//==- AArch64SchedCortexA55.td - ARM Cortex-A55 Scheduling Definitions -*- tablegen -*-=// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file defines the machine model for the ARM Cortex-A55 processors. Note // that this schedule is currently used as the default for -mcpu=generic. As a // result, some of the modelling decision made do not precisely model the // Cortex-A55, instead aiming to be a good compromise between different cpus. // //===----------------------------------------------------------------------===// // ===---------------------------------------------------------------------===// // The following definitions describe the per-operand machine model. // This works with MachineScheduler. See MCSchedModel.h for details. // Cortex-A55 machine model for scheduling and other instruction cost heuristics. def CortexA55Model : SchedMachineModel { let MicroOpBufferSize = 0; // The Cortex-A55 is an in-order processor let IssueWidth = 2; // It dual-issues under most circumstances let LoadLatency = 4; // Cycles for loads to access the cache. The // optimisation guide shows that most loads have // a latency of 3, but some have a latency of 4 // or 5. Setting it 4 looked to be good trade-off. let MispredictPenalty = 8; // A branch direction mispredict. let PostRAScheduler = 1; // Enable PostRA scheduler pass. let CompleteModel = 0; // Covers instructions applicable to Cortex-A55. list UnsupportedFeatures = [HasSVE, HasMTE]; // FIXME: Remove when all errors have been fixed. let FullInstRWOverlapCheck = 0; } //===----------------------------------------------------------------------===// // Define each kind of processor resource and number available. // Modeling each pipeline as a ProcResource using the BufferSize = 0 since the // Cortex-A55 is in-order. def CortexA55UnitALU : ProcResource<2> { let BufferSize = 0; } // Int ALU def CortexA55UnitMAC : ProcResource<1> { let BufferSize = 0; } // Int MAC, 64-bi wide def CortexA55UnitDiv : ProcResource<1> { let BufferSize = 0; } // Int Division, not pipelined def CortexA55UnitLd : ProcResource<1> { let BufferSize = 0; } // Load pipe def CortexA55UnitSt : ProcResource<1> { let BufferSize = 0; } // Store pipe def CortexA55UnitB : ProcResource<1> { let BufferSize = 0; } // Branch // The FP DIV/SQRT instructions execute totally differently from the FP ALU // instructions, which can mostly be dual-issued; that's why for now we model // them with 2 resources. def CortexA55UnitFPALU : ProcResource<2> { let BufferSize = 0; } // FP ALU def CortexA55UnitFPMAC : ProcResource<2> { let BufferSize = 0; } // FP MAC def CortexA55UnitFPDIV : ProcResource<1> { let BufferSize = 0; } // FP Div/SQRT, 64/128 //===----------------------------------------------------------------------===// // Subtarget-specific SchedWrite types let SchedModel = CortexA55Model in { // These latencies are modeled without taking into account forwarding paths // (the software optimisation guide lists latencies taking into account // typical forwarding paths). def : WriteRes { let Latency = 3; } // MOVN, MOVZ def : WriteRes { let Latency = 3; } // ALU def : WriteRes { let Latency = 3; } // ALU of Shifted-Reg def : WriteRes { let Latency = 3; } // ALU of Extended-Reg def : WriteRes { let Latency = 3; } // EXTR from a reg pair def : WriteRes { let Latency = 3; } // Shift/Scale // MAC def : WriteRes { let Latency = 4; } // 32-bit Multiply def : WriteRes { let Latency = 4; } // 64-bit Multiply // Div def : WriteRes { let Latency = 8; let ResourceCycles = [8]; } def : WriteRes { let Latency = 8; let ResourceCycles = [8]; } // Load def : WriteRes { let Latency = 3; } def : WriteRes { let Latency = 4; } def : WriteRes { let Latency = 5; } // Vector Load - Vector loads take 1-5 cycles to issue. For the WriteVecLd // below, choosing the median of 3 which makes the latency 6. // An extra cycle is needed to get the swizzling right. def : WriteRes { let Latency = 6; let ResourceCycles = [3]; } def CortexA55WriteVLD1 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; } def CortexA55WriteVLD1SI : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 4; let SingleIssue = 1; } def CortexA55WriteVLD2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; let ResourceCycles = [2]; } def CortexA55WriteVLD3 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 6; let ResourceCycles = [3]; } def CortexA55WriteVLD4 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 7; let ResourceCycles = [4]; } def CortexA55WriteVLD5 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 8; let ResourceCycles = [5]; } def CortexA55WriteVLD6 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 9; let ResourceCycles = [6]; } def CortexA55WriteVLD7 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 10; let ResourceCycles = [7]; } def CortexA55WriteVLD8 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 11; let ResourceCycles = [8]; } def CortexA55WriteLDP1 : SchedWriteRes<[]> { let Latency = 4; } def CortexA55WriteLDP2 : SchedWriteRes<[CortexA55UnitLd]> { let Latency = 5; } def CortexA55WriteLDP4 : SchedWriteRes<[CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd, CortexA55UnitLd]> { let Latency = 6; } // Pre/Post Indexing - Performed as part of address generation def : WriteRes { let Latency = 0; } // Store let RetireOOO = 1 in { def : WriteRes { let Latency = 1; } def : WriteRes { let Latency = 1; } def : WriteRes { let Latency = 1; } } def : WriteRes { let Latency = 4; } // Vector Store - Similar to vector loads, can take 1-3 cycles to issue. def : WriteRes { let Latency = 5; let ResourceCycles = [2];} def CortexA55WriteVST1 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 4; } def CortexA55WriteVST2 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; let ResourceCycles = [2]; } def CortexA55WriteVST3 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 6; let ResourceCycles = [3]; } def CortexA55WriteVST4 : SchedWriteRes<[CortexA55UnitSt]> { let Latency = 5; let ResourceCycles = [4]; } def : WriteRes { let Unsupported = 1; } // Branch def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; def : WriteRes; // FP ALU // As WriteF result is produced in F5 and it can be mostly forwarded // to consumer at F1, the effectively latency is set as 4. def : WriteRes { let Latency = 4; } def : WriteRes { let Latency = 3; } def : WriteRes { let Latency = 4; } def : WriteRes { let Latency = 3; } def : WriteRes { let Latency = 3; } // NEON class CortexA55WriteVd : SchedWriteRes<[res]> { let Latency = n; } class CortexA55WriteVq : SchedWriteRes<[res, res]> { let Latency = n; let BeginGroup = 1; } def CortexA55WriteDotScVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; def CortexA55WriteDotVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; def CortexA55WriteDotVd_4 : CortexA55WriteVd<4, CortexA55UnitFPALU>; def CortexA55WriteMlaLVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; def CortexA55WriteMlaIxVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; def CortexA55WriteMlaVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; def CortexA55WriteMlaVd_4 : CortexA55WriteVd<4, CortexA55UnitFPALU>; def CortexA55WriteAluVq_4 : CortexA55WriteVq<4, CortexA55UnitFPALU>; def CortexA55WriteAluVd_3 : CortexA55WriteVd<3, CortexA55UnitFPALU>; def CortexA55WriteAluVq_3 : CortexA55WriteVq<3, CortexA55UnitFPALU>; def CortexA55WriteAluVd_2 : CortexA55WriteVd<2, CortexA55UnitFPALU>; def CortexA55WriteAluVq_2 : CortexA55WriteVq<2, CortexA55UnitFPALU>; def CortexA55WriteAluVd_1 : CortexA55WriteVd<1, CortexA55UnitFPALU>; def CortexA55WriteAluVq_1 : CortexA55WriteVq<1, CortexA55UnitFPALU>; def : SchedAlias>; def : SchedAlias>; // FP ALU specific new schedwrite definitions def CortexA55WriteFPALU_F2 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 2;} def CortexA55WriteFPALU_F3 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 3;} def CortexA55WriteFPALU_F4 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 4;} def CortexA55WriteFPALU_F5 : SchedWriteRes<[CortexA55UnitFPALU]> { let Latency = 5;} // FP Mul, Div, Sqrt. Div/Sqrt are not pipelined def : WriteRes { let Latency = 4; } let RetireOOO = 1 in { def : WriteRes { let Latency = 22; let ResourceCycles = [29]; } def CortexA55WriteFMAC : SchedWriteRes<[CortexA55UnitFPMAC]> { let Latency = 4; } def CortexA55WriteFDivHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; let ResourceCycles = [5]; } def CortexA55WriteFDivSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 13; let ResourceCycles = [10]; } def CortexA55WriteFDivDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; let ResourceCycles = [19]; } def CortexA55WriteFSqrtHP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 8; let ResourceCycles = [5]; } def CortexA55WriteFSqrtSP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 12; let ResourceCycles = [9]; } def CortexA55WriteFSqrtDP : SchedWriteRes<[CortexA55UnitFPDIV]> { let Latency = 22; let ResourceCycles = [19]; } } //===----------------------------------------------------------------------===// // Subtarget-specific SchedRead types. def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; def : ReadAdvance; // ALU - ALU input operands are generally needed in EX1. An operand produced in // in say EX2 can be forwarded for consumption to ALU in EX1, thereby // allowing back-to-back ALU operations such as add. If an operand requires // a shift, it will, however, be required in ISS stage. def : ReadAdvance; // Shifted operand def CortexA55ReadShifted : SchedReadAdvance<1, [WriteImm,WriteI, WriteISReg, WriteIEReg,WriteIS, WriteID32,WriteID64, WriteIM32,WriteIM64]>; def CortexA55ReadNotShifted : SchedReadAdvance<2, [WriteImm,WriteI, WriteISReg, WriteIEReg,WriteIS, WriteID32,WriteID64, WriteIM32,WriteIM64]>; def CortexA55ReadISReg : SchedReadVariant<[ SchedVar, SchedVar]>; def : SchedAlias; def CortexA55ReadIEReg : SchedReadVariant<[ SchedVar, SchedVar]>; def : SchedAlias; // MUL def : ReadAdvance; def : ReadAdvance; // Div def : ReadAdvance; //===----------------------------------------------------------------------===// // Subtarget-specific InstRWs. //--- // Miscellaneous //--- def : InstRW<[CortexA55WriteVLD1SI,CortexA55WriteLDP1], (instregex "LDPS?Wi")>; def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP1], (instregex "LDPSi")>; def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP2], (instregex "LDP(X|D)i")>; def : InstRW<[CortexA55WriteVLD1,CortexA55WriteLDP4], (instregex "LDPQi")>; def : InstRW<[WriteAdr, CortexA55WriteVLD1SI,CortexA55WriteLDP1], (instregex "LDPS?W(pre|post)")>; def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP1], (instregex "LDPS(pre|post)")>; def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP2], (instregex "LDP(X|D)(pre|post)")>; def : InstRW<[WriteAdr, CortexA55WriteVLD1,CortexA55WriteLDP4], (instregex "LDPQ(pre|post)")>; def : InstRW<[WriteI], (instrs COPY)>; //--- // Vector Loads - 64-bit per cycle //--- // 1-element structures def : InstRW<[CortexA55WriteVLD1], (instregex "LD1i(8|16|32|64)$")>; // single element def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // replicate def : InstRW<[CortexA55WriteVLD1], (instregex "LD1Onev(8b|4h|2s|1d)$")>; def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Onev(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD2], (instregex "LD1Twov(8b|4h|2s|1d)$")>; // multiple structures def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Twov(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD3], (instregex "LD1Threev(8b|4h|2s|1d)$")>; def : InstRW<[CortexA55WriteVLD6], (instregex "LD1Threev(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD4], (instregex "LD1Fourv(8b|4h|2s|1d)$")>; def : InstRW<[CortexA55WriteVLD8], (instregex "LD1Fourv(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVLD1, WriteAdr], (instregex "LD1Onev(8b|4h|2s|1d)_POST$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Onev(16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD1Twov(8b|4h|2s|1d)_POST$")>; def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Twov(16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD1Threev(8b|4h|2s|1d)_POST$")>; def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD1Threev(16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD1Fourv(8b|4h|2s|1d)_POST$")>; def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD1Fourv(16b|8h|4s|2d)_POST$")>; // 2-element structures def : InstRW<[CortexA55WriteVLD2], (instregex "LD2i(8|16|32|64)$")>; def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD2], (instregex "LD2Twov(8b|4h|2s)$")>; def : InstRW<[CortexA55WriteVLD4], (instregex "LD2Twov(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2i(8|16|32|64)(_POST)?$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Rv(8b|4h|2s|1d|16b|8h|4s|2d)(_POST)?$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD2Twov(8b|4h|2s)(_POST)?$")>; def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD2Twov(16b|8h|4s|2d)(_POST)?$")>; // 3-element structures def : InstRW<[CortexA55WriteVLD2], (instregex "LD3i(8|16|32|64)$")>; def : InstRW<[CortexA55WriteVLD2], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD3], (instregex "LD3Threev(8b|4h|2s|1d)$")>; def : InstRW<[CortexA55WriteVLD6], (instregex "LD3Threev(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD3Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVLD3, WriteAdr], (instregex "LD3Threev(8b|4h|2s|1d)_POST$")>; def : InstRW<[CortexA55WriteVLD6, WriteAdr], (instregex "LD3Threev(16b|8h|4s|2d)_POST$")>; // 4-element structures def : InstRW<[CortexA55WriteVLD2], (instregex "LD4i(8|16|32|64)$")>; // load single 4-el structure to one lane of 4 regs. def : InstRW<[CortexA55WriteVLD2], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; // load single 4-el structure, replicate to all lanes of 4 regs. def : InstRW<[CortexA55WriteVLD4], (instregex "LD4Fourv(8b|4h|2s|1d)$")>; // load multiple 4-el structures to 4 regs. def : InstRW<[CortexA55WriteVLD8], (instregex "LD4Fourv(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVLD2, WriteAdr], (instregex "LD4Rv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVLD4, WriteAdr], (instregex "LD4Fourv(8b|4h|2s|1d)_POST$")>; def : InstRW<[CortexA55WriteVLD8, WriteAdr], (instregex "LD4Fourv(16b|8h|4s|2d)_POST$")>; //--- // Vector Stores //--- def : InstRW<[CortexA55WriteVST1], (instregex "ST1i(8|16|32|64)$")>; def : InstRW<[CortexA55WriteVST1], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST1], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST2], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST4], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Onev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVST1, WriteAdr], (instregex "ST1Twov(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST1Threev(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST1Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVST2], (instregex "ST2i(8|16|32|64)$")>; def : InstRW<[CortexA55WriteVST2], (instregex "ST2Twov(8b|4h|2s)$")>; def : InstRW<[CortexA55WriteVST4], (instregex "ST2Twov(16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST2Twov(8b|4h|2s)_POST$")>; def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST2Twov(16b|8h|4s|2d)_POST$")>; def : InstRW<[CortexA55WriteVST2], (instregex "ST3i(8|16|32|64)$")>; def : InstRW<[CortexA55WriteVST4], (instregex "ST3Threev(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST3i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST3Threev(8b|4h|2s|1d|2d|16b|8h|4s|4d)_POST$")>; def : InstRW<[CortexA55WriteVST2], (instregex "ST4i(8|16|32|64)$")>; def : InstRW<[CortexA55WriteVST4], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)$")>; def : InstRW<[CortexA55WriteVST2, WriteAdr], (instregex "ST4i(8|16|32|64)_POST$")>; def : InstRW<[CortexA55WriteVST4, WriteAdr], (instregex "ST4Fourv(8b|4h|2s|1d|16b|8h|4s|2d)_POST$")>; //--- // Floating Point Conversions, MAC, DIV, SQRT //--- def : InstRW<[CortexA55WriteFPALU_F2], (instregex "^DUP(v2i64|v4i32|v8i16|v16i8)")>; def : InstRW<[CortexA55WriteFPALU_F2], (instregex "^XTN")>; def : InstRW<[CortexA55WriteFPALU_F3], (instregex "^FCVT[ALMNPZ][SU](S|U)?(W|X)")>; def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^FCVT(X)?[ALMNPXZ](S|U|N)?v")>; def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(S|U)(W|X)(H|S|D)")>; def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTF(h|s|d)")>; def : InstRW<[CortexA55WriteFPALU_F4], (instregex "^(S|U)CVTFv")>; def : InstRW<[CortexA55WriteFMAC], (instregex "^FN?M(ADD|SUB).*")>; def : InstRW<[CortexA55WriteFMAC], (instregex "^FML(A|S).*")>; def : InstRW<[CortexA55WriteFDivHP], (instrs FDIVHrr)>; def : InstRW<[CortexA55WriteFDivSP], (instrs FDIVSrr)>; def : InstRW<[CortexA55WriteFDivDP], (instrs FDIVDrr)>; def : InstRW<[CortexA55WriteFDivHP], (instregex "^FDIVv.*16$")>; def : InstRW<[CortexA55WriteFDivSP], (instregex "^FDIVv.*32$")>; def : InstRW<[CortexA55WriteFDivDP], (instregex "^FDIVv.*64$")>; def : InstRW<[CortexA55WriteFSqrtHP], (instregex "^.*SQRT.*16$")>; def : InstRW<[CortexA55WriteFSqrtSP], (instregex "^.*SQRT.*32$")>; def : InstRW<[CortexA55WriteFSqrtDP], (instregex "^.*SQRT.*64$")>; // 4.15. Advanced SIMD integer instructions // ASIMD absolute diff def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]ABDv(2i32|4i16|8i8)")>; def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]ABDv(16i8|4i32|8i16)")>; // ASIMD absolute diff accum def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]ABAL?v")>; // ASIMD absolute diff long def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]ABDLv")>; // ASIMD arith #1 def : InstRW<[CortexA55WriteAluVd_2], (instregex "(ADD|SUB|NEG)v(1i64|2i32|4i16|8i8)", "[SU]R?HADDv(2i32|4i16|8i8)", "[SU]HSUBv(2i32|4i16|8i8)")>; def : InstRW<[CortexA55WriteAluVq_2], (instregex "(ADD|SUB|NEG)v(2i64|4i32|8i16|16i8)", "[SU]R?HADDv(8i16|4i32|16i8)", "[SU]HSUBv(8i16|4i32|16i8)")>; // ASIMD arith #2 def : InstRW<[CortexA55WriteAluVd_3], (instregex "ABSv(1i64|2i32|4i16|8i8)$", "[SU]ADDLPv(2i32_v1i64|4i16_v2i32|8i8_v4i16)$", "([SU]QADD|[SU]QSUB|SQNEG|SUQADD|USQADD)v(1i16|1i32|1i64|1i8|2i32|4i16|8i8)$", "ADDPv(2i32|4i16|8i8)$")>; def : InstRW<[CortexA55WriteAluVq_3], (instregex "ABSv(2i64|4i32|8i16|16i8)$", "[SU]ADDLPv(16i8_v8i16|4i32_v2i64|8i16_v4i32)$", "([SU]QADD|[SU]QSUB|SQNEG|SUQADD|USQADD)v(16i8|2i64|4i32|8i16)$", "ADDPv(16i8|2i64|4i32|8i16)$")>; // ASIMD arith #3 def : InstRW<[CortexA55WriteAluVq_3], (instregex "SADDLv", "UADDLv", "SADDWv", "UADDWv", "SSUBLv", "USUBLv", "SSUBWv", "USUBWv", "ADDHNv", "SUBHNv")>; // ASIMD arith #5 def : InstRW<[CortexA55WriteAluVq_4], (instregex "RADDHNv", "RSUBHNv")>; // ASIMD arith, reduce def : InstRW<[CortexA55WriteAluVq_3], (instregex "ADDVv", "SADDLVv", "UADDLVv")>; // ASIMD compare #1 def : InstRW<[CortexA55WriteAluVd_2], (instregex "CM(EQ|GE|GT|HI|HS|LE|LT)v(1i64|2i32|4i16|8i8)")>; def : InstRW<[CortexA55WriteAluVq_2], (instregex "CM(EQ|GE|GT|HI|HS|LE|LT)v(2i64|4i32|8i16|16i8)")>; // ASIMD compare #2 def : InstRW<[CortexA55WriteAluVd_3], (instregex "CMTSTv(1i64|2i32|4i16|8i8)")>; def : InstRW<[CortexA55WriteAluVq_3], (instregex "CMTSTv(2i64|4i32|8i16|16i8)")>; // ASIMD logical $1 def : InstRW<[CortexA55WriteAluVd_1], (instregex "(AND|EOR|NOT|ORN)v8i8", "(ORR|BIC)v(2i32|4i16|8i8)$", "MVNIv(2i|2s|4i16)")>; def : InstRW<[CortexA55WriteAluVq_1], (instregex "(AND|EOR|NOT|ORN)v16i8", "(ORR|BIC)v(16i8|4i32|8i16)$", "MVNIv(4i32|4s|8i16)")>; // ASIMD max/min, basic def : InstRW<[CortexA55WriteAluVd_2], (instregex "[SU](MIN|MAX)P?v(2i32|4i16|8i8)")>; def : InstRW<[CortexA55WriteAluVq_2], (instregex "[SU](MIN|MAX)P?v(16i8|4i132|8i16)")>; // SIMD max/min, reduce def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU](MAX|MIN)Vv")>; // ASIMD multiply, by element def : InstRW<[CortexA55WriteAluVq_4], (instregex "MULv(2i32|4i16|4i32|8i16)_indexed$", "SQR?DMULHv(1i16|1i32|2i32|4i16|4i32|8i16)_indexed$")>; // ASIMD multiply def : InstRW<[CortexA55WriteAluVd_3], (instrs PMULv8i8)>; def : InstRW<[CortexA55WriteAluVq_3], (instrs PMULv16i8)>; // ASIMD multiply accumulate def : InstRW<[CortexA55WriteMlaVd_4], (instregex "ML[AS]v(2i32|4i16|8i8)$")>; def : InstRW<[CortexA55WriteMlaVq_4], (instregex "ML[AS]v(16i8|4i32|8i16)$")>; def : InstRW<[CortexA55WriteMlaIxVq_4], (instregex "ML[AS]v(2i32|4i16|4i32|8i16)_indexed$")>; // ASIMD multiply accumulate half def : InstRW<[CortexA55WriteAluVq_4], (instregex "SQRDML[AS]H[vi]")>; // ASIMD multiply accumulate long def : InstRW<[CortexA55WriteMlaLVq_4], (instregex "[SU]ML[AS]Lv")>; // ASIMD multiply accumulate long #2 def : InstRW<[CortexA55WriteAluVq_4], (instregex "SQDML[AS]L[iv]")>; // ASIMD dot product def : InstRW<[CortexA55WriteDotVd_4], (instregex "[SU]DOTv8i8")>; def : InstRW<[CortexA55WriteDotVq_4], (instregex "[SU]DOTv16i8")>; // ASIMD dot product, by scalar def : InstRW<[CortexA55WriteDotScVq_4], (instregex "[SU]DOTlanev")>; // ASIMD multiply long def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]MULLv", "SQDMULL[iv]")>; // ASIMD polynomial (8x8) multiply long def : InstRW<[CortexA55WriteAluVq_3], (instrs PMULLv8i8, PMULLv16i8)>; // ASIMD pairwise add and accumulate def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]ADALPv")>; // ASIMD shift accumulate def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]SRA(d|v2i32|v4i16|v8i8)")>; def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]SRAv(16i8|2i64|4i32|8i16)")>; // ASIMD shift accumulate #2 def : InstRW<[CortexA55WriteAluVq_4], (instregex "[SU]RSRA[vd]")>; // ASIMD shift by immed def : InstRW<[CortexA55WriteAluVd_2], (instregex "SHLd$", "SHLv", "SLId$", "SRId$", "[SU]SHR[vd]", "SHRNv")>; // ASIMD shift by immed // SXTL and UXTL are aliases for SHLL def : InstRW<[CortexA55WriteAluVq_2], (instregex "[US]?SHLLv")>; // ASIMD shift by immed #2 def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]RSHR(d|v2i32|v4i16|v8i8)", "RSHRNv(2i32|4i16|8i8)")>; def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]RSHRv(16i8|2i64|4i32|8i16)", "RSHRNv(16i8|4i32|8i16)")>; // ASIMD shift by register def : InstRW<[CortexA55WriteAluVd_2], (instregex "[SU]SHLv(1i64|2i32|4i16|8i8)")>; def : InstRW<[CortexA55WriteAluVq_2], (instregex "[SU]SHLv(2i64|4i32|8i16|16i8)")>; // ASIMD shift by register #2 def : InstRW<[CortexA55WriteAluVd_3], (instregex "[SU]RSHLv(1i64|2i32|4i16|8i8)")>; def : InstRW<[CortexA55WriteAluVq_3], (instregex "[SU]RSHLv(2i64|4i32|8i16|16i8)")>; }