexagon::TFRI_cPt_f:
+ case Hexagon::TFRI_cNotPt_f: {
+ unsigned Opx = (Opc == Hexagon::TFRI_f) ? 1 : 2;
+ APFloat FVal = MI->getOperand(Opx).getFPImm()->getValueAPF();
+ APInt IVal = FVal.bitcastToAPInt();
+ MI->RemoveOperand(Opx);
+ unsigned NewOpc = (Opc == Hexagon::TFRI_f) ? Hexagon::A2_tfrsi :
+ (Opc == Hexagon::TFRI_cPt_f) ? Hexagon::C2_cmoveit :
+ Hexagon::C2_cmoveif;
+ MI->setDesc(get(NewOpc));
+ MI->addOperand(MachineOperand::CreateImm(IVal.getZExtValue()));
+ return true;
+ }
}
return false;
}
-MachineInstr *HexagonInstrInfo::foldMemoryOperandImpl(
- MachineFunction &MF, MachineInstr *MI, ArrayRef<unsigned> Ops,
- MachineBasicBlock::iterator InsertPt, int FI) const {
- // Hexagon_TODO: Implement.
- return nullptr;
+
+// We indicate that we want to reverse the branch by
+// inserting the reversed branching opcode.
+bool HexagonInstrInfo::ReverseBranchCondition(
+ SmallVectorImpl<MachineOperand> &Cond) const {
+ if (Cond.empty())
+ return true;
+ assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
+ unsigned opcode = Cond[0].getImm();
+ //unsigned temp;
+ assert(get(opcode).isBranch() && "Should be a branching condition.");
+ if (isEndLoopN(opcode))
+ return true;
+ unsigned NewOpcode = getInvertedPredicatedOpcode(opcode);
+ Cond[0].setImm(NewOpcode);
+ return false;
}
-unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
- MachineRegisterInfo &RegInfo = MF->getRegInfo();
- const TargetRegisterClass *TRC;
- if (VT == MVT::i1) {
- TRC = &Hexagon::PredRegsRegClass;
- } else if (VT == MVT::i32 || VT == MVT::f32) {
- TRC = &Hexagon::IntRegsRegClass;
- } else if (VT == MVT::i64 || VT == MVT::f64) {
- TRC = &Hexagon::DoubleRegsRegClass;
- } else {
- llvm_unreachable("Cannot handle this register class");
- }
+void HexagonInstrInfo::insertNoop(MachineBasicBlock &MBB,
+ MachineBasicBlock::iterator MI) const {
+ DebugLoc DL;
+ BuildMI(MBB, MI, DL, get(Hexagon::A2_nop));
+}
- unsigned NewReg = RegInfo.createVirtualRegister(TRC);
- return NewReg;
+
+// Returns true if an instruction is predicated irrespective of the predicate
+// sense. For example, all of the following will return true.
+// if (p0) R1 = add(R2, R3)
+// if (!p0) R1 = add(R2, R3)
+// if (p0.new) R1 = add(R2, R3)
+// if (!p0.new) R1 = add(R2, R3)
+// Note: New-value stores are not included here as in the current
+// implementation, we don't need to check their predicate sense.
+bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
}
-bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
- const MCInstrDesc &MID = MI->getDesc();
- const uint64_t F = MID.TSFlags;
- if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
- return true;
- // TODO: This is largely obsolete now. Will need to be removed
- // in consecutive patches.
- switch(MI->getOpcode()) {
- // TFR_FI Remains a special case.
- case Hexagon::TFR_FI:
- return true;
- default:
- return false;
+bool HexagonInstrInfo::PredicateInstruction(MachineInstr *MI,
+ ArrayRef<MachineOperand> Cond) const {
+ if (Cond.empty() || isNewValueJump(Cond[0].getImm()) ||
+ isEndLoopN(Cond[0].getImm())) {
+ DEBUG(dbgs() << "\nCannot predicate:"; MI->dump(););
+ return false;
}
- return false;
-}
+ int Opc = MI->getOpcode();
+ assert (isPredicable(MI) && "Expected predicable instruction");
+ bool invertJump = predOpcodeHasNot(Cond);
-// This returns true in two cases:
-// - The OP code itself indicates that this is an extended instruction.
-// - One of MOs has been marked with HMOTF_ConstExtended flag.
-bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
- // First check if this is permanently extended op code.
- const uint64_t F = MI->getDesc().TSFlags;
- if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
- return true;
- // Use MO operand flags to determine if one of MI's operands
- // has HMOTF_ConstExtended flag set.
- for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
- E = MI->operands_end(); I != E; ++I) {
- if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
- return true;
+ // We have to predicate MI "in place", i.e. after this function returns,
+ // MI will need to be transformed into a predicated form. To avoid com-
+ // plicated manipulations with the operands (handling tied operands,
+ // etc.), build a new temporary instruction, then overwrite MI with it.
+
+ MachineBasicBlock &B = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned PredOpc = getCondOpcode(Opc, invertJump);
+ MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
+ unsigned NOp = 0, NumOps = MI->getNumOperands();
+ while (NOp < NumOps) {
+ MachineOperand &Op = MI->getOperand(NOp);
+ if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
+ break;
+ T.addOperand(Op);
+ NOp++;
}
- return false;
-}
-bool HexagonInstrInfo::isBranch (const MachineInstr *MI) const {
- return MI->getDesc().isBranch();
-}
+ unsigned PredReg, PredRegPos, PredRegFlags;
+ bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
+ (void)GotPredReg;
+ assert(GotPredReg);
+ T.addReg(PredReg, PredRegFlags);
+ while (NOp < NumOps)
+ T.addOperand(MI->getOperand(NOp++));
-bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
- if (isNewValueJump(MI))
- return true;
+ MI->setDesc(get(PredOpc));
+ while (unsigned n = MI->getNumOperands())
+ MI->RemoveOperand(n-1);
+ for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
+ MI->addOperand(T->getOperand(i));
- if (isNewValueStore(MI))
- return true;
+ MachineBasicBlock::instr_iterator TI = T->getIterator();
+ B.erase(TI);
- return false;
+ MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
+ MRI.clearKillFlags(PredReg);
+ return true;
}
-bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
- const uint64_t F = MI->getDesc().TSFlags;
- return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
-}
-bool HexagonInstrInfo::isNewValue(Opcode_t Opcode) const {
- const uint64_t F = get(Opcode).TSFlags;
- return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
+bool HexagonInstrInfo::SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
+ ArrayRef<MachineOperand> Pred2) const {
+ // TODO: Fix this
+ return false;
}
-bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
- return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
+
+bool HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
+ std::vector<MachineOperand> &Pred) const {
+ auto &HRI = getRegisterInfo();
+ for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
+ MachineOperand MO = MI->getOperand(oper);
+ if (MO.isReg() && MO.isDef()) {
+ const TargetRegisterClass* RC = HRI.getMinimalPhysRegClass(MO.getReg());
+ if (RC == &Hexagon::PredRegsRegClass) {
+ Pred.push_back(MO);
+ return true;
+ }
+ }
+ }
+ return false;
}
bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
@@ -875,10 +1123,21 @@ bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
return false;
const int Opc = MI->getOpcode();
+ int NumOperands = MI->getNumOperands();
+
+ // Keep a flag for upto 4 operands in the instructions, to indicate if
+ // that operand has been constant extended.
+ bool OpCExtended[4];
+ if (NumOperands > 4)
+ NumOperands = 4;
+
+ for (int i = 0; i < NumOperands; i++)
+ OpCExtended[i] = (isOperandExtended(MI, i) && isConstExtended(MI));
switch(Opc) {
case Hexagon::A2_tfrsi:
- return (isOperandExtended(MI, 1) && isConstExtended(MI)) || isInt<12>(MI->getOperand(1).getImm());
+ return (isOperandExtended(MI, 1) && isConstExtended(MI)) ||
+ isInt<12>(MI->getOperand(1).getImm());
case Hexagon::S2_storerd_io:
return isShiftedUInt<6,3>(MI->getOperand(1).getImm());
@@ -926,8 +1185,8 @@ bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
case Hexagon::S4_storeirb_io:
case Hexagon::S4_storeirh_io:
case Hexagon::S4_storeiri_io:
- return (isUInt<6>(MI->getOperand(1).getImm()) &&
- isInt<6>(MI->getOperand(2).getImm()));
+ return (OpCExtended[1] || isUInt<6>(MI->getOperand(1).getImm())) &&
+ (OpCExtended[2] || isInt<6>(MI->getOperand(2).getImm()));
case Hexagon::A2_addi:
return isInt<8>(MI->getOperand(2).getImm());
@@ -944,269 +1203,1117 @@ bool HexagonInstrInfo::isPredicable(MachineInstr *MI) const {
return true;
}
-// This function performs the following inversiones:
-//
-// cPt ---> cNotPt
-// cNotPt ---> cPt
-//
-unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
- int InvPredOpcode;
- InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
- : Hexagon::getTruePredOpcode(Opc);
- if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
- return InvPredOpcode;
- switch(Opc) {
- default: llvm_unreachable("Unexpected predicated instruction");
- case Hexagon::C2_ccombinewt:
- return Hexagon::C2_ccombinewf;
+bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
+ const MachineBasicBlock *MBB, const MachineFunction &MF) const {
+ // Debug info is never a scheduling boundary. It's necessary to be explicit
+ // due to the special treatment of IT instructions below, otherwise a
+ // dbg_value followed by an IT will result in the IT instruction being
+ // considered a scheduling hazard, which is wrong. It should be the actual
+ // instruction preceding the dbg_value instruction(s), just like it is
+ // when debug info is not present.
+ if (MI->isDebugValue())
+ return false;
+
+ // Throwing call is a boundary.
+ if (MI->isCall()) {
+ // If any of the block's successors is a landing pad, this could be a
+ // throwing call.
+ for (auto I : MBB->successors())
+ if (I->isEHPad())
+ return true;
+ }
+
+ // Don't mess around with no return calls.
+ if (MI->getOpcode() == Hexagon::CALLv3nr)
+ return true;
+
+ // Terminators and labels can't be scheduled around.
+ if (MI->getDesc().isTerminator() || MI->isPosition())
+ return true;
+
+ if (MI->isInlineAsm() && !ScheduleInlineAsm)
+ return true;
+
+ return false;
+}
+
+
+/// Measure the specified inline asm to determine an approximation of its
+/// length.
+/// Comments (which run till the next SeparatorString or newline) do not
+/// count as an instruction.
+/// Any other non-whitespace text is considered an instruction, with
+/// multiple instructions separated by SeparatorString or newlines.
+/// Variable-length instructions are not handled here; this function
+/// may be overloaded in the target code to do that.
+/// Hexagon counts the number of ##'s and adjust for that many
+/// constant exenders.
+unsigned HexagonInstrInfo::getInlineAsmLength(const char *Str,
+ const MCAsmInfo &MAI) const {
+ StringRef AStr(Str);
+ // Count the number of instructions in the asm.
+ bool atInsnStart = true;
+ unsigned Length = 0;
+ for (; *Str; ++Str) {
+ if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
+ strlen(MAI.getSeparatorString())) == 0)
+ atInsnStart = true;
+ if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
+ Length += MAI.getMaxInstLength();
+ atInsnStart = false;
+ }
+ if (atInsnStart && strncmp(Str, MAI.getCommentString(),
+ strlen(MAI.getCommentString())) == 0)
+ atInsnStart = false;
+ }
+
+ // Add to size number of constant extenders seen * 4.
+ StringRef Occ("##");
+ Length += AStr.count(Occ)*4;
+ return Length;
+}
+
+
+ScheduleHazardRecognizer*
+HexagonInstrInfo::CreateTargetPostRAHazardRecognizer(
+ const InstrItineraryData *II, const ScheduleDAG *DAG) const {
+ return TargetInstrInfo::CreateTargetPostRAHazardRecognizer(II, DAG);
+}
+
+
+/// \brief For a comparison instruction, return the source registers in
+/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
+/// compares against in CmpValue. Return true if the comparison instruction
+/// can be analyzed.
+bool HexagonInstrInfo::analyzeCompare(const MachineInstr *MI,
+ unsigned &SrcReg, unsigned &SrcReg2, int &Mask, int &Value) const {
+ unsigned Opc = MI->getOpcode();
+
+ // Set mask and the first source register.
+ switch (Opc) {
+ case Hexagon::C2_cmpeq:
+ case Hexagon::C2_cmpeqp:
+ case Hexagon::C2_cmpgt:
+ case Hexagon::C2_cmpgtp:
+ case Hexagon::C2_cmpgtu:
+ case Hexagon::C2_cmpgtup:
+ case Hexagon::C4_cmpneq:
+ case Hexagon::C4_cmplte:
+ case Hexagon::C4_cmplteu:
+ case Hexagon::C2_cmpeqi:
+ case Hexagon::C2_cmpgti:
+ case Hexagon::C2_cmpgtui:
+ case Hexagon::C4_cmpneqi:
+ case Hexagon::C4_cmplteui:
+ case Hexagon::C4_cmpltei:
+ SrcReg = MI->getOperand(1).getReg();
+ Mask = ~0;
+ break;
+ case Hexagon::A4_cmpbeq:
+ case Hexagon::A4_cmpbgt:
+ case Hexagon::A4_cmpbgtu:
+ case Hexagon::A4_cmpbeqi:
+ case Hexagon::A4_cmpbgti:
+ case Hexagon::A4_cmpbgtui:
+ SrcReg = MI->getOperand(1).getReg();
+ Mask = 0xFF;
+ break;
+ case Hexagon::A4_cmpheq:
+ case Hexagon::A4_cmphgt:
+ case Hexagon::A4_cmphgtu:
+ case Hexagon::A4_cmpheqi:
+ case Hexagon::A4_cmphgti:
+ case Hexagon::A4_cmphgtui:
+ SrcReg = MI->getOperand(1).getReg();
+ Mask = 0xFFFF;
+ break;
+ }
+
+ // Set the value/second source register.
+ switch (Opc) {
+ case Hexagon::C2_cmpeq:
+ case Hexagon::C2_cmpeqp:
+ case Hexagon::C2_cmpgt:
+ case Hexagon::C2_cmpgtp:
+ case Hexagon::C2_cmpgtu:
+ case Hexagon::C2_cmpgtup:
+ case Hexagon::A4_cmpbeq:
+ case Hexagon::A4_cmpbgt:
+ case Hexagon::A4_cmpbgtu:
+ case Hexagon::A4_cmpheq:
+ case Hexagon::A4_cmphgt:
+ case Hexagon::A4_cmphgtu:
+ case Hexagon::C4_cmpneq:
+ case Hexagon::C4_cmplte:
+ case Hexagon::C4_cmplteu:
+ SrcReg2 = MI->getOperand(2).getReg();
+ return true;
+
+ case Hexagon::C2_cmpeqi:
+ case Hexagon::C2_cmpgtui:
+ case Hexagon::C2_cmpgti:
+ case Hexagon::C4_cmpneqi:
+ case Hexagon::C4_cmplteui:
+ case Hexagon::C4_cmpltei:
+ case Hexagon::A4_cmpbeqi:
+ case Hexagon::A4_cmpbgti:
+ case Hexagon::A4_cmpbgtui:
+ case Hexagon::A4_cmpheqi:
+ case Hexagon::A4_cmphgti:
+ case Hexagon::A4_cmphgtui:
+ SrcReg2 = 0;
+ Value = MI->getOperand(2).getImm();
+ return true;
+ }
+
+ return false;
+}
+
+
+unsigned HexagonInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
+ const MachineInstr *MI, unsigned *PredCost) const {
+ return getInstrTimingClassLatency(ItinData, MI);
+}
+
+
+DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
+ const TargetSubtargetInfo &STI) const {
+ const InstrItineraryData *II = STI.getInstrItineraryData();
+ return static_cast<const HexagonSubtarget&>(STI).createDFAPacketizer(II);
+}
+
+
+// Inspired by this pair:
+// %R13<def> = L2_loadri_io %R29, 136; mem:LD4[FixedStack0]
+// S2_storeri_io %R29, 132, %R1<kill>; flags: mem:ST4[FixedStack1]
+// Currently AA considers the addresses in these instructions to be aliasing.
+bool HexagonInstrInfo::areMemAccessesTriviallyDisjoint(MachineInstr *MIa,
+ MachineInstr *MIb, AliasAnalysis *AA) const {
+ int OffsetA = 0, OffsetB = 0;
+ unsigned SizeA = 0, SizeB = 0;
+
+ if (MIa->hasUnmodeledSideEffects() || MIb->hasUnmodeledSideEffects() ||
+ MIa->hasOrderedMemoryRef() || MIa->hasOrderedMemoryRef())
+ return false;
+
+ // Instructions that are pure loads, not loads and stores like memops are not
+ // dependent.
+ if (MIa->mayLoad() && !isMemOp(MIa) && MIb->mayLoad() && !isMemOp(MIb))
+ return true;
+
+ // Get base, offset, and access size in MIa.
+ unsigned BaseRegA = getBaseAndOffset(MIa, OffsetA, SizeA);
+ if (!BaseRegA || !SizeA)
+ return false;
+
+ // Get base, offset, and access size in MIb.
+ unsigned BaseRegB = getBaseAndOffset(MIb, OffsetB, SizeB);
+ if (!BaseRegB || !SizeB)
+ return false;
+
+ if (BaseRegA != BaseRegB)
+ return false;
+
+ // This is a mem access with the same base register and known offsets from it.
+ // Reason about it.
+ if (OffsetA > OffsetB) {
+ uint64_t offDiff = (uint64_t)((int64_t)OffsetA - (int64_t)OffsetB);
+ return (SizeB <= offDiff);
+ } else if (OffsetA < OffsetB) {
+ uint64_t offDiff = (uint64_t)((int64_t)OffsetB - (int64_t)OffsetA);
+ return (SizeA <= offDiff);
+ }
+
+ return false;
+}
+
+
+unsigned HexagonInstrInfo::createVR(MachineFunction* MF, MVT VT) const {
+ MachineRegisterInfo &MRI = MF->getRegInfo();
+ const TargetRegisterClass *TRC;
+ if (VT == MVT::i1) {
+ TRC = &Hexagon::PredRegsRegClass;
+ } else if (VT == MVT::i32 || VT == MVT::f32) {
+ TRC = &Hexagon::IntRegsRegClass;
+ } else if (VT == MVT::i64 || VT == MVT::f64) {
+ TRC = &Hexagon::DoubleRegsRegClass;
+ } else {
+ llvm_unreachable("Cannot handle this register class");
+ }
+
+ unsigned NewReg = MRI.createVirtualRegister(TRC);
+ return NewReg;
+}
+
+
+bool HexagonInstrInfo::isAbsoluteSet(const MachineInstr* MI) const {
+ return (getAddrMode(MI) == HexagonII::AbsoluteSet);
+}
+
+
+bool HexagonInstrInfo::isAccumulator(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return((F >> HexagonII::AccumulatorPos) & HexagonII::AccumulatorMask);
+}
+
+
+bool HexagonInstrInfo::isComplex(const MachineInstr *MI) const {
+ const MachineFunction *MF = MI->getParent()->getParent();
+ const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
+ const HexagonInstrInfo *QII = (const HexagonInstrInfo *) TII;
+
+ if (!(isTC1(MI))
+ && !(QII->isTC2Early(MI))
+ && !(MI->getDesc().mayLoad())
+ && !(MI->getDesc().mayStore())
+ && (MI->getDesc().getOpcode() != Hexagon::S2_allocframe)
+ && (MI->getDesc().getOpcode() != Hexagon::L2_deallocframe)
+ && !(QII->isMemOp(MI))
+ && !(MI->isBranch())
+ && !(MI->isReturn())
+ && !MI->isCall())
+ return true;
+
+ return false;
+}
+
+
+// Return true if the instruction is a compund branch instruction.
+bool HexagonInstrInfo::isCompoundBranchInstr(const MachineInstr *MI) const {
+ return (getType(MI) == HexagonII::TypeCOMPOUND && MI->isBranch());
+}
+
+
+bool HexagonInstrInfo::isCondInst(const MachineInstr *MI) const {
+ return (MI->isBranch() && isPredicated(MI)) ||
+ isConditionalTransfer(MI) ||
+ isConditionalALU32(MI) ||
+ isConditionalLoad(MI) ||
+ // Predicated stores which don't have a .new on any operands.
+ (MI->mayStore() && isPredicated(MI) && !isNewValueStore(MI) &&
+ !isPredicatedNew(MI));
+}
+
+
+bool HexagonInstrInfo::isConditionalALU32(const MachineInstr* MI) const {
+ switch (MI->getOpcode()) {
+ case Hexagon::A2_paddf:
+ case Hexagon::A2_paddfnew:
+ case Hexagon::A2_paddif:
+ case Hexagon::A2_paddifnew:
+ case Hexagon::A2_paddit:
+ case Hexagon::A2_padditnew:
+ case Hexagon::A2_paddt:
+ case Hexagon::A2_paddtnew:
+ case Hexagon::A2_pandf:
+ case Hexagon::A2_pandfnew:
+ case Hexagon::A2_pandt:
+ case Hexagon::A2_pandtnew:
+ case Hexagon::A2_porf:
+ case Hexagon::A2_porfnew:
+ case Hexagon::A2_port:
+ case Hexagon::A2_portnew:
+ case Hexagon::A2_psubf:
+ case Hexagon::A2_psubfnew:
+ case Hexagon::A2_psubt:
+ case Hexagon::A2_psubtnew:
+ case Hexagon::A2_pxorf:
+ case Hexagon::A2_pxorfnew:
+ case Hexagon::A2_pxort:
+ case Hexagon::A2_pxortnew:
+ case Hexagon::A4_paslhf:
+ case Hexagon::A4_paslhfnew:
+ case Hexagon::A4_paslht:
+ case Hexagon::A4_paslhtnew:
+ case Hexagon::A4_pasrhf:
+ case Hexagon::A4_pasrhfnew:
+ case Hexagon::A4_pasrht:
+ case Hexagon::A4_pasrhtnew:
+ case Hexagon::A4_psxtbf:
+ case Hexagon::A4_psxtbfnew:
+ case Hexagon::A4_psxtbt:
+ case Hexagon::A4_psxtbtnew:
+ case Hexagon::A4_psxthf:
+ case Hexagon::A4_psxthfnew:
+ case Hexagon::A4_psxtht:
+ case Hexagon::A4_psxthtnew:
+ case Hexagon::A4_pzxtbf:
+ case Hexagon::A4_pzxtbfnew:
+ case Hexagon::A4_pzxtbt:
+ case Hexagon::A4_pzxtbtnew:
+ case Hexagon::A4_pzxthf:
+ case Hexagon::A4_pzxthfnew:
+ case Hexagon::A4_pzxtht:
+ case Hexagon::A4_pzxthtnew:
case Hexagon::C2_ccombinewf:
- return Hexagon::C2_ccombinewt;
+ case Hexagon::C2_ccombinewt:
+ return true;
+ }
+ return false;
+}
+
+
+// FIXME - Function name and it's functionality don't match.
+// It should be renamed to hasPredNewOpcode()
+bool HexagonInstrInfo::isConditionalLoad(const MachineInstr* MI) const {
+ if (!MI->getDesc().mayLoad() || !isPredicated(MI))
+ return false;
+
+ int PNewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
+ // Instruction with valid predicated-new opcode can be promoted to .new.
+ return PNewOpcode >= 0;
+}
+
- // Dealloc_return.
- case Hexagon::L4_return_t:
- return Hexagon::L4_return_f;
- case Hexagon::L4_return_f:
- return Hexagon::L4_return_t;
+// Returns true if an instruction is a conditional store.
+//
+// Note: It doesn't include conditional new-value stores as they can't be
+// converted to .new predicate.
+bool HexagonInstrInfo::isConditionalStore(const MachineInstr* MI) const {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case Hexagon::S4_storeirbt_io:
+ case Hexagon::S4_storeirbf_io:
+ case Hexagon::S4_pstorerbt_rr:
+ case Hexagon::S4_pstorerbf_rr:
+ case Hexagon::S2_pstorerbt_io:
+ case Hexagon::S2_pstorerbf_io:
+ case Hexagon::S2_pstorerbt_pi:
+ case Hexagon::S2_pstorerbf_pi:
+ case Hexagon::S2_pstorerdt_io:
+ case Hexagon::S2_pstorerdf_io:
+ case Hexagon::S4_pstorerdt_rr:
+ case Hexagon::S4_pstorerdf_rr:
+ case Hexagon::S2_pstorerdt_pi:
+ case Hexagon::S2_pstorerdf_pi:
+ case Hexagon::S2_pstorerht_io:
+ case Hexagon::S2_pstorerhf_io:
+ case Hexagon::S4_storeirht_io:
+ case Hexagon::S4_storeirhf_io:
+ case Hexagon::S4_pstorerht_rr:
+ case Hexagon::S4_pstorerhf_rr:
+ case Hexagon::S2_pstorerht_pi:
+ case Hexagon::S2_pstorerhf_pi:
+ case Hexagon::S2_pstorerit_io:
+ case Hexagon::S2_pstorerif_io:
+ case Hexagon::S4_storeirit_io:
+ case Hexagon::S4_storeirif_io:
+ case Hexagon::S4_pstorerit_rr:
+ case Hexagon::S4_pstorerif_rr:
+ case Hexagon::S2_pstorerit_pi:
+ case Hexagon::S2_pstorerif_pi:
+
+ // V4 global address store before promoting to dot new.
+ case Hexagon::S4_pstorerdt_abs:
+ case Hexagon::S4_pstorerdf_abs:
+ case Hexagon::S4_pstorerbt_abs:
+ case Hexagon::S4_pstorerbf_abs:
+ case Hexagon::S4_pstorerht_abs:
+ case Hexagon::S4_pstorerhf_abs:
+ case Hexagon::S4_pstorerit_abs:
+ case Hexagon::S4_pstorerif_abs:
+ return true;
+
+ // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
+ // from the "Conditional Store" list. Because a predicated new value store
+ // would NOT be promoted to a double dot new store.
+ // This function returns yes for those stores that are predicated but not
+ // yet promoted to predicate dot new instructions.
}
}
-// New Value Store instructions.
-bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
+
+bool HexagonInstrInfo::isConditionalTransfer(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case Hexagon::A2_tfrt:
+ case Hexagon::A2_tfrf:
+ case Hexagon::C2_cmoveit:
+ case Hexagon::C2_cmoveif:
+ case Hexagon::A2_tfrtnew:
+ case Hexagon::A2_tfrfnew:
+ case Hexagon::C2_cmovenewit:
+ case Hexagon::C2_cmovenewif:
+ case Hexagon::A2_tfrpt:
+ case Hexagon::A2_tfrpf:
+ return true;
+
+ default:
+ return false;
+ }
+ return false;
+}
+
+
+// TODO: In order to have isExtendable for fpimm/f32Ext, we need to handle
+// isFPImm and later getFPImm as well.
+bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
+ unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
+ if (isExtended) // Instruction must be extended.
+ return true;
+
+ unsigned isExtendable =
+ (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
+ if (!isExtendable)
+ return false;
+
+ if (MI->isCall())
+ return false;
+
+ short ExtOpNum = getCExtOpNum(MI);
+ const MachineOperand &MO = MI->getOperand(ExtOpNum);
+ // Use MO operand flags to determine if MO
+ // has the HMOTF_ConstExtended flag set.
+ if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
+ return true;
+ // If this is a Machine BB address we are talking about, and it is
+ // not marked as extended, say so.
+ if (MO.isMBB())
+ return false;
+
+ // We could be using an instruction with an extendable immediate and shoehorn
+ // a global address into it. If it is a global address it will be constant
+ // extended. We do this for COMBINE.
+ // We currently only handle isGlobal() because it is the only kind of
+ // object we are going to end up with here for now.
+ // In the future we probably should add isSymbol(), etc.
+ if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
+ MO.isJTI() || MO.isCPI())
+ return true;
- return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
+ // If the extendable operand is not 'Immediate' type, the instruction should
+ // have 'isExtended' flag set.
+ assert(MO.isImm() && "Extendable operand must be Immediate type");
+
+ int MinValue = getMinValue(MI);
+ int MaxValue = getMaxValue(MI);
+ int ImmValue = MO.getImm();
+
+ return (ImmValue < MinValue || ImmValue > MaxValue);
}
-bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
+
+bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case Hexagon::L4_return :
+ case Hexagon::L4_return_t :
+ case Hexagon::L4_return_f :
+ case Hexagon::L4_return_tnew_pnt :
+ case Hexagon::L4_return_fnew_pnt :
+ case Hexagon::L4_return_tnew_pt :
+ case Hexagon::L4_return_fnew_pt :
+ return true;
+ }
+ return false;
+}
+
+
+// Return true when ConsMI uses a register defined by ProdMI.
+bool HexagonInstrInfo::isDependent(const MachineInstr *ProdMI,
+ const MachineInstr *ConsMI) const {
+ const MCInstrDesc &ProdMCID = ProdMI->getDesc();
+ if (!ProdMCID.getNumDefs())
+ return false;
+
+ auto &HRI = getRegisterInfo();
+
+ SmallVector<unsigned, 4> DefsA;
+ SmallVector<unsigned, 4> DefsB;
+ SmallVector<unsigned, 8> UsesA;
+ SmallVector<unsigned, 8> UsesB;
+
+ parseOperands(ProdMI, DefsA, UsesA);
+ parseOperands(ConsMI, DefsB, UsesB);
+
+ for (auto &RegA : DefsA)
+ for (auto &RegB : UsesB) {
+ // True data dependency.
+ if (RegA == RegB)
+ return true;
+
+ if (Hexagon::DoubleRegsRegClass.contains(RegA))
+ for (MCSubRegIterator SubRegs(RegA, &HRI); SubRegs.isValid(); ++SubRegs)
+ if (RegB == *SubRegs)
+ return true;
+
+ if (Hexagon::DoubleRegsRegClass.contains(RegB))
+ for (MCSubRegIterator SubRegs(RegB, &HRI); SubRegs.isValid(); ++SubRegs)
+ if (RegA == *SubRegs)
+ return true;
+ }
+
+ return false;
+}
+
+
+// Returns true if the instruction is alread a .cur.
+bool HexagonInstrInfo::isDotCurInst(const MachineInstr* MI) const {
+ switch (MI->getOpcode()) {
+ case Hexagon::V6_vL32b_cur_pi:
+ case Hexagon::V6_vL32b_cur_ai:
+ case Hexagon::V6_vL32b_cur_pi_128B:
+ case Hexagon::V6_vL32b_cur_ai_128B:
+ return true;
+ }
+ return false;
+}
+
+
+// Returns true, if any one of the operands is a dot new
+// insn, whether it is predicated dot new or register dot new.
+bool HexagonInstrInfo::isDotNewInst(const MachineInstr* MI) const {
+ if (isNewValueInst(MI) ||
+ (isPredicated(MI) && isPredicatedNew(MI)))
+ return true;
+
+ return false;
+}
+
+
+/// Symmetrical. See if these two instructions are fit for duplex pair.
+bool HexagonInstrInfo::isDuplexPair(const MachineInstr *MIa,
+ const MachineInstr *MIb) const {
+ HexagonII::SubInstructionGroup MIaG = getDuplexCandidateGroup(MIa);
+ HexagonII::SubInstructionGroup MIbG = getDuplexCandidateGroup(MIb);
+ return (isDuplexPairMatch(MIaG, MIbG) || isDuplexPairMatch(MIbG, MIaG));
+}
+
+
+bool HexagonInstrInfo::isEarlySourceInstr(const MachineInstr *MI) const {
+ if (!MI)
+ return false;
+
+ if (MI->mayLoad() || MI->mayStore() || MI->isCompare())
+ return true;
+
+ // Multiply
+ unsigned SchedClass = MI->getDesc().getSchedClass();
+ if (SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23)
+ return true;
+ return false;
+}
+
+
+bool HexagonInstrInfo::isEndLoopN(unsigned Opcode) const {
+ return (Opcode == Hexagon::ENDLOOP0 ||
+ Opcode == Hexagon::ENDLOOP1);
+}
+
+
+bool HexagonInstrInfo::isExpr(unsigned OpType) const {
+ switch(OpType) {
+ case MachineOperand::MO_MachineBasicBlock:
+ case MachineOperand::MO_GlobalAddress:
+ case MachineOperand::MO_ExternalSymbol:
+ case MachineOperand::MO_JumpTableIndex:
+ case MachineOperand::MO_ConstantPoolIndex:
+ case MachineOperand::MO_BlockAddress:
+ return true;
+ default:
+ return false;
+ }
+}
+
+
+bool HexagonInstrInfo::isExtendable(const MachineInstr *MI) const {
+ const MCInstrDesc &MID = MI->getDesc();
+ const uint64_t F = MID.TSFlags;
+ if ((F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask)
+ return true;
+
+ // TODO: This is largely obsolete now. Will need to be removed
+ // in consecutive patches.
+ switch(MI->getOpcode()) {
+ // TFR_FI Remains a special case.
+ case Hexagon::TFR_FI:
+ return true;
+ default:
+ return false;
+ }
+ return false;
+}
+
+
+// This returns true in two cases:
+// - The OP code itself indicates that this is an extended instruction.
+// - One of MOs has been marked with HMOTF_ConstExtended flag.
+bool HexagonInstrInfo::isExtended(const MachineInstr *MI) const {
+ // First check if this is permanently extended op code.
+ const uint64_t F = MI->getDesc().TSFlags;
+ if ((F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask)
+ return true;
+ // Use MO operand flags to determine if one of MI's operands
+ // has HMOTF_ConstExtended flag set.
+ for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
+ E = MI->operands_end(); I != E; ++I) {
+ if (I->getTargetFlags() && HexagonII::HMOTF_ConstExtended)
+ return true;
+ }
+ return false;
+}
+
+
+bool HexagonInstrInfo::isFloat(const MachineInstr *MI) const {
+ unsigned Opcode = MI->getOpcode();
const uint64_t F = get(Opcode).TSFlags;
+ return (F >> HexagonII::FPPos) & HexagonII::FPMask;
+}
- return ((F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask);
+
+// No V60 HVX VMEM with A_INDIRECT.
+bool HexagonInstrInfo::isHVXMemWithAIndirect(const MachineInstr *I,
+ const MachineInstr *J) const {
+ if (!isV60VectorInstruction(I))
+ return false;
+ if (!I->mayLoad() && !I->mayStore())
+ return false;
+ return J->isIndirectBranch() || isIndirectCall(J) || isIndirectL4Return(J);
}
-int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
- enum Hexagon::PredSense inPredSense;
- inPredSense = invertPredicate ? Hexagon::PredSense_false :
- Hexagon::PredSense_true;
- int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
- if (CondOpcode >= 0) // Valid Conditional opcode/instruction
- return CondOpcode;
- // This switch case will be removed once all the instructions have been
- // modified to use relation maps.
- switch(Opc) {
- case Hexagon::TFRI_f:
- return !invertPredicate ? Hexagon::TFRI_cPt_f :
- Hexagon::TFRI_cNotPt_f;
- case Hexagon::A2_combinew:
- return !invertPredicate ? Hexagon::C2_ccombinewt :
- Hexagon::C2_ccombinewf;
+bool HexagonInstrInfo::isIndirectCall(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case Hexagon::J2_callr :
+ case Hexagon::J2_callrf :
+ case Hexagon::J2_callrt :
+ return true;
+ }
+ return false;
+}
- // DEALLOC_RETURN.
- case Hexagon::L4_return:
- return !invertPredicate ? Hexagon::L4_return_t:
- Hexagon::L4_return_f;
+
+bool HexagonInstrInfo::isIndirectL4Return(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case Hexagon::L4_return :
+ case Hexagon::L4_return_t :
+ case Hexagon::L4_return_f :
+ case Hexagon::L4_return_fnew_pnt :
+ case Hexagon::L4_return_fnew_pt :
+ case Hexagon::L4_return_tnew_pnt :
+ case Hexagon::L4_return_tnew_pt :
+ return true;
}
- llvm_unreachable("Unexpected predicable instruction");
+ return false;
}
-bool HexagonInstrInfo::
-PredicateInstruction(MachineInstr *MI,
- ArrayRef<MachineOperand> Cond) const {
- if (Cond.empty() || isEndLoopN(Cond[0].getImm())) {
- DEBUG(dbgs() << "\nCannot predicate:"; MI->dump(););
+bool HexagonInstrInfo::isJumpR(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case Hexagon::J2_jumpr :
+ case Hexagon::J2_jumprt :
+ case Hexagon::J2_jumprf :
+ case Hexagon::J2_jumprtnewpt :
+ case Hexagon::J2_jumprfnewpt :
+ case Hexagon::J2_jumprtnew :
+ case Hexagon::J2_jumprfnew :
+ return true;
+ }
+ return false;
+}
+
+
+// Return true if a given MI can accomodate given offset.
+// Use abs estimate as oppose to the exact number.
+// TODO: This will need to be changed to use MC level
+// definition of instruction extendable field size.
+bool HexagonInstrInfo::isJumpWithinBranchRange(const MachineInstr *MI,
+ unsigned offset) const {
+ // This selection of jump instructions matches to that what
+ // AnalyzeBranch can parse, plus NVJ.
+ if (isNewValueJump(MI)) // r9:2
+ return isInt<11>(offset);
+
+ switch (MI->getOpcode()) {
+ // Still missing Jump to address condition on register value.
+ default:
return false;
+ case Hexagon::J2_jump: // bits<24> dst; // r22:2
+ case Hexagon::J2_call:
+ case Hexagon::CALLv3nr:
+ return isInt<24>(offset);
+ case Hexagon::J2_jumpt: //bits<17> dst; // r15:2
+ case Hexagon::J2_jumpf:
+ case Hexagon::J2_jumptnew:
+ case Hexagon::J2_jumptnewpt:
+ case Hexagon::J2_jumpfnew:
+ case Hexagon::J2_jumpfnewpt:
+ case Hexagon::J2_callt:
+ case Hexagon::J2_callf:
+ return isInt<17>(offset);
+ case Hexagon::J2_loop0i:
+ case Hexagon::J2_loop0iext:
+ case Hexagon::J2_loop0r:
+ case Hexagon::J2_loop0rext:
+ case Hexagon::J2_loop1i:
+ case Hexagon::J2_loop1iext:
+ case Hexagon::J2_loop1r:
+ case Hexagon::J2_loop1rext:
+ return isInt<9>(offset);
+ // TODO: Add all the compound branches here. Can we do this in Relation model?
+ case Hexagon::J4_cmpeqi_tp0_jump_nt:
+ case Hexagon::J4_cmpeqi_tp1_jump_nt:
+ return isInt<11>(offset);
}
- int Opc = MI->getOpcode();
- assert (isPredicable(MI) && "Expected predicable instruction");
- bool invertJump = predOpcodeHasNot(Cond);
+}
- // We have to predicate MI "in place", i.e. after this function returns,
- // MI will need to be transformed into a predicated form. To avoid com-
- // plicated manipulations with the operands (handling tied operands,
- // etc.), build a new temporary instruction, then overwrite MI with it.
- MachineBasicBlock &B = *MI->getParent();
- DebugLoc DL = MI->getDebugLoc();
- unsigned PredOpc = getCondOpcode(Opc, invertJump);
- MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
- unsigned NOp = 0, NumOps = MI->getNumOperands();
- while (NOp < NumOps) {
- MachineOperand &Op = MI->getOperand(NOp);
- if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
- break;
- T.addOperand(Op);
- NOp++;
+bool HexagonInstrInfo::isLateInstrFeedsEarlyInstr(const MachineInstr *LRMI,
+ const MachineInstr *ESMI) const {
+ if (!LRMI || !ESMI)
+ return false;
+
+ bool isLate = isLateResultInstr(LRMI);
+ bool isEarly = isEarlySourceInstr(ESMI);
+
+ DEBUG(dbgs() << "V60" << (isLate ? "-LR " : " -- "));
+ DEBUG(LRMI->dump());
+ DEBUG(dbgs() << "V60" << (isEarly ? "-ES " : " -- "));
+ DEBUG(ESMI->dump());
+
+ if (isLate && isEarly) {
+ DEBUG(dbgs() << "++Is Late Result feeding Early Source\n");
+ return true;
}
- unsigned PredReg, PredRegPos, PredRegFlags;
- bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
- (void)GotPredReg;
- assert(GotPredReg);
- T.addReg(PredReg, PredRegFlags);
- while (NOp < NumOps)
- T.addOperand(MI->getOperand(NOp++));
+ return false;
+}
- MI->setDesc(get(PredOpc));
- while (unsigned n = MI->getNumOperands())
- MI->RemoveOperand(n-1);
- for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
- MI->addOperand(T->getOperand(i));
- MachineBasicBlock::instr_iterator TI = &*T;
- B.erase(TI);
+bool HexagonInstrInfo::isLateResultInstr(const MachineInstr *MI) const {
+ if (!MI)
+ return false;
- MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
- MRI.clearKillFlags(PredReg);
+ switch (MI->getOpcode()) {
+ case TargetOpcode::EXTRACT_SUBREG:
+ case TargetOpcode::INSERT_SUBREG:
+ case TargetOpcode::SUBREG_TO_REG:
+ case TargetOpcode::REG_SEQUENCE:
+ case TargetOpcode::IMPLICIT_DEF:
+ case TargetOpcode::COPY:
+ case TargetOpcode::INLINEASM:
+ case TargetOpcode::PHI:
+ return false;
+ default:
+ break;
+ }
+ unsigned SchedClass = MI->getDesc().getSchedClass();
+
+ switch (SchedClass) {
+ case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
+ case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
+ case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
+ case Hexagon::Sched::ALU64_tc_1_SLOT23:
+ case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
+ case Hexagon::Sched::S_2op_tc_1_SLOT23:
+ case Hexagon::Sched::S_3op_tc_1_SLOT23:
+ case Hexagon::Sched::V2LDST_tc_ld_SLOT01:
+ case Hexagon::Sched::V2LDST_tc_st_SLOT0:
+ case Hexagon::Sched::V2LDST_tc_st_SLOT01:
+ case Hexagon::Sched::V4LDST_tc_ld_SLOT01:
+ case Hexagon::Sched::V4LDST_tc_st_SLOT0:
+ case Hexagon::Sched::V4LDST_tc_st_SLOT01:
+ return false;
+ }
return true;
}
-bool
-HexagonInstrInfo::
-isProfitableToIfCvt(MachineBasicBlock &MBB,
- unsigned NumCycles,
- unsigned ExtraPredCycles,
- const BranchProbability &Probability) const {
- return true;
+bool HexagonInstrInfo::isLateSourceInstr(const MachineInstr *MI) const {
+ if (!MI)
+ return false;
+
+ // Instructions with iclass A_CVI_VX and attribute A_CVI_LATE uses a multiply
+ // resource, but all operands can be received late like an ALU instruction.
+ return MI->getDesc().getSchedClass() == Hexagon::Sched::CVI_VX_LATE;
}
-bool
-HexagonInstrInfo::
-isProfitableToIfCvt(MachineBasicBlock &TMBB,
- unsigned NumTCycles,
- unsigned ExtraTCycles,
- MachineBasicBlock &FMBB,
- unsigned NumFCycles,
- unsigned ExtraFCycles,
- const BranchProbability &Probability) const {
- return true;
+bool HexagonInstrInfo::isLoopN(const MachineInstr *MI) const {
+ unsigned Opcode = MI->getOpcode();
+ return Opcode == Hexagon::J2_loop0i ||
+ Opcode == Hexagon::J2_loop0r ||
+ Opcode == Hexagon::J2_loop0iext ||
+ Opcode == Hexagon::J2_loop0rext ||
+ Opcode == Hexagon::J2_loop1i ||
+ Opcode == Hexagon::J2_loop1r ||
+ Opcode == Hexagon::J2_loop1iext ||
+ Opcode == Hexagon::J2_loop1rext;
+}
+
+
+bool HexagonInstrInfo::isMemOp(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ default: return false;
+ case Hexagon::L4_iadd_memopw_io :
+ case Hexagon::L4_isub_memopw_io :
+ case Hexagon::L4_add_memopw_io :
+ case Hexagon::L4_sub_memopw_io :
+ case Hexagon::L4_and_memopw_io :
+ case Hexagon::L4_or_memopw_io :
+ case Hexagon::L4_iadd_memoph_io :
+ case Hexagon::L4_isub_memoph_io :
+ case Hexagon::L4_add_memoph_io :
+ case Hexagon::L4_sub_memoph_io :
+ case Hexagon::L4_and_memoph_io :
+ case Hexagon::L4_or_memoph_io :
+ case Hexagon::L4_iadd_memopb_io :
+ case Hexagon::L4_isub_memopb_io :
+ case Hexagon::L4_add_memopb_io :
+ case Hexagon::L4_sub_memopb_io :
+ case Hexagon::L4_and_memopb_io :
+ case Hexagon::L4_or_memopb_io :
+ case Hexagon::L4_ior_memopb_io:
+ case Hexagon::L4_ior_memoph_io:
+ case Hexagon::L4_ior_memopw_io:
+ case Hexagon::L4_iand_memopb_io:
+ case Hexagon::L4_iand_memoph_io:
+ case Hexagon::L4_iand_memopw_io:
+ return true;
+ }
+ return false;
}
-// Returns true if an instruction is predicated irrespective of the predicate
-// sense. For example, all of the following will return true.
-// if (p0) R1 = add(R2, R3)
-// if (!p0) R1 = add(R2, R3)
-// if (p0.new) R1 = add(R2, R3)
-// if (!p0.new) R1 = add(R2, R3)
-bool HexagonInstrInfo::isPredicated(const MachineInstr *MI) const {
- const uint64_t F = MI->getDesc().TSFlags;
- return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
+bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
}
-bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
+
+bool HexagonInstrInfo::isNewValue(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
+ return (F >> HexagonII::NewValuePos) & HexagonII::NewValueMask;
+}
+
- return ((F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
+bool HexagonInstrInfo::isNewValueInst(const MachineInstr *MI) const {
+ return isNewValueJump(MI) || isNewValueStore(MI);
}
-bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
- const uint64_t F = MI->getDesc().TSFlags;
- assert(isPredicated(MI));
- return (!((F >> HexagonII::PredicatedFalsePos) &
- HexagonII::PredicatedFalseMask));
+bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
+ return isNewValue(MI) && MI->isBranch();
}
-bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
+
+bool HexagonInstrInfo::isNewValueJump(unsigned Opcode) const {
+ return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
+}
+
+
+bool HexagonInstrInfo::isNewValueStore(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
+}
+
+
+bool HexagonInstrInfo::isNewValueStore(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
+ return (F >> HexagonII::NVStorePos) & HexagonII::NVStoreMask;
+}
- // Make sure that the instruction is predicated.
- assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
- return (!((F >> HexagonII::PredicatedFalsePos) &
- HexagonII::PredicatedFalseMask));
+
+// Returns true if a particular operand is extendable for an instruction.
+bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
+ unsigned OperandNum) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
+ == OperandNum;
}
+
+bool HexagonInstrInfo::isPostIncrement(const MachineInstr* MI) const {
+ return getAddrMode(MI) == HexagonII::PostInc;
+}
+
+
bool HexagonInstrInfo::isPredicatedNew(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
-
assert(isPredicated(MI));
- return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
+ return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
}
+
bool HexagonInstrInfo::isPredicatedNew(unsigned Opcode) const {
const uint64_t F = get(Opcode).TSFlags;
-
assert(isPredicated(Opcode));
- return ((F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask);
+ return (F >> HexagonII::PredicatedNewPos) & HexagonII::PredicatedNewMask;
}
-// Returns true, if a ST insn can be promoted to a new-value store.
-bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
+
+bool HexagonInstrInfo::isPredicatedTrue(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
+ return !((F >> HexagonII::PredicatedFalsePos) &
+ HexagonII::PredicatedFalseMask);
+}
+
- return ((F >> HexagonII::mayNVStorePos) &
- HexagonII::mayNVStoreMask);
+bool HexagonInstrInfo::isPredicatedTrue(unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+ // Make sure that the instruction is predicated.
+ assert((F>> HexagonII::PredicatedPos) & HexagonII::PredicatedMask);
+ return !((F >> HexagonII::PredicatedFalsePos) &
+ HexagonII::PredicatedFalseMask);
}
-bool
-HexagonInstrInfo::DefinesPredicate(MachineInstr *MI,
- std::vector<MachineOperand> &Pred) const {
- for (unsigned oper = 0; oper < MI->getNumOperands(); ++oper) {
- MachineOperand MO = MI->getOperand(oper);
- if (MO.isReg() && MO.isDef()) {
- const TargetRegisterClass* RC = RI.getMinimalPhysRegClass(MO.getReg());
- if (RC == &Hexagon::PredRegsRegClass) {
- Pred.push_back(MO);
- return true;
- }
- }
+
+bool HexagonInstrInfo::isPredicated(unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+ return (F >> HexagonII::PredicatedPos) & HexagonII::PredicatedMask;
+}
+
+
+bool HexagonInstrInfo::isPredicateLate(unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+ return ~(F >> HexagonII::PredicateLatePos) & HexagonII::PredicateLateMask;
+}
+
+
+bool HexagonInstrInfo::isPredictedTaken(unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+ assert(get(Opcode).isBranch() &&
+ (isPredicatedNew(Opcode) || isNewValue(Opcode)));
+ return (F >> HexagonII::TakenPos) & HexagonII::TakenMask;
+}
+
+
+bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
+ return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4 ||
+ MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
+}
+
+
+bool HexagonInstrInfo::isSolo(const MachineInstr* MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return (F >> HexagonII::SoloPos) & HexagonII::SoloMask;
+}
+
+
+bool HexagonInstrInfo::isSpillPredRegOp(const MachineInstr *MI) const {
+ switch (MI->getOpcode()) {
+ case Hexagon::STriw_pred :
+ case Hexagon::LDriw_pred :
+ return true;
+ default:
+ return false;
}
- return false;
}
-bool
-HexagonInstrInfo::
-SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
- ArrayRef<MachineOperand> Pred2) const {
- // TODO: Fix this
- return false;
+// Returns true when SU has a timing class TC1.
+bool HexagonInstrInfo::isTC1(const MachineInstr *MI) const {
+ unsigned SchedClass = MI->getDesc().getSchedClass();
+ switch (SchedClass) {
+ case Hexagon::Sched::ALU32_2op_tc_1_SLOT0123:
+ case Hexagon::Sched::ALU32_3op_tc_1_SLOT0123:
+ case Hexagon::Sched::ALU32_ADDI_tc_1_SLOT0123:
+ case Hexagon::Sched::ALU64_tc_1_SLOT23:
+ case Hexagon::Sched::EXTENDER_tc_1_SLOT0123:
+ //case Hexagon::Sched::M_tc_1_SLOT23:
+ case Hexagon::Sched::S_2op_tc_1_SLOT23:
+ case Hexagon::Sched::S_3op_tc_1_SLOT23:
+ return true;
+
+ default:
+ return false;
+ }
}
-//
-// We indicate that we want to reverse the branch by
-// inserting the reversed branching opcode.
-//
-bool HexagonInstrInfo::ReverseBranchCondition(
- SmallVectorImpl<MachineOperand> &Cond) const {
- if (Cond.empty())
+bool HexagonInstrInfo::isTC2(const MachineInstr *MI) const {
+ unsigned SchedClass = MI->getDesc().getSchedClass();
+ switch (SchedClass) {
+ case Hexagon::Sched::ALU32_3op_tc_2_SLOT0123:
+ case Hexagon::Sched::ALU64_tc_2_SLOT23:
+ case Hexagon::Sched::CR_tc_2_SLOT3:
+ case Hexagon::Sched::M_tc_2_SLOT23:
+ case Hexagon::Sched::S_2op_tc_2_SLOT23:
+ case Hexagon::Sched::S_3op_tc_2_SLOT23:
return true;
- assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
- Opcode_t opcode = Cond[0].getImm();
- //unsigned temp;
- assert(get(opcode).isBranch() && "Should be a branching condition.");
- if (isEndLoopN(opcode))
+
+ default:
+ return false;
+ }
+}
+
+
+bool HexagonInstrInfo::isTC2Early(const MachineInstr *MI) const {
+ unsigned SchedClass = MI->getDesc().getSchedClass();
+ switch (SchedClass) {
+ case Hexagon::Sched::ALU32_2op_tc_2early_SLOT0123:
+ case Hexagon::Sched::ALU32_3op_tc_2early_SLOT0123:
+ case Hexagon::Sched::ALU64_tc_2early_SLOT23:
+ case Hexagon::Sched::CR_tc_2early_SLOT23:
+ case Hexagon::Sched::CR_tc_2early_SLOT3:
+ case Hexagon::Sched::J_tc_2early_SLOT0123:
+ case Hexagon::Sched::J_tc_2early_SLOT2:
+ case Hexagon::Sched::J_tc_2early_SLOT23:
+ case Hexagon::Sched::S_2op_tc_2early_SLOT23:
+ case Hexagon::Sched::S_3op_tc_2early_SLOT23:
return true;
- Opcode_t NewOpcode = getInvertedPredicatedOpcode(opcode);
- Cond[0].setImm(NewOpcode);
- return false;
+
+ default:
+ return false;
+ }
+}
+
+
+bool HexagonInstrInfo::isTC4x(const MachineInstr *MI) const {
+ if (!MI)
+ return false;
+
+ unsigned SchedClass = MI->getDesc().getSchedClass();
+ return SchedClass == Hexagon::Sched::M_tc_3or4x_SLOT23;
}
-bool HexagonInstrInfo::
-isProfitableToDupForIfCvt(MachineBasicBlock &MBB,unsigned NumInstrs,
- const BranchProbability &Probability) const {
- return (NumInstrs <= 4);
+bool HexagonInstrInfo::isV60VectorInstruction(const MachineInstr *MI) const {
+ if (!MI)
+ return false;
+
+ const uint64_t V = getType(MI);
+ return HexagonII::TypeCVI_FIRST <= V && V <= HexagonII::TypeCVI_LAST;
}
-bool HexagonInstrInfo::isDeallocRet(const MachineInstr *MI) const {
- switch (MI->getOpcode()) {
- default: return false;
- case Hexagon::L4_return:
- case Hexagon::L4_return_t:
- case Hexagon::L4_return_f:
- case Hexagon::L4_return_tnew_pnt:
- case Hexagon::L4_return_fnew_pnt:
- case Hexagon::L4_return_tnew_pt:
- case Hexagon::L4_return_fnew_pt:
- return true;
+
+// Check if the Offset is a valid auto-inc imm by Load/Store Type.
+//
+bool HexagonInstrInfo::isValidAutoIncImm(const EVT VT, const int Offset) const {
+ if (VT == MVT::v16i32 || VT == MVT::v8i64 ||
+ VT == MVT::v32i16 || VT == MVT::v64i8) {
+ return (Offset >= Hexagon_MEMV_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMV_AUTOINC_MAX &&
+ (Offset & 0x3f) == 0);
+ }
+ // 128B
+ if (VT == MVT::v32i32 || VT == MVT::v16i64 ||
+ VT == MVT::v64i16 || VT == MVT::v128i8) {
+ return (Offset >= Hexagon_MEMV_AUTOINC_MIN_128B &&
+ Offset <= Hexagon_MEMV_AUTOINC_MAX_128B &&
+ (Offset & 0x7f) == 0);
+ }
+ if (VT == MVT::i64) {
+ return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMD_AUTOINC_MAX &&
+ (Offset & 0x7) == 0);
+ }
+ if (VT == MVT::i32) {
+ return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMW_AUTOINC_MAX &&
+ (Offset & 0x3) == 0);
+ }
+ if (VT == MVT::i16) {
+ return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMH_AUTOINC_MAX &&
+ (Offset & 0x1) == 0);
+ }
+ if (VT == MVT::i8) {
+ return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
+ Offset <= Hexagon_MEMB_AUTOINC_MAX);
}
+ llvm_unreachable("Not an auto-inc opc!");
}
@@ -1222,6 +2329,40 @@ bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
// misaligns with respect to load size.
switch (Opcode) {
+ case Hexagon::STriq_pred_V6:
+ case Hexagon::STriq_pred_vec_V6:
+ case Hexagon::STriv_pseudo_V6:
+ case Hexagon::STrivv_pseudo_V6:
+ case Hexagon::LDriq_pred_V6:
+ case Hexagon::LDriq_pred_vec_V6:
+ case Hexagon::LDriv_pseudo_V6:
+ case Hexagon::LDrivv_pseudo_V6:
+ case Hexagon::LDrivv_indexed:
+ case Hexagon::STrivv_indexed:
+ case Hexagon::V6_vL32b_ai:
+ case Hexagon::V6_vS32b_ai:
+ case Hexagon::V6_vL32Ub_ai:
+ case Hexagon::V6_vS32Ub_ai:
+ return (Offset >= Hexagon_MEMV_OFFSET_MIN) &&
+ (Offset <= Hexagon_MEMV_OFFSET_MAX);
+
+ case Hexagon::STriq_pred_V6_128B:
+ case Hexagon::STriq_pred_vec_V6_128B:
+ case Hexagon::STriv_pseudo_V6_128B:
+ case Hexagon::STrivv_pseudo_V6_128B:
+ case Hexagon::LDriq_pred_V6_128B:
+ case Hexagon::LDriq_pred_vec_V6_128B:
+ case Hexagon::LDriv_pseudo_V6_128B:
+ case Hexagon::LDrivv_pseudo_V6_128B:
+ case Hexagon::LDrivv_indexed_128B:
+ case Hexagon::STrivv_indexed_128B:
+ case Hexagon::V6_vL32b_ai_128B:
+ case Hexagon::V6_vS32b_ai_128B:
+ case Hexagon::V6_vL32Ub_ai_128B:
+ case Hexagon::V6_vS32Ub_ai_128B:
+ return (Offset >= Hexagon_MEMV_OFFSET_MIN_128B) &&
+ (Offset <= Hexagon_MEMV_OFFSET_MAX_128B);
+
case Hexagon::J2_loop0i:
case Hexagon::J2_loop1i:
return isUInt<10>(Offset);
@@ -1248,8 +2389,8 @@ bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
(Offset <= Hexagon_MEMH_OFFSET_MAX);
case Hexagon::L2_loadrb_io:
- case Hexagon::S2_storerb_io:
case Hexagon::L2_loadrub_io:
+ case Hexagon::S2_storerb_io:
return (Offset >= Hexagon_MEMB_OFFSET_MIN) &&
(Offset <= Hexagon_MEMB_OFFSET_MAX);
@@ -1257,28 +2398,28 @@ bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
return (Offset >= Hexagon_ADDI_OFFSET_MIN) &&
(Offset <= Hexagon_ADDI_OFFSET_MAX);
- case Hexagon::L4_iadd_memopw_io:
- case Hexagon::L4_isub_memopw_io:
- case Hexagon::L4_add_memopw_io:
- case Hexagon::L4_sub_memopw_io:
- case Hexagon::L4_and_memopw_io:
- case Hexagon::L4_or_memopw_io:
+ case Hexagon::L4_iadd_memopw_io :
+ case Hexagon::L4_isub_memopw_io :
+ case Hexagon::L4_add_memopw_io :
+ case Hexagon::L4_sub_memopw_io :
+ case Hexagon::L4_and_memopw_io :
+ case Hexagon::L4_or_memopw_io :
return (0 <= Offset && Offset <= 255);
- case Hexagon::L4_iadd_memoph_io:
- case Hexagon::L4_isub_memoph_io:
- case Hexagon::L4_add_memoph_io:
- case Hexagon::L4_sub_memoph_io:
- case Hexagon::L4_and_memoph_io:
- case Hexagon::L4_or_memoph_io:
+ case Hexagon::L4_iadd_memoph_io :
+ case Hexagon::L4_isub_memoph_io :
+ case Hexagon::L4_add_memoph_io :
+ case Hexagon::L4_sub_memoph_io :
+ case Hexagon::L4_and_memoph_io :
+ case Hexagon::L4_or_memoph_io :
return (0 <= Offset && Offset <= 127);
- case Hexagon::L4_iadd_memopb_io:
- case Hexagon::L4_isub_memopb_io:
- case Hexagon::L4_add_memopb_io:
- case Hexagon::L4_sub_memopb_io:
- case Hexagon::L4_and_memopb_io:
- case Hexagon::L4_or_memopb_io:
+ case Hexagon::L4_iadd_memopb_io :
+ case Hexagon::L4_isub_memopb_io :
+ case Hexagon::L4_add_memopb_io :
+ case Hexagon::L4_sub_memopb_io :
+ case Hexagon::L4_and_memopb_io :
+ case Hexagon::L4_or_memopb_io :
return (0 <= Offset && Offset <= 63);
// LDri_pred and STriw_pred are pseudo operations, so it has to take offset of
@@ -1291,223 +2432,556 @@ bool HexagonInstrInfo::isValidOffset(unsigned Opcode, int Offset,
case Hexagon::TFR_FIA:
case Hexagon::INLINEASM:
return true;
- }
+
+ case Hexagon::L2_ploadrbt_io:
+ case Hexagon::L2_ploadrbf_io:
+ case Hexagon::L2_ploadrubt_io:
+ case Hexagon::L2_ploadrubf_io:
+ case Hexagon::S2_pstorerbt_io:
+ case Hexagon::S2_pstorerbf_io:
+ case Hexagon::S4_storeirb_io:
+ case Hexagon::S4_storeirbt_io:
+ case Hexagon::S4_storeirbf_io:
+ return isUInt<6>(Offset);
+
+ case Hexagon::L2_ploadrht_io:
+ case Hexagon::L2_ploadrhf_io:
+ case Hexagon::L2_ploadruht_io:
+ case Hexagon::L2_ploadruhf_io:
+ case Hexagon::S2_pstorerht_io:
+ case Hexagon::S2_pstorerhf_io:
+ case Hexagon::S4_storeirh_io:
+ case Hexagon::S4_storeirht_io:
+ case Hexagon::S4_storeirhf_io:
+ return isShiftedUInt<6,1>(Offset);
+
+ case Hexagon::L2_ploadrit_io:
+ case Hexagon::L2_ploadrif_io:
+ case Hexagon::S2_pstorerit_io:
+ case Hexagon::S2_pstorerif_io:
+ case Hexagon::S4_storeiri_io:
+ case Hexagon::S4_storeirit_io:
+ case Hexagon::S4_storeirif_io:
+ return isShiftedUInt<6,2>(Offset);
+
+ case Hexagon::L2_ploadrdt_io:
+ case Hexagon::L2_ploadrdf_io:
+ case Hexagon::S2_pstorerdt_io:
+ case Hexagon::S2_pstorerdf_io:
+ return isShiftedUInt<6,3>(Offset);
+ } // switch
llvm_unreachable("No offset range is defined for this opcode. "
"Please define it in the above switch statement!");
}
-//
-// Check if the Offset is a valid auto-inc imm by Load/Store Type.
-//
-bool HexagonInstrInfo::
-isValidAutoIncImm(const EVT VT, const int Offset) const {
+bool HexagonInstrInfo::isVecAcc(const MachineInstr *MI) const {
+ return MI && isV60VectorInstruction(MI) && isAccumulator(MI);
+}
- if (VT == MVT::i64) {
- return (Offset >= Hexagon_MEMD_AUTOINC_MIN &&
- Offset <= Hexagon_MEMD_AUTOINC_MAX &&
- (Offset & 0x7) == 0);
- }
- if (VT == MVT::i32) {
- return (Offset >= Hexagon_MEMW_AUTOINC_MIN &&
- Offset <= Hexagon_MEMW_AUTOINC_MAX &&
- (Offset & 0x3) == 0);
- }
- if (VT == MVT::i16) {
- return (Offset >= Hexagon_MEMH_AUTOINC_MIN &&
- Offset <= Hexagon_MEMH_AUTOINC_MAX &&
- (Offset & 0x1) == 0);
- }
- if (VT == MVT::i8) {
- return (Offset >= Hexagon_MEMB_AUTOINC_MIN &&
- Offset <= Hexagon_MEMB_AUTOINC_MAX);
+
+bool HexagonInstrInfo::isVecALU(const MachineInstr *MI) const {
+ if (!MI)
+ return false;
+ const uint64_t F = get(MI->getOpcode()).TSFlags;
+ const uint64_t V = ((F >> HexagonII::TypePos) & HexagonII::TypeMask);
+ return
+ V == HexagonII::TypeCVI_VA ||
+ V == HexagonII::TypeCVI_VA_DV;
+}
+
+
+bool HexagonInstrInfo::isVecUsableNextPacket(const MachineInstr *ProdMI,
+ const MachineInstr *ConsMI) const {
+ if (EnableACCForwarding && isVecAcc(ProdMI) && isVecAcc(ConsMI))
+ return true;
+
+ if (EnableALUForwarding && (isVecALU(ConsMI) || isLateSourceInstr(ConsMI)))
+ return true;
+
+ if (mayBeNewStore(ConsMI))
+ return true;
+
+ return false;
+}
+
+
+/// \brief Can these instructions execute at the same time in a bundle.
+bool HexagonInstrInfo::canExecuteInBundle(const MachineInstr *First,
+ const MachineInstr *Second) const {
+ if (DisableNVSchedule)
+ return false;
+ if (mayBeNewStore(Second)) {
+ // Make sure the definition of the first instruction is the value being
+ // stored.
+ const MachineOperand &Stored =
+ Second->getOperand(Second->getNumOperands() - 1);
+ if (!Stored.isReg())
+ return false;
+ for (unsigned i = 0, e = First->getNumOperands(); i < e; ++i) {
+ const MachineOperand &Op = First->getOperand(i);
+ if (Op.isReg() && Op.isDef() && Op.getReg() == Stored.getReg())
+ return true;
+ }
}
- llvm_unreachable("Not an auto-inc opc!");
+ return false;
+}
+
+
+bool HexagonInstrInfo::hasEHLabel(const MachineBasicBlock *B) const {
+ for (auto &I : *B)
+ if (I.isEHLabel())
+ return true;
+ return false;
}
-bool HexagonInstrInfo::
-isMemOp(const MachineInstr *MI) const {
-// return MI->getDesc().mayLoad() && MI->getDesc().mayStore();
-
- switch (MI->getOpcode())
- {
- default: return false;
- case Hexagon::L4_iadd_memopw_io:
- case Hexagon::L4_isub_memopw_io:
- case Hexagon::L4_add_memopw_io:
- case Hexagon::L4_sub_memopw_io:
- case Hexagon::L4_and_memopw_io:
- case Hexagon::L4_or_memopw_io:
- case Hexagon::L4_iadd_memoph_io:
- case Hexagon::L4_isub_memoph_io:
- case Hexagon::L4_add_memoph_io:
- case Hexagon::L4_sub_memoph_io:
- case Hexagon::L4_and_memoph_io:
- case Hexagon::L4_or_memoph_io:
- case Hexagon::L4_iadd_memopb_io:
- case Hexagon::L4_isub_memopb_io:
- case Hexagon::L4_add_memopb_io:
- case Hexagon::L4_sub_memopb_io:
- case Hexagon::L4_and_memopb_io:
- case Hexagon::L4_or_memopb_io:
- case Hexagon::L4_ior_memopb_io:
- case Hexagon::L4_ior_memoph_io:
- case Hexagon::L4_ior_memopw_io:
- case Hexagon::L4_iand_memopb_io:
- case Hexagon::L4_iand_memoph_io:
- case Hexagon::L4_iand_memopw_io:
+// Returns true if an instruction can be converted into a non-extended
+// equivalent instruction.
+bool HexagonInstrInfo::hasNonExtEquivalent(const MachineInstr *MI) const {
+ short NonExtOpcode;
+ // Check if the instruction has a register form that uses register in place
+ // of the extended operand, if so return that as the non-extended form.
+ if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
+ return true;
+
+ if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
+ // Check addressing mode and retrieve non-ext equivalent instruction.
+
+ switch (getAddrMode(MI)) {
+ case HexagonII::Absolute :
+ // Load/store with absolute addressing mode can be converted into
+ // base+offset mode.
+ NonExtOpcode = Hexagon::getBaseWithImmOffset(MI->getOpcode());
+ break;
+ case HexagonII::BaseImmOffset :
+ // Load/store with base+offset addressing mode can be converted into
+ // base+register offset addressing mode. However left shift operand should
+ // be set to 0.
+ NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
+ break;
+ case HexagonII::BaseLongOffset:
+ NonExtOpcode = Hexagon::getRegShlForm(MI->getOpcode());
+ break;
+ default:
+ return false;
+ }
+ if (NonExtOpcode < 0)
+ return false;
return true;
}
return false;
}
-bool HexagonInstrInfo::
-isSpillPredRegOp(const MachineInstr *MI) const {
- switch (MI->getOpcode()) {
- default: return false;
- case Hexagon::STriw_pred :
- case Hexagon::LDriw_pred :
+bool HexagonInstrInfo::hasPseudoInstrPair(const MachineInstr *MI) const {
+ return Hexagon::getRealHWInstr(MI->getOpcode(),
+ Hexagon::InstrType_Pseudo) >= 0;
+}
+
+
+bool HexagonInstrInfo::hasUncondBranch(const MachineBasicBlock *B)
+ const {
+ MachineBasicBlock::const_iterator I = B->getFirstTerminator(), E = B->end();
+ while (I != E) {
+ if (I->isBarrier())
return true;
+ ++I;
}
+ return false;
}
-bool HexagonInstrInfo::isNewValueJumpCandidate(const MachineInstr *MI) const {
- switch (MI->getOpcode()) {
- default: return false;
- case Hexagon::C2_cmpeq:
- case Hexagon::C2_cmpeqi:
- case Hexagon::C2_cmpgt:
- case Hexagon::C2_cmpgti:
- case Hexagon::C2_cmpgtu:
- case Hexagon::C2_cmpgtui:
+
+// Returns true, if a LD insn can be promoted to a cur load.
+bool HexagonInstrInfo::mayBeCurLoad(const MachineInstr *MI) const {
+ auto &HST = MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>();
+ const uint64_t F = MI->getDesc().TSFlags;
+ return ((F >> HexagonII::mayCVLoadPos) & HexagonII::mayCVLoadMask) &&
+ HST.hasV60TOps();
+}
+
+
+// Returns true, if a ST insn can be promoted to a new-value store.
+bool HexagonInstrInfo::mayBeNewStore(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return (F >> HexagonII::mayNVStorePos) & HexagonII::mayNVStoreMask;
+}
+
+
+bool HexagonInstrInfo::producesStall(const MachineInstr *ProdMI,
+ const MachineInstr *ConsMI) const {
+ // There is no stall when ProdMI is not a V60 vector.
+ if (!isV60VectorInstruction(ProdMI))
+ return false;
+
+ // There is no stall when ProdMI and ConsMI are not dependent.
+ if (!isDependent(ProdMI, ConsMI))
+ return false;
+
+ // When Forward Scheduling is enabled, there is no stall if ProdMI and ConsMI
+ // are scheduled in consecutive packets.
+ if (isVecUsableNextPacket(ProdMI, ConsMI))
+ return false;
+
+ return true;
+}
+
+
+bool HexagonInstrInfo::producesStall(const MachineInstr *MI,
+ MachineBasicBlock::const_instr_iterator BII) const {
+ // There is no stall when I is not a V60 vector.
+ if (!isV60VectorInstruction(MI))
+ return false;
+
+ MachineBasicBlock::const_instr_iterator MII = BII;
+ MachineBasicBlock::const_instr_iterator MIE = MII->getParent()->instr_end();
+
+ if (!(*MII).isBundle()) {
+ const MachineInstr *J = &*MII;
+ if (!isV60VectorInstruction(J))
+ return false;
+ else if (isVecUsableNextPacket(J, MI))
+ return false;
+ return true;
+ }
+
+ for (++MII; MII != MIE && MII->isInsideBundle(); ++MII) {
+ const MachineInstr *J = &*MII;
+ if (producesStall(J, MI))
return true;
}
+ return false;
+}
+
+
+bool HexagonInstrInfo::predCanBeUsedAsDotNew(const MachineInstr *MI,
+ unsigned PredReg) const {
+ for (unsigned opNum = 0; opNum < MI->getNumOperands(); opNum++) {
+ const MachineOperand &MO = MI->getOperand(opNum);
+ if (MO.isReg() && MO.isDef() && MO.isImplicit() && (MO.getReg() == PredReg))
+ return false; // Predicate register must be explicitly defined.
+ }
+
+ // Hexagon Programmer's Reference says that decbin, memw_locked, and
+ // memd_locked cannot be used as .new as well,
+ // but we don't seem to have these instructions defined.
+ return MI->getOpcode() != Hexagon::A4_tlbmatch;
+}
+
+
+bool HexagonInstrInfo::PredOpcodeHasJMP_c(unsigned Opcode) const {
+ return (Opcode == Hexagon::J2_jumpt) ||
+ (Opcode == Hexagon::J2_jumpf) ||
+ (Opcode == Hexagon::J2_jumptnew) ||
+ (Opcode == Hexagon::J2_jumpfnew) ||
+ (Opcode == Hexagon::J2_jumptnewpt) ||
+ (Opcode == Hexagon::J2_jumpfnewpt);
+}
+
+
+bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
+ if (Cond.empty() || !isPredicated(Cond[0].getImm()))
+ return false;
+ return !isPredicatedTrue(Cond[0].getImm());
+}
+
+
+unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return (F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask;
+}
+
+
+// Returns the base register in a memory access (load/store). The offset is
+// returned in Offset and the access size is returned in AccessSize.
+unsigned HexagonInstrInfo::getBaseAndOffset(const MachineInstr *MI,
+ int &Offset, unsigned &AccessSize) const {
+ // Return if it is not a base+offset type instruction or a MemOp.
+ if (getAddrMode(MI) != HexagonII::BaseImmOffset &&
+ getAddrMode(MI) != HexagonII::BaseLongOffset &&
+ !isMemOp(MI) && !isPostIncrement(MI))
+ return 0;
+
+ // Since it is a memory access instruction, getMemAccessSize() should never
+ // return 0.
+ assert (getMemAccessSize(MI) &&
+ "BaseImmOffset or BaseLongOffset or MemOp without accessSize");
+
+ // Return Values of getMemAccessSize() are
+ // 0 - Checked in the assert above.
+ // 1, 2, 3, 4 & 7, 8 - The statement below is correct for all these.
+ // MemAccessSize is represented as 1+log2(N) where N is size in bits.
+ AccessSize = (1U << (getMemAccessSize(MI) - 1));
+
+ unsigned basePos = 0, offsetPos = 0;
+ if (!getBaseAndOffsetPosition(MI, basePos, offsetPos))
+ return 0;
+
+ // Post increment updates its EA after the mem access,
+ // so we need to treat its offset as zero.
+ if (isPostIncrement(MI))
+ Offset = 0;
+ else {
+ Offset = MI->getOperand(offsetPos).getImm();
+ }
+
+ return MI->getOperand(basePos).getReg();
+}
+
+
+/// Return the position of the base and offset operands for this instruction.
+bool HexagonInstrInfo::getBaseAndOffsetPosition(const MachineInstr *MI,
+ unsigned &BasePos, unsigned &OffsetPos) const {
+ // Deal with memops first.
+ if (isMemOp(MI)) {
+ assert (MI->getOperand(0).isReg() && MI->getOperand(1).isImm() &&
+ "Bad Memop.");
+ BasePos = 0;
+ OffsetPos = 1;
+ } else if (MI->mayStore()) {
+ BasePos = 0;
+ OffsetPos = 1;
+ } else if (MI->mayLoad()) {
+ BasePos = 1;
+ OffsetPos = 2;
+ } else
+ return false;
+
+ if (isPredicated(MI)) {
+ BasePos++;
+ OffsetPos++;
+ }
+ if (isPostIncrement(MI)) {
+ BasePos++;
+ OffsetPos++;
+ }
+
+ if (!MI->getOperand(BasePos).isReg() || !MI->getOperand(OffsetPos).isImm())
+ return false;
+
+ return true;
+}
+
+
+// Inserts branching instructions in reverse order of their occurence.
+// e.g. jump_t t1 (i1)
+// jump t2 (i2)
+// Jumpers = {i2, i1}
+SmallVector<MachineInstr*, 2> HexagonInstrInfo::getBranchingInstrs(
+ MachineBasicBlock& MBB) const {
+ SmallVector<MachineInstr*, 2> Jumpers;
+ // If the block has no terminators, it just falls into the block after it.
+ MachineBasicBlock::instr_iterator I = MBB.instr_end();
+ if (I == MBB.instr_begin())
+ return Jumpers;
+
+ // A basic block may looks like this:
+ //
+ // [ insn
+ // EH_LABEL
+ // insn
+ // insn
+ // insn
+ // EH_LABEL
+ // insn ]
+ //
+ // It has two succs but does not have a terminator
+ // Don't know how to handle it.
+ do {
+ --I;
+ if (I->isEHLabel())
+ return Jumpers;
+ } while (I != MBB.instr_begin());
+
+ I = MBB.instr_end();
+ --I;
+
+ while (I->isDebugValue()) {
+ if (I == MBB.instr_begin())
+ return Jumpers;
+ --I;
+ }
+ if (!isUnpredicatedTerminator(&*I))
+ return Jumpers;
+
+ // Get the last instruction in the block.
+ MachineInstr *LastInst = &*I;
+ Jumpers.push_back(LastInst);
+ MachineInstr *SecondLastInst = nullptr;
+ // Find one more terminator if present.
+ do {
+ if (&*I != LastInst && !I->isBundle() && isUnpredicatedTerminator(&*I)) {
+ if (!SecondLastInst) {
+ SecondLastInst = &*I;
+ Jumpers.push_back(SecondLastInst);
+ } else // This is a third branch.
+ return Jumpers;
+ }
+ if (I == MBB.instr_begin())
+ break;
+ --I;
+ } while (true);
+ return Jumpers;
}
-bool HexagonInstrInfo::
-isConditionalTransfer (const MachineInstr *MI) const {
+
+// Returns Operand Index for the constant extended instruction.
+unsigned HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return (F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask;
+}
+
+// See if instruction could potentially be a duplex candidate.
+// If so, return its group. Zero otherwise.
+HexagonII::CompoundGroup HexagonInstrInfo::getCompoundCandidateGroup(
+ const MachineInstr *MI) const {
+ unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
+
switch (MI->getOpcode()) {
- default: return false;
- case Hexagon::A2_tfrt:
- case Hexagon::A2_tfrf:
- case Hexagon::C2_cmoveit:
- case Hexagon::C2_cmoveif:
- case Hexagon::A2_tfrtnew:
- case Hexagon::A2_tfrfnew:
- case Hexagon::C2_cmovenewit:
- case Hexagon::C2_cmovenewif:
- return true;
+ default:
+ return HexagonII::HCG_None;
+ //
+ // Compound pairs.
+ // "p0=cmp.eq(Rs16,Rt16); if (p0.new) jump:nt #r9:2"
+ // "Rd16=#U6 ; jump #r9:2"
+ // "Rd16=Rs16 ; jump #r9:2"
+ //
+ case Hexagon::C2_cmpeq:
+ case Hexagon::C2_cmpgt:
+ case Hexagon::C2_cmpgtu:
+ DstReg = MI->getOperand(0).getReg();
+ Src1Reg = MI->getOperand(1).getReg();
+ Src2Reg = MI->getOperand(2).getReg();
+ if (Hexagon::PredRegsRegClass.contains(DstReg) &&
+ (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
+ isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg))
+ return HexagonII::HCG_A;
+ break;
+ case Hexagon::C2_cmpeqi:
+ case Hexagon::C2_cmpgti:
+ case Hexagon::C2_cmpgtui:
+ // P0 = cmp.eq(Rs,#u2)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (Hexagon::PredRegsRegClass.contains(DstReg) &&
+ (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
+ isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
+ ((isUInt<5>(MI->getOperand(2).getImm())) ||
+ (MI->getOperand(2).getImm() == -1)))
+ return HexagonII::HCG_A;
+ break;
+ case Hexagon::A2_tfr:
+ // Rd = Rs
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
+ return HexagonII::HCG_A;
+ break;
+ case Hexagon::A2_tfrsi:
+ // Rd = #u6
+ // Do not test for #u6 size since the const is getting extended
+ // regardless and compound could be formed.
+ DstReg = MI->getOperand(0).getReg();
+ if (isIntRegForSubInst(DstReg))
+ return HexagonII::HCG_A;
+ break;
+ case Hexagon::S2_tstbit_i:
+ DstReg = MI->getOperand(0).getReg();
+ Src1Reg = MI->getOperand(1).getReg();
+ if (Hexagon::PredRegsRegClass.contains(DstReg) &&
+ (Hexagon::P0 == DstReg || Hexagon::P1 == DstReg) &&
+ MI->getOperand(2).isImm() &&
+ isIntRegForSubInst(Src1Reg) && (MI->getOperand(2).getImm() == 0))
+ return HexagonII::HCG_A;
+ break;
+ // The fact that .new form is used pretty much guarantees
+ // that predicate register will match. Nevertheless,
+ // there could be some false positives without additional
+ // checking.
+ case Hexagon::J2_jumptnew:
+ case Hexagon::J2_jumpfnew:
+ case Hexagon::J2_jumptnewpt:
+ case Hexagon::J2_jumpfnewpt:
+ Src1Reg = MI->getOperand(0).getReg();
+ if (Hexagon::PredRegsRegClass.contains(Src1Reg) &&
+ (Hexagon::P0 == Src1Reg || Hexagon::P1 == Src1Reg))
+ return HexagonII::HCG_B;
+ break;
+ // Transfer and jump:
+ // Rd=#U6 ; jump #r9:2
+ // Rd=Rs ; jump #r9:2
+ // Do not test for jump range here.
+ case Hexagon::J2_jump:
+ case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
+ return HexagonII::HCG_C;
+ break;
}
+
+ return HexagonII::HCG_None;
+}
+
+
+// Returns -1 when there is no opcode found.
+unsigned HexagonInstrInfo::getCompoundOpcode(const MachineInstr *GA,
+ const MachineInstr *GB) const {
+ assert(getCompoundCandidateGroup(GA) == HexagonII::HCG_A);
+ assert(getCompoundCandidateGroup(GB) == HexagonII::HCG_B);
+ if ((GA->getOpcode() != Hexagon::C2_cmpeqi) ||
+ (GB->getOpcode() != Hexagon::J2_jumptnew))
+ return -1;
+ unsigned DestReg = GA->getOperand(0).getReg();
+ if (!GB->readsRegister(DestReg))
+ return -1;
+ if (DestReg == Hexagon::P0)
+ return Hexagon::J4_cmpeqi_tp0_jump_nt;
+ if (DestReg == Hexagon::P1)
+ return Hexagon::J4_cmpeqi_tp1_jump_nt;
+ return -1;
}
-bool HexagonInstrInfo::isConditionalALU32 (const MachineInstr* MI) const {
- switch (MI->getOpcode())
- {
- default: return false;
- case Hexagon::A2_paddf:
- case Hexagon::A2_paddfnew:
- case Hexagon::A2_paddt:
- case Hexagon::A2_paddtnew:
- case Hexagon::A2_pandf:
- case Hexagon::A2_pandfnew:
- case Hexagon::A2_pandt:
- case Hexagon::A2_pandtnew:
- case Hexagon::A4_paslhf:
- case Hexagon::A4_paslhfnew:
- case Hexagon::A4_paslht:
- case Hexagon::A4_paslhtnew:
- case Hexagon::A4_pasrhf:
- case Hexagon::A4_pasrhfnew:
- case Hexagon::A4_pasrht:
- case Hexagon::A4_pasrhtnew:
- case Hexagon::A2_porf:
- case Hexagon::A2_porfnew:
- case Hexagon::A2_port:
- case Hexagon::A2_portnew:
- case Hexagon::A2_psubf:
- case Hexagon::A2_psubfnew:
- case Hexagon::A2_psubt:
- case Hexagon::A2_psubtnew:
- case Hexagon::A2_pxorf:
- case Hexagon::A2_pxorfnew:
- case Hexagon::A2_pxort:
- case Hexagon::A2_pxortnew:
- case Hexagon::A4_psxthf:
- case Hexagon::A4_psxthfnew:
- case Hexagon::A4_psxtht:
- case Hexagon::A4_psxthtnew:
- case Hexagon::A4_psxtbf:
- case Hexagon::A4_psxtbfnew:
- case Hexagon::A4_psxtbt:
- case Hexagon::A4_psxtbtnew:
- case Hexagon::A4_pzxtbf:
- case Hexagon::A4_pzxtbfnew:
- case Hexagon::A4_pzxtbt:
- case Hexagon::A4_pzxtbtnew:
- case Hexagon::A4_pzxthf:
- case Hexagon::A4_pzxthfnew:
- case Hexagon::A4_pzxtht:
- case Hexagon::A4_pzxthtnew:
- case Hexagon::A2_paddit:
- case Hexagon::A2_paddif:
- case Hexagon::C2_ccombinewt:
- case Hexagon::C2_ccombinewf:
- return true;
+
+int HexagonInstrInfo::getCondOpcode(int Opc, bool invertPredicate) const {
+ enum Hexagon::PredSense inPredSense;
+ inPredSense = invertPredicate ? Hexagon::PredSense_false :
+ Hexagon::PredSense_true;
+ int CondOpcode = Hexagon::getPredOpcode(Opc, inPredSense);
+ if (CondOpcode >= 0) // Valid Conditional opcode/instruction
+ return CondOpcode;
+
+ // This switch case will be removed once all the instructions have been
+ // modified to use relation maps.
+ switch(Opc) {
+ case Hexagon::TFRI_f:
+ return !invertPredicate ? Hexagon::TFRI_cPt_f :
+ Hexagon::TFRI_cNotPt_f;
}
+
+ llvm_unreachable("Unexpected predicable instruction");
}
-bool HexagonInstrInfo::
-isConditionalLoad (const MachineInstr* MI) const {
- switch (MI->getOpcode())
- {
- default: return false;
- case Hexagon::L2_ploadrdt_io :
- case Hexagon::L2_ploadrdf_io:
- case Hexagon::L2_ploadrit_io:
- case Hexagon::L2_ploadrif_io:
- case Hexagon::L2_ploadrht_io:
- case Hexagon::L2_ploadrhf_io:
- case Hexagon::L2_ploadrbt_io:
- case Hexagon::L2_ploadrbf_io:
- case Hexagon::L2_ploadruht_io:
- case Hexagon::L2_ploadruhf_io:
- case Hexagon::L2_ploadrubt_io:
- case Hexagon::L2_ploadrubf_io:
- case Hexagon::L2_ploadrdt_pi:
- case Hexagon::L2_ploadrdf_pi:
- case Hexagon::L2_ploadrit_pi:
- case Hexagon::L2_ploadrif_pi:
- case Hexagon::L2_ploadrht_pi:
- case Hexagon::L2_ploadrhf_pi:
- case Hexagon::L2_ploadrbt_pi:
- case Hexagon::L2_ploadrbf_pi:
- case Hexagon::L2_ploadruht_pi:
- case Hexagon::L2_ploadruhf_pi:
- case Hexagon::L2_ploadrubt_pi:
- case Hexagon::L2_ploadrubf_pi:
- case Hexagon::L4_ploadrdt_rr:
- case Hexagon::L4_ploadrdf_rr:
- case Hexagon::L4_ploadrbt_rr:
- case Hexagon::L4_ploadrbf_rr:
- case Hexagon::L4_ploadrubt_rr:
- case Hexagon::L4_ploadrubf_rr:
- case Hexagon::L4_ploadrht_rr:
- case Hexagon::L4_ploadrhf_rr:
- case Hexagon::L4_ploadruht_rr:
- case Hexagon::L4_ploadruhf_rr:
- case Hexagon::L4_ploadrit_rr:
- case Hexagon::L4_ploadrif_rr:
- return true;
+
+// Return the cur value instruction for a given store.
+int HexagonInstrInfo::getDotCurOp(const MachineInstr* MI) const {
+ switch (MI->getOpcode()) {
+ default: llvm_unreachable("Unknown .cur type");
+ case Hexagon::V6_vL32b_pi:
+ return Hexagon::V6_vL32b_cur_pi;
+ case Hexagon::V6_vL32b_ai:
+ return Hexagon::V6_vL32b_cur_ai;
+ //128B
+ case Hexagon::V6_vL32b_pi_128B:
+ return Hexagon::V6_vL32b_cur_pi_128B;
+ case Hexagon::V6_vL32b_ai_128B:
+ return Hexagon::V6_vL32b_cur_ai_128B;
}
+ return 0;
}
-// Returns true if an instruction is a conditional store.
-//
-// Note: It doesn't include conditional new-value stores as they can't be
-// converted to .new predicate.
+
+
+// The diagram below shows the steps involved in the conversion of a predicated
+// store instruction to its .new predicated new-value form.
//
// p.new NV store [ if(p0.new)memw(R0+#0)=R2.new ]
// ^ ^
@@ -1524,8 +2998,6 @@ isConditionalLoad (const MachineInstr* MI) const {
// p.old store
// [if (p0)memw(R0+#0)=R2]
//
-// The above diagram shows the steps involoved in the conversion of a predicated
-// store instruction to its .new predicated new-value form.
//
// The following set of instructions further explains the scenario where
// conditional new-value store becomes invalid when promoted to .new predicate
@@ -1538,105 +3010,33 @@ isConditionalLoad (const MachineInstr* MI) const {
// the first two instructions because in instr 1, r0 is conditional on old value
// of p0 but its use in instr 3 is conditional on p0 modified by instr 2 which
// is not valid for new-value stores.
-bool HexagonInstrInfo::
-isConditionalStore (const MachineInstr* MI) const {
- switch (MI->getOpcode())
- {
- default: return false;
- case Hexagon::S4_storeirbt_io:
- case Hexagon::S4_storeirbf_io:
- case Hexagon::S4_pstorerbt_rr:
- case Hexagon::S4_pstorerbf_rr:
- case Hexagon::S2_pstorerbt_io:
- case Hexagon::S2_pstorerbf_io:
- case Hexagon::S2_pstorerbt_pi:
- case Hexagon::S2_pstorerbf_pi:
- case Hexagon::S2_pstorerdt_io:
- case Hexagon::S2_pstorerdf_io:
- case Hexagon::S4_pstorerdt_rr:
- case Hexagon::S4_pstorerdf_rr:
- case Hexagon::S2_pstorerdt_pi:
- case Hexagon::S2_pstorerdf_pi:
- case Hexagon::S2_pstorerht_io:
- case Hexagon::S2_pstorerhf_io:
- case Hexagon::S4_storeirht_io:
- case Hexagon::S4_storeirhf_io:
- case Hexagon::S4_pstorerht_rr:
- case Hexagon::S4_pstorerhf_rr:
- case Hexagon::S2_pstorerht_pi:
- case Hexagon::S2_pstorerhf_pi:
- case Hexagon::S2_pstorerit_io:
- case Hexagon::S2_pstorerif_io:
- case Hexagon::S4_storeirit_io:
- case Hexagon::S4_storeirif_io:
- case Hexagon::S4_pstorerit_rr:
- case Hexagon::S4_pstorerif_rr:
- case Hexagon::S2_pstorerit_pi:
- case Hexagon::S2_pstorerif_pi:
-
- // V4 global address store before promoting to dot new.
- case Hexagon::S4_pstorerdt_abs:
- case Hexagon::S4_pstorerdf_abs:
- case Hexagon::S4_pstorerbt_abs:
- case Hexagon::S4_pstorerbf_abs:
- case Hexagon::S4_pstorerht_abs:
- case Hexagon::S4_pstorerhf_abs:
- case Hexagon::S4_pstorerit_abs:
- case Hexagon::S4_pstorerif_abs:
- return true;
-
- // Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
- // from the "Conditional Store" list. Because a predicated new value store
- // would NOT be promoted to a double dot new store. See diagram below:
- // This function returns yes for those stores that are predicated but not
- // yet promoted to predicate dot new instructions.
- //
- // +---------------------+
- // /-----| if (p0) memw(..)=r0 |---------\~
- // || +---------------------+ ||
- // promote || /\ /\ || promote
- // || /||\ /||\ ||
- // \||/ demote || \||/
- // \/ || || \/
- // +-------------------------+ || +-------------------------+
- // | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
- // +-------------------------+ || +-------------------------+
- // || || ||
- // || demote \||/
- // promote || \/ NOT possible
- // || || /\~
- // \||/ || /||\~
- // \/ || ||
- // +-----------------------------+
- // | if (p0.new) memw(..)=r0.new |
- // +-----------------------------+
- // Double Dot New Store
- //
- }
-}
-
-
-bool HexagonInstrInfo::isNewValueJump(const MachineInstr *MI) const {
- if (isNewValue(MI) && isBranch(MI))
- return true;
- return false;
-}
-
-bool HexagonInstrInfo::isNewValueJump(Opcode_t Opcode) const {
- return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
-}
-
-bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
- return (getAddrMode(MI) == HexagonII::PostInc);
-}
-
-// Returns true, if any one of the operands is a dot new
-// insn, whether it is predicated dot new or register dot new.
-bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
- return (isNewValueInst(MI) ||
- (isPredicated(MI) && isPredicatedNew(MI)));
-}
-
+// Predicated new value stores (i.e. if (p0) memw(..)=r0.new) are excluded
+// from the "Conditional Store" list. Because a predicated new value store
+// would NOT be promoted to a double dot new store. See diagram below:
+// This function returns yes for those stores that are predicated but not
+// yet promoted to predicate dot new instructions.
+//
+// +---------------------+
+// /-----| if (p0) memw(..)=r0 |---------\~
+// || +---------------------+ ||
+// promote || /\ /\ || promote
+// || /||\ /||\ ||
+// \||/ demote || \||/
+// \/ || || \/
+// +-------------------------+ || +-------------------------+
+// | if (p0.new) memw(..)=r0 | || | if (p0) memw(..)=r0.new |
+// +-------------------------+ || +-------------------------+
+// || || ||
+// || demote \||/
+// promote || \/ NOT possible
+// || || /\~
+// \||/ || /||\~
+// \/ || ||
+// +-----------------------------+
+// | if (p0.new) memw(..)=r0.new |
+// +-----------------------------+
+// Double Dot New Store
+//
// Returns the most basic instruction for the .new predicated instructions and
// new-value stores.
// For example, all of the following instructions will be converted back to the
@@ -1645,24 +3045,23 @@ bool HexagonInstrInfo::isDotNewInst (const MachineInstr* MI) const {
// 2) if (p0) memw(R0+#0)= R1.new -------> if (p0) memw(R0+#0) = R1
// 3) if (p0.new) memw(R0+#0) = R1 --->
//
+// To understand the translation of instruction 1 to its original form, consider
+// a packet with 3 instructions.
+// { p0 = cmp.eq(R0,R1)
+// if (p0.new) R2 = add(R3, R4)
+// R5 = add (R3, R1)
+// }
+// if (p0) memw(R5+#0) = R2 <--- trying to include it in the previous packet
+//
+// This instruction can be part of the previous packet only if both p0 and R2
+// are promoted to .new values. This promotion happens in steps, first
+// predicate register is promoted to .new and in the next iteration R2 is
+// promoted. Therefore, in case of dependence check failure (due to R5) during
+// next iteration, it should be converted back to its most basic form.
-int HexagonInstrInfo::GetDotOldOp(const int opc) const {
- int NewOp = opc;
- if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
- NewOp = Hexagon::getPredOldOpcode(NewOp);
- assert(NewOp >= 0 &&
- "Couldn't change predicate new instruction to its old form.");
- }
-
- if (isNewValueStore(NewOp)) { // Convert into non-new-value format
- NewOp = Hexagon::getNonNVStore(NewOp);
- assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
- }
- return NewOp;
-}
// Return the new value instruction for a given store.
-int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
+int HexagonInstrInfo::getDotNewOp(const MachineInstr* MI) const {
int NVOpcode = Hexagon::getNewValueOpcode(MI->getOpcode());
if (NVOpcode >= 0) // Valid new-value store instruction.
return NVOpcode;
@@ -1672,12 +3071,6 @@ int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
case Hexagon::S4_storerb_ur:
return Hexagon::S4_storerbnew_ur;
- case Hexagon::S4_storerh_ur:
- return Hexagon::S4_storerhnew_ur;
-
- case Hexagon::S4_storeri_ur:
- return Hexagon::S4_storerinew_ur;
-
case Hexagon::S2_storerb_pci:
return Hexagon::S2_storerb_pci;
@@ -1692,203 +3085,496 @@ int HexagonInstrInfo::GetDotNewOp(const MachineInstr* MI) const {
case Hexagon::S2_storerf_pci:
return Hexagon::S2_storerf_pci;
+
+ case Hexagon::V6_vS32b_ai:
+ return Hexagon::V6_vS32b_new_ai;
+
+ case Hexagon::V6_vS32b_pi:
+ return Hexagon::V6_vS32b_new_pi;
+
+ // 128B
+ case Hexagon::V6_vS32b_ai_128B:
+ return Hexagon::V6_vS32b_new_ai_128B;
+
+ case Hexagon::V6_vS32b_pi_128B:
+ return Hexagon::V6_vS32b_new_pi_128B;
}
return 0;
}
-// Return .new predicate version for an instruction.
-int HexagonInstrInfo::GetDotNewPredOp(MachineInstr *MI,
- const MachineBranchProbabilityInfo
- *MBPI) const {
+// Returns the opcode to use when converting MI, which is a conditional jump,
+// into a conditional instruction which uses the .new value of the predicate.
+// We also use branch probabilities to add a hint to the jump.
+int HexagonInstrInfo::getDotNewPredJumpOp(const MachineInstr *MI,
+ const MachineBranchProbabilityInfo *MBPI) const {
+ // We assume that block can have at most two successors.
+ bool taken = false;
+ const MachineBasicBlock *Src = MI->getParent();
+ const MachineOperand *BrTarget = &MI->getOperand(1);
+ const MachineBasicBlock *Dst = BrTarget->getMBB();
+ const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
+ if (Prediction >= BranchProbability(1,2))
+ taken = true;
+
+ switch (MI->getOpcode()) {
+ case Hexagon::J2_jumpt:
+ return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
+ case Hexagon::J2_jumpf:
+ return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
+
+ default:
+ llvm_unreachable("Unexpected jump instruction.");
+ }
+}
+
+
+// Return .new predicate version for an instruction.
+int HexagonInstrInfo::getDotNewPredOp(const MachineInstr *MI,
+ const MachineBranchProbabilityInfo *MBPI) const {
int NewOpcode = Hexagon::getPredNewOpcode(MI->getOpcode());
if (NewOpcode >= 0) // Valid predicate new instruction
return NewOpcode;
switch (MI->getOpcode()) {
- default: llvm_unreachable("Unknown .new type");
// Condtional Jumps
case Hexagon::J2_jumpt:
case Hexagon::J2_jumpf:
return getDotNewPredJumpOp(MI, MBPI);
- case Hexagon::J2_jumprt:
- return Hexagon::J2_jumptnewpt;
-
- case Hexagon::J2_jumprf:
- return Hexagon::J2_jumprfnewpt;
-
- case Hexagon::JMPrett:
- return Hexagon::J2_jumprtnewpt;
-
- case Hexagon::JMPretf:
- return Hexagon::J2_jumprfnewpt;
-
-
- // Conditional combine
- case Hexagon::C2_ccombinewt:
- return Hexagon::C2_ccombinewnewt;
- case Hexagon::C2_ccombinewf:
- return Hexagon::C2_ccombinewnewf;
+ default:
+ assert(0 && "Unknown .new type");
}
+ return 0;
}
-unsigned HexagonInstrInfo::getAddrMode(const MachineInstr* MI) const {
- const uint64_t F = MI->getDesc().TSFlags;
+int HexagonInstrInfo::getDotOldOp(const int opc) const {
+ int NewOp = opc;
+ if (isPredicated(NewOp) && isPredicatedNew(NewOp)) { // Get predicate old form
+ NewOp = Hexagon::getPredOldOpcode(NewOp);
+ assert(NewOp >= 0 &&
+ "Couldn't change predicate new instruction to its old form.");
+ }
- return((F >> HexagonII::AddrModePos) & HexagonII::AddrModeMask);
+ if (isNewValueStore(NewOp)) { // Convert into non-new-value format
+ NewOp = Hexagon::getNonNVStore(NewOp);
+ assert(NewOp >= 0 && "Couldn't change new-value store to its old form.");
+ }
+ return NewOp;
}
-/// immediateExtend - Changes the instruction in place to one using an immediate
-/// extender.
-void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
- assert((isExtendable(MI)||isConstExtended(MI)) &&
- "Instruction must be extendable");
- // Find which operand is extendable.
- short ExtOpNum = getCExtOpNum(MI);
- MachineOperand &MO = MI->getOperand(ExtOpNum);
- // This needs to be something we understand.
- assert((MO.isMBB() || MO.isImm()) &&
- "Branch with unknown extendable field type");
- // Mark given operand as extended.
- MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
-}
-DFAPacketizer *HexagonInstrInfo::CreateTargetScheduleState(
- const TargetSubtargetInfo &STI) const {
- const InstrItineraryData *II = STI.getInstrItineraryData();
- return static_cast<const HexagonSubtarget &>(STI).createDFAPacketizer(II);
-}
-
-bool HexagonInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
- const MachineBasicBlock *MBB,
- const MachineFunction &MF) const {
- // Debug info is never a scheduling boundary. It's necessary to be explicit
- // due to the special treatment of IT instructions below, otherwise a
- // dbg_value followed by an IT will result in the IT instruction being
- // considered a scheduling hazard, which is wrong. It should be the actual
- // instruction preceding the dbg_value instruction(s), just like it is
- // when debug info is not present.
- if (MI->isDebugValue())
- return false;
+// See if instruction could potentially be a duplex candidate.
+// If so, return its group. Zero otherwise.
+HexagonII::SubInstructionGroup HexagonInstrInfo::getDuplexCandidateGroup(
+ const MachineInstr *MI) const {
+ unsigned DstReg, SrcReg, Src1Reg, Src2Reg;
+ auto &HRI = getRegisterInfo();
- // Terminators and labels can't be scheduled around.
- if (MI->getDesc().isTerminator() || MI->isPosition() || MI->isInlineAsm())
- return true;
+ switch (MI->getOpcode()) {
+ default:
+ return HexagonII::HSIG_None;
+ //
+ // Group L1:
+ //
+ // Rd = memw(Rs+#u4:2)
+ // Rd = memub(Rs+#u4:0)
+ case Hexagon::L2_loadri_io:
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ // Special case this one from Group L2.
+ // Rd = memw(r29+#u5:2)
+ if (isIntRegForSubInst(DstReg)) {
+ if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
+ HRI.getStackRegister() == SrcReg &&
+ MI->getOperand(2).isImm() &&
+ isShiftedUInt<5,2>(MI->getOperand(2).getImm()))
+ return HexagonII::HSIG_L2;
+ // Rd = memw(Rs+#u4:2)
+ if (isIntRegForSubInst(SrcReg) &&
+ (MI->getOperand(2).isImm() &&
+ isShiftedUInt<4,2>(MI->getOperand(2).getImm())))
+ return HexagonII::HSIG_L1;
+ }
+ break;
+ case Hexagon::L2_loadrub_io:
+ // Rd = memub(Rs+#u4:0)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
+ MI->getOperand(2).isImm() && isUInt<4>(MI->getOperand(2).getImm()))
+ return HexagonII::HSIG_L1;
+ break;
+ //
+ // Group L2:
+ //
+ // Rd = memh/memuh(Rs+#u3:1)
+ // Rd = memb(Rs+#u3:0)
+ // Rd = memw(r29+#u5:2) - Handled above.
+ // Rdd = memd(r29+#u5:3)
+ // deallocframe
+ // [if ([!]p0[.new])] dealloc_return
+ // [if ([!]p0[.new])] jumpr r31
+ case Hexagon::L2_loadrh_io:
+ case Hexagon::L2_loadruh_io:
+ // Rd = memh/memuh(Rs+#u3:1)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
+ MI->getOperand(2).isImm() &&
+ isShiftedUInt<3,1>(MI->getOperand(2).getImm()))
+ return HexagonII::HSIG_L2;
+ break;
+ case Hexagon::L2_loadrb_io:
+ // Rd = memb(Rs+#u3:0)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
+ MI->getOperand(2).isImm() &&
+ isUInt<3>(MI->getOperand(2).getImm()))
+ return HexagonII::HSIG_L2;
+ break;
+ case Hexagon::L2_loadrd_io:
+ // Rdd = memd(r29+#u5:3)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (isDblRegForSubInst(DstReg, HRI) &&
+ Hexagon::IntRegsRegClass.contains(SrcReg) &&
+ HRI.getStackRegister() == SrcReg &&
+ MI->getOperand(2).isImm() &&
+ isShiftedUInt<5,3>(MI->getOperand(2).getImm()))
+ return HexagonII::HSIG_L2;
+ break;
+ // dealloc_return is not documented in Hexagon Manual, but marked
+ // with A_SUBINSN attribute in iset_v4classic.py.
+ case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
+ case Hexagon::L4_return:
+ case Hexagon::L2_deallocframe:
+ return HexagonII::HSIG_L2;
+ case Hexagon::EH_RETURN_JMPR:
+ case Hexagon::JMPret :
+ // jumpr r31
+ // Actual form JMPR %PC<imp-def>, %R31<imp-use>, %R0<imp-use,internal>.
+ DstReg = MI->getOperand(0).getReg();
+ if (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg))
+ return HexagonII::HSIG_L2;
+ break;
+ case Hexagon::JMPrett:
+ case Hexagon::JMPretf:
+ case Hexagon::JMPrettnewpt:
+ case Hexagon::JMPretfnewpt :
+ case Hexagon::JMPrettnew :
+ case Hexagon::JMPretfnew :
+ DstReg = MI->getOperand(1).getReg();
+ SrcReg = MI->getOperand(0).getReg();
+ // [if ([!]p0[.new])] jumpr r31
+ if ((Hexagon::PredRegsRegClass.contains(SrcReg) &&
+ (Hexagon::P0 == SrcReg)) &&
+ (Hexagon::IntRegsRegClass.contains(DstReg) && (Hexagon::R31 == DstReg)))
+ return HexagonII::HSIG_L2;
+ break;
+ case Hexagon::L4_return_t :
+ case Hexagon::L4_return_f :
+ case Hexagon::L4_return_tnew_pnt :
+ case Hexagon::L4_return_fnew_pnt :
+ case Hexagon::L4_return_tnew_pt :
+ case Hexagon::L4_return_fnew_pt :
+ // [if ([!]p0[.new])] dealloc_return
+ SrcReg = MI->getOperand(0).getReg();
+ if (Hexagon::PredRegsRegClass.contains(SrcReg) && (Hexagon::P0 == SrcReg))
+ return HexagonII::HSIG_L2;
+ break;
+ //
+ // Group S1:
+ //
+ // memw(Rs+#u4:2) = Rt
+ // memb(Rs+#u4:0) = Rt
+ case Hexagon::S2_storeri_io:
+ // Special case this one from Group S2.
+ // memw(r29+#u5:2) = Rt
+ Src1Reg = MI->getOperand(0).getReg();
+ Src2Reg = MI->getOperand(2).getReg();
+ if (Hexagon::IntRegsRegClass.contains(Src1Reg) &&
+ isIntRegForSubInst(Src2Reg) &&
+ HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
+ isShiftedUInt<5,2>(MI->getOperand(1).getImm()))
+ return HexagonII::HSIG_S2;
+ // memw(Rs+#u4:2) = Rt
+ if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
+ MI->getOperand(1).isImm() &&
+ isShiftedUInt<4,2>(MI->getOperand(1).getImm()))
+ return HexagonII::HSIG_S1;
+ break;
+ case Hexagon::S2_storerb_io:
+ // memb(Rs+#u4:0) = Rt
+ Src1Reg = MI->getOperand(0).getReg();
+ Src2Reg = MI->getOperand(2).getReg();
+ if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
+ MI->getOperand(1).isImm() && isUInt<4>(MI->getOperand(1).getImm()))
+ return HexagonII::HSIG_S1;
+ break;
+ //
+ // Group S2:
+ //
+ // memh(Rs+#u3:1) = Rt
+ // memw(r29+#u5:2) = Rt
+ // memd(r29+#s6:3) = Rtt
+ // memw(Rs+#u4:2) = #U1
+ // memb(Rs+#u4) = #U1
+ // allocframe(#u5:3)
+ case Hexagon::S2_storerh_io:
+ // memh(Rs+#u3:1) = Rt
+ Src1Reg = MI->getOperand(0).getReg();
+ Src2Reg = MI->getOperand(2).getReg();
+ if (isIntRegForSubInst(Src1Reg) && isIntRegForSubInst(Src2Reg) &&
+ MI->getOperand(1).isImm() &&
+ isShiftedUInt<3,1>(MI->getOperand(1).getImm()))
+ return HexagonII::HSIG_S1;
+ break;
+ case Hexagon::S2_storerd_io:
+ // memd(r29+#s6:3) = Rtt
+ Src1Reg = MI->getOperand(0).getReg();
+ Src2Reg = MI->getOperand(2).getReg();
+ if (isDblRegForSubInst(Src2Reg, HRI) &&
+ Hexagon::IntRegsRegClass.contains(Src1Reg) &&
+ HRI.getStackRegister() == Src1Reg && MI->getOperand(1).isImm() &&
+ isShiftedInt<6,3>(MI->getOperand(1).getImm()))
+ return HexagonII::HSIG_S2;
+ break;
+ case Hexagon::S4_storeiri_io:
+ // memw(Rs+#u4:2) = #U1
+ Src1Reg = MI->getOperand(0).getReg();
+ if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
+ isShiftedUInt<4,2>(MI->getOperand(1).getImm()) &&
+ MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
+ return HexagonII::HSIG_S2;
+ break;
+ case Hexagon::S4_storeirb_io:
+ // memb(Rs+#u4) = #U1
+ Src1Reg = MI->getOperand(0).getReg();
+ if (isIntRegForSubInst(Src1Reg) && MI->getOperand(1).isImm() &&
+ isUInt<4>(MI->getOperand(1).getImm()) && MI->getOperand(2).isImm() &&
+ MI->getOperand(2).isImm() && isUInt<1>(MI->getOperand(2).getImm()))
+ return HexagonII::HSIG_S2;
+ break;
+ case Hexagon::S2_allocframe:
+ if (MI->getOperand(0).isImm() &&
+ isShiftedUInt<5,3>(MI->getOperand(0).getImm()))
+ return HexagonII::HSIG_S1;
+ break;
+ //
+ // Group A:
+ //
+ // Rx = add(Rx,#s7)
+ // Rd = Rs
+ // Rd = #u6
+ // Rd = #-1
+ // if ([!]P0[.new]) Rd = #0
+ // Rd = add(r29,#u6:2)
+ // Rx = add(Rx,Rs)
+ // P0 = cmp.eq(Rs,#u2)
+ // Rdd = combine(#0,Rs)
+ // Rdd = combine(Rs,#0)
+ // Rdd = combine(#u2,#U2)
+ // Rd = add(Rs,#1)
+ // Rd = add(Rs,#-1)
+ // Rd = sxth/sxtb/zxtb/zxth(Rs)
+ // Rd = and(Rs,#1)
+ case Hexagon::A2_addi:
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (isIntRegForSubInst(DstReg)) {
+ // Rd = add(r29,#u6:2)
+ if (Hexagon::IntRegsRegClass.contains(SrcReg) &&
+ HRI.getStackRegister() == SrcReg && MI->getOperand(2).isImm() &&
+ isShiftedUInt<6,2>(MI->getOperand(2).getImm()))
+ return HexagonII::HSIG_A;
+ // Rx = add(Rx,#s7)
+ if ((DstReg == SrcReg) && MI->getOperand(2).isImm() &&
+ isInt<7>(MI->getOperand(2).getImm()))
+ return HexagonII::HSIG_A;
+ // Rd = add(Rs,#1)
+ // Rd = add(Rs,#-1)
+ if (isIntRegForSubInst(SrcReg) && MI->getOperand(2).isImm() &&
+ ((MI->getOperand(2).getImm() == 1) ||
+ (MI->getOperand(2).getImm() == -1)))
+ return HexagonII::HSIG_A;
+ }
+ break;
+ case Hexagon::A2_add:
+ // Rx = add(Rx,Rs)
+ DstReg = MI->getOperand(0).getReg();
+ Src1Reg = MI->getOperand(1).getReg();
+ Src2Reg = MI->getOperand(2).getReg();
+ if (isIntRegForSubInst(DstReg) && (DstReg == Src1Reg) &&
+ isIntRegForSubInst(Src2Reg))
+ return HexagonII::HSIG_A;
+ break;
+ case Hexagon::A2_andir:
+ // Same as zxtb.
+ // Rd16=and(Rs16,#255)
+ // Rd16=and(Rs16,#1)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg) &&
+ MI->getOperand(2).isImm() &&
+ ((MI->getOperand(2).getImm() == 1) ||
+ (MI->getOperand(2).getImm() == 255)))
+ return HexagonII::HSIG_A;
+ break;
+ case Hexagon::A2_tfr:
+ // Rd = Rs
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
+ return HexagonII::HSIG_A;
+ break;
+ case Hexagon::A2_tfrsi:
+ // Rd = #u6
+ // Do not test for #u6 size since the const is getting extended
+ // regardless and compound could be formed.
+ // Rd = #-1
+ DstReg = MI->getOperand(0).getReg();
+ if (isIntRegForSubInst(DstReg))
+ return HexagonII::HSIG_A;
+ break;
+ case Hexagon::C2_cmoveit:
+ case Hexagon::C2_cmovenewit:
+ case Hexagon::C2_cmoveif:
+ case Hexagon::C2_cmovenewif:
+ // if ([!]P0[.new]) Rd = #0
+ // Actual form:
+ // %R16<def> = C2_cmovenewit %P0<internal>, 0, %R16<imp-use,undef>;
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (isIntRegForSubInst(DstReg) &&
+ Hexagon::PredRegsRegClass.contains(SrcReg) && Hexagon::P0 == SrcReg &&
+ MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0)
+ return HexagonII::HSIG_A;
+ break;
+ case Hexagon::C2_cmpeqi:
+ // P0 = cmp.eq(Rs,#u2)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (Hexagon::PredRegsRegClass.contains(DstReg) &&
+ Hexagon::P0 == DstReg && isIntRegForSubInst(SrcReg) &&
+ MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm()))
+ return HexagonII::HSIG_A;
+ break;
+ case Hexagon::A2_combineii:
+ case Hexagon::A4_combineii:
+ // Rdd = combine(#u2,#U2)
+ DstReg = MI->getOperand(0).getReg();
+ if (isDblRegForSubInst(DstReg, HRI) &&
+ ((MI->getOperand(1).isImm() && isUInt<2>(MI->getOperand(1).getImm())) ||
+ (MI->getOperand(1).isGlobal() &&
+ isUInt<2>(MI->getOperand(1).getOffset()))) &&
+ ((MI->getOperand(2).isImm() && isUInt<2>(MI->getOperand(2).getImm())) ||
+ (MI->getOperand(2).isGlobal() &&
+ isUInt<2>(MI->getOperand(2).getOffset()))))
+ return HexagonII::HSIG_A;
+ break;
+ case Hexagon::A4_combineri:
+ // Rdd = combine(Rs,#0)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
+ ((MI->getOperand(2).isImm() && MI->getOperand(2).getImm() == 0) ||
+ (MI->getOperand(2).isGlobal() && MI->getOperand(2).getOffset() == 0)))
+ return HexagonII::HSIG_A;
+ break;
+ case Hexagon::A4_combineir:
+ // Rdd = combine(#0,Rs)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(2).getReg();
+ if (isDblRegForSubInst(DstReg, HRI) && isIntRegForSubInst(SrcReg) &&
+ ((MI->getOperand(1).isImm() && MI->getOperand(1).getImm() == 0) ||
+ (MI->getOperand(1).isGlobal() && MI->getOperand(1).getOffset() == 0)))
+ return HexagonII::HSIG_A;
+ break;
+ case Hexagon::A2_sxtb:
+ case Hexagon::A2_sxth:
+ case Hexagon::A2_zxtb:
+ case Hexagon::A2_zxth:
+ // Rd = sxth/sxtb/zxtb/zxth(Rs)
+ DstReg = MI->getOperand(0).getReg();
+ SrcReg = MI->getOperand(1).getReg();
+ if (isIntRegForSubInst(DstReg) && isIntRegForSubInst(SrcReg))
+ return HexagonII::HSIG_A;
+ break;
+ }
- return false;
+ return HexagonII::HSIG_None;
}
-bool HexagonInstrInfo::isConstExtended(const MachineInstr *MI) const {
- const uint64_t F = MI->getDesc().TSFlags;
- unsigned isExtended = (F >> HexagonII::ExtendedPos) & HexagonII::ExtendedMask;
- if (isExtended) // Instruction must be extended.
- return true;
- unsigned isExtendable =
- (F >> HexagonII::ExtendablePos) & HexagonII::ExtendableMask;
- if (!isExtendable)
- return false;
-
- short ExtOpNum = getCExtOpNum(MI);
- const MachineOperand &MO = MI->getOperand(ExtOpNum);
- // Use MO operand flags to determine if MO
- // has the HMOTF_ConstExtended flag set.
- if (MO.getTargetFlags() && HexagonII::HMOTF_ConstExtended)
- return true;
- // If this is a Machine BB address we are talking about, and it is
- // not marked as extended, say so.
- if (MO.isMBB())
- return false;
-
- // We could be using an instruction with an extendable immediate and shoehorn
- // a global address into it. If it is a global address it will be constant
- // extended. We do this for COMBINE.
- // We currently only handle isGlobal() because it is the only kind of
- // object we are going to end up with here for now.
- // In the future we probably should add isSymbol(), etc.
- if (MO.isGlobal() || MO.isSymbol() || MO.isBlockAddress() ||
- MO.isJTI() || MO.isCPI())
- return true;
-
- // If the extendable operand is not 'Immediate' type, the instruction should
- // have 'isExtended' flag set.
- assert(MO.isImm() && "Extendable operand must be Immediate type");
+short HexagonInstrInfo::getEquivalentHWInstr(const MachineInstr *MI) const {
+ return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Real);
+}
- int MinValue = getMinValue(MI);
- int MaxValue = getMaxValue(MI);
- int ImmValue = MO.getImm();
- return (ImmValue < MinValue || ImmValue > MaxValue);
+// Return first non-debug instruction in the basic block.
+MachineInstr *HexagonInstrInfo::getFirstNonDbgInst(MachineBasicBlock *BB)
+ const {
+ for (auto MII = BB->instr_begin(), End = BB->instr_end(); MII != End; MII++) {
+ MachineInstr *MI = &*MII;
+ if (MI->isDebugValue())
+ continue;
+ return MI;
+ }
+ return nullptr;
}
-// Return the number of bytes required to encode the instruction.
-// Hexagon instructions are fixed length, 4 bytes, unless they
-// use a constant extender, which requires another 4 bytes.
-// For debug instructions and prolog labels, return 0.
-unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
- if (MI->isDebugValue() || MI->isPosition())
- return 0;
+unsigned HexagonInstrInfo::getInstrTimingClassLatency(
+ const InstrItineraryData *ItinData, const MachineInstr *MI) const {
+ // Default to one cycle for no itinerary. However, an "empty" itinerary may
+ // still have a MinLatency property, which getStageLatency checks.
+ if (!ItinData)
+ return getInstrLatency(ItinData, MI);
- unsigned Size = MI->getDesc().getSize();
- if (!Size)
- // Assume the default insn size in case it cannot be determined
- // for whatever reason.
- Size = HEXAGON_INSTR_SIZE;
-
- if (isConstExtended(MI) || isExtended(MI))
- Size += HEXAGON_INSTR_SIZE;
-
- return Size;
+ // Get the latency embedded in the itinerary. If we're not using timing class
+ // latencies or if we using BSB scheduling, then restrict the maximum latency
+ // to 1 (that is, either 0 or 1).
+ if (MI->isTransient())
+ return 0;
+ unsigned Latency = ItinData->getStageLatency(MI->getDesc().getSchedClass());
+ if (!EnableTimingClassLatency ||
+ MI->getParent()->getParent()->getSubtarget<HexagonSubtarget>().
+ useBSBScheduling())
+ if (Latency > 1)
+ Latency = 1;
+ return Latency;
}
-// Returns the opcode to use when converting MI, which is a conditional jump,
-// into a conditional instruction which uses the .new value of the predicate.
-// We also use branch probabilities to add a hint to the jump.
-int
-HexagonInstrInfo::getDotNewPredJumpOp(MachineInstr *MI,
- const
- MachineBranchProbabilityInfo *MBPI) const {
-
- // We assume that block can have at most two successors.
- bool taken = false;
- MachineBasicBlock *Src = MI->getParent();
- MachineOperand *BrTarget = &MI->getOperand(1);
- MachineBasicBlock *Dst = BrTarget->getMBB();
- const BranchProbability Prediction = MBPI->getEdgeProbability(Src, Dst);
- if (Prediction >= BranchProbability(1,2))
- taken = true;
+// inverts the predication logic.
+// p -> NotP
+// NotP -> P
+bool HexagonInstrInfo::getInvertedPredSense(
+ SmallVectorImpl<MachineOperand> &Cond) const {
+ if (Cond.empty())
+ return false;
+ unsigned Opc = getInvertedPredicatedOpcode(Cond[0].getImm());
+ Cond[0].setImm(Opc);
+ return true;
+}
- switch (MI->getOpcode()) {
- case Hexagon::J2_jumpt:
- return taken ? Hexagon::J2_jumptnewpt : Hexagon::J2_jumptnew;
- case Hexagon::J2_jumpf:
- return taken ? Hexagon::J2_jumpfnewpt : Hexagon::J2_jumpfnew;
- default:
- llvm_unreachable("Unexpected jump instruction.");
- }
-}
-// Returns true if a particular operand is extendable for an instruction.
-bool HexagonInstrInfo::isOperandExtended(const MachineInstr *MI,
- unsigned short OperandNum) const {
- const uint64_t F = MI->getDesc().TSFlags;
+unsigned HexagonInstrInfo::getInvertedPredicatedOpcode(const int Opc) const {
+ int InvPredOpcode;
+ InvPredOpcode = isPredicatedTrue(Opc) ? Hexagon::getFalsePredOpcode(Opc)
+ : Hexagon::getTruePredOpcode(Opc);
+ if (InvPredOpcode >= 0) // Valid instruction with the inverted predicate.
+ return InvPredOpcode;
- return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask)
- == OperandNum;
+ llvm_unreachable("Unexpected predicated instruction");
}
-// Returns Operand Index for the constant extended instruction.
-unsigned short HexagonInstrInfo::getCExtOpNum(const MachineInstr *MI) const {
- const uint64_t F = MI->getDesc().TSFlags;
- return ((F >> HexagonII::ExtendableOpPos) & HexagonII::ExtendableOpMask);
-}
-// Returns the min value that doesn't need to be extended.
-int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
+// Returns the max value that doesn't need to be extended.
+int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
& HexagonII::ExtentSignedMask;
@@ -1896,13 +3582,20 @@ int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
& HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
- return -1U << (bits - 1);
+ return ~(-1U << (bits - 1));
else
- return 0;
+ return ~(-1U << bits);
}
-// Returns the max value that doesn't need to be extended.
-int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
+
+unsigned HexagonInstrInfo::getMemAccessSize(const MachineInstr* MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return (F >> HexagonII::MemAccessSizePos) & HexagonII::MemAccesSizeMask;
+}
+
+
+// Returns the min value that doesn't need to be extended.
+int HexagonInstrInfo::getMinValue(const MachineInstr *MI) const {
const uint64_t F = MI->getDesc().TSFlags;
unsigned isSigned = (F >> HexagonII::ExtentSignedPos)
& HexagonII::ExtentSignedMask;
@@ -1910,49 +3603,14 @@ int HexagonInstrInfo::getMaxValue(const MachineInstr *MI) const {
& HexagonII::ExtentBitsMask;
if (isSigned) // if value is signed
- return ~(-1U << (bits - 1));
+ return -1U << (bits - 1);
else
- return ~(-1U << bits);
+ return 0;
}
-// Returns true if an instruction can be converted into a non-extended
-// equivalent instruction.
-bool HexagonInstrInfo::NonExtEquivalentExists (const MachineInstr *MI) const {
-
- short NonExtOpcode;
- // Check if the instruction has a register form that uses register in place
- // of the extended operand, if so return that as the non-extended form.
- if (Hexagon::getRegForm(MI->getOpcode()) >= 0)
- return true;
-
- if (MI->getDesc().mayLoad() || MI->getDesc().mayStore()) {
- // Check addressing mode and retrieve non-ext equivalent instruction.
-
- switch (getAddrMode(MI)) {
- case HexagonII::Absolute :
- // Load/store with absolute addressing mode can be converted into
- // base+offset mode.
- NonExtOpcode = Hexagon::getBasedWithImmOffset(MI->getOpcode());
- break;
- case HexagonII::BaseImmOffset :
- // Load/store with base+offset addressing mode can be converted into
- // base+register offset addressing mode. However left shift operand should
- // be set to 0.
- NonExtOpcode = Hexagon::getBaseWithRegOffset(MI->getOpcode());
- break;
- default:
- return false;
- }
- if (NonExtOpcode < 0)
- return false;
- return true;
- }
- return false;
-}
// Returns opcode of the non-extended equivalent instruction.
-short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
-
+short HexagonInstrInfo::getNonExtOpcode(const MachineInstr *MI) const {
// Check if the instruction has a register form that uses register in place
// of the extended operand, if so return that as the non-extended form.
short NonExtOpcode = Hexagon::getRegForm(MI->getOpcode());
@@ -1963,9 +3621,12 @@ short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
// Check addressing mode and retrieve non-ext equivalent instruction.
switch (getAddrMode(MI)) {
case HexagonII::Absolute :
- return Hexagon::getBasedWithImmOffset(MI->getOpcode());
+ return Hexagon::getBaseWithImmOffset(MI->getOpcode());
case HexagonII::BaseImmOffset :
return Hexagon::getBaseWithRegOffset(MI->getOpcode());
+ case HexagonII::BaseLongOffset:
+ return Hexagon::getRegShlForm(MI->getOpcode());
+
default:
return -1;
}
@@ -1973,29 +3634,9 @@ short HexagonInstrInfo::getNonExtOpcode (const MachineInstr *MI) const {
return -1;
}
-bool HexagonInstrInfo::PredOpcodeHasJMP_c(Opcode_t Opcode) const {
- return (Opcode == Hexagon::J2_jumpt) ||
- (Opcode == Hexagon::J2_jumpf) ||
- (Opcode == Hexagon::J2_jumptnewpt) ||
- (Opcode == Hexagon::J2_jumpfnewpt) ||
- (Opcode == Hexagon::J2_jumpt) ||
- (Opcode == Hexagon::J2_jumpf);
-}
-
-bool HexagonInstrInfo::predOpcodeHasNot(ArrayRef<MachineOperand> Cond) const {
- if (Cond.empty() || !isPredicated(Cond[0].getImm()))
- return false;
- return !isPredicatedTrue(Cond[0].getImm());
-}
-
-bool HexagonInstrInfo::isEndLoopN(Opcode_t Opcode) const {
- return (Opcode == Hexagon::ENDLOOP0 ||
- Opcode == Hexagon::ENDLOOP1);
-}
bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
- unsigned &PredReg, unsigned &PredRegPos,
- unsigned &PredRegFlags) const {
+ unsigned &PredReg, unsigned &PredRegPos, unsigned &PredRegFlags) const {
if (Cond.empty())
return false;
assert(Cond.size() == 2);
@@ -2014,3 +3655,174 @@ bool HexagonInstrInfo::getPredReg(ArrayRef<MachineOperand> Cond,
return true;
}
+
+short HexagonInstrInfo::getPseudoInstrPair(const MachineInstr *MI) const {
+ return Hexagon::getRealHWInstr(MI->getOpcode(), Hexagon::InstrType_Pseudo);
+}
+
+
+short HexagonInstrInfo::getRegForm(const MachineInstr *MI) const {
+ return Hexagon::getRegForm(MI->getOpcode());
+}
+
+
+// Return the number of bytes required to encode the instruction.
+// Hexagon instructions are fixed length, 4 bytes, unless they
+// use a constant extender, which requires another 4 bytes.
+// For debug instructions and prolog labels, return 0.
+unsigned HexagonInstrInfo::getSize(const MachineInstr *MI) const {
+ if (MI->isDebugValue() || MI->isPosition())
+ return 0;
+
+ unsigned Size = MI->getDesc().getSize();
+ if (!Size)
+ // Assume the default insn size in case it cannot be determined
+ // for whatever reason.
+ Size = HEXAGON_INSTR_SIZE;
+
+ if (isConstExtended(MI) || isExtended(MI))
+ Size += HEXAGON_INSTR_SIZE;
+
+ // Try and compute number of instructions in asm.
+ if (BranchRelaxAsmLarge && MI->getOpcode() == Hexagon::INLINEASM) {
+ const MachineBasicBlock &MBB = *MI->getParent();
+ const MachineFunction *MF = MBB.getParent();
+ const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
+
+ // Count the number of register definitions to find the asm string.
+ unsigned NumDefs = 0;
+ for (; MI->getOperand(NumDefs).isReg() && MI->getOperand(NumDefs).isDef();
+ ++NumDefs)
+ assert(NumDefs != MI->getNumOperands()-2 && "No asm string?");
+
+ assert(MI->getOperand(NumDefs).isSymbol() && "No asm string?");
+ // Disassemble the AsmStr and approximate number of instructions.
+ const char *AsmStr = MI->getOperand(NumDefs).getSymbolName();
+ Size = getInlineAsmLength(AsmStr, *MAI);
+ }
+
+ return Size;
+}
+
+
+uint64_t HexagonInstrInfo::getType(const MachineInstr* MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return (F >> HexagonII::TypePos) & HexagonII::TypeMask;
+}
+
+
+unsigned HexagonInstrInfo::getUnits(const MachineInstr* MI) const {
+ const TargetSubtargetInfo &ST = MI->getParent()->getParent()->getSubtarget();
+ const InstrItineraryData &II = *ST.getInstrItineraryData();
+ const InstrStage &IS = *II.beginStage(MI->getDesc().getSchedClass());
+
+ return IS.getUnits();
+}
+
+
+unsigned HexagonInstrInfo::getValidSubTargets(const unsigned Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+ return (F >> HexagonII::validSubTargetPos) & HexagonII::validSubTargetMask;
+}
+
+
+// Calculate size of the basic block without debug instructions.
+unsigned HexagonInstrInfo::nonDbgBBSize(const MachineBasicBlock *BB) const {
+ return nonDbgMICount(BB->instr_begin(), BB->instr_end());
+}
+
+
+unsigned HexagonInstrInfo::nonDbgBundleSize(
+ MachineBasicBlock::const_iterator BundleHead) const {
+ assert(BundleHead->isBundle() && "Not a bundle header");
+ auto MII = BundleHead.getInstrIterator();
+ // Skip the bundle header.
+ return nonDbgMICount(++MII, getBundleEnd(BundleHead));
+}
+
+
+/// immediateExtend - Changes the instruction in place to one using an immediate
+/// extender.
+void HexagonInstrInfo::immediateExtend(MachineInstr *MI) const {
+ assert((isExtendable(MI)||isConstExtended(MI)) &&
+ "Instruction must be extendable");
+ // Find which operand is extendable.
+ short ExtOpNum = getCExtOpNum(MI);
+ MachineOperand &MO = MI->getOperand(ExtOpNum);
+ // This needs to be something we understand.
+ assert((MO.isMBB() || MO.isImm()) &&
+ "Branch with unknown extendable field type");
+ // Mark given operand as extended.
+ MO.addTargetFlag(HexagonII::HMOTF_ConstExtended);
+}
+
+
+bool HexagonInstrInfo::invertAndChangeJumpTarget(
+ MachineInstr* MI, MachineBasicBlock* NewTarget) const {
+ DEBUG(dbgs() << "\n[invertAndChangeJumpTarget] to BB#"
+ << NewTarget->getNumber(); MI->dump(););
+ assert(MI->isBranch());
+ unsigned NewOpcode = getInvertedPredicatedOpcode(MI->getOpcode());
+ int TargetPos = MI->getNumOperands() - 1;
+ // In general branch target is the last operand,
+ // but some implicit defs added at the end might change it.
+ while ((TargetPos > -1) && !MI->getOperand(TargetPos).isMBB())
+ --TargetPos;
+ assert((TargetPos >= 0) && MI->getOperand(TargetPos).isMBB());
+ MI->getOperand(TargetPos).setMBB(NewTarget);
+ if (EnableBranchPrediction && isPredicatedNew(MI)) {
+ NewOpcode = reversePrediction(NewOpcode);
+ }
+ MI->setDesc(get(NewOpcode));
+ return true;
+}
+
+
+void HexagonInstrInfo::genAllInsnTimingClasses(MachineFunction &MF) const {
+ /* +++ The code below is used to generate complete set of Hexagon Insn +++ */
+ MachineFunction::iterator A = MF.begin();
+ MachineBasicBlock &B = *A;
+ MachineBasicBlock::iterator I = B.begin();
+ MachineInstr *MI = &*I;
+ DebugLoc DL = MI->getDebugLoc();
+ MachineInstr *NewMI;
+
+ for (unsigned insn = TargetOpcode::GENERIC_OP_END+1;
+ insn < Hexagon::INSTRUCTION_LIST_END; ++insn) {
+ NewMI = BuildMI(B, MI, DL, get(insn));
+ DEBUG(dbgs() << "\n" << getName(NewMI->getOpcode()) <<
+ " Class: " << NewMI->getDesc().getSchedClass());
+ NewMI->eraseFromParent();
+ }
+ /* --- The code above is used to generate complete set of Hexagon Insn --- */
+}
+
+
+// inverts the predication logic.
+// p -> NotP
+// NotP -> P
+bool HexagonInstrInfo::reversePredSense(MachineInstr* MI) const {
+ DEBUG(dbgs() << "\nTrying to reverse pred. sense of:"; MI->dump());
+ MI->setDesc(get(getInvertedPredicatedOpcode(MI->getOpcode())));
+ return true;
+}
+
+
+// Reverse the branch prediction.
+unsigned HexagonInstrInfo::reversePrediction(unsigned Opcode) const {
+ int PredRevOpcode = -1;
+ if (isPredictedTaken(Opcode))
+ PredRevOpcode = Hexagon::notTakenBranchPrediction(Opcode);
+ else
+ PredRevOpcode = Hexagon::takenBranchPrediction(Opcode);
+ assert(PredRevOpcode > 0);
+ return PredRevOpcode;
+}
+
+
+// TODO: Add more rigorous validation.
+bool HexagonInstrInfo::validateBranchCond(const ArrayRef<MachineOperand> &Cond)
+ const {
+ return Cond.empty() || (Cond[0].isImm() && (Cond.size() != 1));
+}
+