aboutsummaryrefslogtreecommitdiff
path: root/utils/TableGen
diff options
context:
space:
mode:
Diffstat (limited to 'utils/TableGen')
-rw-r--r--utils/TableGen/CMakeLists.txt1
-rw-r--r--utils/TableGen/GlobalISelEmitter.cpp92
-rw-r--r--utils/TableGen/TableGen.cpp6
-rw-r--r--utils/TableGen/TableGenBackends.h1
-rw-r--r--utils/TableGen/X86FoldTablesEmitter.cpp720
5 files changed, 801 insertions, 19 deletions
diff --git a/utils/TableGen/CMakeLists.txt b/utils/TableGen/CMakeLists.txt
index b2913afae12a..9933c8319d30 100644
--- a/utils/TableGen/CMakeLists.txt
+++ b/utils/TableGen/CMakeLists.txt
@@ -35,6 +35,7 @@ add_tablegen(llvm-tblgen LLVM
TableGen.cpp
Types.cpp
X86DisassemblerTables.cpp
+ X86FoldTablesEmitter.cpp
X86EVEX2VEXTablesEmitter.cpp
X86ModRMFilters.cpp
X86RecognizableInstr.cpp
diff --git a/utils/TableGen/GlobalISelEmitter.cpp b/utils/TableGen/GlobalISelEmitter.cpp
index 7a500eaf4111..185119c2ca43 100644
--- a/utils/TableGen/GlobalISelEmitter.cpp
+++ b/utils/TableGen/GlobalISelEmitter.cpp
@@ -135,6 +135,9 @@ static Error isTrivialOperatorNode(const TreePatternNode *N) {
std::string Explanation = "";
std::string Separator = "";
if (N->isLeaf()) {
+ if (isa<IntInit>(N->getLeafValue()))
+ return Error::success();
+
Explanation = "Is a leaf";
Separator = ", ";
}
@@ -272,6 +275,7 @@ public:
OPM_ComplexPattern,
OPM_Instruction,
OPM_Int,
+ OPM_LiteralInt,
OPM_LLT,
OPM_RegBank,
OPM_MBB,
@@ -406,13 +410,14 @@ public:
}
};
-/// Generates code to check that an operand is a particular int.
-class IntOperandMatcher : public OperandPredicateMatcher {
+/// Generates code to check that an operand is a G_CONSTANT with a particular
+/// int.
+class ConstantIntOperandMatcher : public OperandPredicateMatcher {
protected:
int64_t Value;
public:
- IntOperandMatcher(int64_t Value)
+ ConstantIntOperandMatcher(int64_t Value)
: OperandPredicateMatcher(OPM_Int), Value(Value) {}
static bool classof(const OperandPredicateMatcher *P) {
@@ -425,6 +430,27 @@ public:
}
};
+/// Generates code to check that an operand is a raw int (where MO.isImm() or
+/// MO.isCImm() is true).
+class LiteralIntOperandMatcher : public OperandPredicateMatcher {
+protected:
+ int64_t Value;
+
+public:
+ LiteralIntOperandMatcher(int64_t Value)
+ : OperandPredicateMatcher(OPM_LiteralInt), Value(Value) {}
+
+ static bool classof(const OperandPredicateMatcher *P) {
+ return P->getKind() == OPM_LiteralInt;
+ }
+
+ void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
+ StringRef OperandExpr) const override {
+ OS << OperandExpr << ".isCImm() && " << OperandExpr
+ << ".getCImm()->equalsInt(" << Value << ")";
+ }
+};
+
/// Generates code to check that a set of predicates match for a particular
/// operand.
class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
@@ -1121,14 +1147,21 @@ void RuleMatcher::emit(raw_ostream &OS,
// We must also check if it's safe to fold the matched instructions.
if (InsnVariableNames.size() >= 2) {
+ // Invert the map to create stable ordering (by var names)
+ SmallVector<StringRef, 2> Names;
for (const auto &Pair : InsnVariableNames) {
// Skip the root node since it isn't moving anywhere. Everything else is
// sinking to meet it.
if (Pair.first == Matchers.front().get())
continue;
+ Names.push_back(Pair.second);
+ }
+ std::sort(Names.begin(), Names.end());
+
+ for (const auto &Name : Names) {
// Reject the difficult cases until we have a more accurate check.
- OS << " if (!isObviouslySafeToFold(" << Pair.second
+ OS << " if (!isObviouslySafeToFold(" << Name
<< ")) return false;\n";
// FIXME: Emit checks to determine it's _actually_ safe to fold and/or
@@ -1236,7 +1269,7 @@ private:
createAndImportSelDAGMatcher(InstructionMatcher &InsnMatcher,
const TreePatternNode *Src) const;
Error importChildMatcher(InstructionMatcher &InsnMatcher,
- TreePatternNode *SrcChild, unsigned OpIdx,
+ const TreePatternNode *SrcChild, unsigned OpIdx,
unsigned &TempOpIdx) const;
Expected<BuildMIAction &> createAndImportInstructionRenderer(
RuleMatcher &M, const TreePatternNode *Dst,
@@ -1299,14 +1332,23 @@ Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
if (Src->getExtTypes().size() > 1)
return failedImport("Src pattern has multiple results");
- auto SrcGIOrNull = findNodeEquiv(Src->getOperator());
- if (!SrcGIOrNull)
- return failedImport("Pattern operator lacks an equivalent Instruction" +
- explainOperator(Src->getOperator()));
- auto &SrcGI = *SrcGIOrNull;
+ if (Src->isLeaf()) {
+ Init *SrcInit = Src->getLeafValue();
+ if (isa<IntInit>(SrcInit)) {
+ InsnMatcher.addPredicate<InstructionOpcodeMatcher>(
+ &Target.getInstruction(RK.getDef("G_CONSTANT")));
+ } else
+ return failedImport("Unable to deduce gMIR opcode to handle Src (which is a leaf)");
+ } else {
+ auto SrcGIOrNull = findNodeEquiv(Src->getOperator());
+ if (!SrcGIOrNull)
+ return failedImport("Pattern operator lacks an equivalent Instruction" +
+ explainOperator(Src->getOperator()));
+ auto &SrcGI = *SrcGIOrNull;
- // The operators look good: match the opcode and mutate it to the new one.
- InsnMatcher.addPredicate<InstructionOpcodeMatcher>(&SrcGI);
+ // The operators look good: match the opcode
+ InsnMatcher.addPredicate<InstructionOpcodeMatcher>(&SrcGI);
+ }
unsigned OpIdx = 0;
unsigned TempOpIdx = 0;
@@ -1323,18 +1365,27 @@ Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);
}
- // Match the used operands (i.e. the children of the operator).
- for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
- if (auto Error = importChildMatcher(InsnMatcher, Src->getChild(i), OpIdx++,
- TempOpIdx))
- return std::move(Error);
+ if (Src->isLeaf()) {
+ Init *SrcInit = Src->getLeafValue();
+ if (IntInit *SrcIntInit = dyn_cast<IntInit>(SrcInit)) {
+ OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
+ OM.addPredicate<LiteralIntOperandMatcher>(SrcIntInit->getValue());
+ } else
+ return failedImport("Unable to deduce gMIR opcode to handle Src (which is a leaf)");
+ } else {
+ // Match the used operands (i.e. the children of the operator).
+ for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
+ if (auto Error = importChildMatcher(InsnMatcher, Src->getChild(i),
+ OpIdx++, TempOpIdx))
+ return std::move(Error);
+ }
}
return InsnMatcher;
}
Error GlobalISelEmitter::importChildMatcher(InstructionMatcher &InsnMatcher,
- TreePatternNode *SrcChild,
+ const TreePatternNode *SrcChild,
unsigned OpIdx,
unsigned &TempOpIdx) const {
OperandMatcher &OM =
@@ -1379,7 +1430,7 @@ Error GlobalISelEmitter::importChildMatcher(InstructionMatcher &InsnMatcher,
// Check for constant immediates.
if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
- OM.addPredicate<IntOperandMatcher>(ChildInt->getValue());
+ OM.addPredicate<ConstantIntOperandMatcher>(ChildInt->getValue());
return Error::success();
}
@@ -1605,6 +1656,9 @@ Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
return failedImport("Src pattern root isn't a trivial operator (" +
toString(std::move(Err)) + ")");
+ if (Dst->isLeaf())
+ return failedImport("Dst pattern root isn't a known leaf");
+
// Start with the defined operands (i.e., the results of the root operator).
Record *DstOp = Dst->getOperator();
if (!DstOp->isSubClassOf("Instruction"))
diff --git a/utils/TableGen/TableGen.cpp b/utils/TableGen/TableGen.cpp
index 00d20f1df6c2..329ce348727e 100644
--- a/utils/TableGen/TableGen.cpp
+++ b/utils/TableGen/TableGen.cpp
@@ -46,6 +46,7 @@ enum ActionType {
GenAttributes,
GenSearchableTables,
GenGlobalISel,
+ GenX86FoldTables,
GenX86EVEX2VEXTables,
GenRegisterBank,
};
@@ -97,6 +98,8 @@ namespace {
"Generate generic binary-searchable table"),
clEnumValN(GenGlobalISel, "gen-global-isel",
"Generate GlobalISel selector"),
+ clEnumValN(GenX86FoldTables, "gen-x86-fold-tables",
+ "Generate X86 fold tables"),
clEnumValN(GenX86EVEX2VEXTables, "gen-x86-EVEX2VEX-tables",
"Generate X86 EVEX to VEX compress tables"),
clEnumValN(GenRegisterBank, "gen-register-bank",
@@ -190,6 +193,9 @@ bool LLVMTableGenMain(raw_ostream &OS, RecordKeeper &Records) {
case GenGlobalISel:
EmitGlobalISel(Records, OS);
break;
+ case GenX86FoldTables:
+ EmitX86FoldTables(Records, OS);
+ break;
case GenRegisterBank:
EmitRegisterBank(Records, OS);
break;
diff --git a/utils/TableGen/TableGenBackends.h b/utils/TableGen/TableGenBackends.h
index 2512997e27f9..53614df27c40 100644
--- a/utils/TableGen/TableGenBackends.h
+++ b/utils/TableGen/TableGenBackends.h
@@ -81,6 +81,7 @@ void EmitCTags(RecordKeeper &RK, raw_ostream &OS);
void EmitAttributes(RecordKeeper &RK, raw_ostream &OS);
void EmitSearchableTables(RecordKeeper &RK, raw_ostream &OS);
void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS);
+void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &OS);
void EmitX86EVEX2VEXTables(RecordKeeper &RK, raw_ostream &OS);
void EmitRegisterBank(RecordKeeper &RK, raw_ostream &OS);
diff --git a/utils/TableGen/X86FoldTablesEmitter.cpp b/utils/TableGen/X86FoldTablesEmitter.cpp
new file mode 100644
index 000000000000..f211a8fab975
--- /dev/null
+++ b/utils/TableGen/X86FoldTablesEmitter.cpp
@@ -0,0 +1,720 @@
+//===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This tablegen backend is responsible for emitting the memory fold tables of
+// the X86 backend instructions.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenDAGPatterns.h"
+#include "CodeGenTarget.h"
+#include "X86RecognizableInstr.h"
+#include "llvm/TableGen/Error.h"
+#include "llvm/TableGen/TableGenBackend.h"
+
+using namespace llvm;
+
+namespace {
+
+// 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the
+// manual added entries.
+enum UnfoldStrategy {
+ UNFOLD, // Allow unfolding
+ NO_UNFOLD, // Prevent unfolding
+ NO_STRATEGY // Make decision according to operands' sizes
+};
+
+// Represents an entry in the manual mapped instructions set.
+struct ManualMapEntry {
+ const char *RegInstStr;
+ const char *MemInstStr;
+ UnfoldStrategy Strategy;
+
+ ManualMapEntry(const char *RegInstStr, const char *MemInstStr,
+ UnfoldStrategy Strategy = NO_STRATEGY)
+ : RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {}
+};
+
+class IsMatch;
+
+// List of instructions requiring explicitly aligned memory.
+const char *const ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS",
+ "MOVNTPD", "MOVNTDQ", "MOVNTDQA"};
+
+// List of instructions NOT requiring explicit memory alignment.
+const char *const ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD"};
+
+// For manually mapping instructions that do not match by their encoding.
+const ManualMapEntry ManualMapSet[] = {
+ { "ADD16ri_DB", "ADD16mi", NO_UNFOLD },
+ { "ADD16ri8_DB", "ADD16mi8", NO_UNFOLD },
+ { "ADD16rr_DB", "ADD16mr", NO_UNFOLD },
+ { "ADD32ri_DB", "ADD32mi", NO_UNFOLD },
+ { "ADD32ri8_DB", "ADD32mi8", NO_UNFOLD },
+ { "ADD32rr_DB", "ADD32mr", NO_UNFOLD },
+ { "ADD64ri32_DB", "ADD64mi32", NO_UNFOLD },
+ { "ADD64ri8_DB", "ADD64mi8", NO_UNFOLD },
+ { "ADD64rr_DB", "ADD64mr", NO_UNFOLD },
+ { "ADD16rr_DB", "ADD16rm", NO_UNFOLD },
+ { "ADD32rr_DB", "ADD32rm", NO_UNFOLD },
+ { "ADD64rr_DB", "ADD64rm", NO_UNFOLD },
+ { "PUSH16r", "PUSH16rmm", NO_UNFOLD },
+ { "PUSH32r", "PUSH32rmm", NO_UNFOLD },
+ { "PUSH64r", "PUSH64rmm", NO_UNFOLD },
+ { "TAILJMPr", "TAILJMPm", UNFOLD },
+ { "TAILJMPr64", "TAILJMPm64", UNFOLD },
+ { "TAILJMPr64_REX", "TAILJMPm64_REX", UNFOLD },
+};
+
+// Do not add these instructions to any of the folding tables.
+const char *const NoFoldSet[] = {
+ "TCRETURNri64",
+ "TCRETURNmi64", // Special dealing (in X86InstrCompiler.td under
+ "TCRETURNri", // "tailcall stuff" section).
+ "TCRETURNmi"
+
+ // Different calculations of the folded operand between
+ // memory and register forms (folding is illegal).
+ // - In their register form, the second register operand's relevant
+ // bits are only the first 4/5/6 (depending on mode and reg size).
+ // - In their memory form, the second register operand's relevant
+ // bits are only the first 16/32/64 (depending on mode and reg size).
+ "BT16rr", "BT32rr", "BT64rr",
+ "BT16mr", "BT32mr", "BT64mr",
+ "BTC16rr", "BTC32rr", "BTC64rr",
+ "BTC16mr", "BTC32mr", "BTC64mr",
+ "BTR16rr", "BTR32rr", "BTR64rr",
+ "BTR16mr", "BTR32mr", "BTR64mr",
+ "BTS16rr", "BTS32rr", "BTS64rr",
+ "BTS16mr", "BTS32mr", "BTS64mr",
+
+ // Memory folding is enabled only when optimizing for size by DAG
+ // patterns only. (issue detailed in D28744 review)
+ "VCVTSS2SDrm", "VCVTSS2SDrr",
+ "VCVTSS2SDZrm", "VCVTSS2SDZrr",
+ "VCVTSS2SDZrmk", "VCVTSS2SDZrrk",
+ "VCVTSS2SDZrmkz", "VCVTSS2SDZrrkz",
+ "VCVTSS2SDZrm_Int", "VCVTSS2SDZrr_Int",
+ "VCVTSS2SDZrm_Intk", "VCVTSS2SDZrr_Intk",
+ "VCVTSS2SDZrm_Intkz", "VCVTSS2SDZrr_Intkz",
+ "VCVTSD2SSrm", "VCVTSD2SSrr",
+ "VCVTSD2SSZrm", "VCVTSD2SSZrr",
+ "VCVTSD2SSZrmk", "VCVTSD2SSZrrk",
+ "VCVTSD2SSZrmkz", "VCVTSD2SSZrrkz",
+ "VCVTSD2SSZrm_Int", "VCVTSD2SSZrr_Int",
+ "VCVTSD2SSZrm_Intk", "VCVTSD2SSZrr_Intk",
+ "VCVTSD2SSZrm_Intkz", "VCVTSD2SSZrr_Intkz",
+ "VRCP14SSrm", "VRCP14SSrr",
+ "VRCP14SDrm", "VRCP14SDrr",
+ "VRSQRT14SSrm", "VRSQRT14SSrr",
+ "VRSQRT14SDrm", "VRSQRT14SDrr",
+ "VSQRTSSm", "VSQRTSSr",
+ "VSQRTSSm_Int", "VSQRTSSr_Int",
+ "VSQRTSSZm", "VSQRTSSZr",
+ "VSQRTSSZm_Int", "VSQRTSSZr_Int",
+ "VSQRTSSZm_Intk", "VSQRTSSZr_Intk",
+ "VSQRTSSZm_Intkz", "VSQRTSSZr_Intkz",
+ "VSQRTSDm", "VSQRTSDr",
+ "VSQRTSDm_Int", "VSQRTSDr_Int",
+ "VSQRTSDZm", "VSQRTSDZr",
+ "VSQRTSDZm_Int", "VSQRTSDZr_Int",
+ "VSQRTSDZm_Intk", "VSQRTSDZr_Intk",
+ "VSQRTSDZm_Intkz", "VSQRTSDZr_Intkz",
+};
+
+static bool isExplicitAlign(const CodeGenInstruction *Inst) {
+ return any_of(ExplicitAlign, [Inst](const char *InstStr) {
+ return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
+ });
+}
+
+static bool isExplicitUnalign(const CodeGenInstruction *Inst) {
+ return any_of(ExplicitUnalign, [Inst](const char *InstStr) {
+ return Inst->TheDef->getName().find(InstStr) != StringRef::npos;
+ });
+}
+
+class X86FoldTablesEmitter {
+ RecordKeeper &Records;
+ CodeGenTarget Target;
+
+ // Represents an entry in the folding table
+ class X86FoldTableEntry {
+ const CodeGenInstruction *RegInst;
+ const CodeGenInstruction *MemInst;
+
+ public:
+ bool CannotUnfold = false;
+ bool IsLoad = false;
+ bool IsStore = false;
+ bool IsAligned = false;
+ unsigned int Alignment = 0;
+
+ X86FoldTableEntry(const CodeGenInstruction *RegInst,
+ const CodeGenInstruction *MemInst)
+ : RegInst(RegInst), MemInst(MemInst) {}
+
+ friend raw_ostream &operator<<(raw_ostream &OS,
+ const X86FoldTableEntry &E) {
+ OS << "{ X86::" << E.RegInst->TheDef->getName()
+ << ", X86::" << E.MemInst->TheDef->getName() << ", ";
+
+ if (E.IsLoad)
+ OS << "TB_FOLDED_LOAD | ";
+ if (E.IsStore)
+ OS << "TB_FOLDED_STORE | ";
+ if (E.CannotUnfold)
+ OS << "TB_NO_REVERSE | ";
+ if (E.IsAligned)
+ OS << "TB_ALIGN_" << E.Alignment << " | ";
+
+ OS << "0 },\n";
+
+ return OS;
+ }
+ };
+
+ typedef std::vector<X86FoldTableEntry> FoldTable;
+ // std::vector for each folding table.
+ // Table2Addr - Holds instructions which their memory form performs load+store
+ // Table#i - Holds instructions which the their memory form perform a load OR
+ // a store, and their #i'th operand is folded.
+ FoldTable Table2Addr;
+ FoldTable Table0;
+ FoldTable Table1;
+ FoldTable Table2;
+ FoldTable Table3;
+ FoldTable Table4;
+
+public:
+ X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {}
+
+ // run - Generate the 6 X86 memory fold tables.
+ void run(raw_ostream &OS);
+
+private:
+ // Decides to which table to add the entry with the given instructions.
+ // S sets the strategy of adding the TB_NO_REVERSE flag.
+ void updateTables(const CodeGenInstruction *RegInstr,
+ const CodeGenInstruction *MemInstr,
+ const UnfoldStrategy S = NO_STRATEGY);
+
+ // Generates X86FoldTableEntry with the given instructions and fill it with
+ // the appropriate flags - then adds it to Table.
+ void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr,
+ const CodeGenInstruction *MemInstr,
+ const UnfoldStrategy S, const unsigned int FoldedInd);
+
+ // Print the given table as a static const C++ array of type
+ // X86MemoryFoldTableEntry.
+ void printTable(const FoldTable &Table, std::string TableName,
+ raw_ostream &OS) {
+ OS << "\nstatic const X86MemoryFoldTableEntry MemoryFold" << TableName
+ << "[] = {\n";
+
+ for (const X86FoldTableEntry &E : Table)
+ OS.indent(2) << E;
+
+ OS << "};\n";
+ }
+};
+
+// Return true if one of the instruction's operands is a RST register class
+static bool hasRSTRegClass(const CodeGenInstruction *Inst) {
+ return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
+ return OpIn.Rec->getName() == "RST";
+ });
+}
+
+// Return true if one of the instruction's operands is a ptr_rc_tailcall
+static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) {
+ return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) {
+ return OpIn.Rec->getName() == "ptr_rc_tailcall";
+ });
+}
+
+// Calculates the integer value representing the BitsInit object
+static inline uint64_t getValueFromBitsInit(const BitsInit *B) {
+ assert(B->getNumBits() <= sizeof(uint64_t) * CHAR_BIT &&
+ "BitInits' too long!");
+
+ uint64_t Value = 0;
+ for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) {
+ BitInit *Bit = cast<BitInit>(B->getBit(i));
+ Value |= uint64_t(Bit->getValue()) << i;
+ }
+ return Value;
+}
+
+// Returns true if the two given BitsInits represent the same integer value
+static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) {
+ if (B1->getNumBits() != B2->getNumBits())
+ PrintFatalError("Comparing two BitsInits with different sizes!");
+
+ for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) {
+ BitInit *Bit1 = cast<BitInit>(B1->getBit(i));
+ BitInit *Bit2 = cast<BitInit>(B2->getBit(i));
+ if (Bit1->getValue() != Bit2->getValue())
+ return false;
+ }
+ return true;
+}
+
+// Return the size of the register operand
+static inline unsigned int getRegOperandSize(const Record *RegRec) {
+ if (RegRec->isSubClassOf("RegisterOperand"))
+ RegRec = RegRec->getValueAsDef("RegClass");
+ if (RegRec->isSubClassOf("RegisterClass"))
+ return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size");
+
+ llvm_unreachable("Register operand's size not known!");
+}
+
+// Return the size of the memory operand
+static inline unsigned int
+getMemOperandSize(const Record *MemRec, const bool IntrinsicSensitive = false) {
+ if (MemRec->isSubClassOf("Operand")) {
+ // Intrinsic memory instructions use ssmem/sdmem.
+ if (IntrinsicSensitive &&
+ (MemRec->getName() == "sdmem" || MemRec->getName() == "ssmem"))
+ return 128;
+
+ std::string Name =
+ MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name");
+ if (Name == "Mem8")
+ return 8;
+ if (Name == "Mem16")
+ return 16;
+ if (Name == "Mem32")
+ return 32;
+ if (Name == "Mem64")
+ return 64;
+ if (Name == "Mem80")
+ return 80;
+ if (Name == "Mem128")
+ return 128;
+ if (Name == "Mem256")
+ return 256;
+ if (Name == "Mem512")
+ return 512;
+ }
+
+ llvm_unreachable("Memory operand's size not known!");
+}
+
+// Returns true if the record's list of defs includes the given def.
+static inline bool hasDefInList(const Record *Rec, const StringRef List,
+ const StringRef Def) {
+ if (!Rec->isValueUnset(List)) {
+ return any_of(*(Rec->getValueAsListInit(List)),
+ [Def](const Init *I) { return I->getAsString() == Def; });
+ }
+ return false;
+}
+
+// Return true if the instruction defined as a register flavor.
+static inline bool hasRegisterFormat(const Record *Inst) {
+ const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
+ uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
+
+ // Values from X86Local namespace defined in X86RecognizableInstr.cpp
+ return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r;
+}
+
+// Return true if the instruction defined as a memory flavor.
+static inline bool hasMemoryFormat(const Record *Inst) {
+ const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits");
+ uint64_t FormBitsNum = getValueFromBitsInit(FormBits);
+
+ // Values from X86Local namespace defined in X86RecognizableInstr.cpp
+ return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m;
+}
+
+static inline bool isNOREXRegClass(const Record *Op) {
+ return Op->getName().find("_NOREX") != StringRef::npos;
+}
+
+static inline bool isRegisterOperand(const Record *Rec) {
+ return Rec->isSubClassOf("RegisterClass") ||
+ Rec->isSubClassOf("RegisterOperand") ||
+ Rec->isSubClassOf("PointerLikeRegClass");
+}
+
+static inline bool isMemoryOperand(const Record *Rec) {
+ return Rec->isSubClassOf("Operand") &&
+ Rec->getValueAsString("OperandType") == "OPERAND_MEMORY";
+}
+
+static inline bool isImmediateOperand(const Record *Rec) {
+ return Rec->isSubClassOf("Operand") &&
+ Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE";
+}
+
+// Get the alternative instruction pointed by "FoldGenRegForm" field.
+static inline const CodeGenInstruction *
+getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records,
+ const CodeGenTarget &Target) {
+
+ std::string AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm");
+ Record *AltRegInstRec = Records.getDef(AltRegInstStr);
+ assert(AltRegInstRec &&
+ "Alternative register form instruction def not found");
+ CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec);
+ return &AltRegInst;
+}
+
+// Function object - Operator() returns true if the given VEX instruction
+// matches the EVEX instruction of this object.
+class IsMatch {
+ const CodeGenInstruction *MemInst;
+ const RecordKeeper &Records;
+
+public:
+ IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records)
+ : MemInst(Inst), Records(Records) {}
+
+ bool operator()(const CodeGenInstruction *RegInst) {
+ Record *MemRec = MemInst->TheDef;
+ Record *RegRec = RegInst->TheDef;
+
+ // Return false if one (at least) of the encoding fields of both
+ // instructions do not match.
+ if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") ||
+ !equalBitsInits(RegRec->getValueAsBitsInit("Opcode"),
+ MemRec->getValueAsBitsInit("Opcode")) ||
+ // VEX/EVEX fields
+ RegRec->getValueAsDef("OpPrefix") !=
+ MemRec->getValueAsDef("OpPrefix") ||
+ RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") ||
+ RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") ||
+ RegRec->getValueAsBit("hasVEX_4V") !=
+ MemRec->getValueAsBit("hasVEX_4V") ||
+ RegRec->getValueAsBit("hasEVEX_K") !=
+ MemRec->getValueAsBit("hasEVEX_K") ||
+ RegRec->getValueAsBit("hasEVEX_Z") !=
+ MemRec->getValueAsBit("hasEVEX_Z") ||
+ RegRec->getValueAsBit("hasEVEX_B") !=
+ MemRec->getValueAsBit("hasEVEX_B") ||
+ RegRec->getValueAsBit("hasEVEX_RC") !=
+ MemRec->getValueAsBit("hasEVEX_RC") ||
+ RegRec->getValueAsBit("hasREX_WPrefix") !=
+ MemRec->getValueAsBit("hasREX_WPrefix") ||
+ RegRec->getValueAsBit("hasLockPrefix") !=
+ MemRec->getValueAsBit("hasLockPrefix") ||
+ !equalBitsInits(RegRec->getValueAsBitsInit("EVEX_LL"),
+ MemRec->getValueAsBitsInit("EVEX_LL")) ||
+ !equalBitsInits(RegRec->getValueAsBitsInit("VEX_WPrefix"),
+ MemRec->getValueAsBitsInit("VEX_WPrefix")) ||
+ // Instruction's format - The register form's "Form" field should be
+ // the opposite of the memory form's "Form" field.
+ !areOppositeForms(RegRec->getValueAsBitsInit("FormBits"),
+ MemRec->getValueAsBitsInit("FormBits")) ||
+ RegRec->getValueAsBit("isAsmParserOnly") !=
+ MemRec->getValueAsBit("isAsmParserOnly"))
+ return false;
+
+ // Make sure the sizes of the operands of both instructions suit each other.
+ // This is needed for instructions with intrinsic version (_Int).
+ // Where the only difference is the size of the operands.
+ // For example: VUCOMISDZrm and Int_VUCOMISDrm
+ // Also for instructions that their EVEX version was upgraded to work with
+ // k-registers. For example VPCMPEQBrm (xmm output register) and
+ // VPCMPEQBZ128rm (k register output register).
+ bool ArgFolded = false;
+ unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
+ unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
+ unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
+ unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
+
+ // Instructions with one output in their memory form use the memory folded
+ // operand as source and destination (Read-Modify-Write).
+ unsigned RegStartIdx =
+ (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0;
+
+ for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) {
+ Record *MemOpRec = MemInst->Operands[i].Rec;
+ Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec;
+
+ if (MemOpRec == RegOpRec)
+ continue;
+
+ if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) {
+ if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) ||
+ isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec))
+ return false;
+ } else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) {
+ if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec))
+ return false;
+ } else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) {
+ if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type"))
+ return false;
+ } else {
+ // Only one operand can be folded.
+ if (ArgFolded)
+ return false;
+
+ assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec));
+ ArgFolded = true;
+ }
+ }
+
+ return true;
+ }
+
+private:
+ // Return true of the 2 given forms are the opposite of each other.
+ bool areOppositeForms(const BitsInit *RegFormBits,
+ const BitsInit *MemFormBits) {
+ uint64_t MemFormNum = getValueFromBitsInit(MemFormBits);
+ uint64_t RegFormNum = getValueFromBitsInit(RegFormBits);
+
+ if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) ||
+ (MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) ||
+ (MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) ||
+ (MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) ||
+ (MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) ||
+ (MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) ||
+ (MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) ||
+ (MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) ||
+ (MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) ||
+ (MemFormNum == X86Local::MRMDestMem &&
+ RegFormNum == X86Local::MRMDestReg) ||
+ (MemFormNum == X86Local::MRMSrcMem &&
+ RegFormNum == X86Local::MRMSrcReg) ||
+ (MemFormNum == X86Local::MRMSrcMem4VOp3 &&
+ RegFormNum == X86Local::MRMSrcReg4VOp3) ||
+ (MemFormNum == X86Local::MRMSrcMemOp4 &&
+ RegFormNum == X86Local::MRMSrcRegOp4))
+ return true;
+
+ return false;
+ }
+};
+
+} // end anonymous namespace
+
+void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table,
+ const CodeGenInstruction *RegInstr,
+ const CodeGenInstruction *MemInstr,
+ const UnfoldStrategy S,
+ const unsigned int FoldedInd) {
+
+ X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr);
+ Record *RegRec = RegInstr->TheDef;
+ Record *MemRec = MemInstr->TheDef;
+
+ // Only table0 entries should explicitly specify a load or store flag.
+ if (&Table == &Table0) {
+ unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs();
+ unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs();
+ // If the instruction writes to the folded operand, it will appear as an
+ // output in the register form instruction and as an input in the memory
+ // form instruction.
+ // If the instruction reads from the folded operand, it well appear as in
+ // input in both forms.
+ if (MemInOpsNum == RegInOpsNum)
+ Result.IsLoad = true;
+ else
+ Result.IsStore = true;
+ }
+
+ Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec;
+ Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec;
+
+ // Unfolding code generates a load/store instruction according to the size of
+ // the register in the register form instruction.
+ // If the register's size is greater than the memory's operand size, do not
+ // allow unfolding.
+ if (S == UNFOLD)
+ Result.CannotUnfold = false;
+ else if (S == NO_UNFOLD)
+ Result.CannotUnfold = true;
+ else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec))
+ Result.CannotUnfold = true; // S == NO_STRATEGY
+
+ uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits"));
+ if (isExplicitAlign(RegInstr)) {
+ // The instruction require explicitly aligned memory.
+ BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize");
+ uint64_t Value = getValueFromBitsInit(VectSize);
+ Result.IsAligned = true;
+ Result.Alignment = Value;
+ } else if (Enc != X86Local::XOP && Enc != X86Local::VEX &&
+ Enc != X86Local::EVEX) {
+ // Instructions with VEX encoding do not require alignment.
+ if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) {
+ // SSE packed vector instructions require a 16 byte alignment.
+ Result.IsAligned = true;
+ Result.Alignment = 16;
+ }
+ }
+
+ Table.push_back(Result);
+}
+
+void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr,
+ const CodeGenInstruction *MemInstr,
+ const UnfoldStrategy S) {
+
+ Record *RegRec = RegInstr->TheDef;
+ Record *MemRec = MemInstr->TheDef;
+ unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs();
+ unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs();
+ unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs();
+ unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs();
+
+ // Instructions which have the WriteRMW value (Read-Modify-Write) should be
+ // added to Table2Addr.
+ if (hasDefInList(MemRec, "SchedRW", "WriteRMW") && MemOutSize != RegOutSize &&
+ MemInSize == RegInSize) {
+ addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0);
+ return;
+ }
+
+ if (MemInSize == RegInSize && MemOutSize == RegOutSize) {
+ // Load-Folding cases.
+ // If the i'th register form operand is a register and the i'th memory form
+ // operand is a memory operand, add instructions to Table#i.
+ for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) {
+ Record *RegOpRec = RegInstr->Operands[i].Rec;
+ Record *MemOpRec = MemInstr->Operands[i].Rec;
+ if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) {
+ switch (i) {
+ default: llvm_unreachable("Unexpected operand count!");
+ case 0:
+ addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
+ return;
+ case 1:
+ addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1);
+ return;
+ case 2:
+ addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2);
+ return;
+ case 3:
+ addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3);
+ return;
+ case 4:
+ addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4);
+ return;
+ }
+ }
+ }
+ } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) {
+ // Store-Folding cases.
+ // If the memory form instruction performs performs a store, the *output*
+ // register of the register form instructions disappear and instead a
+ // memory *input* operand appears in the memory form instruction.
+ // For example:
+ // MOVAPSrr => (outs VR128:$dst), (ins VR128:$src)
+ // MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src)
+ Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec;
+ Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec;
+ if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec))
+ addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0);
+ }
+
+ return;
+}
+
+void X86FoldTablesEmitter::run(raw_ostream &OS) {
+ emitSourceFileHeader("X86 fold tables", OS);
+
+ // Holds all memory instructions
+ std::vector<const CodeGenInstruction *> MemInsts;
+ // Holds all register instructions - divided according to opcode.
+ std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts;
+
+ ArrayRef<const CodeGenInstruction *> NumberedInstructions =
+ Target.getInstructionsByEnumValue();
+
+ for (const CodeGenInstruction *Inst : NumberedInstructions) {
+ if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst"))
+ continue;
+
+ const Record *Rec = Inst->TheDef;
+
+ // - Do not proceed matching if the instruction in NoFoldSet.
+ // - Instructions including RST register class operands are not relevant
+ // for memory folding (for further details check the explanation in
+ // lib/Target/X86/X86InstrFPStack.td file).
+ // - Some instructions (listed in the manual map above) use the register
+ // class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure
+ // safe mapping of these instruction we manually map them and exclude
+ // them from the automation.
+ if (find(NoFoldSet, Rec->getName()) != std::end(NoFoldSet) ||
+ hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst))
+ continue;
+
+ // Add all the memory form instructions to MemInsts, and all the register
+ // form instructions to RegInsts[Opc], where Opc in the opcode of each
+ // instructions. this helps reducing the runtime of the backend.
+ if (hasMemoryFormat(Rec))
+ MemInsts.push_back(Inst);
+ else if (hasRegisterFormat(Rec)) {
+ uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode"));
+ RegInsts[Opc].push_back(Inst);
+ }
+ }
+
+ // For each memory form instruction, try to find its register form
+ // instruction.
+ for (const CodeGenInstruction *MemInst : MemInsts) {
+ uint8_t Opc =
+ getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode"));
+
+ if (RegInsts.count(Opc) == 0)
+ continue;
+
+ // Two forms (memory & register) of the same instruction must have the same
+ // opcode. try matching only with register form instructions with the same
+ // opcode.
+ std::vector<const CodeGenInstruction *> &OpcRegInsts =
+ RegInsts.find(Opc)->second;
+
+ auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records));
+ if (Match != OpcRegInsts.end()) {
+ const CodeGenInstruction *RegInst = *Match;
+ // If the matched instruction has it's "FoldGenRegForm" set, map the
+ // memory form instruction to the register form instruction pointed by
+ // this field
+ if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) {
+ updateTables(RegInst, MemInst);
+ } else {
+ const CodeGenInstruction *AltRegInst =
+ getAltRegInst(RegInst, Records, Target);
+ updateTables(AltRegInst, MemInst);
+ }
+ OpcRegInsts.erase(Match);
+ }
+ }
+
+ // Add the manually mapped instructions listed above.
+ for (const ManualMapEntry &Entry : ManualMapSet) {
+ Record *RegInstIter = Records.getDef(Entry.RegInstStr);
+ Record *MemInstIter = Records.getDef(Entry.MemInstStr);
+
+ updateTables(&(Target.getInstruction(RegInstIter)),
+ &(Target.getInstruction(MemInstIter)), Entry.Strategy);
+ }
+
+ // Print all tables to raw_ostream OS.
+ printTable(Table2Addr, "Table2Addr", OS);
+ printTable(Table0, "Table0", OS);
+ printTable(Table1, "Table1", OS);
+ printTable(Table2, "Table2", OS);
+ printTable(Table3, "Table3", OS);
+ printTable(Table4, "Table4", OS);
+}
+
+namespace llvm {
+
+void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &OS) {
+ X86FoldTablesEmitter(RK).run(OS);
+}
+} // namespace llvm