//===- SPIRVInstructionSelector.cpp ------------------------------*- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the targeting of the InstructionSelector class for // SPIRV. // TODO: This should be generated by TableGen. // //===----------------------------------------------------------------------===// #include "SPIRV.h" #include "SPIRVGlobalRegistry.h" #include "SPIRVInstrInfo.h" #include "SPIRVRegisterBankInfo.h" #include "SPIRVRegisterInfo.h" #include "SPIRVTargetMachine.h" #include "SPIRVUtils.h" #include "llvm/ADT/APFloat.h" #include "llvm/CodeGen/GlobalISel/InstructionSelector.h" #include "llvm/CodeGen/GlobalISel/InstructionSelectorImpl.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/IntrinsicsSPIRV.h" #include "llvm/Support/Debug.h" #define DEBUG_TYPE "spirv-isel" using namespace llvm; namespace { #define GET_GLOBALISEL_PREDICATE_BITSET #include "SPIRVGenGlobalISel.inc" #undef GET_GLOBALISEL_PREDICATE_BITSET class SPIRVInstructionSelector : public InstructionSelector { const SPIRVSubtarget &STI; const SPIRVInstrInfo &TII; const SPIRVRegisterInfo &TRI; const RegisterBankInfo &RBI; SPIRVGlobalRegistry &GR; MachineRegisterInfo *MRI; public: SPIRVInstructionSelector(const SPIRVTargetMachine &TM, const SPIRVSubtarget &ST, const RegisterBankInfo &RBI); void setupMF(MachineFunction &MF, GISelKnownBits *KB, CodeGenCoverage &CoverageInfo, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) override; // Common selection code. Instruction-specific selection occurs in spvSelect. bool select(MachineInstr &I) override; static const char *getName() { return DEBUG_TYPE; } #define GET_GLOBALISEL_PREDICATES_DECL #include "SPIRVGenGlobalISel.inc" #undef GET_GLOBALISEL_PREDICATES_DECL #define GET_GLOBALISEL_TEMPORARIES_DECL #include "SPIRVGenGlobalISel.inc" #undef GET_GLOBALISEL_TEMPORARIES_DECL private: // tblgen-erated 'select' implementation, used as the initial selector for // the patterns that don't require complex C++. bool selectImpl(MachineInstr &I, CodeGenCoverage &CoverageInfo) const; // All instruction-specific selection that didn't happen in "select()". // Is basically a large Switch/Case delegating to all other select method. bool spvSelect(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectGlobalValue(Register ResVReg, MachineInstr &I, const MachineInstr *Init = nullptr) const; bool selectUnOpWithSrc(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, Register SrcReg, unsigned Opcode) const; bool selectUnOp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned Opcode) const; bool selectLoad(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectStore(MachineInstr &I) const; bool selectMemOperation(Register ResVReg, MachineInstr &I) const; bool selectAtomicRMW(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned NewOpcode) const; bool selectAtomicCmpXchg(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectFence(MachineInstr &I) const; bool selectAddrSpaceCast(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectBitreverse(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectConstVector(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectCmp(Register ResVReg, const SPIRVType *ResType, unsigned comparisonOpcode, MachineInstr &I) const; bool selectICmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectFCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; void renderImm32(MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const; void renderFImm32(MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const; bool selectConst(Register ResVReg, const SPIRVType *ResType, const APInt &Imm, MachineInstr &I) const; bool selectSelect(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned) const; bool selectIToF(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned, unsigned Opcode) const; bool selectExt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned) const; bool selectTrunc(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectIntToBool(Register IntReg, Register ResVReg, const SPIRVType *intTy, const SPIRVType *boolTy, MachineInstr &I) const; bool selectOpUndef(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectIntrinsic(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectExtractVal(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectInsertVal(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectExtractElt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectInsertElt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectGEP(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectFrameIndex(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; bool selectBranch(MachineInstr &I) const; bool selectBranchCond(MachineInstr &I) const; bool selectPhi(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const; Register buildI32Constant(uint32_t Val, MachineInstr &I, const SPIRVType *ResType = nullptr) const; Register buildZerosVal(const SPIRVType *ResType, MachineInstr &I) const; Register buildOnesVal(bool AllOnes, const SPIRVType *ResType, MachineInstr &I) const; }; } // end anonymous namespace #define GET_GLOBALISEL_IMPL #include "SPIRVGenGlobalISel.inc" #undef GET_GLOBALISEL_IMPL SPIRVInstructionSelector::SPIRVInstructionSelector(const SPIRVTargetMachine &TM, const SPIRVSubtarget &ST, const RegisterBankInfo &RBI) : InstructionSelector(), STI(ST), TII(*ST.getInstrInfo()), TRI(*ST.getRegisterInfo()), RBI(RBI), GR(*ST.getSPIRVGlobalRegistry()), #define GET_GLOBALISEL_PREDICATES_INIT #include "SPIRVGenGlobalISel.inc" #undef GET_GLOBALISEL_PREDICATES_INIT #define GET_GLOBALISEL_TEMPORARIES_INIT #include "SPIRVGenGlobalISel.inc" #undef GET_GLOBALISEL_TEMPORARIES_INIT { } void SPIRVInstructionSelector::setupMF(MachineFunction &MF, GISelKnownBits *KB, CodeGenCoverage &CoverageInfo, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) { MRI = &MF.getRegInfo(); GR.setCurrentFunc(MF); InstructionSelector::setupMF(MF, KB, CoverageInfo, PSI, BFI); } // Defined in SPIRVLegalizerInfo.cpp. extern bool isTypeFoldingSupported(unsigned Opcode); bool SPIRVInstructionSelector::select(MachineInstr &I) { assert(I.getParent() && "Instruction should be in a basic block!"); assert(I.getParent()->getParent() && "Instruction should be in a function!"); Register Opcode = I.getOpcode(); // If it's not a GMIR instruction, we've selected it already. if (!isPreISelGenericOpcode(Opcode)) { if (Opcode == SPIRV::ASSIGN_TYPE) { // These pseudos aren't needed any more. auto *Def = MRI->getVRegDef(I.getOperand(1).getReg()); if (isTypeFoldingSupported(Def->getOpcode())) { auto Res = selectImpl(I, *CoverageInfo); assert(Res || Def->getOpcode() == TargetOpcode::G_CONSTANT); if (Res) return Res; } MRI->replaceRegWith(I.getOperand(1).getReg(), I.getOperand(0).getReg()); I.removeFromParent(); } else if (I.getNumDefs() == 1) { // Make all vregs 32 bits (for SPIR-V IDs). MRI->setType(I.getOperand(0).getReg(), LLT::scalar(32)); } return true; } if (I.getNumOperands() != I.getNumExplicitOperands()) { LLVM_DEBUG(errs() << "Generic instr has unexpected implicit operands\n"); return false; } // Common code for getting return reg+type, and removing selected instr // from parent occurs here. Instr-specific selection happens in spvSelect(). bool HasDefs = I.getNumDefs() > 0; Register ResVReg = HasDefs ? I.getOperand(0).getReg() : Register(0); SPIRVType *ResType = HasDefs ? GR.getSPIRVTypeForVReg(ResVReg) : nullptr; assert(!HasDefs || ResType || I.getOpcode() == TargetOpcode::G_GLOBAL_VALUE); if (spvSelect(ResVReg, ResType, I)) { if (HasDefs) // Make all vregs 32 bits (for SPIR-V IDs). MRI->setType(ResVReg, LLT::scalar(32)); I.removeFromParent(); return true; } return false; } bool SPIRVInstructionSelector::spvSelect(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { assert(!isTypeFoldingSupported(I.getOpcode()) || I.getOpcode() == TargetOpcode::G_CONSTANT); const unsigned Opcode = I.getOpcode(); switch (Opcode) { case TargetOpcode::G_CONSTANT: return selectConst(ResVReg, ResType, I.getOperand(1).getCImm()->getValue(), I); case TargetOpcode::G_GLOBAL_VALUE: return selectGlobalValue(ResVReg, I); case TargetOpcode::G_IMPLICIT_DEF: return selectOpUndef(ResVReg, ResType, I); case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: return selectIntrinsic(ResVReg, ResType, I); case TargetOpcode::G_BITREVERSE: return selectBitreverse(ResVReg, ResType, I); case TargetOpcode::G_BUILD_VECTOR: return selectConstVector(ResVReg, ResType, I); case TargetOpcode::G_SHUFFLE_VECTOR: { MachineBasicBlock &BB = *I.getParent(); auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorShuffle)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(1).getReg()) .addUse(I.getOperand(2).getReg()); for (auto V : I.getOperand(3).getShuffleMask()) MIB.addImm(V); return MIB.constrainAllUses(TII, TRI, RBI); } case TargetOpcode::G_MEMMOVE: case TargetOpcode::G_MEMCPY: return selectMemOperation(ResVReg, I); case TargetOpcode::G_ICMP: return selectICmp(ResVReg, ResType, I); case TargetOpcode::G_FCMP: return selectFCmp(ResVReg, ResType, I); case TargetOpcode::G_FRAME_INDEX: return selectFrameIndex(ResVReg, ResType, I); case TargetOpcode::G_LOAD: return selectLoad(ResVReg, ResType, I); case TargetOpcode::G_STORE: return selectStore(I); case TargetOpcode::G_BR: return selectBranch(I); case TargetOpcode::G_BRCOND: return selectBranchCond(I); case TargetOpcode::G_PHI: return selectPhi(ResVReg, ResType, I); case TargetOpcode::G_FPTOSI: return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToS); case TargetOpcode::G_FPTOUI: return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertFToU); case TargetOpcode::G_SITOFP: return selectIToF(ResVReg, ResType, I, true, SPIRV::OpConvertSToF); case TargetOpcode::G_UITOFP: return selectIToF(ResVReg, ResType, I, false, SPIRV::OpConvertUToF); case TargetOpcode::G_CTPOP: return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitCount); case TargetOpcode::G_SEXT: return selectExt(ResVReg, ResType, I, true); case TargetOpcode::G_ANYEXT: case TargetOpcode::G_ZEXT: return selectExt(ResVReg, ResType, I, false); case TargetOpcode::G_TRUNC: return selectTrunc(ResVReg, ResType, I); case TargetOpcode::G_FPTRUNC: case TargetOpcode::G_FPEXT: return selectUnOp(ResVReg, ResType, I, SPIRV::OpFConvert); case TargetOpcode::G_PTRTOINT: return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertPtrToU); case TargetOpcode::G_INTTOPTR: return selectUnOp(ResVReg, ResType, I, SPIRV::OpConvertUToPtr); case TargetOpcode::G_BITCAST: return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitcast); case TargetOpcode::G_ADDRSPACE_CAST: return selectAddrSpaceCast(ResVReg, ResType, I); case TargetOpcode::G_ATOMICRMW_OR: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicOr); case TargetOpcode::G_ATOMICRMW_ADD: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicIAdd); case TargetOpcode::G_ATOMICRMW_AND: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicAnd); case TargetOpcode::G_ATOMICRMW_MAX: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMax); case TargetOpcode::G_ATOMICRMW_MIN: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicSMin); case TargetOpcode::G_ATOMICRMW_SUB: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicISub); case TargetOpcode::G_ATOMICRMW_XOR: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicXor); case TargetOpcode::G_ATOMICRMW_UMAX: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMax); case TargetOpcode::G_ATOMICRMW_UMIN: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicUMin); case TargetOpcode::G_ATOMICRMW_XCHG: return selectAtomicRMW(ResVReg, ResType, I, SPIRV::OpAtomicExchange); case TargetOpcode::G_ATOMIC_CMPXCHG: return selectAtomicCmpXchg(ResVReg, ResType, I); case TargetOpcode::G_FENCE: return selectFence(I); default: return false; } } bool SPIRVInstructionSelector::selectUnOpWithSrc(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, Register SrcReg, unsigned Opcode) const { return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(SrcReg) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectUnOp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned Opcode) const { return selectUnOpWithSrc(ResVReg, ResType, I, I.getOperand(1).getReg(), Opcode); } static SPIRV::MemorySemantics getMemSemantics(AtomicOrdering Ord) { switch (Ord) { case AtomicOrdering::Acquire: return SPIRV::MemorySemantics::Acquire; case AtomicOrdering::Release: return SPIRV::MemorySemantics::Release; case AtomicOrdering::AcquireRelease: return SPIRV::MemorySemantics::AcquireRelease; case AtomicOrdering::SequentiallyConsistent: return SPIRV::MemorySemantics::SequentiallyConsistent; case AtomicOrdering::Unordered: case AtomicOrdering::Monotonic: case AtomicOrdering::NotAtomic: return SPIRV::MemorySemantics::None; } } static SPIRV::Scope getScope(SyncScope::ID Ord) { switch (Ord) { case SyncScope::SingleThread: return SPIRV::Scope::Invocation; case SyncScope::System: return SPIRV::Scope::Device; default: llvm_unreachable("Unsupported synchronization Scope ID."); } } static void addMemoryOperands(MachineMemOperand *MemOp, MachineInstrBuilder &MIB) { uint32_t SpvMemOp = static_cast(SPIRV::MemoryOperand::None); if (MemOp->isVolatile()) SpvMemOp |= static_cast(SPIRV::MemoryOperand::Volatile); if (MemOp->isNonTemporal()) SpvMemOp |= static_cast(SPIRV::MemoryOperand::Nontemporal); if (MemOp->getAlign().value()) SpvMemOp |= static_cast(SPIRV::MemoryOperand::Aligned); if (SpvMemOp != static_cast(SPIRV::MemoryOperand::None)) { MIB.addImm(SpvMemOp); if (SpvMemOp & static_cast(SPIRV::MemoryOperand::Aligned)) MIB.addImm(MemOp->getAlign().value()); } } static void addMemoryOperands(uint64_t Flags, MachineInstrBuilder &MIB) { uint32_t SpvMemOp = static_cast(SPIRV::MemoryOperand::None); if (Flags & MachineMemOperand::Flags::MOVolatile) SpvMemOp |= static_cast(SPIRV::MemoryOperand::Volatile); if (Flags & MachineMemOperand::Flags::MONonTemporal) SpvMemOp |= static_cast(SPIRV::MemoryOperand::Nontemporal); if (SpvMemOp != static_cast(SPIRV::MemoryOperand::None)) MIB.addImm(SpvMemOp); } bool SPIRVInstructionSelector::selectLoad(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { unsigned OpOffset = I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ? 1 : 0; Register Ptr = I.getOperand(1 + OpOffset).getReg(); auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpLoad)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(Ptr); if (!I.getNumMemOperands()) { assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB); } else { addMemoryOperands(*I.memoperands_begin(), MIB); } return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectStore(MachineInstr &I) const { unsigned OpOffset = I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS ? 1 : 0; Register StoreVal = I.getOperand(0 + OpOffset).getReg(); Register Ptr = I.getOperand(1 + OpOffset).getReg(); MachineBasicBlock &BB = *I.getParent(); auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpStore)) .addUse(Ptr) .addUse(StoreVal); if (!I.getNumMemOperands()) { assert(I.getOpcode() == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS); addMemoryOperands(I.getOperand(2 + OpOffset).getImm(), MIB); } else { addMemoryOperands(*I.memoperands_begin(), MIB); } return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectMemOperation(Register ResVReg, MachineInstr &I) const { MachineBasicBlock &BB = *I.getParent(); auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCopyMemorySized)) .addDef(I.getOperand(0).getReg()) .addUse(I.getOperand(1).getReg()) .addUse(I.getOperand(2).getReg()); if (I.getNumMemOperands()) addMemoryOperands(*I.memoperands_begin(), MIB); bool Result = MIB.constrainAllUses(TII, TRI, RBI); if (ResVReg.isValid() && ResVReg != MIB->getOperand(0).getReg()) { BuildMI(BB, I, I.getDebugLoc(), TII.get(TargetOpcode::COPY), ResVReg) .addUse(MIB->getOperand(0).getReg()); } return Result; } bool SPIRVInstructionSelector::selectAtomicRMW(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, unsigned NewOpcode) const { assert(I.hasOneMemOperand()); const MachineMemOperand *MemOp = *I.memoperands_begin(); uint32_t Scope = static_cast(getScope(MemOp->getSyncScopeID())); Register ScopeReg = buildI32Constant(Scope, I); Register Ptr = I.getOperand(1).getReg(); // TODO: Changed as it's implemented in the translator. See test/atomicrmw.ll // auto ScSem = // getMemSemanticsForStorageClass(GR.getPointerStorageClass(Ptr)); AtomicOrdering AO = MemOp->getSuccessOrdering(); uint32_t MemSem = static_cast(getMemSemantics(AO)); Register MemSemReg = buildI32Constant(MemSem /*| ScSem*/, I); return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(NewOpcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(Ptr) .addUse(ScopeReg) .addUse(MemSemReg) .addUse(I.getOperand(2).getReg()) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectFence(MachineInstr &I) const { AtomicOrdering AO = AtomicOrdering(I.getOperand(0).getImm()); uint32_t MemSem = static_cast(getMemSemantics(AO)); Register MemSemReg = buildI32Constant(MemSem, I); SyncScope::ID Ord = SyncScope::ID(I.getOperand(1).getImm()); uint32_t Scope = static_cast(getScope(Ord)); Register ScopeReg = buildI32Constant(Scope, I); MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpMemoryBarrier)) .addUse(ScopeReg) .addUse(MemSemReg) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectAtomicCmpXchg(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { assert(I.hasOneMemOperand()); const MachineMemOperand *MemOp = *I.memoperands_begin(); uint32_t Scope = static_cast(getScope(MemOp->getSyncScopeID())); Register ScopeReg = buildI32Constant(Scope, I); Register Ptr = I.getOperand(2).getReg(); Register Cmp = I.getOperand(3).getReg(); Register Val = I.getOperand(4).getReg(); SPIRVType *SpvValTy = GR.getSPIRVTypeForVReg(Val); SPIRV::StorageClass SC = GR.getPointerStorageClass(Ptr); uint32_t ScSem = static_cast(getMemSemanticsForStorageClass(SC)); AtomicOrdering AO = MemOp->getSuccessOrdering(); uint32_t MemSemEq = static_cast(getMemSemantics(AO)) | ScSem; Register MemSemEqReg = buildI32Constant(MemSemEq, I); AtomicOrdering FO = MemOp->getFailureOrdering(); uint32_t MemSemNeq = static_cast(getMemSemantics(FO)) | ScSem; Register MemSemNeqReg = MemSemEq == MemSemNeq ? MemSemEqReg : buildI32Constant(MemSemNeq, I); const DebugLoc &DL = I.getDebugLoc(); return BuildMI(*I.getParent(), I, DL, TII.get(SPIRV::OpAtomicCompareExchange)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(SpvValTy)) .addUse(Ptr) .addUse(ScopeReg) .addUse(MemSemEqReg) .addUse(MemSemNeqReg) .addUse(Val) .addUse(Cmp) .constrainAllUses(TII, TRI, RBI); } static bool isGenericCastablePtr(SPIRV::StorageClass SC) { switch (SC) { case SPIRV::StorageClass::Workgroup: case SPIRV::StorageClass::CrossWorkgroup: case SPIRV::StorageClass::Function: return true; default: return false; } } // In SPIR-V address space casting can only happen to and from the Generic // storage class. We can also only case Workgroup, CrossWorkgroup, or Function // pointers to and from Generic pointers. As such, we can convert e.g. from // Workgroup to Function by going via a Generic pointer as an intermediary. All // other combinations can only be done by a bitcast, and are probably not safe. bool SPIRVInstructionSelector::selectAddrSpaceCast(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { Register SrcPtr = I.getOperand(1).getReg(); SPIRVType *SrcPtrTy = GR.getSPIRVTypeForVReg(SrcPtr); SPIRV::StorageClass SrcSC = GR.getPointerStorageClass(SrcPtr); SPIRV::StorageClass DstSC = GR.getPointerStorageClass(ResVReg); // Casting from an eligable pointer to Generic. if (DstSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(SrcSC)) return selectUnOp(ResVReg, ResType, I, SPIRV::OpPtrCastToGeneric); // Casting from Generic to an eligable pointer. if (SrcSC == SPIRV::StorageClass::Generic && isGenericCastablePtr(DstSC)) return selectUnOp(ResVReg, ResType, I, SPIRV::OpGenericCastToPtr); // Casting between 2 eligable pointers using Generic as an intermediary. if (isGenericCastablePtr(SrcSC) && isGenericCastablePtr(DstSC)) { Register Tmp = MRI->createVirtualRegister(&SPIRV::IDRegClass); SPIRVType *GenericPtrTy = GR.getOrCreateSPIRVPointerType( SrcPtrTy, I, TII, SPIRV::StorageClass::Generic); MachineBasicBlock &BB = *I.getParent(); const DebugLoc &DL = I.getDebugLoc(); bool Success = BuildMI(BB, I, DL, TII.get(SPIRV::OpPtrCastToGeneric)) .addDef(Tmp) .addUse(GR.getSPIRVTypeID(GenericPtrTy)) .addUse(SrcPtr) .constrainAllUses(TII, TRI, RBI); return Success && BuildMI(BB, I, DL, TII.get(SPIRV::OpGenericCastToPtr)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(Tmp) .constrainAllUses(TII, TRI, RBI); } // TODO Should this case just be disallowed completely? // We're casting 2 other arbitrary address spaces, so have to bitcast. return selectUnOp(ResVReg, ResType, I, SPIRV::OpBitcast); } static unsigned getFCmpOpcode(unsigned PredNum) { auto Pred = static_cast(PredNum); switch (Pred) { case CmpInst::FCMP_OEQ: return SPIRV::OpFOrdEqual; case CmpInst::FCMP_OGE: return SPIRV::OpFOrdGreaterThanEqual; case CmpInst::FCMP_OGT: return SPIRV::OpFOrdGreaterThan; case CmpInst::FCMP_OLE: return SPIRV::OpFOrdLessThanEqual; case CmpInst::FCMP_OLT: return SPIRV::OpFOrdLessThan; case CmpInst::FCMP_ONE: return SPIRV::OpFOrdNotEqual; case CmpInst::FCMP_ORD: return SPIRV::OpOrdered; case CmpInst::FCMP_UEQ: return SPIRV::OpFUnordEqual; case CmpInst::FCMP_UGE: return SPIRV::OpFUnordGreaterThanEqual; case CmpInst::FCMP_UGT: return SPIRV::OpFUnordGreaterThan; case CmpInst::FCMP_ULE: return SPIRV::OpFUnordLessThanEqual; case CmpInst::FCMP_ULT: return SPIRV::OpFUnordLessThan; case CmpInst::FCMP_UNE: return SPIRV::OpFUnordNotEqual; case CmpInst::FCMP_UNO: return SPIRV::OpUnordered; default: llvm_unreachable("Unknown predicate type for FCmp"); } } static unsigned getICmpOpcode(unsigned PredNum) { auto Pred = static_cast(PredNum); switch (Pred) { case CmpInst::ICMP_EQ: return SPIRV::OpIEqual; case CmpInst::ICMP_NE: return SPIRV::OpINotEqual; case CmpInst::ICMP_SGE: return SPIRV::OpSGreaterThanEqual; case CmpInst::ICMP_SGT: return SPIRV::OpSGreaterThan; case CmpInst::ICMP_SLE: return SPIRV::OpSLessThanEqual; case CmpInst::ICMP_SLT: return SPIRV::OpSLessThan; case CmpInst::ICMP_UGE: return SPIRV::OpUGreaterThanEqual; case CmpInst::ICMP_UGT: return SPIRV::OpUGreaterThan; case CmpInst::ICMP_ULE: return SPIRV::OpULessThanEqual; case CmpInst::ICMP_ULT: return SPIRV::OpULessThan; default: llvm_unreachable("Unknown predicate type for ICmp"); } } static unsigned getPtrCmpOpcode(unsigned Pred) { switch (static_cast(Pred)) { case CmpInst::ICMP_EQ: return SPIRV::OpPtrEqual; case CmpInst::ICMP_NE: return SPIRV::OpPtrNotEqual; default: llvm_unreachable("Unknown predicate type for pointer comparison"); } } // Return the logical operation, or abort if none exists. static unsigned getBoolCmpOpcode(unsigned PredNum) { auto Pred = static_cast(PredNum); switch (Pred) { case CmpInst::ICMP_EQ: return SPIRV::OpLogicalEqual; case CmpInst::ICMP_NE: return SPIRV::OpLogicalNotEqual; default: llvm_unreachable("Unknown predicate type for Bool comparison"); } } bool SPIRVInstructionSelector::selectBitreverse(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpBitReverse)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(1).getReg()) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectConstVector(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { // TODO: only const case is supported for now. assert(std::all_of( I.operands_begin(), I.operands_end(), [this](const MachineOperand &MO) { if (MO.isDef()) return true; if (!MO.isReg()) return false; SPIRVType *ConstTy = this->MRI->getVRegDef(MO.getReg()); assert(ConstTy && ConstTy->getOpcode() == SPIRV::ASSIGN_TYPE && ConstTy->getOperand(1).isReg()); Register ConstReg = ConstTy->getOperand(1).getReg(); const MachineInstr *Const = this->MRI->getVRegDef(ConstReg); assert(Const); return (Const->getOpcode() == TargetOpcode::G_CONSTANT || Const->getOpcode() == TargetOpcode::G_FCONSTANT); })); auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpConstantComposite)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)); for (unsigned i = I.getNumExplicitDefs(); i < I.getNumExplicitOperands(); ++i) MIB.addUse(I.getOperand(i).getReg()); return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectCmp(Register ResVReg, const SPIRVType *ResType, unsigned CmpOpc, MachineInstr &I) const { Register Cmp0 = I.getOperand(2).getReg(); Register Cmp1 = I.getOperand(3).getReg(); assert(GR.getSPIRVTypeForVReg(Cmp0)->getOpcode() == GR.getSPIRVTypeForVReg(Cmp1)->getOpcode() && "CMP operands should have the same type"); return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(CmpOpc)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(Cmp0) .addUse(Cmp1) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectICmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { auto Pred = I.getOperand(1).getPredicate(); unsigned CmpOpc; Register CmpOperand = I.getOperand(2).getReg(); if (GR.isScalarOfType(CmpOperand, SPIRV::OpTypePointer)) CmpOpc = getPtrCmpOpcode(Pred); else if (GR.isScalarOrVectorOfType(CmpOperand, SPIRV::OpTypeBool)) CmpOpc = getBoolCmpOpcode(Pred); else CmpOpc = getICmpOpcode(Pred); return selectCmp(ResVReg, ResType, CmpOpc, I); } void SPIRVInstructionSelector::renderFImm32(MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const { assert(I.getOpcode() == TargetOpcode::G_FCONSTANT && OpIdx == -1 && "Expected G_FCONSTANT"); const ConstantFP *FPImm = I.getOperand(1).getFPImm(); addNumImm(FPImm->getValueAPF().bitcastToAPInt(), MIB); } void SPIRVInstructionSelector::renderImm32(MachineInstrBuilder &MIB, const MachineInstr &I, int OpIdx) const { assert(I.getOpcode() == TargetOpcode::G_CONSTANT && OpIdx == -1 && "Expected G_CONSTANT"); addNumImm(I.getOperand(1).getCImm()->getValue(), MIB); } Register SPIRVInstructionSelector::buildI32Constant(uint32_t Val, MachineInstr &I, const SPIRVType *ResType) const { const SPIRVType *SpvI32Ty = ResType ? ResType : GR.getOrCreateSPIRVIntegerType(32, I, TII); Register NewReg; NewReg = MRI->createGenericVirtualRegister(LLT::scalar(32)); MachineInstr *MI; MachineBasicBlock &BB = *I.getParent(); if (Val == 0) { MI = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull)) .addDef(NewReg) .addUse(GR.getSPIRVTypeID(SpvI32Ty)); } else { MI = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI)) .addDef(NewReg) .addUse(GR.getSPIRVTypeID(SpvI32Ty)) .addImm(APInt(32, Val).getZExtValue()); } constrainSelectedInstRegOperands(*MI, TII, TRI, RBI); return NewReg; } bool SPIRVInstructionSelector::selectFCmp(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { unsigned CmpOp = getFCmpOpcode(I.getOperand(1).getPredicate()); return selectCmp(ResVReg, ResType, CmpOp, I); } Register SPIRVInstructionSelector::buildZerosVal(const SPIRVType *ResType, MachineInstr &I) const { return buildI32Constant(0, I, ResType); } Register SPIRVInstructionSelector::buildOnesVal(bool AllOnes, const SPIRVType *ResType, MachineInstr &I) const { unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType); APInt One = AllOnes ? APInt::getAllOnesValue(BitWidth) : APInt::getOneBitSet(BitWidth, 0); Register OneReg = buildI32Constant(One.getZExtValue(), I, ResType); if (ResType->getOpcode() == SPIRV::OpTypeVector) { const unsigned NumEles = ResType->getOperand(2).getImm(); Register OneVec = MRI->createVirtualRegister(&SPIRV::IDRegClass); unsigned Opcode = SPIRV::OpConstantComposite; auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode)) .addDef(OneVec) .addUse(GR.getSPIRVTypeID(ResType)); for (unsigned i = 0; i < NumEles; ++i) MIB.addUse(OneReg); constrainSelectedInstRegOperands(*MIB, TII, TRI, RBI); return OneVec; } return OneReg; } bool SPIRVInstructionSelector::selectSelect(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned) const { // To extend a bool, we need to use OpSelect between constants. Register ZeroReg = buildZerosVal(ResType, I); Register OneReg = buildOnesVal(IsSigned, ResType, I); bool IsScalarBool = GR.isScalarOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool); unsigned Opcode = IsScalarBool ? SPIRV::OpSelectSISCond : SPIRV::OpSelectSIVCond; return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(1).getReg()) .addUse(OneReg) .addUse(ZeroReg) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectIToF(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned, unsigned Opcode) const { Register SrcReg = I.getOperand(1).getReg(); // We can convert bool value directly to float type without OpConvert*ToF, // however the translator generates OpSelect+OpConvert*ToF, so we do the same. if (GR.isScalarOrVectorOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool)) { unsigned BitWidth = GR.getScalarOrVectorBitWidth(ResType); SPIRVType *TmpType = GR.getOrCreateSPIRVIntegerType(BitWidth, I, TII); if (ResType->getOpcode() == SPIRV::OpTypeVector) { const unsigned NumElts = ResType->getOperand(2).getImm(); TmpType = GR.getOrCreateSPIRVVectorType(TmpType, NumElts, I, TII); } SrcReg = MRI->createVirtualRegister(&SPIRV::IDRegClass); selectSelect(SrcReg, TmpType, I, false); } return selectUnOpWithSrc(ResVReg, ResType, I, SrcReg, Opcode); } bool SPIRVInstructionSelector::selectExt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I, bool IsSigned) const { if (GR.isScalarOrVectorOfType(I.getOperand(1).getReg(), SPIRV::OpTypeBool)) return selectSelect(ResVReg, ResType, I, IsSigned); unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert; return selectUnOp(ResVReg, ResType, I, Opcode); } bool SPIRVInstructionSelector::selectIntToBool(Register IntReg, Register ResVReg, const SPIRVType *IntTy, const SPIRVType *BoolTy, MachineInstr &I) const { // To truncate to a bool, we use OpBitwiseAnd 1 and OpINotEqual to zero. Register BitIntReg = MRI->createVirtualRegister(&SPIRV::IDRegClass); bool IsVectorTy = IntTy->getOpcode() == SPIRV::OpTypeVector; unsigned Opcode = IsVectorTy ? SPIRV::OpBitwiseAndV : SPIRV::OpBitwiseAndS; Register Zero = buildZerosVal(IntTy, I); Register One = buildOnesVal(false, IntTy, I); MachineBasicBlock &BB = *I.getParent(); BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode)) .addDef(BitIntReg) .addUse(GR.getSPIRVTypeID(IntTy)) .addUse(IntReg) .addUse(One) .constrainAllUses(TII, TRI, RBI); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpINotEqual)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(BoolTy)) .addUse(BitIntReg) .addUse(Zero) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectTrunc(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { if (GR.isScalarOrVectorOfType(ResVReg, SPIRV::OpTypeBool)) { Register IntReg = I.getOperand(1).getReg(); const SPIRVType *ArgType = GR.getSPIRVTypeForVReg(IntReg); return selectIntToBool(IntReg, ResVReg, ArgType, ResType, I); } bool IsSigned = GR.isScalarOrVectorSigned(ResType); unsigned Opcode = IsSigned ? SPIRV::OpSConvert : SPIRV::OpUConvert; return selectUnOp(ResVReg, ResType, I, Opcode); } bool SPIRVInstructionSelector::selectConst(Register ResVReg, const SPIRVType *ResType, const APInt &Imm, MachineInstr &I) const { assert(ResType->getOpcode() != SPIRV::OpTypePointer || Imm.isNullValue()); MachineBasicBlock &BB = *I.getParent(); if (ResType->getOpcode() == SPIRV::OpTypePointer && Imm.isNullValue()) { return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantNull)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .constrainAllUses(TII, TRI, RBI); } auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpConstantI)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)); // <=32-bit integers should be caught by the sdag pattern. assert(Imm.getBitWidth() > 32); addNumImm(Imm, MIB); return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectOpUndef(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpUndef)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .constrainAllUses(TII, TRI, RBI); } static bool isImm(const MachineOperand &MO, MachineRegisterInfo *MRI) { assert(MO.isReg()); const SPIRVType *TypeInst = MRI->getVRegDef(MO.getReg()); if (TypeInst->getOpcode() != SPIRV::ASSIGN_TYPE) return false; assert(TypeInst->getOperand(1).isReg()); MachineInstr *ImmInst = MRI->getVRegDef(TypeInst->getOperand(1).getReg()); return ImmInst->getOpcode() == TargetOpcode::G_CONSTANT; } static int64_t foldImm(const MachineOperand &MO, MachineRegisterInfo *MRI) { const SPIRVType *TypeInst = MRI->getVRegDef(MO.getReg()); MachineInstr *ImmInst = MRI->getVRegDef(TypeInst->getOperand(1).getReg()); assert(ImmInst->getOpcode() == TargetOpcode::G_CONSTANT); return ImmInst->getOperand(1).getCImm()->getZExtValue(); } bool SPIRVInstructionSelector::selectInsertVal(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeInsert)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) // object to insert .addUse(I.getOperand(3).getReg()) // composite to insert into .addUse(I.getOperand(2).getReg()) // TODO: support arbitrary number of indices .addImm(foldImm(I.getOperand(4), MRI)) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectExtractVal(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpCompositeExtract)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()) // TODO: support arbitrary number of indices .addImm(foldImm(I.getOperand(3), MRI)) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectInsertElt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { if (isImm(I.getOperand(4), MRI)) return selectInsertVal(ResVReg, ResType, I); MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorInsertDynamic)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()) .addUse(I.getOperand(3).getReg()) .addUse(I.getOperand(4).getReg()) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectExtractElt(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { if (isImm(I.getOperand(3), MRI)) return selectExtractVal(ResVReg, ResType, I); MachineBasicBlock &BB = *I.getParent(); return BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpVectorExtractDynamic)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addUse(I.getOperand(2).getReg()) .addUse(I.getOperand(3).getReg()) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectGEP(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { // In general we should also support OpAccessChain instrs here (i.e. not // PtrAccessChain) but SPIRV-LLVM Translator doesn't emit them at all and so // do we to stay compliant with its test and more importantly consumers. unsigned Opcode = I.getOperand(2).getImm() ? SPIRV::OpInBoundsPtrAccessChain : SPIRV::OpPtrAccessChain; auto Res = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(Opcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) // Object to get a pointer to. .addUse(I.getOperand(3).getReg()); // Adding indices. for (unsigned i = 4; i < I.getNumExplicitOperands(); ++i) Res.addUse(I.getOperand(i).getReg()); return Res.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectIntrinsic(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { MachineBasicBlock &BB = *I.getParent(); switch (I.getIntrinsicID()) { case Intrinsic::spv_load: return selectLoad(ResVReg, ResType, I); break; case Intrinsic::spv_store: return selectStore(I); break; case Intrinsic::spv_extractv: return selectExtractVal(ResVReg, ResType, I); break; case Intrinsic::spv_insertv: return selectInsertVal(ResVReg, ResType, I); break; case Intrinsic::spv_extractelt: return selectExtractElt(ResVReg, ResType, I); break; case Intrinsic::spv_insertelt: return selectInsertElt(ResVReg, ResType, I); break; case Intrinsic::spv_gep: return selectGEP(ResVReg, ResType, I); break; case Intrinsic::spv_unref_global: case Intrinsic::spv_init_global: { MachineInstr *MI = MRI->getVRegDef(I.getOperand(1).getReg()); MachineInstr *Init = I.getNumExplicitOperands() > 2 ? MRI->getVRegDef(I.getOperand(2).getReg()) : nullptr; assert(MI); return selectGlobalValue(MI->getOperand(0).getReg(), *MI, Init); } break; case Intrinsic::spv_const_composite: { // If no values are attached, the composite is null constant. bool IsNull = I.getNumExplicitDefs() + 1 == I.getNumExplicitOperands(); unsigned Opcode = IsNull ? SPIRV::OpConstantNull : SPIRV::OpConstantComposite; auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(Opcode)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)); // skip type MD node we already used when generated assign.type for this if (!IsNull) { for (unsigned i = I.getNumExplicitDefs() + 1; i < I.getNumExplicitOperands(); ++i) { MIB.addUse(I.getOperand(i).getReg()); } } return MIB.constrainAllUses(TII, TRI, RBI); } break; case Intrinsic::spv_assign_name: { auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpName)); MIB.addUse(I.getOperand(I.getNumExplicitDefs() + 1).getReg()); for (unsigned i = I.getNumExplicitDefs() + 2; i < I.getNumExplicitOperands(); ++i) { MIB.addImm(I.getOperand(i).getImm()); } return MIB.constrainAllUses(TII, TRI, RBI); } break; case Intrinsic::spv_switch: { auto MIB = BuildMI(BB, I, I.getDebugLoc(), TII.get(SPIRV::OpSwitch)); for (unsigned i = 1; i < I.getNumExplicitOperands(); ++i) { if (I.getOperand(i).isReg()) MIB.addReg(I.getOperand(i).getReg()); else if (I.getOperand(i).isCImm()) addNumImm(I.getOperand(i).getCImm()->getValue(), MIB); else if (I.getOperand(i).isMBB()) MIB.addMBB(I.getOperand(i).getMBB()); else llvm_unreachable("Unexpected OpSwitch operand"); } return MIB.constrainAllUses(TII, TRI, RBI); } break; default: llvm_unreachable("Intrinsic selection not implemented"); } return true; } bool SPIRVInstructionSelector::selectFrameIndex(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { return BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpVariable)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)) .addImm(static_cast(SPIRV::StorageClass::Function)) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectBranch(MachineInstr &I) const { // InstructionSelector walks backwards through the instructions. We can use // both a G_BR and a G_BRCOND to create an OpBranchConditional. We hit G_BR // first, so can generate an OpBranchConditional here. If there is no // G_BRCOND, we just use OpBranch for a regular unconditional branch. const MachineInstr *PrevI = I.getPrevNode(); MachineBasicBlock &MBB = *I.getParent(); if (PrevI != nullptr && PrevI->getOpcode() == TargetOpcode::G_BRCOND) { return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional)) .addUse(PrevI->getOperand(0).getReg()) .addMBB(PrevI->getOperand(1).getMBB()) .addMBB(I.getOperand(0).getMBB()) .constrainAllUses(TII, TRI, RBI); } return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranch)) .addMBB(I.getOperand(0).getMBB()) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectBranchCond(MachineInstr &I) const { // InstructionSelector walks backwards through the instructions. For an // explicit conditional branch with no fallthrough, we use both a G_BR and a // G_BRCOND to create an OpBranchConditional. We should hit G_BR first, and // generate the OpBranchConditional in selectBranch above. // // If an OpBranchConditional has been generated, we simply return, as the work // is alread done. If there is no OpBranchConditional, LLVM must be relying on // implicit fallthrough to the next basic block, so we need to create an // OpBranchConditional with an explicit "false" argument pointing to the next // basic block that LLVM would fall through to. const MachineInstr *NextI = I.getNextNode(); // Check if this has already been successfully selected. if (NextI != nullptr && NextI->getOpcode() == SPIRV::OpBranchConditional) return true; // Must be relying on implicit block fallthrough, so generate an // OpBranchConditional with the "next" basic block as the "false" target. MachineBasicBlock &MBB = *I.getParent(); unsigned NextMBBNum = MBB.getNextNode()->getNumber(); MachineBasicBlock *NextMBB = I.getMF()->getBlockNumbered(NextMBBNum); return BuildMI(MBB, I, I.getDebugLoc(), TII.get(SPIRV::OpBranchConditional)) .addUse(I.getOperand(0).getReg()) .addMBB(I.getOperand(1).getMBB()) .addMBB(NextMBB) .constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectPhi(Register ResVReg, const SPIRVType *ResType, MachineInstr &I) const { auto MIB = BuildMI(*I.getParent(), I, I.getDebugLoc(), TII.get(SPIRV::OpPhi)) .addDef(ResVReg) .addUse(GR.getSPIRVTypeID(ResType)); const unsigned NumOps = I.getNumOperands(); for (unsigned i = 1; i < NumOps; i += 2) { MIB.addUse(I.getOperand(i + 0).getReg()); MIB.addMBB(I.getOperand(i + 1).getMBB()); } return MIB.constrainAllUses(TII, TRI, RBI); } bool SPIRVInstructionSelector::selectGlobalValue( Register ResVReg, MachineInstr &I, const MachineInstr *Init) const { // FIXME: don't use MachineIRBuilder here, replace it with BuildMI. MachineIRBuilder MIRBuilder(I); const GlobalValue *GV = I.getOperand(1).getGlobal(); SPIRVType *ResType = GR.getOrCreateSPIRVType( GV->getType(), MIRBuilder, SPIRV::AccessQualifier::ReadWrite, false); std::string GlobalIdent = GV->getGlobalIdentifier(); // TODO: suport @llvm.global.annotations. auto GlobalVar = cast(GV); bool HasInit = GlobalVar->hasInitializer() && !isa(GlobalVar->getInitializer()); // Skip empty declaration for GVs with initilaizers till we get the decl with // passed initializer. if (HasInit && !Init) return true; unsigned AddrSpace = GV->getAddressSpace(); SPIRV::StorageClass Storage = addressSpaceToStorageClass(AddrSpace); bool HasLnkTy = GV->getLinkage() != GlobalValue::InternalLinkage && Storage != SPIRV::StorageClass::Function; SPIRV::LinkageType LnkType = (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) ? SPIRV::LinkageType::Import : SPIRV::LinkageType::Export; Register Reg = GR.buildGlobalVariable(ResVReg, ResType, GlobalIdent, GV, Storage, Init, GlobalVar->isConstant(), HasLnkTy, LnkType, MIRBuilder, true); return Reg.isValid(); } namespace llvm { InstructionSelector * createSPIRVInstructionSelector(const SPIRVTargetMachine &TM, const SPIRVSubtarget &Subtarget, const RegisterBankInfo &RBI) { return new SPIRVInstructionSelector(TM, Subtarget, RBI); } } // namespace llvm