aboutsummaryrefslogblamecommitdiff
path: root/sys/pci/if_ax.c
blob: affe5f83ef1fe2ef1f2695d917120c9cea7f2aff (plain) (tree)
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197






























                                                                             
                                                          


   
                                                          




















































                                                                       
                                                             







                                                          

                                              























































































































































































































































































































































































































































































































































































































































































































































































































































































































































































                                                                                
                                    





                                                                



                                                                            
























































































                                                                               
               
                                        



                                         









                                                                         
               
                                         



                                          

























































                                                                    
                                                    




































































































































                                                                           
                                                                      









































































                                                                             


                                                   























                                                                         












































                                                                                                                   










                                                                   






                                                                           







                                                                        
                 
      


                                                    













































































































































































































































































                                                                                


                                                       
                                                      


























































































































































































































































































































































































                                                                               
                                                











                                                                     
                                                




























                                                              
                                 
/*
 * Copyright (c) 1997, 1998, 1999
 *	Bill Paul <wpaul@ctr.columbia.edu>.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by Bill Paul.
 * 4. Neither the name of the author nor the names of any co-contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD
 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 *
 *	$Id: if_ax.c,v 1.8 1999/04/24 20:13:59 peter Exp $
 */

/*
 * ASIX AX88140A and AX88141 fast ethernet PCI NIC driver.
 *
 * Written by Bill Paul <wpaul@ctr.columbia.edu>
 * Electrical Engineering Department
 * Columbia University, New York City
 */

/*
 * The ASIX Electronics AX88140A is still another DEC 21x4x clone. It's
 * a reasonably close copy of the tulip, except for the receiver filter
 * programming. Where the DEC chip has a special setup frame that
 * needs to be downloaded into the transmit DMA engine, the ASIX chip
 * has a less complicated setup frame which is written into one of
 * the registers.
 */

#include "bpfilter.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>

#include <net/if.h>
#include <net/if_arp.h>
#include <net/ethernet.h>
#include <net/if_dl.h>
#include <net/if_media.h>

#if NBPFILTER > 0
#include <net/bpf.h>
#endif

#include <vm/vm.h>              /* for vtophys */
#include <vm/pmap.h>            /* for vtophys */
#include <machine/clock.h>      /* for DELAY */
#include <machine/bus_pio.h>
#include <machine/bus_memio.h>
#include <machine/bus.h>

#include <pci/pcireg.h>
#include <pci/pcivar.h>

#define AX_USEIOSPACE

/* #define AX_BACKGROUND_AUTONEG */

#include <pci/if_axreg.h>

#ifndef lint
static const char rcsid[] =
	"$Id: if_ax.c,v 1.8 1999/04/24 20:13:59 peter Exp $";
#endif

/*
 * Various supported device vendors/types and their names.
 */
static struct ax_type ax_devs[] = {
	{ AX_VENDORID, AX_DEVICEID_AX88140A,
		"ASIX AX88140A 10/100BaseTX" },
	{ AX_VENDORID, AX_DEVICEID_AX88140A,
		"ASIX AX88141 10/100BaseTX" },
	{ 0, 0, NULL }
};

/*
 * Various supported PHY vendors/types and their names. Note that
 * this driver will work with pretty much any MII-compliant PHY,
 * so failure to positively identify the chip is not a fatal error.
 */

static struct ax_type ax_phys[] = {
	{ TI_PHY_VENDORID, TI_PHY_10BT, "<TI ThunderLAN 10BT (internal)>" },
	{ TI_PHY_VENDORID, TI_PHY_100VGPMI, "<TI TNETE211 100VG Any-LAN>" },
	{ NS_PHY_VENDORID, NS_PHY_83840A, "<National Semiconductor DP83840A>"},
	{ LEVEL1_PHY_VENDORID, LEVEL1_PHY_LXT970, "<Level 1 LXT970>" }, 
	{ INTEL_PHY_VENDORID, INTEL_PHY_82555, "<Intel 82555>" },
	{ SEEQ_PHY_VENDORID, SEEQ_PHY_80220, "<SEEQ 80220>" },
	{ 0, 0, "<MII-compliant physical interface>" }
};

static unsigned long ax_count = 0;
static const char *ax_probe	__P((pcici_t, pcidi_t));
static void ax_attach		__P((pcici_t, int));

static int ax_newbuf		__P((struct ax_softc *,
						struct ax_chain_onefrag *));
static int ax_encap		__P((struct ax_softc *, struct ax_chain *,
						struct mbuf *));

static void ax_rxeof		__P((struct ax_softc *));
static void ax_rxeoc		__P((struct ax_softc *));
static void ax_txeof		__P((struct ax_softc *));
static void ax_txeoc		__P((struct ax_softc *));
static void ax_intr		__P((void *));
static void ax_start		__P((struct ifnet *));
static int ax_ioctl		__P((struct ifnet *, u_long, caddr_t));
static void ax_init		__P((void *));
static void ax_stop		__P((struct ax_softc *));
static void ax_watchdog		__P((struct ifnet *));
static void ax_shutdown		__P((int, void *));
static int ax_ifmedia_upd	__P((struct ifnet *));
static void ax_ifmedia_sts	__P((struct ifnet *, struct ifmediareq *));

static void ax_delay		__P((struct ax_softc *));
static void ax_eeprom_idle	__P((struct ax_softc *));
static void ax_eeprom_putbyte	__P((struct ax_softc *, int));
static void ax_eeprom_getword	__P((struct ax_softc *, int, u_int16_t *));
static void ax_read_eeprom	__P((struct ax_softc *, caddr_t, int,
							int, int));

static void ax_mii_writebit	__P((struct ax_softc *, int));
static int ax_mii_readbit	__P((struct ax_softc *));
static void ax_mii_sync		__P((struct ax_softc *));
static void ax_mii_send		__P((struct ax_softc *, u_int32_t, int));
static int ax_mii_readreg	__P((struct ax_softc *, struct ax_mii_frame *));
static int ax_mii_writereg	__P((struct ax_softc *, struct ax_mii_frame *));
static u_int16_t ax_phy_readreg	__P((struct ax_softc *, int));
static void ax_phy_writereg	__P((struct ax_softc *, int, int));

static void ax_autoneg_xmit	__P((struct ax_softc *));
static void ax_autoneg_mii	__P((struct ax_softc *, int, int));
static void ax_setmode_mii	__P((struct ax_softc *, int));
static void ax_setmode		__P((struct ax_softc *, int, int));
static void ax_getmode_mii	__P((struct ax_softc *));
static void ax_setcfg		__P((struct ax_softc *, int));
static u_int32_t ax_calchash	__P((caddr_t));
static void ax_setmulti		__P((struct ax_softc *));
static void ax_reset		__P((struct ax_softc *));
static int ax_list_rx_init	__P((struct ax_softc *));
static int ax_list_tx_init	__P((struct ax_softc *));

#define AX_SETBIT(sc, reg, x)				\
	CSR_WRITE_4(sc, reg,				\
		CSR_READ_4(sc, reg) | x)

#define AX_CLRBIT(sc, reg, x)				\
	CSR_WRITE_4(sc, reg,				\
		CSR_READ_4(sc, reg) & ~x)

#define SIO_SET(x)					\
	CSR_WRITE_4(sc, AX_SIO,				\
		CSR_READ_4(sc, AX_SIO) | x)

#define SIO_CLR(x)					\
	CSR_WRITE_4(sc, AX_SIO,				\
		CSR_READ_4(sc, AX_SIO) & ~x)

static void ax_delay(sc)
	struct ax_softc		*sc;
{
	int			idx;

	for (idx = (300 / 33) + 1; idx > 0; idx--)
		CSR_READ_4(sc, AX_BUSCTL);
}

static void ax_eeprom_idle(sc)
	struct ax_softc		*sc;
{
	register int		i;

	CSR_WRITE_4(sc, AX_SIO, AX_SIO_EESEL);
	ax_delay(sc);
	AX_SETBIT(sc, AX_SIO,  AX_SIO_ROMCTL_READ);
	ax_delay(sc);
	AX_SETBIT(sc, AX_SIO, AX_SIO_EE_CS);
	ax_delay(sc);
	AX_SETBIT(sc, AX_SIO, AX_SIO_EE_CLK);
	ax_delay(sc);

	for (i = 0; i < 25; i++) {
		AX_CLRBIT(sc, AX_SIO, AX_SIO_EE_CLK);
		ax_delay(sc);
		AX_SETBIT(sc, AX_SIO, AX_SIO_EE_CLK);
		ax_delay(sc);
	}

	AX_CLRBIT(sc, AX_SIO, AX_SIO_EE_CLK);
	ax_delay(sc);
	AX_CLRBIT(sc, AX_SIO, AX_SIO_EE_CS);
	ax_delay(sc);
	CSR_WRITE_4(sc, AX_SIO, 0x00000000);

	return;
}

/*
 * Send a read command and address to the EEPROM, check for ACK.
 */
static void ax_eeprom_putbyte(sc, addr)
	struct ax_softc		*sc;
	int			addr;
{
	register int		d, i;

	d = addr | AX_EECMD_READ;

	/*
	 * Feed in each bit and stobe the clock.
	 */
	for (i = 0x400; i; i >>= 1) {
		if (d & i) {
			SIO_SET(AX_SIO_EE_DATAIN);
		} else {
			SIO_CLR(AX_SIO_EE_DATAIN);
		}
		ax_delay(sc);
		SIO_SET(AX_SIO_EE_CLK);
		ax_delay(sc);
		SIO_CLR(AX_SIO_EE_CLK);
		ax_delay(sc);
	}

	return;
}

/*
 * Read a word of data stored in the EEPROM at address 'addr.'
 */
static void ax_eeprom_getword(sc, addr, dest)
	struct ax_softc		*sc;
	int			addr;
	u_int16_t		*dest;
{
	register int		i;
	u_int16_t		word = 0;

	/* Force EEPROM to idle state. */
	ax_eeprom_idle(sc);

	/* Enter EEPROM access mode. */
	CSR_WRITE_4(sc, AX_SIO, AX_SIO_EESEL);
	ax_delay(sc);
	AX_SETBIT(sc, AX_SIO,  AX_SIO_ROMCTL_READ);
	ax_delay(sc);
	AX_SETBIT(sc, AX_SIO, AX_SIO_EE_CS);
	ax_delay(sc);
	AX_SETBIT(sc, AX_SIO, AX_SIO_EE_CLK);
	ax_delay(sc);

	/*
	 * Send address of word we want to read.
	 */
	ax_eeprom_putbyte(sc, addr);

	/*
	 * Start reading bits from EEPROM.
	 */
	for (i = 0x8000; i; i >>= 1) {
		SIO_SET(AX_SIO_EE_CLK);
		ax_delay(sc);
		if (CSR_READ_4(sc, AX_SIO) & AX_SIO_EE_DATAOUT)
			word |= i;
		ax_delay(sc);
		SIO_CLR(AX_SIO_EE_CLK);
		ax_delay(sc);
	}

	/* Turn off EEPROM access mode. */
	ax_eeprom_idle(sc);

	*dest = word;

	return;
}

/*
 * Read a sequence of words from the EEPROM.
 */
static void ax_read_eeprom(sc, dest, off, cnt, swap)
	struct ax_softc		*sc;
	caddr_t			dest;
	int			off;
	int			cnt;
	int			swap;
{
	int			i;
	u_int16_t		word = 0, *ptr;

	for (i = 0; i < cnt; i++) {
		ax_eeprom_getword(sc, off + i, &word);
		ptr = (u_int16_t *)(dest + (i * 2));
		if (swap)
			*ptr = ntohs(word);
		else
			*ptr = word;
	}

	return;
}

/*
 * Write a bit to the MII bus.
 */
static void ax_mii_writebit(sc, bit)
	struct ax_softc		*sc;
	int			bit;
{
	if (bit)
		CSR_WRITE_4(sc, AX_SIO, AX_SIO_ROMCTL_WRITE|AX_SIO_MII_DATAOUT);
	else
		CSR_WRITE_4(sc, AX_SIO, AX_SIO_ROMCTL_WRITE);

	AX_SETBIT(sc, AX_SIO, AX_SIO_MII_CLK);
	AX_CLRBIT(sc, AX_SIO, AX_SIO_MII_CLK);

	return;
}

/*
 * Read a bit from the MII bus.
 */
static int ax_mii_readbit(sc)
	struct ax_softc		*sc;
{
	CSR_WRITE_4(sc, AX_SIO, AX_SIO_ROMCTL_READ|AX_SIO_MII_DIR);
	CSR_READ_4(sc, AX_SIO);
	AX_SETBIT(sc, AX_SIO, AX_SIO_MII_CLK);
	AX_CLRBIT(sc, AX_SIO, AX_SIO_MII_CLK);
	if (CSR_READ_4(sc, AX_SIO) & AX_SIO_MII_DATAIN)
		return(1);

	return(0);
}

/*
 * Sync the PHYs by setting data bit and strobing the clock 32 times.
 */
static void ax_mii_sync(sc)
	struct ax_softc		*sc;
{
	register int		i;

	CSR_WRITE_4(sc, AX_SIO, AX_SIO_ROMCTL_WRITE);

	for (i = 0; i < 32; i++)
		ax_mii_writebit(sc, 1);

	return;
}

/*
 * Clock a series of bits through the MII.
 */
static void ax_mii_send(sc, bits, cnt)
	struct ax_softc		*sc;
	u_int32_t		bits;
	int			cnt;
{
	int			i;

	for (i = (0x1 << (cnt - 1)); i; i >>= 1)
		ax_mii_writebit(sc, bits & i);
}

/*
 * Read an PHY register through the MII.
 */
static int ax_mii_readreg(sc, frame)
	struct ax_softc		*sc;
	struct ax_mii_frame	*frame;
	
{
	int			i, ack, s;

	s = splimp();

	/*
	 * Set up frame for RX.
	 */
	frame->mii_stdelim = AX_MII_STARTDELIM;
	frame->mii_opcode = AX_MII_READOP;
	frame->mii_turnaround = 0;
	frame->mii_data = 0;
	
	/*
	 * Sync the PHYs.
	 */
	ax_mii_sync(sc);

	/*
	 * Send command/address info.
	 */
	ax_mii_send(sc, frame->mii_stdelim, 2);
	ax_mii_send(sc, frame->mii_opcode, 2);
	ax_mii_send(sc, frame->mii_phyaddr, 5);
	ax_mii_send(sc, frame->mii_regaddr, 5);

#ifdef notdef
	/* Idle bit */
	ax_mii_writebit(sc, 1);
	ax_mii_writebit(sc, 0);
#endif

	/* Check for ack */
	ack = ax_mii_readbit(sc);

	/*
	 * Now try reading data bits. If the ack failed, we still
	 * need to clock through 16 cycles to keep the PHY(s) in sync.
	 */
	if (ack) {
		for(i = 0; i < 16; i++) {
			ax_mii_readbit(sc);
		}
		goto fail;
	}

	for (i = 0x8000; i; i >>= 1) {
		if (!ack) {
			if (ax_mii_readbit(sc))
				frame->mii_data |= i;
		}
	}

fail:

	ax_mii_writebit(sc, 0);
	ax_mii_writebit(sc, 0);

	splx(s);

	if (ack)
		return(1);
	return(0);
}

/*
 * Write to a PHY register through the MII.
 */
static int ax_mii_writereg(sc, frame)
	struct ax_softc		*sc;
	struct ax_mii_frame	*frame;
	
{
	int			s;

	s = splimp();
	/*
	 * Set up frame for TX.
	 */

	frame->mii_stdelim = AX_MII_STARTDELIM;
	frame->mii_opcode = AX_MII_WRITEOP;
	frame->mii_turnaround = AX_MII_TURNAROUND;

	/*
	 * Sync the PHYs.
	 */	
	ax_mii_sync(sc);

	ax_mii_send(sc, frame->mii_stdelim, 2);
	ax_mii_send(sc, frame->mii_opcode, 2);
	ax_mii_send(sc, frame->mii_phyaddr, 5);
	ax_mii_send(sc, frame->mii_regaddr, 5);
	ax_mii_send(sc, frame->mii_turnaround, 2);
	ax_mii_send(sc, frame->mii_data, 16);

	/* Idle bit. */
	ax_mii_writebit(sc, 0);
	ax_mii_writebit(sc, 0);

	splx(s);

	return(0);
}

static u_int16_t ax_phy_readreg(sc, reg)
	struct ax_softc		*sc;
	int			reg;
{
	struct ax_mii_frame	frame;

	bzero((char *)&frame, sizeof(frame));

	frame.mii_phyaddr = sc->ax_phy_addr;
	frame.mii_regaddr = reg;
	ax_mii_readreg(sc, &frame);

	return(frame.mii_data);
}

static void ax_phy_writereg(sc, reg, data)
	struct ax_softc		*sc;
	int			reg;
	int			data;
{
	struct ax_mii_frame	frame;

	bzero((char *)&frame, sizeof(frame));

	frame.mii_phyaddr = sc->ax_phy_addr;
	frame.mii_regaddr = reg;
	frame.mii_data = data;

	ax_mii_writereg(sc, &frame);

	return;
}

/*
 * Calculate CRC of a multicast group address, return the lower 6 bits.
 */
static u_int32_t ax_calchash(addr)
	caddr_t			addr;
{
	u_int32_t		crc, carry;
	int			i, j;
	u_int8_t		c;

	/* Compute CRC for the address value. */
	crc = 0xFFFFFFFF; /* initial value */

	for (i = 0; i < 6; i++) {
		c = *(addr + i);
		for (j = 0; j < 8; j++) {
			carry = ((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01);
			crc <<= 1;
			c >>= 1;
			if (carry)
				crc = (crc ^ 0x04c11db6) | carry;
		}
	}

	/* return the filter bit position */
	return((crc >> 26) & 0x0000003F);
}

static void ax_setmulti(sc)
	struct ax_softc		*sc;
{
	struct ifnet		*ifp;
	int			h = 0;
	u_int32_t		hashes[2] = { 0, 0 };
	struct ifmultiaddr	*ifma;
	u_int32_t		rxfilt;

	ifp = &sc->arpcom.ac_if;

	rxfilt = CSR_READ_4(sc, AX_NETCFG);

	if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) {
		rxfilt |= AX_NETCFG_RX_ALLMULTI;
		CSR_WRITE_4(sc, AX_NETCFG, rxfilt);
		return;
	} else
		rxfilt &= ~AX_NETCFG_RX_ALLMULTI;

	/* first, zot all the existing hash bits */
	CSR_WRITE_4(sc, AX_FILTIDX, AX_FILTIDX_MAR0);
	CSR_WRITE_4(sc, AX_FILTDATA, 0);
	CSR_WRITE_4(sc, AX_FILTIDX, AX_FILTIDX_MAR1);
	CSR_WRITE_4(sc, AX_FILTDATA, 0);

	/* now program new ones */
	for (ifma = ifp->if_multiaddrs.lh_first; ifma != NULL;
				ifma = ifma->ifma_link.le_next) {
		if (ifma->ifma_addr->sa_family != AF_LINK)
			continue;
		h = ax_calchash(LLADDR((struct sockaddr_dl *)ifma->ifma_addr));
		if (h < 32)
			hashes[0] |= (1 << h);
		else
			hashes[1] |= (1 << (h - 32));
	}

	CSR_WRITE_4(sc, AX_FILTIDX, AX_FILTIDX_MAR0);
	CSR_WRITE_4(sc, AX_FILTDATA, hashes[0]);
	CSR_WRITE_4(sc, AX_FILTIDX, AX_FILTIDX_MAR1);
	CSR_WRITE_4(sc, AX_FILTDATA, hashes[1]);
	CSR_WRITE_4(sc, AX_NETCFG, rxfilt);

	return;
}

/*
 * Initiate an autonegotiation session.
 */
static void ax_autoneg_xmit(sc)
	struct ax_softc		*sc;
{
	u_int16_t		phy_sts;

	ax_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
	DELAY(500);
	while(ax_phy_readreg(sc, PHY_BMCR)
			& PHY_BMCR_RESET);

	phy_sts = ax_phy_readreg(sc, PHY_BMCR);
	phy_sts |= PHY_BMCR_AUTONEGENBL|PHY_BMCR_AUTONEGRSTR;
	ax_phy_writereg(sc, PHY_BMCR, phy_sts);

	return;
}

/*
 * Invoke autonegotiation on a PHY.
 */
static void ax_autoneg_mii(sc, flag, verbose)
	struct ax_softc		*sc;
	int			flag;
	int			verbose;
{
	u_int16_t		phy_sts = 0, media, advert, ability;
	struct ifnet		*ifp;
	struct ifmedia		*ifm;

	ifm = &sc->ifmedia;
	ifp = &sc->arpcom.ac_if;

	ifm->ifm_media = IFM_ETHER | IFM_AUTO;

	/*
	 * The 100baseT4 PHY on the 3c905-T4 has the 'autoneg supported'
	 * bit cleared in the status register, but has the 'autoneg enabled'
	 * bit set in the control register. This is a contradiction, and
	 * I'm not sure how to handle it. If you want to force an attempt
	 * to autoneg for 100baseT4 PHYs, #define FORCE_AUTONEG_TFOUR
	 * and see what happens.
	 */
#ifndef FORCE_AUTONEG_TFOUR
	/*
	 * First, see if autoneg is supported. If not, there's
	 * no point in continuing.
	 */
	phy_sts = ax_phy_readreg(sc, PHY_BMSR);
	if (!(phy_sts & PHY_BMSR_CANAUTONEG)) {
		if (verbose)
			printf("ax%d: autonegotiation not supported\n",
							sc->ax_unit);
		ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;	
		return;
	}
#endif

	switch (flag) {
	case AX_FLAG_FORCEDELAY:
		/*
	 	 * XXX Never use this option anywhere but in the probe
	 	 * routine: making the kernel stop dead in its tracks
 		 * for three whole seconds after we've gone multi-user
		 * is really bad manners.
	 	 */
		ax_autoneg_xmit(sc);
		DELAY(5000000);
		break;
	case AX_FLAG_SCHEDDELAY:
		/*
		 * Wait for the transmitter to go idle before starting
		 * an autoneg session, otherwise ax_start() may clobber
	 	 * our timeout, and we don't want to allow transmission
		 * during an autoneg session since that can screw it up.
	 	 */
		if (sc->ax_cdata.ax_tx_head != NULL) {
			sc->ax_want_auto = 1;
			return;
		}
		ax_autoneg_xmit(sc);
		ifp->if_timer = 5;
		sc->ax_autoneg = 1;
		sc->ax_want_auto = 0;
		return;
		break;
	case AX_FLAG_DELAYTIMEO:
		ifp->if_timer = 0;
		sc->ax_autoneg = 0;
		break;
	default:
		printf("ax%d: invalid autoneg flag: %d\n", sc->ax_unit, flag);
		return;
	}

	if (ax_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_AUTONEGCOMP) {
		if (verbose)
			printf("ax%d: autoneg complete, ", sc->ax_unit);
		phy_sts = ax_phy_readreg(sc, PHY_BMSR);
	} else {
		if (verbose)
			printf("ax%d: autoneg not complete, ", sc->ax_unit);
	}

	media = ax_phy_readreg(sc, PHY_BMCR);

	/* Link is good. Report modes and set duplex mode. */
	if (ax_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT) {
		if (verbose)
			printf("link status good ");
		advert = ax_phy_readreg(sc, PHY_ANAR);
		ability = ax_phy_readreg(sc, PHY_LPAR);

		if (advert & PHY_ANAR_100BT4 && ability & PHY_ANAR_100BT4) {
			ifm->ifm_media = IFM_ETHER|IFM_100_T4;
			media |= PHY_BMCR_SPEEDSEL;
			media &= ~PHY_BMCR_DUPLEX;
			printf("(100baseT4)\n");
		} else if (advert & PHY_ANAR_100BTXFULL &&
			ability & PHY_ANAR_100BTXFULL) {
			ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
			media |= PHY_BMCR_SPEEDSEL;
			media |= PHY_BMCR_DUPLEX;
			printf("(full-duplex, 100Mbps)\n");
		} else if (advert & PHY_ANAR_100BTXHALF &&
			ability & PHY_ANAR_100BTXHALF) {
			ifm->ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
			media |= PHY_BMCR_SPEEDSEL;
			media &= ~PHY_BMCR_DUPLEX;
			printf("(half-duplex, 100Mbps)\n");
		} else if (advert & PHY_ANAR_10BTFULL &&
			ability & PHY_ANAR_10BTFULL) {
			ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
			media &= ~PHY_BMCR_SPEEDSEL;
			media |= PHY_BMCR_DUPLEX;
			printf("(full-duplex, 10Mbps)\n");
		} else if (advert & PHY_ANAR_10BTHALF &&
			ability & PHY_ANAR_10BTHALF) {
			ifm->ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;
			media &= ~PHY_BMCR_SPEEDSEL;
			media &= ~PHY_BMCR_DUPLEX;
			printf("(half-duplex, 10Mbps)\n");
		}

		media &= ~PHY_BMCR_AUTONEGENBL;

		/* Set ASIC's duplex mode to match the PHY. */
		ax_setcfg(sc, media);
		ax_phy_writereg(sc, PHY_BMCR, media);
	} else {
		if (verbose)
			printf("no carrier\n");
	}

	ax_init(sc);

	if (sc->ax_tx_pend) {
		sc->ax_autoneg = 0;
		sc->ax_tx_pend = 0;
		ax_start(ifp);
	}

	return;
}

static void ax_getmode_mii(sc)
	struct ax_softc		*sc;
{
	u_int16_t		bmsr;
	struct ifnet		*ifp;

	ifp = &sc->arpcom.ac_if;

	bmsr = ax_phy_readreg(sc, PHY_BMSR);
	if (bootverbose)
		printf("ax%d: PHY status word: %x\n", sc->ax_unit, bmsr);

	/* fallback */
	sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_HDX;

	if (bmsr & PHY_BMSR_10BTHALF) {
		if (bootverbose)
			printf("ax%d: 10Mbps half-duplex mode supported\n",
								sc->ax_unit);
		ifmedia_add(&sc->ifmedia,
			IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
	}

	if (bmsr & PHY_BMSR_10BTFULL) {
		if (bootverbose)
			printf("ax%d: 10Mbps full-duplex mode supported\n",
								sc->ax_unit);
		ifmedia_add(&sc->ifmedia,
			IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
		sc->ifmedia.ifm_media = IFM_ETHER|IFM_10_T|IFM_FDX;
	}

	if (bmsr & PHY_BMSR_100BTXHALF) {
		if (bootverbose)
			printf("ax%d: 100Mbps half-duplex mode supported\n",
								sc->ax_unit);
		ifp->if_baudrate = 100000000;
		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
		ifmedia_add(&sc->ifmedia,
			IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
		sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_HDX;
	}

	if (bmsr & PHY_BMSR_100BTXFULL) {
		if (bootverbose)
			printf("ax%d: 100Mbps full-duplex mode supported\n",
								sc->ax_unit);
		ifp->if_baudrate = 100000000;
		ifmedia_add(&sc->ifmedia,
			IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
		sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_TX|IFM_FDX;
	}

	/* Some also support 100BaseT4. */
	if (bmsr & PHY_BMSR_100BT4) {
		if (bootverbose)
			printf("ax%d: 100baseT4 mode supported\n", sc->ax_unit);
		ifp->if_baudrate = 100000000;
		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_T4, 0, NULL);
		sc->ifmedia.ifm_media = IFM_ETHER|IFM_100_T4;
#ifdef FORCE_AUTONEG_TFOUR
		if (bootverbose)
			printf("ax%d: forcing on autoneg support for BT4\n",
							 sc->ax_unit);
		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0 NULL):
		sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
#endif
	}

	if (bmsr & PHY_BMSR_CANAUTONEG) {
		if (bootverbose)
			printf("ax%d: autoneg supported\n", sc->ax_unit);
		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
		sc->ifmedia.ifm_media = IFM_ETHER|IFM_AUTO;
	}

	return;
}

/*
 * Set speed and duplex mode.
 */
static void ax_setmode_mii(sc, media)
	struct ax_softc		*sc;
	int			media;
{
	u_int16_t		bmcr;
	struct ifnet		*ifp;

	ifp = &sc->arpcom.ac_if;

	/*
	 * If an autoneg session is in progress, stop it.
	 */
	if (sc->ax_autoneg) {
		printf("ax%d: canceling autoneg session\n", sc->ax_unit);
		ifp->if_timer = sc->ax_autoneg = sc->ax_want_auto = 0;
		bmcr = ax_phy_readreg(sc, PHY_BMCR);
		bmcr &= ~PHY_BMCR_AUTONEGENBL;
		ax_phy_writereg(sc, PHY_BMCR, bmcr);
	}

	printf("ax%d: selecting MII, ", sc->ax_unit);

	bmcr = ax_phy_readreg(sc, PHY_BMCR);

	bmcr &= ~(PHY_BMCR_AUTONEGENBL|PHY_BMCR_SPEEDSEL|
			PHY_BMCR_DUPLEX|PHY_BMCR_LOOPBK);

	if (IFM_SUBTYPE(media) == IFM_100_T4) {
		printf("100Mbps/T4, half-duplex\n");
		bmcr |= PHY_BMCR_SPEEDSEL;
		bmcr &= ~PHY_BMCR_DUPLEX;
	}

	if (IFM_SUBTYPE(media) == IFM_100_TX) {
		printf("100Mbps, ");
		bmcr |= PHY_BMCR_SPEEDSEL;
	}

	if (IFM_SUBTYPE(media) == IFM_10_T) {
		printf("10Mbps, ");
		bmcr &= ~PHY_BMCR_SPEEDSEL;
	}

	if ((media & IFM_GMASK) == IFM_FDX) {
		printf("full duplex\n");
		bmcr |= PHY_BMCR_DUPLEX;
	} else {
		printf("half duplex\n");
		bmcr &= ~PHY_BMCR_DUPLEX;
	}

	ax_setcfg(sc, bmcr);
	ax_phy_writereg(sc, PHY_BMCR, bmcr);

	return;
}

/*
 * Set speed and duplex mode on internal transceiver.
 */
static void ax_setmode(sc, media, verbose)
	struct ax_softc		*sc;
	int			media;
	int			verbose;
{
	struct ifnet		*ifp;
	u_int32_t		mode;

	ifp = &sc->arpcom.ac_if;

	if (verbose)
		printf("ax%d: selecting internal xcvr, ", sc->ax_unit);

	mode = CSR_READ_4(sc, AX_NETCFG);

	mode &= ~(AX_NETCFG_FULLDUPLEX|AX_NETCFG_PORTSEL|
		AX_NETCFG_PCS|AX_NETCFG_SCRAMBLER|AX_NETCFG_SPEEDSEL);

	if (IFM_SUBTYPE(media) == IFM_100_T4) {
		if (verbose)
			printf("100Mbps/T4, half-duplex\n");
		mode |= AX_NETCFG_PORTSEL|AX_NETCFG_PCS|AX_NETCFG_SCRAMBLER;
	}

	if (IFM_SUBTYPE(media) == IFM_100_TX) {
		if (verbose)
			printf("100Mbps, ");
		mode |= AX_NETCFG_PORTSEL|AX_NETCFG_PCS|AX_NETCFG_SCRAMBLER;
	}

	if (IFM_SUBTYPE(media) == IFM_10_T) {
		if (verbose)
			printf("10Mbps, ");
		mode &= ~AX_NETCFG_PORTSEL;
		mode |= AX_NETCFG_SPEEDSEL;
	}

	if ((media & IFM_GMASK) == IFM_FDX) {
		if (verbose)
			printf("full duplex\n");
		mode |= AX_NETCFG_FULLDUPLEX;
	} else {
		if (verbose)
			printf("half duplex\n");
		mode &= ~AX_NETCFG_FULLDUPLEX;
	}

	CSR_WRITE_4(sc, AX_NETCFG, mode);

	return;
}

/*
 * In order to fiddle with the
 * 'full-duplex' and '100Mbps' bits in the netconfig register, we
 * first have to put the transmit and/or receive logic in the idle state.
 */
static void ax_setcfg(sc, bmcr)
	struct ax_softc		*sc;
	int			bmcr;
{
	int			i, restart = 0;

	if (CSR_READ_4(sc, AX_NETCFG) & (AX_NETCFG_TX_ON|AX_NETCFG_RX_ON)) {
		restart = 1;
		AX_CLRBIT(sc, AX_NETCFG, (AX_NETCFG_TX_ON|AX_NETCFG_RX_ON));

		for (i = 0; i < AX_TIMEOUT; i++) {
			DELAY(10);
			if (CSR_READ_4(sc, AX_ISR) & AX_ISR_TX_IDLE)
				break;
		}

		if (i == AX_TIMEOUT)
			printf("ax%d: failed to force tx and "
				"rx to idle state\n", sc->ax_unit);

	}

	if (bmcr & PHY_BMCR_SPEEDSEL)
		AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_SPEEDSEL);
	else
		AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_SPEEDSEL);

	if (bmcr & PHY_BMCR_DUPLEX)
		AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_FULLDUPLEX);
	else
		AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_FULLDUPLEX);

	if (restart)
		AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_TX_ON|AX_NETCFG_RX_ON);

	return;
}

static void ax_reset(sc)
	struct ax_softc		*sc;
{
	register int		i;

	AX_SETBIT(sc, AX_BUSCTL, AX_BUSCTL_RESET);

	for (i = 0; i < AX_TIMEOUT; i++) {
		DELAY(10);
		if (!(CSR_READ_4(sc, AX_BUSCTL) & AX_BUSCTL_RESET))
			break;
	}
#ifdef notdef
	if (i == AX_TIMEOUT)
		printf("ax%d: reset never completed!\n", sc->ax_unit);
#endif
	CSR_WRITE_4(sc, AX_BUSCTL, AX_BUSCTL_CONFIG);

	/* Wait a little while for the chip to get its brains in order. */
	DELAY(1000);
        return;
}

/*
 * Probe for an ASIX chip. Check the PCI vendor and device
 * IDs against our list and return a device name if we find a match.
 */
static const char *
ax_probe(config_id, device_id)
	pcici_t			config_id;
	pcidi_t			device_id;
{
	struct ax_type		*t;
	u_int32_t		rev;

	t = ax_devs;

	while(t->ax_name != NULL) {
		if ((device_id & 0xFFFF) == t->ax_vid &&
		    ((device_id >> 16) & 0xFFFF) == t->ax_did) {
			/* Check the PCI revision */
			rev = pci_conf_read(config_id, AX_PCI_REVID) & 0xFF;
			if (rev >= AX_REVISION_88141)
				t++;
			return(t->ax_name);
		}
		t++;
	}

	return(NULL);
}

/*
 * Attach the interface. Allocate softc structures, do ifmedia
 * setup and ethernet/BPF attach.
 */
static void
ax_attach(config_id, unit)
	pcici_t			config_id;
	int			unit;
{
	int			s, i;
#ifndef AX_USEIOSPACE
	vm_offset_t		pbase, vbase;
#endif
	u_char			eaddr[ETHER_ADDR_LEN];
	u_int32_t		command;
	struct ax_softc		*sc;
	struct ifnet		*ifp;
	int			media = IFM_ETHER|IFM_100_TX|IFM_FDX;
	unsigned int		round;
	caddr_t			roundptr;
	struct ax_type		*p;
	u_int16_t		phy_vid, phy_did, phy_sts;

	s = splimp();

	sc = malloc(sizeof(struct ax_softc), M_DEVBUF, M_NOWAIT);
	if (sc == NULL) {
		printf("ax%d: no memory for softc struct!\n", unit);
		goto fail;
	}
	bzero(sc, sizeof(struct ax_softc));

	/*
	 * Handle power management nonsense.
	 */

	command = pci_conf_read(config_id, AX_PCI_CAPID) & 0x000000FF;
	if (command == 0x01) {

		command = pci_conf_read(config_id, AX_PCI_PWRMGMTCTRL);
		if (command & AX_PSTATE_MASK) {
			u_int32_t		iobase, membase, irq;

			/* Save important PCI config data. */
			iobase = pci_conf_read(config_id, AX_PCI_LOIO);
			membase = pci_conf_read(config_id, AX_PCI_LOMEM);
			irq = pci_conf_read(config_id, AX_PCI_INTLINE);

			/* Reset the power state. */
			printf("ax%d: chip is in D%d power mode "
			"-- setting to D0\n", unit, command & AX_PSTATE_MASK);
			command &= 0xFFFFFFFC;
			pci_conf_write(config_id, AX_PCI_PWRMGMTCTRL, command);

			/* Restore PCI config data. */
			pci_conf_write(config_id, AX_PCI_LOIO, iobase);
			pci_conf_write(config_id, AX_PCI_LOMEM, membase);
			pci_conf_write(config_id, AX_PCI_INTLINE, irq);
		}
	}

	/*
	 * Map control/status registers.
	 */
	command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);
	command |= (PCIM_CMD_PORTEN|PCIM_CMD_MEMEN|PCIM_CMD_BUSMASTEREN);
	pci_conf_write(config_id, PCI_COMMAND_STATUS_REG, command);
	command = pci_conf_read(config_id, PCI_COMMAND_STATUS_REG);

#ifdef AX_USEIOSPACE
	if (!(command & PCIM_CMD_PORTEN)) {
		printf("ax%d: failed to enable I/O ports!\n", unit);
		free(sc, M_DEVBUF);
		goto fail;
	}

	if (!pci_map_port(config_id, AX_PCI_LOIO,
					(u_short *)&(sc->ax_bhandle))) {
		printf ("ax%d: couldn't map ports\n", unit);
		goto fail;
        }
#ifdef __i386__
	sc->ax_btag = I386_BUS_SPACE_IO;
#endif
#ifdef __alpha__
	sc->ax_btag = ALPHA_BUS_SPACE_IO;
#endif
#else
	if (!(command & PCIM_CMD_MEMEN)) {
		printf("ax%d: failed to enable memory mapping!\n", unit);
		goto fail;
	}

	if (!pci_map_mem(config_id, AX_PCI_LOMEM, &vbase, &pbase)) {
		printf ("ax%d: couldn't map memory\n", unit);
		goto fail;
	}
#ifdef __i386__
	sc->ax_btag = I386_BUS_SPACE_MEM;
#endif
#ifdef __alpha__
	sc->ax_btag = ALPHA_BUS_SPACE_MEM;
#endif
	sc->ax_bhandle = vbase;
#endif

	/* Allocate interrupt */
	if (!pci_map_int(config_id, ax_intr, sc, &net_imask)) {
		printf("ax%d: couldn't map interrupt\n", unit);
		goto fail;
	}

	/* Reset the adapter. */
	ax_reset(sc);

	/*
	 * Get station address from the EEPROM.
	 */
	ax_read_eeprom(sc, (caddr_t)&eaddr, AX_EE_NODEADDR, 3, 0);

	/*
	 * An ASIX chip was detected. Inform the world.
	 */
	printf("ax%d: Ethernet address: %6D\n", unit, eaddr, ":");

	sc->ax_unit = unit;
	bcopy(eaddr, (char *)&sc->arpcom.ac_enaddr, ETHER_ADDR_LEN);

	sc->ax_ldata_ptr = malloc(sizeof(struct ax_list_data) + 8,
				M_DEVBUF, M_NOWAIT);
	if (sc->ax_ldata_ptr == NULL) {
		free(sc, M_DEVBUF);
		printf("ax%d: no memory for list buffers!\n", unit);
		goto fail;
	}

	sc->ax_ldata = (struct ax_list_data *)sc->ax_ldata_ptr;
	round = (unsigned int)sc->ax_ldata_ptr & 0xF;
	roundptr = sc->ax_ldata_ptr;
	for (i = 0; i < 8; i++) {
		if (round % 8) {
			round++;
			roundptr++;
		} else
			break;
	}
	sc->ax_ldata = (struct ax_list_data *)roundptr;
	bzero(sc->ax_ldata, sizeof(struct ax_list_data));

	ifp = &sc->arpcom.ac_if;
	ifp->if_softc = sc;
	ifp->if_unit = unit;
	ifp->if_name = "ax";
	ifp->if_mtu = ETHERMTU;
	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
	ifp->if_ioctl = ax_ioctl;
	ifp->if_output = ether_output;
	ifp->if_start = ax_start;
	ifp->if_watchdog = ax_watchdog;
	ifp->if_init = ax_init;
	ifp->if_baudrate = 10000000;
	ifp->if_snd.ifq_maxlen = AX_TX_LIST_CNT - 1;

	if (bootverbose)
		printf("ax%d: probing for a PHY\n", sc->ax_unit);
	for (i = AX_PHYADDR_MIN; i < AX_PHYADDR_MAX + 1; i++) {
		if (bootverbose)
			printf("ax%d: checking address: %d\n",
						sc->ax_unit, i);
		sc->ax_phy_addr = i;
		ax_phy_writereg(sc, PHY_BMCR, PHY_BMCR_RESET);
		DELAY(500);
		while(ax_phy_readreg(sc, PHY_BMCR)
				& PHY_BMCR_RESET);
		if ((phy_sts = ax_phy_readreg(sc, PHY_BMSR)))
			break;
	}
	if (phy_sts) {
		phy_vid = ax_phy_readreg(sc, PHY_VENID);
		phy_did = ax_phy_readreg(sc, PHY_DEVID);
		if (bootverbose)
			printf("ax%d: found PHY at address %d, ",
				sc->ax_unit, sc->ax_phy_addr);
		if (bootverbose)
			printf("vendor id: %x device id: %x\n",
			phy_vid, phy_did);
		p = ax_phys;
		while(p->ax_vid) {
			if (phy_vid == p->ax_vid &&
				(phy_did | 0x000F) == p->ax_did) {
				sc->ax_pinfo = p;
				break;
			}
			p++;
		}
		if (sc->ax_pinfo == NULL)
			sc->ax_pinfo = &ax_phys[PHY_UNKNOWN];
		if (bootverbose)
			printf("ax%d: PHY type: %s\n",
				sc->ax_unit, sc->ax_pinfo->ax_name);
	} else {
#ifdef DIAGNOSTIC
		printf("ax%d: MII without any phy!\n", sc->ax_unit);
#endif
	}

	/*
	 * Do ifmedia setup.
	 */
	ifmedia_init(&sc->ifmedia, 0, ax_ifmedia_upd, ax_ifmedia_sts);

	if (sc->ax_pinfo != NULL) {
		ax_getmode_mii(sc);
		ax_autoneg_mii(sc, AX_FLAG_FORCEDELAY, 1);
	} else {
		ifmedia_add(&sc->ifmedia,
			IFM_ETHER|IFM_10_T|IFM_HDX, 0, NULL);
		ifmedia_add(&sc->ifmedia,
			IFM_ETHER|IFM_10_T|IFM_FDX, 0, NULL);
		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_10_T, 0, NULL);
		ifmedia_add(&sc->ifmedia,
			IFM_ETHER|IFM_100_TX|IFM_HDX, 0, NULL);
		ifmedia_add(&sc->ifmedia,
			IFM_ETHER|IFM_100_TX|IFM_FDX, 0, NULL);
		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_100_TX, 0, NULL);
		ifmedia_add(&sc->ifmedia, IFM_ETHER|IFM_AUTO, 0, NULL);
	}

	media = sc->ifmedia.ifm_media;
	ax_stop(sc);

	ifmedia_set(&sc->ifmedia, media);

	/*
	 * Call MI attach routines.
	 */
	if_attach(ifp);
	ether_ifattach(ifp);

#if NBPFILTER > 0
	bpfattach(ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
	at_shutdown(ax_shutdown, sc, SHUTDOWN_POST_SYNC);

fail:
	splx(s);
	return;
}

/*
 * Initialize the transmit descriptors.
 */
static int ax_list_tx_init(sc)
	struct ax_softc		*sc;
{
	struct ax_chain_data	*cd;
	struct ax_list_data	*ld;
	int			i;

	cd = &sc->ax_cdata;
	ld = sc->ax_ldata;
	for (i = 0; i < AX_TX_LIST_CNT; i++) {
		cd->ax_tx_chain[i].ax_ptr = &ld->ax_tx_list[i];
		if (i == (AX_TX_LIST_CNT - 1))
			cd->ax_tx_chain[i].ax_nextdesc =
				&cd->ax_tx_chain[0];
		else
			cd->ax_tx_chain[i].ax_nextdesc =
				&cd->ax_tx_chain[i + 1];
	}

	cd->ax_tx_free = &cd->ax_tx_chain[0];
	cd->ax_tx_tail = cd->ax_tx_head = NULL;

	return(0);
}


/*
 * Initialize the RX descriptors and allocate mbufs for them. Note that
 * we arrange the descriptors in a closed ring, so that the last descriptor
 * points back to the first.
 */
static int ax_list_rx_init(sc)
	struct ax_softc		*sc;
{
	struct ax_chain_data	*cd;
	struct ax_list_data	*ld;
	int			i;

	cd = &sc->ax_cdata;
	ld = sc->ax_ldata;

	for (i = 0; i < AX_RX_LIST_CNT; i++) {
		cd->ax_rx_chain[i].ax_ptr =
			(volatile struct ax_desc *)&ld->ax_rx_list[i];
		if (ax_newbuf(sc, &cd->ax_rx_chain[i]) == ENOBUFS)
			return(ENOBUFS);
		if (i == (AX_RX_LIST_CNT - 1)) {
			cd->ax_rx_chain[i].ax_nextdesc =
						&cd->ax_rx_chain[0];
			ld->ax_rx_list[i].ax_next =
					vtophys(&ld->ax_rx_list[0]);
		} else {
			cd->ax_rx_chain[i].ax_nextdesc =
						&cd->ax_rx_chain[i + 1];
			ld->ax_rx_list[i].ax_next =
					vtophys(&ld->ax_rx_list[i + 1]);
		}
	}

	cd->ax_rx_head = &cd->ax_rx_chain[0];

	return(0);
}

/*
 * Initialize an RX descriptor and attach an MBUF cluster.
 * Note: the length fields are only 11 bits wide, which means the
 * largest size we can specify is 2047. This is important because
 * MCLBYTES is 2048, so we have to subtract one otherwise we'll
 * overflow the field and make a mess.
 */
static int ax_newbuf(sc, c)
	struct ax_softc		*sc;
	struct ax_chain_onefrag	*c;
{
	struct mbuf		*m_new = NULL;

	MGETHDR(m_new, M_DONTWAIT, MT_DATA);
	if (m_new == NULL) {
		printf("ax%d: no memory for rx list -- packet dropped!\n",
								sc->ax_unit);
		return(ENOBUFS);
	}

	MCLGET(m_new, M_DONTWAIT);
	if (!(m_new->m_flags & M_EXT)) {
		printf("ax%d: no memory for rx list -- packet dropped!\n",
								sc->ax_unit);
		m_freem(m_new);
		return(ENOBUFS);
	}

	c->ax_mbuf = m_new;
	c->ax_ptr->ax_status = AX_RXSTAT;
	c->ax_ptr->ax_data = vtophys(mtod(m_new, caddr_t));
	c->ax_ptr->ax_ctl = MCLBYTES - 1;

	return(0);
}

/*
 * A frame has been uploaded: pass the resulting mbuf chain up to
 * the higher level protocols.
 */
static void ax_rxeof(sc)
	struct ax_softc		*sc;
{
        struct ether_header	*eh;
        struct mbuf		*m;
        struct ifnet		*ifp;
	struct ax_chain_onefrag	*cur_rx;
	int			total_len = 0;
	u_int32_t		rxstat;

	ifp = &sc->arpcom.ac_if;

	while(!((rxstat = sc->ax_cdata.ax_rx_head->ax_ptr->ax_status) &
							AX_RXSTAT_OWN)) {
#ifdef __alpha__
		struct mbuf		*m0 = NULL;
#endif
		cur_rx = sc->ax_cdata.ax_rx_head;
		sc->ax_cdata.ax_rx_head = cur_rx->ax_nextdesc;

		/*
		 * If an error occurs, update stats, clear the
		 * status word and leave the mbuf cluster in place:
		 * it should simply get re-used next time this descriptor
	 	 * comes up in the ring.
		 */
		if (rxstat & AX_RXSTAT_RXERR) {
			ifp->if_ierrors++;
			if (rxstat & AX_RXSTAT_COLLSEEN)
				ifp->if_collisions++;
			cur_rx->ax_ptr->ax_status = AX_RXSTAT;
			cur_rx->ax_ptr->ax_ctl = (MCLBYTES - 1);
			continue;
		}

		/* No errors; receive the packet. */	
		m = cur_rx->ax_mbuf;
		total_len = AX_RXBYTES(cur_rx->ax_ptr->ax_status);

		total_len -= ETHER_CRC_LEN;

#ifdef __alpha__
		/*
		 * Try to conjure up a new mbuf cluster. If that
		 * fails, it means we have an out of memory condition and
		 * should leave the buffer in place and continue. This will
		 * result in a lost packet, but there's little else we
		 * can do in this situation.
		 */
		if (ax_newbuf(sc, cur_rx) == ENOBUFS) {
			ifp->if_ierrors++;
			cur_rx->ax_ptr->ax_status = AX_RXSTAT;
			cur_rx->ax_ptr->ax_ctl = (MCLBYTES - 1);
			continue;
		}

		/*
		 * Sadly, the ASIX chip doesn't decode the last few
		 * bits of the RX DMA buffer address, so we have to
		 * cheat in order to obtain proper payload alignment
		 * on the alpha.
		 */
		MGETHDR(m0, M_DONTWAIT, MT_DATA);
		if (m0 == NULL) {
			ifp->if_ierrors++;
			cur_rx->ax_ptr->ax_status = AX_RXSTAT;
			cur_rx->ax_ptr->ax_ctl = (MCLBYTES - 1);
			continue;
		}

		m0->m_data += 2;
		if (total_len <= (MHLEN - 2)) {
			bcopy(mtod(m, caddr_t), mtod(m0, caddr_t), total_len);				m_freem(m);
			m = m0;
			m->m_pkthdr.len = m->m_len = total_len;
		} else {
			bcopy(mtod(m, caddr_t), mtod(m0, caddr_t), (MHLEN - 2));
			m->m_len = total_len - (MHLEN - 2);
			m->m_data += (MHLEN - 2);
			m0->m_next = m;
			m0->m_len = (MHLEN - 2);
			m = m0;
			m->m_pkthdr.len = total_len;
		}
		m->m_pkthdr.rcvif = ifp;
#else
		if (total_len < MINCLSIZE) {
			m = m_devget(mtod(cur_rx->ax_mbuf, char *),
				total_len, 0, ifp, NULL);
			cur_rx->ax_ptr->ax_status = AX_RXSTAT;
			cur_rx->ax_ptr->ax_ctl = (MCLBYTES - 1);
			if (m == NULL) {
				ifp->if_ierrors++;
				continue;
			}
		} else {
			m = cur_rx->ax_mbuf;
		/*
		 * Try to conjure up a new mbuf cluster. If that
		 * fails, it means we have an out of memory condition and
		 * should leave the buffer in place and continue. This will
		 * result in a lost packet, but there's little else we
		 * can do in this situation.
		 */
			if (ax_newbuf(sc, cur_rx) == ENOBUFS) {
				ifp->if_ierrors++;
				cur_rx->ax_ptr->ax_status = AX_RXSTAT;
				cur_rx->ax_ptr->ax_ctl = (MCLBYTES - 1);
				continue;
			}
			m->m_pkthdr.rcvif = ifp;
			m->m_pkthdr.len = m->m_len = total_len;
		}
#endif

		ifp->if_ipackets++;
		eh = mtod(m, struct ether_header *);
#if NBPFILTER > 0
		/*
		 * Handle BPF listeners. Let the BPF user see the packet, but
		 * don't pass it up to the ether_input() layer unless it's
		 * a broadcast packet, multicast packet, matches our ethernet
		 * address or the interface is in promiscuous mode.
		 */
		if (ifp->if_bpf) {
			bpf_mtap(ifp, m);
			if (ifp->if_flags & IFF_PROMISC &&
				(bcmp(eh->ether_dhost, sc->arpcom.ac_enaddr,
						ETHER_ADDR_LEN) &&
					(eh->ether_dhost[0] & 1) == 0)) {
				m_freem(m);
				continue;
			}
		}
#endif
		/* Remove header from mbuf and pass it on. */
		m_adj(m, sizeof(struct ether_header));
		ether_input(ifp, eh, m);
	}

	return;
}

void ax_rxeoc(sc)
	struct ax_softc		*sc;
{

	ax_rxeof(sc);
	AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_RX_ON);
	CSR_WRITE_4(sc, AX_RXADDR, vtophys(sc->ax_cdata.ax_rx_head->ax_ptr));
	AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_RX_ON);
	CSR_WRITE_4(sc, AX_RXSTART, 0xFFFFFFFF);

	return;
}

/*
 * A frame was downloaded to the chip. It's safe for us to clean up
 * the list buffers.
 */

static void ax_txeof(sc)
	struct ax_softc		*sc;
{
	struct ax_chain		*cur_tx;
	struct ifnet		*ifp;

	ifp = &sc->arpcom.ac_if;

	/* Clear the timeout timer. */
	ifp->if_timer = 0;

	if (sc->ax_cdata.ax_tx_head == NULL)
		return;

	/*
	 * Go through our tx list and free mbufs for those
	 * frames that have been transmitted.
	 */
	while(sc->ax_cdata.ax_tx_head->ax_mbuf != NULL) {
		u_int32_t		txstat;

		cur_tx = sc->ax_cdata.ax_tx_head;
		txstat = AX_TXSTATUS(cur_tx);

		if (txstat & AX_TXSTAT_OWN)
			break;

		if (txstat & AX_TXSTAT_ERRSUM) {
			ifp->if_oerrors++;
			if (txstat & AX_TXSTAT_EXCESSCOLL)
				ifp->if_collisions++;
			if (txstat & AX_TXSTAT_LATECOLL)
				ifp->if_collisions++;
		}

		ifp->if_collisions += (txstat & AX_TXSTAT_COLLCNT) >> 3;

		ifp->if_opackets++;
		m_freem(cur_tx->ax_mbuf);
		cur_tx->ax_mbuf = NULL;

		if (sc->ax_cdata.ax_tx_head == sc->ax_cdata.ax_tx_tail) {
			sc->ax_cdata.ax_tx_head = NULL;
			sc->ax_cdata.ax_tx_tail = NULL;
			break;
		}

		sc->ax_cdata.ax_tx_head = cur_tx->ax_nextdesc;
	}

	return;
}

/*
 * TX 'end of channel' interrupt handler.
 */
static void ax_txeoc(sc)
	struct ax_softc		*sc;
{
	struct ifnet		*ifp;

	ifp = &sc->arpcom.ac_if;

	ifp->if_timer = 0;

	if (sc->ax_cdata.ax_tx_head == NULL) {
		ifp->if_flags &= ~IFF_OACTIVE;
		sc->ax_cdata.ax_tx_tail = NULL;
		if (sc->ax_want_auto)
			ax_autoneg_mii(sc, AX_FLAG_DELAYTIMEO, 1);
	}

	return;
}

static void ax_intr(arg)
	void			*arg;
{
	struct ax_softc		*sc;
	struct ifnet		*ifp;
	u_int32_t		status;

	sc = arg;
	ifp = &sc->arpcom.ac_if;

	/* Supress unwanted interrupts */
	if (!(ifp->if_flags & IFF_UP)) {
		ax_stop(sc);
		return;
	}

	/* Disable interrupts. */
	CSR_WRITE_4(sc, AX_IMR, 0x00000000);

	for (;;) {
		status = CSR_READ_4(sc, AX_ISR);
		if (status)
			CSR_WRITE_4(sc, AX_ISR, status);

		if ((status & AX_INTRS) == 0)
			break;

		if ((status & AX_ISR_TX_OK) || (status & AX_ISR_TX_EARLY))
			ax_txeof(sc);

		if (status & AX_ISR_TX_NOBUF)
			ax_txeoc(sc);

		if (status & AX_ISR_TX_IDLE) {
			ax_txeof(sc);
			if (sc->ax_cdata.ax_tx_head != NULL) {
				AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_TX_ON);
				CSR_WRITE_4(sc, AX_TXSTART, 0xFFFFFFFF);
			}
		}

		if (status & AX_ISR_TX_UNDERRUN) {
			u_int32_t		cfg;
			cfg = CSR_READ_4(sc, AX_NETCFG);
			if ((cfg & AX_NETCFG_TX_THRESH) == AX_TXTHRESH_160BYTES)
				AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_STORENFWD);
			else
				CSR_WRITE_4(sc, AX_NETCFG, cfg + 0x4000);
		}

		if (status & AX_ISR_RX_OK)
			ax_rxeof(sc);

		if ((status & AX_ISR_RX_WATDOGTIMEO)
					|| (status & AX_ISR_RX_NOBUF))
			ax_rxeoc(sc);

		if (status & AX_ISR_BUS_ERR) {
			ax_reset(sc);
			ax_init(sc);
		}
	}

	/* Re-enable interrupts. */
	CSR_WRITE_4(sc, AX_IMR, AX_INTRS);

	if (ifp->if_snd.ifq_head != NULL) {
		ax_start(ifp);
	}

	return;
}

/*
 * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data
 * pointers to the fragment pointers.
 */
static int ax_encap(sc, c, m_head)
	struct ax_softc		*sc;
	struct ax_chain		*c;
	struct mbuf		*m_head;
{
	int			frag = 0;
	volatile struct ax_desc	*f = NULL;
	int			total_len;
	struct mbuf		*m;

	/*
 	 * Start packing the mbufs in this chain into
	 * the fragment pointers. Stop when we run out
 	 * of fragments or hit the end of the mbuf chain.
	 */
	m = m_head;
	total_len = 0;

	for (m = m_head, frag = 0; m != NULL; m = m->m_next) {
		if (m->m_len != 0) {
			if (frag == AX_MAXFRAGS)
				break;
			total_len += m->m_len;
			f = &c->ax_ptr->ax_frag[frag];
			f->ax_ctl = m->m_len;
			if (frag == 0) {
				f->ax_status = 0;
				f->ax_ctl |= AX_TXCTL_FIRSTFRAG;
			} else
				f->ax_status = AX_TXSTAT_OWN;
			f->ax_next = vtophys(&c->ax_ptr->ax_frag[frag + 1]);
			f->ax_data = vtophys(mtod(m, vm_offset_t));
			frag++;
		}
	}

	/*
	 * Handle special case: we ran out of fragments,
	 * but we have more mbufs left in the chain. Copy the
	 * data into an mbuf cluster. Note that we don't
	 * bother clearing the values in the other fragment
	 * pointers/counters; it wouldn't gain us anything,
	 * and would waste cycles.
	 */
	if (m != NULL) {
		struct mbuf		*m_new = NULL;

		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
		if (m_new == NULL) {
			printf("ax%d: no memory for tx list", sc->ax_unit);
			return(1);
		}
		if (m_head->m_pkthdr.len > MHLEN) {
			MCLGET(m_new, M_DONTWAIT);
			if (!(m_new->m_flags & M_EXT)) {
				m_freem(m_new);
				printf("ax%d: no memory for tx list",
						sc->ax_unit);
				return(1);
			}
		}
		m_copydata(m_head, 0, m_head->m_pkthdr.len,	
					mtod(m_new, caddr_t));
		m_new->m_pkthdr.len = m_new->m_len = m_head->m_pkthdr.len;
		m_freem(m_head);
		m_head = m_new;
		f = &c->ax_ptr->ax_frag[0];
		f->ax_status = 0;
		f->ax_data = vtophys(mtod(m_new, caddr_t));
		f->ax_ctl = total_len = m_new->m_len;
		f->ax_ctl |= AX_TXCTL_FIRSTFRAG;
		frag = 1;
	}

	c->ax_mbuf = m_head;
	c->ax_lastdesc = frag - 1;
	AX_TXCTL(c) |= AX_TXCTL_LASTFRAG|AX_TXCTL_FINT;
	c->ax_ptr->ax_frag[0].ax_ctl |= AX_TXCTL_FINT;
	AX_TXNEXT(c) = vtophys(&c->ax_nextdesc->ax_ptr->ax_frag[0]);
	return(0);
}

/*
 * Main transmit routine. To avoid having to do mbuf copies, we put pointers
 * to the mbuf data regions directly in the transmit lists. We also save a
 * copy of the pointers since the transmit list fragment pointers are
 * physical addresses.
 */

static void ax_start(ifp)
	struct ifnet		*ifp;
{
	struct ax_softc		*sc;
	struct mbuf		*m_head = NULL;
	struct ax_chain		*cur_tx = NULL, *start_tx;

	sc = ifp->if_softc;

	if (sc->ax_autoneg) {
		sc->ax_tx_pend = 1;
		return;
	}

	/*
	 * Check for an available queue slot. If there are none,
	 * punt.
	 */
	if (sc->ax_cdata.ax_tx_free->ax_mbuf != NULL) {
		ifp->if_flags |= IFF_OACTIVE;
		return;
	}

	start_tx = sc->ax_cdata.ax_tx_free;

	while(sc->ax_cdata.ax_tx_free->ax_mbuf == NULL) {
		IF_DEQUEUE(&ifp->if_snd, m_head);
		if (m_head == NULL)
			break;

		/* Pick a descriptor off the free list. */
		cur_tx = sc->ax_cdata.ax_tx_free;
		sc->ax_cdata.ax_tx_free = cur_tx->ax_nextdesc;

		/* Pack the data into the descriptor. */
		ax_encap(sc, cur_tx, m_head);
		if (cur_tx != start_tx)
			AX_TXOWN(cur_tx) = AX_TXSTAT_OWN;

#if NBPFILTER > 0
		/*
		 * If there's a BPF listener, bounce a copy of this frame
		 * to him.
		 */
		if (ifp->if_bpf)
			bpf_mtap(ifp, cur_tx->ax_mbuf);
#endif
		AX_TXOWN(cur_tx) = AX_TXSTAT_OWN;
		CSR_WRITE_4(sc, AX_TXSTART, 0xFFFFFFFF);
	}

	sc->ax_cdata.ax_tx_tail = cur_tx;
	if (sc->ax_cdata.ax_tx_head == NULL)
		sc->ax_cdata.ax_tx_head = start_tx;

	/*
	 * Set a timeout in case the chip goes out to lunch.
	 */
	ifp->if_timer = 5;

	return;
}

static void ax_init(xsc)
	void			*xsc;
{
	struct ax_softc		*sc = xsc;
	struct ifnet		*ifp = &sc->arpcom.ac_if;
	u_int16_t		phy_bmcr = 0;
	int			s;

	if (sc->ax_autoneg)
		return;

	s = splimp();

	if (sc->ax_pinfo != NULL)
		phy_bmcr = ax_phy_readreg(sc, PHY_BMCR);

	/*
	 * Cancel pending I/O and free all RX/TX buffers.
	 */
	ax_stop(sc);
	ax_reset(sc);

	/*
	 * Set cache alignment and burst length.
	 */
	CSR_WRITE_4(sc, AX_BUSCTL, AX_BUSCTL_CONFIG);

	AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_HEARTBEAT);
	AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_STORENFWD);

	if (sc->ax_pinfo != NULL) {
		AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_PORTSEL);
		ax_setcfg(sc, ax_phy_readreg(sc, PHY_BMCR));
	} else
		ax_setmode(sc, sc->ifmedia.ifm_media, 0);

	AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_TX_THRESH);
	AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_SPEEDSEL);

	if (IFM_SUBTYPE(sc->ifmedia.ifm_media) == IFM_10_T)
		AX_SETBIT(sc, AX_NETCFG, AX_TXTHRESH_160BYTES);
	else
		AX_SETBIT(sc, AX_NETCFG, AX_TXTHRESH_72BYTES);

	/* Init our MAC address */
	CSR_WRITE_4(sc, AX_FILTIDX, AX_FILTIDX_PAR0);
	CSR_WRITE_4(sc, AX_FILTDATA, *(u_int32_t *)(&sc->arpcom.ac_enaddr[0]));
	CSR_WRITE_4(sc, AX_FILTIDX, AX_FILTIDX_PAR1);
	CSR_WRITE_4(sc, AX_FILTDATA, *(u_int32_t *)(&sc->arpcom.ac_enaddr[4]));

	/* Init circular RX list. */
	if (ax_list_rx_init(sc) == ENOBUFS) {
		printf("ax%d: initialization failed: no "
			"memory for rx buffers\n", sc->ax_unit);
		ax_stop(sc);
		(void)splx(s);
		return;
	}

	/*
	 * Init tx descriptors.
	 */
	ax_list_tx_init(sc);

	 /* If we want promiscuous mode, set the allframes bit. */
	if (ifp->if_flags & IFF_PROMISC) {
		AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_RX_PROMISC);
	} else {
		AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_RX_PROMISC);
	}

	/*
	 * Set the capture broadcast bit to capture broadcast frames.
	 */
	if (ifp->if_flags & IFF_BROADCAST) {
		AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_RX_BROAD);
	} else {
		AX_CLRBIT(sc, AX_NETCFG, AX_NETCFG_RX_BROAD);
	}

	/*
	 * Load the multicast filter.
	 */
	ax_setmulti(sc);

	/*
	 * Load the address of the RX list.
	 */
	CSR_WRITE_4(sc, AX_RXADDR, vtophys(sc->ax_cdata.ax_rx_head->ax_ptr));
	CSR_WRITE_4(sc, AX_TXADDR, vtophys(&sc->ax_ldata->ax_tx_list[0]));

	/*
	 * Enable interrupts.
	 */
	CSR_WRITE_4(sc, AX_IMR, AX_INTRS);
	CSR_WRITE_4(sc, AX_ISR, 0xFFFFFFFF);

	/* Enable receiver and transmitter. */
	AX_SETBIT(sc, AX_NETCFG, AX_NETCFG_TX_ON|AX_NETCFG_RX_ON);
	CSR_WRITE_4(sc, AX_RXSTART, 0xFFFFFFFF);

	/* Restore state of BMCR */
	if (sc->ax_pinfo != NULL)
		ax_phy_writereg(sc, PHY_BMCR, phy_bmcr);

	ifp->if_flags |= IFF_RUNNING;
	ifp->if_flags &= ~IFF_OACTIVE;

	(void)splx(s);

	return;
}

/*
 * Set media options.
 */
static int ax_ifmedia_upd(ifp)
	struct ifnet		*ifp;
{
	struct ax_softc		*sc;
	struct ifmedia		*ifm;

	sc = ifp->if_softc;
	ifm = &sc->ifmedia;

	if (IFM_TYPE(ifm->ifm_media) != IFM_ETHER)
		return(EINVAL);

	if (IFM_SUBTYPE(ifm->ifm_media) == IFM_AUTO)
		ax_autoneg_mii(sc, AX_FLAG_SCHEDDELAY, 1);
	else {
		if (sc->ax_pinfo == NULL)
			ax_setmode(sc, ifm->ifm_media, 1);
		else
			ax_setmode_mii(sc, ifm->ifm_media);
	}

	return(0);
}

/*
 * Report current media status.
 */
static void ax_ifmedia_sts(ifp, ifmr)
	struct ifnet		*ifp;
	struct ifmediareq	*ifmr;
{
	struct ax_softc		*sc;
	u_int16_t		advert = 0, ability = 0;
	u_int32_t		media = 0;

	sc = ifp->if_softc;

	ifmr->ifm_active = IFM_ETHER;

	if (sc->ax_pinfo == NULL) {
		media = CSR_READ_4(sc, AX_NETCFG);
		if (media & AX_NETCFG_PORTSEL)
			ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
		else
			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
		if (media & AX_NETCFG_FULLDUPLEX)
			ifmr->ifm_active |= IFM_FDX;
		else
			ifmr->ifm_active |= IFM_HDX;
		return;
	}

	if (!(ax_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_AUTONEGENBL)) {
		if (ax_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_SPEEDSEL)
			ifmr->ifm_active = IFM_ETHER|IFM_100_TX;
		else
			ifmr->ifm_active = IFM_ETHER|IFM_10_T;
		if (ax_phy_readreg(sc, PHY_BMCR) & PHY_BMCR_DUPLEX)
			ifmr->ifm_active |= IFM_FDX;
		else
			ifmr->ifm_active |= IFM_HDX;
		return;
	}

	ability = ax_phy_readreg(sc, PHY_LPAR);
	advert = ax_phy_readreg(sc, PHY_ANAR);
	if (advert & PHY_ANAR_100BT4 &&
		ability & PHY_ANAR_100BT4) {
		ifmr->ifm_active = IFM_ETHER|IFM_100_T4;
	} else if (advert & PHY_ANAR_100BTXFULL &&
		ability & PHY_ANAR_100BTXFULL) {
		ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_FDX;
	} else if (advert & PHY_ANAR_100BTXHALF &&
		ability & PHY_ANAR_100BTXHALF) {
		ifmr->ifm_active = IFM_ETHER|IFM_100_TX|IFM_HDX;
	} else if (advert & PHY_ANAR_10BTFULL &&
		ability & PHY_ANAR_10BTFULL) {
		ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_FDX;
	} else if (advert & PHY_ANAR_10BTHALF &&
		ability & PHY_ANAR_10BTHALF) {
		ifmr->ifm_active = IFM_ETHER|IFM_10_T|IFM_HDX;
	}

	return;
}

static int ax_ioctl(ifp, command, data)
	struct ifnet		*ifp;
	u_long			command;
	caddr_t			data;
{
	struct ax_softc		*sc = ifp->if_softc;
	struct ifreq		*ifr = (struct ifreq *) data;
	int			s, error = 0;

	s = splimp();

	switch(command) {
	case SIOCSIFADDR:
	case SIOCGIFADDR:
	case SIOCSIFMTU:
		error = ether_ioctl(ifp, command, data);
		break;
	case SIOCSIFFLAGS:
		if (ifp->if_flags & IFF_UP) {
			ax_init(sc);
		} else {
			if (ifp->if_flags & IFF_RUNNING)
				ax_stop(sc);
		}
		error = 0;
		break;
	case SIOCADDMULTI:
	case SIOCDELMULTI:
		ax_setmulti(sc);
		error = 0;
		break;
	case SIOCGIFMEDIA:
	case SIOCSIFMEDIA:
		error = ifmedia_ioctl(ifp, ifr, &sc->ifmedia, command);
		break;
	default:
		error = EINVAL;
		break;
	}

	(void)splx(s);

	return(error);
}

static void ax_watchdog(ifp)
	struct ifnet		*ifp;
{
	struct ax_softc		*sc;

	sc = ifp->if_softc;

	if (sc->ax_autoneg) {
		ax_autoneg_mii(sc, AX_FLAG_DELAYTIMEO, 1);
		return;
	}

	ifp->if_oerrors++;
	printf("ax%d: watchdog timeout\n", sc->ax_unit);

	if (sc->ax_pinfo != NULL) {
		if (!(ax_phy_readreg(sc, PHY_BMSR) & PHY_BMSR_LINKSTAT))
			printf("ax%d: no carrier - transceiver "
				"cable problem?\n", sc->ax_unit);
	}

	ax_stop(sc);
	ax_reset(sc);
	ax_init(sc);

	if (ifp->if_snd.ifq_head != NULL)
		ax_start(ifp);

	return;
}

/*
 * Stop the adapter and free any mbufs allocated to the
 * RX and TX lists.
 */
static void ax_stop(sc)
	struct ax_softc		*sc;
{
	register int		i;
	struct ifnet		*ifp;

	ifp = &sc->arpcom.ac_if;
	ifp->if_timer = 0;

	AX_CLRBIT(sc, AX_NETCFG, (AX_NETCFG_RX_ON|AX_NETCFG_TX_ON));
	CSR_WRITE_4(sc, AX_IMR, 0x00000000);
	CSR_WRITE_4(sc, AX_TXADDR, 0x00000000);
	CSR_WRITE_4(sc, AX_RXADDR, 0x00000000);

	/*
	 * Free data in the RX lists.
	 */
	for (i = 0; i < AX_RX_LIST_CNT; i++) {
		if (sc->ax_cdata.ax_rx_chain[i].ax_mbuf != NULL) {
			m_freem(sc->ax_cdata.ax_rx_chain[i].ax_mbuf);
			sc->ax_cdata.ax_rx_chain[i].ax_mbuf = NULL;
		}
	}
	bzero((char *)&sc->ax_ldata->ax_rx_list,
		sizeof(sc->ax_ldata->ax_rx_list));

	/*
	 * Free the TX list buffers.
	 */
	for (i = 0; i < AX_TX_LIST_CNT; i++) {
		if (sc->ax_cdata.ax_tx_chain[i].ax_mbuf != NULL) {
			m_freem(sc->ax_cdata.ax_tx_chain[i].ax_mbuf);
			sc->ax_cdata.ax_tx_chain[i].ax_mbuf = NULL;
		}
	}

	bzero((char *)&sc->ax_ldata->ax_tx_list,
		sizeof(sc->ax_ldata->ax_tx_list));

	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);

	return;
}

/*
 * Stop all chip I/O so that the kernel's probe routines don't
 * get confused by errant DMAs when rebooting.
 */
static void ax_shutdown(howto, arg)
	int			howto;
	void			*arg;
{
	struct ax_softc		*sc = (struct ax_softc *)arg;

	ax_stop(sc);

	return;
}

static struct pci_device ax_device = {
	"ax",
	ax_probe,
	ax_attach,
	&ax_count,
	NULL
};
COMPAT_PCI_DRIVER(ax, ax_device);