1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
|
//===- AArch64MacroFusion.cpp - AArch64 Macro Fusion ----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// \file This file contains the AArch64 implementation of the DAG scheduling mutation
// to pair instructions back to back.
//
//===----------------------------------------------------------------------===//
#include "AArch64MacroFusion.h"
#include "AArch64Subtarget.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#define DEBUG_TYPE "misched"
STATISTIC(NumFused, "Number of instr pairs fused");
using namespace llvm;
static cl::opt<bool> EnableMacroFusion("aarch64-misched-fusion", cl::Hidden,
cl::desc("Enable scheduling for macro fusion."), cl::init(true));
namespace {
/// \brief Verify that the instr pair, FirstMI and SecondMI, should be fused
/// together. Given an anchor instr, when the other instr is unspecified, then
/// check if the anchor instr may be part of a fused pair at all.
static bool shouldScheduleAdjacent(const TargetInstrInfo &TII,
const TargetSubtargetInfo &TSI,
const MachineInstr *FirstMI,
const MachineInstr *SecondMI) {
assert((FirstMI || SecondMI) && "At least one instr must be specified");
const AArch64InstrInfo &II = static_cast<const AArch64InstrInfo&>(TII);
const AArch64Subtarget &ST = static_cast<const AArch64Subtarget&>(TSI);
// Assume wildcards for unspecified instrs.
unsigned FirstOpcode =
FirstMI ? FirstMI->getOpcode()
: static_cast<unsigned>(AArch64::INSTRUCTION_LIST_END);
unsigned SecondOpcode =
SecondMI ? SecondMI->getOpcode()
: static_cast<unsigned>(AArch64::INSTRUCTION_LIST_END);
if (ST.hasArithmeticBccFusion())
// Fuse CMN, CMP, TST followed by Bcc.
if (SecondOpcode == AArch64::Bcc)
switch (FirstOpcode) {
default:
return false;
case AArch64::ADDSWri:
case AArch64::ADDSWrr:
case AArch64::ADDSXri:
case AArch64::ADDSXrr:
case AArch64::ANDSWri:
case AArch64::ANDSWrr:
case AArch64::ANDSXri:
case AArch64::ANDSXrr:
case AArch64::SUBSWri:
case AArch64::SUBSWrr:
case AArch64::SUBSXri:
case AArch64::SUBSXrr:
case AArch64::BICSWrr:
case AArch64::BICSXrr:
return true;
case AArch64::ADDSWrs:
case AArch64::ADDSXrs:
case AArch64::ANDSWrs:
case AArch64::ANDSXrs:
case AArch64::SUBSWrs:
case AArch64::SUBSXrs:
case AArch64::BICSWrs:
case AArch64::BICSXrs:
// Shift value can be 0 making these behave like the "rr" variant...
return !II.hasShiftedReg(*FirstMI);
case AArch64::INSTRUCTION_LIST_END:
return true;
}
if (ST.hasArithmeticCbzFusion())
// Fuse ALU operations followed by CBZ/CBNZ.
if (SecondOpcode == AArch64::CBNZW || SecondOpcode == AArch64::CBNZX ||
SecondOpcode == AArch64::CBZW || SecondOpcode == AArch64::CBZX)
switch (FirstOpcode) {
default:
return false;
case AArch64::ADDWri:
case AArch64::ADDWrr:
case AArch64::ADDXri:
case AArch64::ADDXrr:
case AArch64::ANDWri:
case AArch64::ANDWrr:
case AArch64::ANDXri:
case AArch64::ANDXrr:
case AArch64::EORWri:
case AArch64::EORWrr:
case AArch64::EORXri:
case AArch64::EORXrr:
case AArch64::ORRWri:
case AArch64::ORRWrr:
case AArch64::ORRXri:
case AArch64::ORRXrr:
case AArch64::SUBWri:
case AArch64::SUBWrr:
case AArch64::SUBXri:
case AArch64::SUBXrr:
return true;
case AArch64::ADDWrs:
case AArch64::ADDXrs:
case AArch64::ANDWrs:
case AArch64::ANDXrs:
case AArch64::SUBWrs:
case AArch64::SUBXrs:
case AArch64::BICWrs:
case AArch64::BICXrs:
// Shift value can be 0 making these behave like the "rr" variant...
return !II.hasShiftedReg(*FirstMI);
case AArch64::INSTRUCTION_LIST_END:
return true;
}
if (ST.hasFuseAES())
// Fuse AES crypto operations.
switch(FirstOpcode) {
// AES encode.
case AArch64::AESErr:
return SecondOpcode == AArch64::AESMCrr ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
// AES decode.
case AArch64::AESDrr:
return SecondOpcode == AArch64::AESIMCrr ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
}
if (ST.hasFuseLiterals())
// Fuse literal generation operations.
switch (FirstOpcode) {
// PC relative address.
case AArch64::ADRP:
return SecondOpcode == AArch64::ADDXri ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
// 32 bit immediate.
case AArch64::MOVZWi:
return (SecondOpcode == AArch64::MOVKWi &&
SecondMI->getOperand(3).getImm() == 16) ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
// Lower half of 64 bit immediate.
case AArch64::MOVZXi:
return (SecondOpcode == AArch64::MOVKXi &&
SecondMI->getOperand(3).getImm() == 16) ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END;
// Upper half of 64 bit immediate.
case AArch64::MOVKXi:
return FirstMI->getOperand(3).getImm() == 32 &&
((SecondOpcode == AArch64::MOVKXi &&
SecondMI->getOperand(3).getImm() == 48) ||
SecondOpcode == AArch64::INSTRUCTION_LIST_END);
}
return false;
}
/// \brief Implement the fusion of instr pairs in the scheduling DAG,
/// anchored at the instr in AnchorSU..
static bool scheduleAdjacentImpl(ScheduleDAGMI *DAG, SUnit &AnchorSU) {
const MachineInstr *AnchorMI = AnchorSU.getInstr();
if (!AnchorMI || AnchorMI->isPseudo() || AnchorMI->isTransient())
return false;
// If the anchor instr is the ExitSU, then consider its predecessors;
// otherwise, its successors.
bool Preds = (&AnchorSU == &DAG->ExitSU);
SmallVectorImpl<SDep> &AnchorDeps = Preds ? AnchorSU.Preds : AnchorSU.Succs;
const MachineInstr *FirstMI = Preds ? nullptr : AnchorMI;
const MachineInstr *SecondMI = Preds ? AnchorMI : nullptr;
// Check if the anchor instr may be fused.
if (!shouldScheduleAdjacent(*DAG->TII, DAG->MF.getSubtarget(),
FirstMI, SecondMI))
return false;
// Explorer for fusion candidates among the dependencies of the anchor instr.
for (SDep &Dep : AnchorDeps) {
// Ignore dependencies that don't enforce ordering.
if (Dep.isWeak())
continue;
SUnit &DepSU = *Dep.getSUnit();
// Ignore the ExitSU if the dependents are successors.
if (!Preds && &DepSU == &DAG->ExitSU)
continue;
const MachineInstr *DepMI = DepSU.getInstr();
if (!DepMI || DepMI->isPseudo() || DepMI->isTransient())
continue;
FirstMI = Preds ? DepMI : AnchorMI;
SecondMI = Preds ? AnchorMI : DepMI;
if (!shouldScheduleAdjacent(*DAG->TII, DAG->MF.getSubtarget(),
FirstMI, SecondMI))
continue;
// Create a single weak edge between the adjacent instrs. The only effect is
// to cause bottom-up scheduling to heavily prioritize the clustered instrs.
SUnit &FirstSU = Preds ? DepSU : AnchorSU;
SUnit &SecondSU = Preds ? AnchorSU : DepSU;
DAG->addEdge(&SecondSU, SDep(&FirstSU, SDep::Cluster));
// Adjust the latency between the anchor instr and its
// predecessors/successors.
for (SDep &IDep : AnchorDeps)
if (IDep.getSUnit() == &DepSU)
IDep.setLatency(0);
// Adjust the latency between the dependent instr and its
// successors/predecessors.
for (SDep &IDep : Preds ? DepSU.Succs : DepSU.Preds)
if (IDep.getSUnit() == &AnchorSU)
IDep.setLatency(0);
DEBUG(dbgs() << DAG->MF.getName() << "(): Macro fuse ";
FirstSU.print(dbgs(), DAG); dbgs() << " - ";
SecondSU.print(dbgs(), DAG); dbgs() << " / ";
dbgs() << DAG->TII->getName(FirstMI->getOpcode()) << " - " <<
DAG->TII->getName(SecondMI->getOpcode()) << '\n'; );
++NumFused;
return true;
}
return false;
}
/// \brief Post-process the DAG to create cluster edges between instrs that may
/// be fused by the processor into a single operation.
class AArch64MacroFusion : public ScheduleDAGMutation {
public:
AArch64MacroFusion() {}
void apply(ScheduleDAGInstrs *DAGInstrs) override;
};
void AArch64MacroFusion::apply(ScheduleDAGInstrs *DAGInstrs) {
ScheduleDAGMI *DAG = static_cast<ScheduleDAGMI*>(DAGInstrs);
// For each of the SUnits in the scheduling block, try to fuse the instr in it
// with one in its successors.
for (SUnit &ISU : DAG->SUnits)
scheduleAdjacentImpl(DAG, ISU);
// Try to fuse the instr in the ExitSU with one in its predecessors.
scheduleAdjacentImpl(DAG, DAG->ExitSU);
}
} // end namespace
namespace llvm {
std::unique_ptr<ScheduleDAGMutation> createAArch64MacroFusionDAGMutation () {
return EnableMacroFusion ? make_unique<AArch64MacroFusion>() : nullptr;
}
} // end namespace llvm
|