/******************************************************************************* * * Module Name: dsutils - Dispatcher utilities * $Revision: 84 $ * ******************************************************************************/ /****************************************************************************** * * 1. Copyright Notice * * Some or all of this work - Copyright (c) 1999, 2000, 2001, Intel Corp. * All rights reserved. * * 2. License * * 2.1. This is your license from Intel Corp. under its intellectual property * rights. You may have additional license terms from the party that provided * you this software, covering your right to use that party's intellectual * property rights. * * 2.2. Intel grants, free of charge, to any person ("Licensee") obtaining a * copy of the source code appearing in this file ("Covered Code") an * irrevocable, perpetual, worldwide license under Intel's copyrights in the * base code distributed originally by Intel ("Original Intel Code") to copy, * make derivatives, distribute, use and display any portion of the Covered * Code in any form, with the right to sublicense such rights; and * * 2.3. Intel grants Licensee a non-exclusive and non-transferable patent * license (with the right to sublicense), under only those claims of Intel * patents that are infringed by the Original Intel Code, to make, use, sell, * offer to sell, and import the Covered Code and derivative works thereof * solely to the minimum extent necessary to exercise the above copyright * license, and in no event shall the patent license extend to any additions * to or modifications of the Original Intel Code. No other license or right * is granted directly or by implication, estoppel or otherwise; * * The above copyright and patent license is granted only if the following * conditions are met: * * 3. Conditions * * 3.1. Redistribution of Source with Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification with rights to further distribute source must include * the above Copyright Notice, the above License, this list of Conditions, * and the following Disclaimer and Export Compliance provision. In addition, * Licensee must cause all Covered Code to which Licensee contributes to * contain a file documenting the changes Licensee made to create that Covered * Code and the date of any change. Licensee must include in that file the * documentation of any changes made by any predecessor Licensee. Licensee * must include a prominent statement that the modification is derived, * directly or indirectly, from Original Intel Code. * * 3.2. Redistribution of Source with no Rights to Further Distribute Source. * Redistribution of source code of any substantial portion of the Covered * Code or modification without rights to further distribute source must * include the following Disclaimer and Export Compliance provision in the * documentation and/or other materials provided with distribution. In * addition, Licensee may not authorize further sublicense of source of any * portion of the Covered Code, and must include terms to the effect that the * license from Licensee to its licensee is limited to the intellectual * property embodied in the software Licensee provides to its licensee, and * not to intellectual property embodied in modifications its licensee may * make. * * 3.3. Redistribution of Executable. Redistribution in executable form of any * substantial portion of the Covered Code or modification must reproduce the * above Copyright Notice, and the following Disclaimer and Export Compliance * provision in the documentation and/or other materials provided with the * distribution. * * 3.4. Intel retains all right, title, and interest in and to the Original * Intel Code. * * 3.5. Neither the name Intel nor any other trademark owned or controlled by * Intel shall be used in advertising or otherwise to promote the sale, use or * other dealings in products derived from or relating to the Covered Code * without prior written authorization from Intel. * * 4. Disclaimer and Export Compliance * * 4.1. INTEL MAKES NO WARRANTY OF ANY KIND REGARDING ANY SOFTWARE PROVIDED * HERE. ANY SOFTWARE ORIGINATING FROM INTEL OR DERIVED FROM INTEL SOFTWARE * IS PROVIDED "AS IS," AND INTEL WILL NOT PROVIDE ANY SUPPORT, ASSISTANCE, * INSTALLATION, TRAINING OR OTHER SERVICES. INTEL WILL NOT PROVIDE ANY * UPDATES, ENHANCEMENTS OR EXTENSIONS. INTEL SPECIFICALLY DISCLAIMS ANY * IMPLIED WARRANTIES OF MERCHANTABILITY, NONINFRINGEMENT AND FITNESS FOR A * PARTICULAR PURPOSE. * * 4.2. IN NO EVENT SHALL INTEL HAVE ANY LIABILITY TO LICENSEE, ITS LICENSEES * OR ANY OTHER THIRD PARTY, FOR ANY LOST PROFITS, LOST DATA, LOSS OF USE OR * COSTS OF PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES, OR FOR ANY INDIRECT, * SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THIS AGREEMENT, UNDER ANY * CAUSE OF ACTION OR THEORY OF LIABILITY, AND IRRESPECTIVE OF WHETHER INTEL * HAS ADVANCE NOTICE OF THE POSSIBILITY OF SUCH DAMAGES. THESE LIMITATIONS * SHALL APPLY NOTWITHSTANDING THE FAILURE OF THE ESSENTIAL PURPOSE OF ANY * LIMITED REMEDY. * * 4.3. Licensee shall not export, either directly or indirectly, any of this * software or system incorporating such software without first obtaining any * required license or other approval from the U. S. Department of Commerce or * any other agency or department of the United States Government. In the * event Licensee exports any such software from the United States or * re-exports any such software from a foreign destination, Licensee shall * ensure that the distribution and export/re-export of the software is in * compliance with all laws, regulations, orders, or other restrictions of the * U.S. Export Administration Regulations. Licensee agrees that neither it nor * any of its subsidiaries will export/re-export any technical data, process, * software, or service, directly or indirectly, to any country for which the * United States government or any agency thereof requires an export license, * other governmental approval, or letter of assurance, without first obtaining * such license, approval or letter. * *****************************************************************************/ #define __DSUTILS_C__ #include "acpi.h" #include "acparser.h" #include "amlcode.h" #include "acdispat.h" #include "acinterp.h" #include "acnamesp.h" #include "acdebug.h" #define _COMPONENT ACPI_DISPATCHER MODULE_NAME ("dsutils") /******************************************************************************* * * FUNCTION: AcpiDsIsResultUsed * * PARAMETERS: Op * ResultObj * WalkState * * RETURN: Status * * DESCRIPTION: Check if a result object will be used by the parent * ******************************************************************************/ BOOLEAN AcpiDsIsResultUsed ( ACPI_PARSE_OBJECT *Op, ACPI_WALK_STATE *WalkState) { const ACPI_OPCODE_INFO *ParentInfo; FUNCTION_TRACE_PTR ("DsIsResultUsed", Op); /* Must have both an Op and a Result Object */ if (!Op) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Null Op\n")); return_VALUE (TRUE); } /* * If there is no parent, the result can't possibly be used! * (An executing method typically has no parent, since each * method is parsed separately) However, a method that is * invoked from another method has a parent. */ if (!Op->Parent) { return_VALUE (FALSE); } /* * Get info on the parent. The root Op is AML_SCOPE */ ParentInfo = AcpiPsGetOpcodeInfo (Op->Parent->Opcode); if (ParentInfo->Class == AML_CLASS_UNKNOWN) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Unknown parent opcode. Op=%p\n", Op)); return_VALUE (FALSE); } /* * Decide what to do with the result based on the parent. If * the parent opcode will not use the result, delete the object. * Otherwise leave it as is, it will be deleted when it is used * as an operand later. */ switch (ParentInfo->Class) { case AML_CLASS_CONTROL: switch (Op->Parent->Opcode) { case AML_RETURN_OP: /* Never delete the return value associated with a return opcode */ goto ResultUsed; break; case AML_IF_OP: case AML_WHILE_OP: /* * If we are executing the predicate AND this is the predicate op, * we will use the return value */ if ((WalkState->ControlState->Common.State == CONTROL_PREDICATE_EXECUTING) && (WalkState->ControlState->Control.PredicateOp == Op)) { goto ResultUsed; } } /* The general control opcode returns no result */ goto ResultNotUsed; break; case AML_CLASS_CREATE: /* * These opcodes allow TermArg(s) as operands and therefore * the operands can be method calls. The result is used. */ goto ResultUsed; break; case AML_CLASS_NAMED_OBJECT: if ((Op->Parent->Opcode == AML_REGION_OP) || (Op->Parent->Opcode == AML_DATA_REGION_OP)) { /* * These opcodes allow TermArg(s) as operands and therefore * the operands can be method calls. The result is used. */ goto ResultUsed; } goto ResultNotUsed; break; /* * In all other cases. the parent will actually use the return * object, so keep it. */ default: goto ResultUsed; break; } ResultUsed: ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Result of [%s] used by Parent [%s] Op=%p\n", AcpiPsGetOpcodeName (Op->Opcode), AcpiPsGetOpcodeName (Op->Parent->Opcode), Op)); return_VALUE (TRUE); ResultNotUsed: ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Result of [%s] not used by Parent [%s] Op=%p\n", AcpiPsGetOpcodeName (Op->Opcode), AcpiPsGetOpcodeName (Op->Parent->Opcode), Op)); return_VALUE (FALSE); } /******************************************************************************* * * FUNCTION: AcpiDsDeleteResultIfNotUsed * * PARAMETERS: Op * ResultObj * WalkState * * RETURN: Status * * DESCRIPTION: Used after interpretation of an opcode. If there is an internal * result descriptor, check if the parent opcode will actually use * this result. If not, delete the result now so that it will * not become orphaned. * ******************************************************************************/ void AcpiDsDeleteResultIfNotUsed ( ACPI_PARSE_OBJECT *Op, ACPI_OPERAND_OBJECT *ResultObj, ACPI_WALK_STATE *WalkState) { ACPI_OPERAND_OBJECT *ObjDesc; ACPI_STATUS Status; FUNCTION_TRACE_PTR ("DsDeleteResultIfNotUsed", ResultObj); if (!Op) { ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Null Op\n")); return_VOID; } if (!ResultObj) { return_VOID; } if (!AcpiDsIsResultUsed (Op, WalkState)) { /* * Must pop the result stack (ObjDesc should be equal to ResultObj) */ Status = AcpiDsResultPop (&ObjDesc, WalkState); if (ACPI_SUCCESS (Status)) { AcpiUtRemoveReference (ResultObj); } } return_VOID; } /******************************************************************************* * * FUNCTION: AcpiDsCreateOperand * * PARAMETERS: WalkState * Arg * * RETURN: Status * * DESCRIPTION: Translate a parse tree object that is an argument to an AML * opcode to the equivalent interpreter object. This may include * looking up a name or entering a new name into the internal * namespace. * ******************************************************************************/ ACPI_STATUS AcpiDsCreateOperand ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *Arg, UINT32 ArgIndex) { ACPI_STATUS Status = AE_OK; NATIVE_CHAR *NameString; UINT32 NameLength; ACPI_OPERAND_OBJECT *ObjDesc; ACPI_PARSE_OBJECT *ParentOp; UINT16 Opcode; OPERATING_MODE InterpreterMode; const ACPI_OPCODE_INFO *OpInfo; FUNCTION_TRACE_PTR ("DsCreateOperand", Arg); /* A valid name must be looked up in the namespace */ if ((Arg->Opcode == AML_INT_NAMEPATH_OP) && (Arg->Value.String)) { ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Getting a name: Arg=%p\n", Arg)); /* Get the entire name string from the AML stream */ Status = AcpiExGetNameString (ACPI_TYPE_ANY, Arg->Value.Buffer, &NameString, &NameLength); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* * All prefixes have been handled, and the name is * in NameString */ /* * Differentiate between a namespace "create" operation * versus a "lookup" operation (IMODE_LOAD_PASS2 vs. * IMODE_EXECUTE) in order to support the creation of * namespace objects during the execution of control methods. */ ParentOp = Arg->Parent; OpInfo = AcpiPsGetOpcodeInfo (ParentOp->Opcode); if ((OpInfo->Flags & AML_NSNODE) && (ParentOp->Opcode != AML_INT_METHODCALL_OP) && (ParentOp->Opcode != AML_REGION_OP) && (ParentOp->Opcode != AML_INT_NAMEPATH_OP)) { /* Enter name into namespace if not found */ InterpreterMode = IMODE_LOAD_PASS2; } else { /* Return a failure if name not found */ InterpreterMode = IMODE_EXECUTE; } Status = AcpiNsLookup (WalkState->ScopeInfo, NameString, ACPI_TYPE_ANY, InterpreterMode, NS_SEARCH_PARENT | NS_DONT_OPEN_SCOPE, WalkState, (ACPI_NAMESPACE_NODE **) &ObjDesc); /* Free the namestring created above */ ACPI_MEM_FREE (NameString); /* * The only case where we pass through (ignore) a NOT_FOUND * error is for the CondRefOf opcode. */ if (Status == AE_NOT_FOUND) { if (ParentOp->Opcode == AML_COND_REF_OF_OP) { /* * For the Conditional Reference op, it's OK if * the name is not found; We just need a way to * indicate this to the interpreter, set the * object to the root */ ObjDesc = (ACPI_OPERAND_OBJECT *) AcpiGbl_RootNode; Status = AE_OK; } else { /* * We just plain didn't find it -- which is a * very serious error at this point */ Status = AE_AML_NAME_NOT_FOUND; /* TBD: Externalize NameString and print */ ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Object name was not found in namespace\n")); } } /* Check status from the lookup */ if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } /* Put the resulting object onto the current object stack */ Status = AcpiDsObjStackPush (ObjDesc, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } DEBUGGER_EXEC (AcpiDbDisplayArgumentObject (ObjDesc, WalkState)); } else { /* Check for null name case */ if (Arg->Opcode == AML_INT_NAMEPATH_OP) { /* * If the name is null, this means that this is an * optional result parameter that was not specified * in the original ASL. Create an Reference for a * placeholder */ Opcode = AML_ZERO_OP; /* Has no arguments! */ ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Null namepath: Arg=%p\n", Arg)); } else { Opcode = Arg->Opcode; } /* Get the object type of the argument */ OpInfo = AcpiPsGetOpcodeInfo (Opcode); if (OpInfo->ObjectType == INTERNAL_TYPE_INVALID) { return_ACPI_STATUS (AE_NOT_IMPLEMENTED); } if (OpInfo->Flags & AML_HAS_RETVAL) { ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Argument previously created, already stacked \n")); DEBUGGER_EXEC (AcpiDbDisplayArgumentObject (WalkState->Operands [WalkState->NumOperands - 1], WalkState)); /* * Use value that was already previously returned * by the evaluation of this argument */ Status = AcpiDsResultPopFromBottom (&ObjDesc, WalkState); if (ACPI_FAILURE (Status)) { /* * Only error is underflow, and this indicates * a missing or null operand! */ ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "Missing or null operand, %s\n", AcpiFormatException (Status))); return_ACPI_STATUS (Status); } } else { /* Create an ACPI_INTERNAL_OBJECT for the argument */ ObjDesc = AcpiUtCreateInternalObject (OpInfo->ObjectType); if (!ObjDesc) { return_ACPI_STATUS (AE_NO_MEMORY); } /* Initialize the new object */ Status = AcpiDsInitObjectFromOp (WalkState, Arg, Opcode, &ObjDesc); if (ACPI_FAILURE (Status)) { AcpiUtDeleteObjectDesc (ObjDesc); return_ACPI_STATUS (Status); } } /* Put the operand object on the object stack */ Status = AcpiDsObjStackPush (ObjDesc, WalkState); if (ACPI_FAILURE (Status)) { return_ACPI_STATUS (Status); } DEBUGGER_EXEC (AcpiDbDisplayArgumentObject (ObjDesc, WalkState)); } return_ACPI_STATUS (AE_OK); } /******************************************************************************* * * FUNCTION: AcpiDsCreateOperands * * PARAMETERS: FirstArg - First argument of a parser argument tree * * RETURN: Status * * DESCRIPTION: Convert an operator's arguments from a parse tree format to * namespace objects and place those argument object on the object * stack in preparation for evaluation by the interpreter. * ******************************************************************************/ ACPI_STATUS AcpiDsCreateOperands ( ACPI_WALK_STATE *WalkState, ACPI_PARSE_OBJECT *FirstArg) { ACPI_STATUS Status = AE_OK; ACPI_PARSE_OBJECT *Arg; UINT32 ArgCount = 0; FUNCTION_TRACE_PTR ("DsCreateOperands", FirstArg); /* For all arguments in the list... */ Arg = FirstArg; while (Arg) { Status = AcpiDsCreateOperand (WalkState, Arg, ArgCount); if (ACPI_FAILURE (Status)) { goto Cleanup; } ACPI_DEBUG_PRINT ((ACPI_DB_DISPATCH, "Arg #%d (%p) done, Arg1=%p\n", ArgCount, Arg, FirstArg)); /* Move on to next argument, if any */ Arg = Arg->Next; ArgCount++; } return_ACPI_STATUS (Status); Cleanup: /* * We must undo everything done above; meaning that we must * pop everything off of the operand stack and delete those * objects */ AcpiDsObjStackPopAndDelete (ArgCount, WalkState); ACPI_DEBUG_PRINT ((ACPI_DB_ERROR, "While creating Arg %d - %s\n", (ArgCount + 1), AcpiFormatException (Status))); return_ACPI_STATUS (Status); } /******************************************************************************* * * FUNCTION: AcpiDsResolveOperands * * PARAMETERS: WalkState - Current walk state with operands on stack * * RETURN: Status * * DESCRIPTION: Resolve all operands to their values. Used to prepare * arguments to a control method invocation (a call from one * method to another.) * ******************************************************************************/ ACPI_STATUS AcpiDsResolveOperands ( ACPI_WALK_STATE *WalkState) { UINT32 i; ACPI_STATUS Status = AE_OK; FUNCTION_TRACE_PTR ("DsResolveOperands", WalkState); /* * Attempt to resolve each of the valid operands * Method arguments are passed by value, not by reference */ for (i = 0; i < WalkState->NumOperands; i++) { Status = AcpiExResolveToValue (&WalkState->Operands[i], WalkState); if (ACPI_FAILURE (Status)) { break; } } return_ACPI_STATUS (Status); }