aboutsummaryrefslogtreecommitdiff
path: root/sys/contrib/openzfs/module/zfs/zil.c
diff options
context:
space:
mode:
Diffstat (limited to 'sys/contrib/openzfs/module/zfs/zil.c')
-rw-r--r--sys/contrib/openzfs/module/zfs/zil.c4222
1 files changed, 4222 insertions, 0 deletions
diff --git a/sys/contrib/openzfs/module/zfs/zil.c b/sys/contrib/openzfs/module/zfs/zil.c
new file mode 100644
index 000000000000..ce2cb8b1446a
--- /dev/null
+++ b/sys/contrib/openzfs/module/zfs/zil.c
@@ -0,0 +1,4222 @@
+/*
+ * CDDL HEADER START
+ *
+ * The contents of this file are subject to the terms of the
+ * Common Development and Distribution License (the "License").
+ * You may not use this file except in compliance with the License.
+ *
+ * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
+ * or https://opensource.org/licenses/CDDL-1.0.
+ * See the License for the specific language governing permissions
+ * and limitations under the License.
+ *
+ * When distributing Covered Code, include this CDDL HEADER in each
+ * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
+ * If applicable, add the following below this CDDL HEADER, with the
+ * fields enclosed by brackets "[]" replaced with your own identifying
+ * information: Portions Copyright [yyyy] [name of copyright owner]
+ *
+ * CDDL HEADER END
+ */
+/*
+ * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
+ * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
+ * Copyright (c) 2014 Integros [integros.com]
+ * Copyright (c) 2018 Datto Inc.
+ */
+
+/* Portions Copyright 2010 Robert Milkowski */
+
+#include <sys/zfs_context.h>
+#include <sys/spa.h>
+#include <sys/spa_impl.h>
+#include <sys/dmu.h>
+#include <sys/zap.h>
+#include <sys/arc.h>
+#include <sys/stat.h>
+#include <sys/zil.h>
+#include <sys/zil_impl.h>
+#include <sys/dsl_dataset.h>
+#include <sys/vdev_impl.h>
+#include <sys/dmu_tx.h>
+#include <sys/dsl_pool.h>
+#include <sys/metaslab.h>
+#include <sys/trace_zfs.h>
+#include <sys/abd.h>
+#include <sys/brt.h>
+#include <sys/wmsum.h>
+
+/*
+ * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
+ * calls that change the file system. Each itx has enough information to
+ * be able to replay them after a system crash, power loss, or
+ * equivalent failure mode. These are stored in memory until either:
+ *
+ * 1. they are committed to the pool by the DMU transaction group
+ * (txg), at which point they can be discarded; or
+ * 2. they are committed to the on-disk ZIL for the dataset being
+ * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
+ * requirement).
+ *
+ * In the event of a crash or power loss, the itxs contained by each
+ * dataset's on-disk ZIL will be replayed when that dataset is first
+ * instantiated (e.g. if the dataset is a normal filesystem, when it is
+ * first mounted).
+ *
+ * As hinted at above, there is one ZIL per dataset (both the in-memory
+ * representation, and the on-disk representation). The on-disk format
+ * consists of 3 parts:
+ *
+ * - a single, per-dataset, ZIL header; which points to a chain of
+ * - zero or more ZIL blocks; each of which contains
+ * - zero or more ZIL records
+ *
+ * A ZIL record holds the information necessary to replay a single
+ * system call transaction. A ZIL block can hold many ZIL records, and
+ * the blocks are chained together, similarly to a singly linked list.
+ *
+ * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
+ * block in the chain, and the ZIL header points to the first block in
+ * the chain.
+ *
+ * Note, there is not a fixed place in the pool to hold these ZIL
+ * blocks; they are dynamically allocated and freed as needed from the
+ * blocks available on the pool, though they can be preferentially
+ * allocated from a dedicated "log" vdev.
+ */
+
+/*
+ * This controls the amount of time that a ZIL block (lwb) will remain
+ * "open" when it isn't "full", and it has a thread waiting for it to be
+ * committed to stable storage. Please refer to the zil_commit_waiter()
+ * function (and the comments within it) for more details.
+ */
+static uint_t zfs_commit_timeout_pct = 10;
+
+/*
+ * See zil.h for more information about these fields.
+ */
+static zil_kstat_values_t zil_stats = {
+ { "zil_commit_count", KSTAT_DATA_UINT64 },
+ { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
+ { "zil_itx_count", KSTAT_DATA_UINT64 },
+ { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
+ { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
+ { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
+ { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
+ { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
+ { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
+ { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
+ { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
+ { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 },
+ { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 },
+ { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
+ { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
+ { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 },
+ { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 },
+};
+
+static zil_sums_t zil_sums_global;
+static kstat_t *zil_kstats_global;
+
+/*
+ * Disable intent logging replay. This global ZIL switch affects all pools.
+ */
+int zil_replay_disable = 0;
+
+/*
+ * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
+ * the disk(s) by the ZIL after an LWB write has completed. Setting this
+ * will cause ZIL corruption on power loss if a volatile out-of-order
+ * write cache is enabled.
+ */
+static int zil_nocacheflush = 0;
+
+/*
+ * Limit SLOG write size per commit executed with synchronous priority.
+ * Any writes above that will be executed with lower (asynchronous) priority
+ * to limit potential SLOG device abuse by single active ZIL writer.
+ */
+static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
+
+static kmem_cache_t *zil_lwb_cache;
+static kmem_cache_t *zil_zcw_cache;
+
+static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
+static itx_t *zil_itx_clone(itx_t *oitx);
+
+static int
+zil_bp_compare(const void *x1, const void *x2)
+{
+ const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
+ const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
+
+ int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
+ if (likely(cmp))
+ return (cmp);
+
+ return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
+}
+
+static void
+zil_bp_tree_init(zilog_t *zilog)
+{
+ avl_create(&zilog->zl_bp_tree, zil_bp_compare,
+ sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
+}
+
+static void
+zil_bp_tree_fini(zilog_t *zilog)
+{
+ avl_tree_t *t = &zilog->zl_bp_tree;
+ zil_bp_node_t *zn;
+ void *cookie = NULL;
+
+ while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
+ kmem_free(zn, sizeof (zil_bp_node_t));
+
+ avl_destroy(t);
+}
+
+int
+zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
+{
+ avl_tree_t *t = &zilog->zl_bp_tree;
+ const dva_t *dva;
+ zil_bp_node_t *zn;
+ avl_index_t where;
+
+ if (BP_IS_EMBEDDED(bp))
+ return (0);
+
+ dva = BP_IDENTITY(bp);
+
+ if (avl_find(t, dva, &where) != NULL)
+ return (SET_ERROR(EEXIST));
+
+ zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
+ zn->zn_dva = *dva;
+ avl_insert(t, zn, where);
+
+ return (0);
+}
+
+static zil_header_t *
+zil_header_in_syncing_context(zilog_t *zilog)
+{
+ return ((zil_header_t *)zilog->zl_header);
+}
+
+static void
+zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
+{
+ zio_cksum_t *zc = &bp->blk_cksum;
+
+ (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
+ sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
+ (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
+ sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
+ zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
+ zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
+}
+
+static int
+zil_kstats_global_update(kstat_t *ksp, int rw)
+{
+ zil_kstat_values_t *zs = ksp->ks_data;
+ ASSERT3P(&zil_stats, ==, zs);
+
+ if (rw == KSTAT_WRITE) {
+ return (SET_ERROR(EACCES));
+ }
+
+ zil_kstat_values_update(zs, &zil_sums_global);
+
+ return (0);
+}
+
+/*
+ * Read a log block and make sure it's valid.
+ */
+static int
+zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
+ blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
+{
+ zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
+ arc_flags_t aflags = ARC_FLAG_WAIT;
+ zbookmark_phys_t zb;
+ int error;
+
+ if (zilog->zl_header->zh_claim_txg == 0)
+ zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
+
+ if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
+ zio_flags |= ZIO_FLAG_SPECULATIVE;
+
+ if (!decrypt)
+ zio_flags |= ZIO_FLAG_RAW;
+
+ SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
+ ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
+
+ error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
+ abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
+
+ if (error == 0) {
+ zio_cksum_t cksum = bp->blk_cksum;
+
+ /*
+ * Validate the checksummed log block.
+ *
+ * Sequence numbers should be... sequential. The checksum
+ * verifier for the next block should be bp's checksum plus 1.
+ *
+ * Also check the log chain linkage and size used.
+ */
+ cksum.zc_word[ZIL_ZC_SEQ]++;
+
+ uint64_t size = BP_GET_LSIZE(bp);
+ if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
+ zil_chain_t *zilc = (*abuf)->b_data;
+ char *lr = (char *)(zilc + 1);
+
+ if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
+ sizeof (cksum)) ||
+ zilc->zc_nused < sizeof (*zilc) ||
+ zilc->zc_nused > size) {
+ error = SET_ERROR(ECKSUM);
+ } else {
+ *begin = lr;
+ *end = lr + zilc->zc_nused - sizeof (*zilc);
+ *nbp = zilc->zc_next_blk;
+ }
+ } else {
+ char *lr = (*abuf)->b_data;
+ zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
+
+ if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
+ sizeof (cksum)) ||
+ (zilc->zc_nused > (size - sizeof (*zilc)))) {
+ error = SET_ERROR(ECKSUM);
+ } else {
+ *begin = lr;
+ *end = lr + zilc->zc_nused;
+ *nbp = zilc->zc_next_blk;
+ }
+ }
+ }
+
+ return (error);
+}
+
+/*
+ * Read a TX_WRITE log data block.
+ */
+static int
+zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
+{
+ zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
+ const blkptr_t *bp = &lr->lr_blkptr;
+ arc_flags_t aflags = ARC_FLAG_WAIT;
+ arc_buf_t *abuf = NULL;
+ zbookmark_phys_t zb;
+ int error;
+
+ if (BP_IS_HOLE(bp)) {
+ if (wbuf != NULL)
+ memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
+ return (0);
+ }
+
+ if (zilog->zl_header->zh_claim_txg == 0)
+ zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
+
+ /*
+ * If we are not using the resulting data, we are just checking that
+ * it hasn't been corrupted so we don't need to waste CPU time
+ * decompressing and decrypting it.
+ */
+ if (wbuf == NULL)
+ zio_flags |= ZIO_FLAG_RAW;
+
+ ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
+ SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
+ ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
+
+ error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
+ ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
+
+ if (error == 0) {
+ if (wbuf != NULL)
+ memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
+ arc_buf_destroy(abuf, &abuf);
+ }
+
+ return (error);
+}
+
+void
+zil_sums_init(zil_sums_t *zs)
+{
+ wmsum_init(&zs->zil_commit_count, 0);
+ wmsum_init(&zs->zil_commit_writer_count, 0);
+ wmsum_init(&zs->zil_itx_count, 0);
+ wmsum_init(&zs->zil_itx_indirect_count, 0);
+ wmsum_init(&zs->zil_itx_indirect_bytes, 0);
+ wmsum_init(&zs->zil_itx_copied_count, 0);
+ wmsum_init(&zs->zil_itx_copied_bytes, 0);
+ wmsum_init(&zs->zil_itx_needcopy_count, 0);
+ wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
+ wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
+ wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
+ wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
+ wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
+ wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
+ wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
+ wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
+ wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
+}
+
+void
+zil_sums_fini(zil_sums_t *zs)
+{
+ wmsum_fini(&zs->zil_commit_count);
+ wmsum_fini(&zs->zil_commit_writer_count);
+ wmsum_fini(&zs->zil_itx_count);
+ wmsum_fini(&zs->zil_itx_indirect_count);
+ wmsum_fini(&zs->zil_itx_indirect_bytes);
+ wmsum_fini(&zs->zil_itx_copied_count);
+ wmsum_fini(&zs->zil_itx_copied_bytes);
+ wmsum_fini(&zs->zil_itx_needcopy_count);
+ wmsum_fini(&zs->zil_itx_needcopy_bytes);
+ wmsum_fini(&zs->zil_itx_metaslab_normal_count);
+ wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
+ wmsum_fini(&zs->zil_itx_metaslab_normal_write);
+ wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
+ wmsum_fini(&zs->zil_itx_metaslab_slog_count);
+ wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
+ wmsum_fini(&zs->zil_itx_metaslab_slog_write);
+ wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
+}
+
+void
+zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
+{
+ zs->zil_commit_count.value.ui64 =
+ wmsum_value(&zil_sums->zil_commit_count);
+ zs->zil_commit_writer_count.value.ui64 =
+ wmsum_value(&zil_sums->zil_commit_writer_count);
+ zs->zil_itx_count.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_count);
+ zs->zil_itx_indirect_count.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_indirect_count);
+ zs->zil_itx_indirect_bytes.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_indirect_bytes);
+ zs->zil_itx_copied_count.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_copied_count);
+ zs->zil_itx_copied_bytes.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_copied_bytes);
+ zs->zil_itx_needcopy_count.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_needcopy_count);
+ zs->zil_itx_needcopy_bytes.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
+ zs->zil_itx_metaslab_normal_count.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
+ zs->zil_itx_metaslab_normal_bytes.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
+ zs->zil_itx_metaslab_normal_write.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
+ zs->zil_itx_metaslab_normal_alloc.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
+ zs->zil_itx_metaslab_slog_count.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
+ zs->zil_itx_metaslab_slog_bytes.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
+ zs->zil_itx_metaslab_slog_write.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
+ zs->zil_itx_metaslab_slog_alloc.value.ui64 =
+ wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
+}
+
+/*
+ * Parse the intent log, and call parse_func for each valid record within.
+ */
+int
+zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
+ zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
+ boolean_t decrypt)
+{
+ const zil_header_t *zh = zilog->zl_header;
+ boolean_t claimed = !!zh->zh_claim_txg;
+ uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
+ uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
+ uint64_t max_blk_seq = 0;
+ uint64_t max_lr_seq = 0;
+ uint64_t blk_count = 0;
+ uint64_t lr_count = 0;
+ blkptr_t blk, next_blk = {{{{0}}}};
+ int error = 0;
+
+ /*
+ * Old logs didn't record the maximum zh_claim_lr_seq.
+ */
+ if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
+ claim_lr_seq = UINT64_MAX;
+
+ /*
+ * Starting at the block pointed to by zh_log we read the log chain.
+ * For each block in the chain we strongly check that block to
+ * ensure its validity. We stop when an invalid block is found.
+ * For each block pointer in the chain we call parse_blk_func().
+ * For each record in each valid block we call parse_lr_func().
+ * If the log has been claimed, stop if we encounter a sequence
+ * number greater than the highest claimed sequence number.
+ */
+ zil_bp_tree_init(zilog);
+
+ for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
+ uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
+ int reclen;
+ char *lrp, *end;
+ arc_buf_t *abuf = NULL;
+
+ if (blk_seq > claim_blk_seq)
+ break;
+
+ error = parse_blk_func(zilog, &blk, arg, txg);
+ if (error != 0)
+ break;
+ ASSERT3U(max_blk_seq, <, blk_seq);
+ max_blk_seq = blk_seq;
+ blk_count++;
+
+ if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
+ break;
+
+ error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
+ &lrp, &end, &abuf);
+ if (error != 0) {
+ if (abuf)
+ arc_buf_destroy(abuf, &abuf);
+ if (claimed) {
+ char name[ZFS_MAX_DATASET_NAME_LEN];
+
+ dmu_objset_name(zilog->zl_os, name);
+
+ cmn_err(CE_WARN, "ZFS read log block error %d, "
+ "dataset %s, seq 0x%llx\n", error, name,
+ (u_longlong_t)blk_seq);
+ }
+ break;
+ }
+
+ for (; lrp < end; lrp += reclen) {
+ lr_t *lr = (lr_t *)lrp;
+ reclen = lr->lrc_reclen;
+ ASSERT3U(reclen, >=, sizeof (lr_t));
+ if (lr->lrc_seq > claim_lr_seq) {
+ arc_buf_destroy(abuf, &abuf);
+ goto done;
+ }
+
+ error = parse_lr_func(zilog, lr, arg, txg);
+ if (error != 0) {
+ arc_buf_destroy(abuf, &abuf);
+ goto done;
+ }
+ ASSERT3U(max_lr_seq, <, lr->lrc_seq);
+ max_lr_seq = lr->lrc_seq;
+ lr_count++;
+ }
+ arc_buf_destroy(abuf, &abuf);
+ }
+done:
+ zilog->zl_parse_error = error;
+ zilog->zl_parse_blk_seq = max_blk_seq;
+ zilog->zl_parse_lr_seq = max_lr_seq;
+ zilog->zl_parse_blk_count = blk_count;
+ zilog->zl_parse_lr_count = lr_count;
+
+ zil_bp_tree_fini(zilog);
+
+ return (error);
+}
+
+static int
+zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
+ uint64_t first_txg)
+{
+ (void) tx;
+ ASSERT(!BP_IS_HOLE(bp));
+
+ /*
+ * As we call this function from the context of a rewind to a
+ * checkpoint, each ZIL block whose txg is later than the txg
+ * that we rewind to is invalid. Thus, we return -1 so
+ * zil_parse() doesn't attempt to read it.
+ */
+ if (bp->blk_birth >= first_txg)
+ return (-1);
+
+ if (zil_bp_tree_add(zilog, bp) != 0)
+ return (0);
+
+ zio_free(zilog->zl_spa, first_txg, bp);
+ return (0);
+}
+
+static int
+zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
+ uint64_t first_txg)
+{
+ (void) zilog, (void) lrc, (void) tx, (void) first_txg;
+ return (0);
+}
+
+static int
+zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
+ uint64_t first_txg)
+{
+ /*
+ * Claim log block if not already committed and not already claimed.
+ * If tx == NULL, just verify that the block is claimable.
+ */
+ if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
+ zil_bp_tree_add(zilog, bp) != 0)
+ return (0);
+
+ return (zio_wait(zio_claim(NULL, zilog->zl_spa,
+ tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
+ ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
+}
+
+static int
+zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
+{
+ lr_write_t *lr = (lr_write_t *)lrc;
+ int error;
+
+ ASSERT(lrc->lrc_txtype == TX_WRITE);
+
+ /*
+ * If the block is not readable, don't claim it. This can happen
+ * in normal operation when a log block is written to disk before
+ * some of the dmu_sync() blocks it points to. In this case, the
+ * transaction cannot have been committed to anyone (we would have
+ * waited for all writes to be stable first), so it is semantically
+ * correct to declare this the end of the log.
+ */
+ if (lr->lr_blkptr.blk_birth >= first_txg) {
+ error = zil_read_log_data(zilog, lr, NULL);
+ if (error != 0)
+ return (error);
+ }
+
+ return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
+}
+
+static int
+zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
+{
+ const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
+ const blkptr_t *bp;
+ spa_t *spa;
+ uint_t ii;
+
+ ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE);
+
+ if (tx == NULL) {
+ return (0);
+ }
+
+ /*
+ * XXX: Do we need to byteswap lr?
+ */
+
+ spa = zilog->zl_spa;
+
+ for (ii = 0; ii < lr->lr_nbps; ii++) {
+ bp = &lr->lr_bps[ii];
+
+ /*
+ * When data in embedded into BP there is no need to create
+ * BRT entry as there is no data block. Just copy the BP as
+ * it contains the data.
+ */
+ if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp)) {
+ brt_pending_add(spa, bp, tx);
+ }
+ }
+
+ return (0);
+}
+
+static int
+zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
+ uint64_t first_txg)
+{
+
+ switch (lrc->lrc_txtype) {
+ case TX_WRITE:
+ return (zil_claim_write(zilog, lrc, tx, first_txg));
+ case TX_CLONE_RANGE:
+ return (zil_claim_clone_range(zilog, lrc, tx));
+ default:
+ return (0);
+ }
+}
+
+static int
+zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
+ uint64_t claim_txg)
+{
+ (void) claim_txg;
+
+ zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
+
+ return (0);
+}
+
+static int
+zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
+{
+ lr_write_t *lr = (lr_write_t *)lrc;
+ blkptr_t *bp = &lr->lr_blkptr;
+
+ ASSERT(lrc->lrc_txtype == TX_WRITE);
+
+ /*
+ * If we previously claimed it, we need to free it.
+ */
+ if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
+ !BP_IS_HOLE(bp)) {
+ zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
+ }
+
+ return (0);
+}
+
+static int
+zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
+{
+ const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
+ const blkptr_t *bp;
+ spa_t *spa;
+ uint_t ii;
+
+ ASSERT(lrc->lrc_txtype == TX_CLONE_RANGE);
+
+ if (tx == NULL) {
+ return (0);
+ }
+
+ spa = zilog->zl_spa;
+
+ for (ii = 0; ii < lr->lr_nbps; ii++) {
+ bp = &lr->lr_bps[ii];
+
+ if (!BP_IS_HOLE(bp)) {
+ zio_free(spa, dmu_tx_get_txg(tx), bp);
+ }
+ }
+
+ return (0);
+}
+
+static int
+zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
+ uint64_t claim_txg)
+{
+
+ if (claim_txg == 0) {
+ return (0);
+ }
+
+ switch (lrc->lrc_txtype) {
+ case TX_WRITE:
+ return (zil_free_write(zilog, lrc, tx, claim_txg));
+ case TX_CLONE_RANGE:
+ return (zil_free_clone_range(zilog, lrc, tx));
+ default:
+ return (0);
+ }
+}
+
+static int
+zil_lwb_vdev_compare(const void *x1, const void *x2)
+{
+ const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
+ const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
+
+ return (TREE_CMP(v1, v2));
+}
+
+/*
+ * Allocate a new lwb. We may already have a block pointer for it, in which
+ * case we get size and version from there. Or we may not yet, in which case
+ * we choose them here and later make the block allocation match.
+ */
+static lwb_t *
+zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
+ uint64_t txg, lwb_state_t state)
+{
+ lwb_t *lwb;
+
+ lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
+ lwb->lwb_zilog = zilog;
+ if (bp) {
+ lwb->lwb_blk = *bp;
+ lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
+ sz = BP_GET_LSIZE(bp);
+ } else {
+ BP_ZERO(&lwb->lwb_blk);
+ lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
+ SPA_VERSION_SLIM_ZIL);
+ }
+ lwb->lwb_slog = slog;
+ lwb->lwb_error = 0;
+ if (lwb->lwb_slim) {
+ lwb->lwb_nmax = sz;
+ lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
+ } else {
+ lwb->lwb_nmax = sz - sizeof (zil_chain_t);
+ lwb->lwb_nused = lwb->lwb_nfilled = 0;
+ }
+ lwb->lwb_sz = sz;
+ lwb->lwb_state = state;
+ lwb->lwb_buf = zio_buf_alloc(sz);
+ lwb->lwb_child_zio = NULL;
+ lwb->lwb_write_zio = NULL;
+ lwb->lwb_root_zio = NULL;
+ lwb->lwb_issued_timestamp = 0;
+ lwb->lwb_issued_txg = 0;
+ lwb->lwb_alloc_txg = txg;
+ lwb->lwb_max_txg = 0;
+
+ mutex_enter(&zilog->zl_lock);
+ list_insert_tail(&zilog->zl_lwb_list, lwb);
+ if (state != LWB_STATE_NEW)
+ zilog->zl_last_lwb_opened = lwb;
+ mutex_exit(&zilog->zl_lock);
+
+ return (lwb);
+}
+
+static void
+zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
+{
+ ASSERT(MUTEX_HELD(&zilog->zl_lock));
+ ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
+ lwb->lwb_state == LWB_STATE_FLUSH_DONE);
+ ASSERT3P(lwb->lwb_child_zio, ==, NULL);
+ ASSERT3P(lwb->lwb_write_zio, ==, NULL);
+ ASSERT3P(lwb->lwb_root_zio, ==, NULL);
+ ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
+ ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
+ VERIFY(list_is_empty(&lwb->lwb_itxs));
+ VERIFY(list_is_empty(&lwb->lwb_waiters));
+ ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
+ ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
+
+ /*
+ * Clear the zilog's field to indicate this lwb is no longer
+ * valid, and prevent use-after-free errors.
+ */
+ if (zilog->zl_last_lwb_opened == lwb)
+ zilog->zl_last_lwb_opened = NULL;
+
+ kmem_cache_free(zil_lwb_cache, lwb);
+}
+
+/*
+ * Called when we create in-memory log transactions so that we know
+ * to cleanup the itxs at the end of spa_sync().
+ */
+static void
+zilog_dirty(zilog_t *zilog, uint64_t txg)
+{
+ dsl_pool_t *dp = zilog->zl_dmu_pool;
+ dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
+
+ ASSERT(spa_writeable(zilog->zl_spa));
+
+ if (ds->ds_is_snapshot)
+ panic("dirtying snapshot!");
+
+ if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
+ /* up the hold count until we can be written out */
+ dmu_buf_add_ref(ds->ds_dbuf, zilog);
+
+ zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
+ }
+}
+
+/*
+ * Determine if the zil is dirty in the specified txg. Callers wanting to
+ * ensure that the dirty state does not change must hold the itxg_lock for
+ * the specified txg. Holding the lock will ensure that the zil cannot be
+ * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
+ * state.
+ */
+static boolean_t __maybe_unused
+zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
+{
+ dsl_pool_t *dp = zilog->zl_dmu_pool;
+
+ if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
+ return (B_TRUE);
+ return (B_FALSE);
+}
+
+/*
+ * Determine if the zil is dirty. The zil is considered dirty if it has
+ * any pending itx records that have not been cleaned by zil_clean().
+ */
+static boolean_t
+zilog_is_dirty(zilog_t *zilog)
+{
+ dsl_pool_t *dp = zilog->zl_dmu_pool;
+
+ for (int t = 0; t < TXG_SIZE; t++) {
+ if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
+ return (B_TRUE);
+ }
+ return (B_FALSE);
+}
+
+/*
+ * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
+ * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
+ * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
+ * zil_commit.
+ */
+static void
+zil_commit_activate_saxattr_feature(zilog_t *zilog)
+{
+ dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
+ uint64_t txg = 0;
+ dmu_tx_t *tx = NULL;
+
+ if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
+ dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
+ !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
+ tx = dmu_tx_create(zilog->zl_os);
+ VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
+ dsl_dataset_dirty(ds, tx);
+ txg = dmu_tx_get_txg(tx);
+
+ mutex_enter(&ds->ds_lock);
+ ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
+ (void *)B_TRUE;
+ mutex_exit(&ds->ds_lock);
+ dmu_tx_commit(tx);
+ txg_wait_synced(zilog->zl_dmu_pool, txg);
+ }
+}
+
+/*
+ * Create an on-disk intent log.
+ */
+static lwb_t *
+zil_create(zilog_t *zilog)
+{
+ const zil_header_t *zh = zilog->zl_header;
+ lwb_t *lwb = NULL;
+ uint64_t txg = 0;
+ dmu_tx_t *tx = NULL;
+ blkptr_t blk;
+ int error = 0;
+ boolean_t slog = FALSE;
+ dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
+
+
+ /*
+ * Wait for any previous destroy to complete.
+ */
+ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
+
+ ASSERT(zh->zh_claim_txg == 0);
+ ASSERT(zh->zh_replay_seq == 0);
+
+ blk = zh->zh_log;
+
+ /*
+ * Allocate an initial log block if:
+ * - there isn't one already
+ * - the existing block is the wrong endianness
+ */
+ if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
+ tx = dmu_tx_create(zilog->zl_os);
+ VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
+ dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
+ txg = dmu_tx_get_txg(tx);
+
+ if (!BP_IS_HOLE(&blk)) {
+ zio_free(zilog->zl_spa, txg, &blk);
+ BP_ZERO(&blk);
+ }
+
+ error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
+ ZIL_MIN_BLKSZ, &slog);
+ if (error == 0)
+ zil_init_log_chain(zilog, &blk);
+ }
+
+ /*
+ * Allocate a log write block (lwb) for the first log block.
+ */
+ if (error == 0)
+ lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);
+
+ /*
+ * If we just allocated the first log block, commit our transaction
+ * and wait for zil_sync() to stuff the block pointer into zh_log.
+ * (zh is part of the MOS, so we cannot modify it in open context.)
+ */
+ if (tx != NULL) {
+ /*
+ * If "zilsaxattr" feature is enabled on zpool, then activate
+ * it now when we're creating the ZIL chain. We can't wait with
+ * this until we write the first xattr log record because we
+ * need to wait for the feature activation to sync out.
+ */
+ if (spa_feature_is_enabled(zilog->zl_spa,
+ SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
+ DMU_OST_ZVOL) {
+ mutex_enter(&ds->ds_lock);
+ ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
+ (void *)B_TRUE;
+ mutex_exit(&ds->ds_lock);
+ }
+
+ dmu_tx_commit(tx);
+ txg_wait_synced(zilog->zl_dmu_pool, txg);
+ } else {
+ /*
+ * This branch covers the case where we enable the feature on a
+ * zpool that has existing ZIL headers.
+ */
+ zil_commit_activate_saxattr_feature(zilog);
+ }
+ IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
+ dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
+ dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
+
+ ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
+ IMPLY(error == 0, lwb != NULL);
+
+ return (lwb);
+}
+
+/*
+ * In one tx, free all log blocks and clear the log header. If keep_first
+ * is set, then we're replaying a log with no content. We want to keep the
+ * first block, however, so that the first synchronous transaction doesn't
+ * require a txg_wait_synced() in zil_create(). We don't need to
+ * txg_wait_synced() here either when keep_first is set, because both
+ * zil_create() and zil_destroy() will wait for any in-progress destroys
+ * to complete.
+ * Return B_TRUE if there were any entries to replay.
+ */
+boolean_t
+zil_destroy(zilog_t *zilog, boolean_t keep_first)
+{
+ const zil_header_t *zh = zilog->zl_header;
+ lwb_t *lwb;
+ dmu_tx_t *tx;
+ uint64_t txg;
+
+ /*
+ * Wait for any previous destroy to complete.
+ */
+ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
+
+ zilog->zl_old_header = *zh; /* debugging aid */
+
+ if (BP_IS_HOLE(&zh->zh_log))
+ return (B_FALSE);
+
+ tx = dmu_tx_create(zilog->zl_os);
+ VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
+ dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
+ txg = dmu_tx_get_txg(tx);
+
+ mutex_enter(&zilog->zl_lock);
+
+ ASSERT3U(zilog->zl_destroy_txg, <, txg);
+ zilog->zl_destroy_txg = txg;
+ zilog->zl_keep_first = keep_first;
+
+ if (!list_is_empty(&zilog->zl_lwb_list)) {
+ ASSERT(zh->zh_claim_txg == 0);
+ VERIFY(!keep_first);
+ while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
+ if (lwb->lwb_buf != NULL)
+ zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
+ if (!BP_IS_HOLE(&lwb->lwb_blk))
+ zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
+ zil_free_lwb(zilog, lwb);
+ }
+ } else if (!keep_first) {
+ zil_destroy_sync(zilog, tx);
+ }
+ mutex_exit(&zilog->zl_lock);
+
+ dmu_tx_commit(tx);
+
+ return (B_TRUE);
+}
+
+void
+zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
+{
+ ASSERT(list_is_empty(&zilog->zl_lwb_list));
+ (void) zil_parse(zilog, zil_free_log_block,
+ zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
+}
+
+int
+zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
+{
+ dmu_tx_t *tx = txarg;
+ zilog_t *zilog;
+ uint64_t first_txg;
+ zil_header_t *zh;
+ objset_t *os;
+ int error;
+
+ error = dmu_objset_own_obj(dp, ds->ds_object,
+ DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
+ if (error != 0) {
+ /*
+ * EBUSY indicates that the objset is inconsistent, in which
+ * case it can not have a ZIL.
+ */
+ if (error != EBUSY) {
+ cmn_err(CE_WARN, "can't open objset for %llu, error %u",
+ (unsigned long long)ds->ds_object, error);
+ }
+
+ return (0);
+ }
+
+ zilog = dmu_objset_zil(os);
+ zh = zil_header_in_syncing_context(zilog);
+ ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
+ first_txg = spa_min_claim_txg(zilog->zl_spa);
+
+ /*
+ * If the spa_log_state is not set to be cleared, check whether
+ * the current uberblock is a checkpoint one and if the current
+ * header has been claimed before moving on.
+ *
+ * If the current uberblock is a checkpointed uberblock then
+ * one of the following scenarios took place:
+ *
+ * 1] We are currently rewinding to the checkpoint of the pool.
+ * 2] We crashed in the middle of a checkpoint rewind but we
+ * did manage to write the checkpointed uberblock to the
+ * vdev labels, so when we tried to import the pool again
+ * the checkpointed uberblock was selected from the import
+ * procedure.
+ *
+ * In both cases we want to zero out all the ZIL blocks, except
+ * the ones that have been claimed at the time of the checkpoint
+ * (their zh_claim_txg != 0). The reason is that these blocks
+ * may be corrupted since we may have reused their locations on
+ * disk after we took the checkpoint.
+ *
+ * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
+ * when we first figure out whether the current uberblock is
+ * checkpointed or not. Unfortunately, that would discard all
+ * the logs, including the ones that are claimed, and we would
+ * leak space.
+ */
+ if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
+ (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
+ zh->zh_claim_txg == 0)) {
+ if (!BP_IS_HOLE(&zh->zh_log)) {
+ (void) zil_parse(zilog, zil_clear_log_block,
+ zil_noop_log_record, tx, first_txg, B_FALSE);
+ }
+ BP_ZERO(&zh->zh_log);
+ if (os->os_encrypted)
+ os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
+ dsl_dataset_dirty(dmu_objset_ds(os), tx);
+ dmu_objset_disown(os, B_FALSE, FTAG);
+ return (0);
+ }
+
+ /*
+ * If we are not rewinding and opening the pool normally, then
+ * the min_claim_txg should be equal to the first txg of the pool.
+ */
+ ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
+
+ /*
+ * Claim all log blocks if we haven't already done so, and remember
+ * the highest claimed sequence number. This ensures that if we can
+ * read only part of the log now (e.g. due to a missing device),
+ * but we can read the entire log later, we will not try to replay
+ * or destroy beyond the last block we successfully claimed.
+ */
+ ASSERT3U(zh->zh_claim_txg, <=, first_txg);
+ if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
+ (void) zil_parse(zilog, zil_claim_log_block,
+ zil_claim_log_record, tx, first_txg, B_FALSE);
+ zh->zh_claim_txg = first_txg;
+ zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
+ zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
+ if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
+ zh->zh_flags |= ZIL_REPLAY_NEEDED;
+ zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
+ if (os->os_encrypted)
+ os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
+ dsl_dataset_dirty(dmu_objset_ds(os), tx);
+ }
+
+ ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
+ dmu_objset_disown(os, B_FALSE, FTAG);
+ return (0);
+}
+
+/*
+ * Check the log by walking the log chain.
+ * Checksum errors are ok as they indicate the end of the chain.
+ * Any other error (no device or read failure) returns an error.
+ */
+int
+zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
+{
+ (void) dp;
+ zilog_t *zilog;
+ objset_t *os;
+ blkptr_t *bp;
+ int error;
+
+ ASSERT(tx == NULL);
+
+ error = dmu_objset_from_ds(ds, &os);
+ if (error != 0) {
+ cmn_err(CE_WARN, "can't open objset %llu, error %d",
+ (unsigned long long)ds->ds_object, error);
+ return (0);
+ }
+
+ zilog = dmu_objset_zil(os);
+ bp = (blkptr_t *)&zilog->zl_header->zh_log;
+
+ if (!BP_IS_HOLE(bp)) {
+ vdev_t *vd;
+ boolean_t valid = B_TRUE;
+
+ /*
+ * Check the first block and determine if it's on a log device
+ * which may have been removed or faulted prior to loading this
+ * pool. If so, there's no point in checking the rest of the
+ * log as its content should have already been synced to the
+ * pool.
+ */
+ spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
+ vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
+ if (vd->vdev_islog && vdev_is_dead(vd))
+ valid = vdev_log_state_valid(vd);
+ spa_config_exit(os->os_spa, SCL_STATE, FTAG);
+
+ if (!valid)
+ return (0);
+
+ /*
+ * Check whether the current uberblock is checkpointed (e.g.
+ * we are rewinding) and whether the current header has been
+ * claimed or not. If it hasn't then skip verifying it. We
+ * do this because its ZIL blocks may be part of the pool's
+ * state before the rewind, which is no longer valid.
+ */
+ zil_header_t *zh = zil_header_in_syncing_context(zilog);
+ if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
+ zh->zh_claim_txg == 0)
+ return (0);
+ }
+
+ /*
+ * Because tx == NULL, zil_claim_log_block() will not actually claim
+ * any blocks, but just determine whether it is possible to do so.
+ * In addition to checking the log chain, zil_claim_log_block()
+ * will invoke zio_claim() with a done func of spa_claim_notify(),
+ * which will update spa_max_claim_txg. See spa_load() for details.
+ */
+ error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
+ zilog->zl_header->zh_claim_txg ? -1ULL :
+ spa_min_claim_txg(os->os_spa), B_FALSE);
+
+ return ((error == ECKSUM || error == ENOENT) ? 0 : error);
+}
+
+/*
+ * When an itx is "skipped", this function is used to properly mark the
+ * waiter as "done, and signal any thread(s) waiting on it. An itx can
+ * be skipped (and not committed to an lwb) for a variety of reasons,
+ * one of them being that the itx was committed via spa_sync(), prior to
+ * it being committed to an lwb; this can happen if a thread calling
+ * zil_commit() is racing with spa_sync().
+ */
+static void
+zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
+{
+ mutex_enter(&zcw->zcw_lock);
+ ASSERT3B(zcw->zcw_done, ==, B_FALSE);
+ zcw->zcw_done = B_TRUE;
+ cv_broadcast(&zcw->zcw_cv);
+ mutex_exit(&zcw->zcw_lock);
+}
+
+/*
+ * This function is used when the given waiter is to be linked into an
+ * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
+ * At this point, the waiter will no longer be referenced by the itx,
+ * and instead, will be referenced by the lwb.
+ */
+static void
+zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
+{
+ /*
+ * The lwb_waiters field of the lwb is protected by the zilog's
+ * zl_issuer_lock while the lwb is open and zl_lock otherwise.
+ * zl_issuer_lock also protects leaving the open state.
+ * zcw_lwb setting is protected by zl_issuer_lock and state !=
+ * flush_done, which transition is protected by zl_lock.
+ */
+ ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
+ IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
+ MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
+ ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
+ ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
+
+ ASSERT(!list_link_active(&zcw->zcw_node));
+ list_insert_tail(&lwb->lwb_waiters, zcw);
+ ASSERT3P(zcw->zcw_lwb, ==, NULL);
+ zcw->zcw_lwb = lwb;
+}
+
+/*
+ * This function is used when zio_alloc_zil() fails to allocate a ZIL
+ * block, and the given waiter must be linked to the "nolwb waiters"
+ * list inside of zil_process_commit_list().
+ */
+static void
+zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
+{
+ ASSERT(!list_link_active(&zcw->zcw_node));
+ list_insert_tail(nolwb, zcw);
+ ASSERT3P(zcw->zcw_lwb, ==, NULL);
+}
+
+void
+zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
+{
+ avl_tree_t *t = &lwb->lwb_vdev_tree;
+ avl_index_t where;
+ zil_vdev_node_t *zv, zvsearch;
+ int ndvas = BP_GET_NDVAS(bp);
+ int i;
+
+ ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
+ ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
+
+ if (zil_nocacheflush)
+ return;
+
+ mutex_enter(&lwb->lwb_vdev_lock);
+ for (i = 0; i < ndvas; i++) {
+ zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
+ if (avl_find(t, &zvsearch, &where) == NULL) {
+ zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
+ zv->zv_vdev = zvsearch.zv_vdev;
+ avl_insert(t, zv, where);
+ }
+ }
+ mutex_exit(&lwb->lwb_vdev_lock);
+}
+
+static void
+zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
+{
+ avl_tree_t *src = &lwb->lwb_vdev_tree;
+ avl_tree_t *dst = &nlwb->lwb_vdev_tree;
+ void *cookie = NULL;
+ zil_vdev_node_t *zv;
+
+ ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
+ ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
+ ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
+
+ /*
+ * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
+ * not need the protection of lwb_vdev_lock (it will only be modified
+ * while holding zilog->zl_lock) as its writes and those of its
+ * children have all completed. The younger 'nlwb' may be waiting on
+ * future writes to additional vdevs.
+ */
+ mutex_enter(&nlwb->lwb_vdev_lock);
+ /*
+ * Tear down the 'lwb' vdev tree, ensuring that entries which do not
+ * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
+ */
+ while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
+ avl_index_t where;
+
+ if (avl_find(dst, zv, &where) == NULL) {
+ avl_insert(dst, zv, where);
+ } else {
+ kmem_free(zv, sizeof (*zv));
+ }
+ }
+ mutex_exit(&nlwb->lwb_vdev_lock);
+}
+
+void
+zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
+{
+ lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
+}
+
+/*
+ * This function is a called after all vdevs associated with a given lwb
+ * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
+ * as the lwb write completes, if "zil_nocacheflush" is set. Further,
+ * all "previous" lwb's will have completed before this function is
+ * called; i.e. this function is called for all previous lwbs before
+ * it's called for "this" lwb (enforced via zio the dependencies
+ * configured in zil_lwb_set_zio_dependency()).
+ *
+ * The intention is for this function to be called as soon as the
+ * contents of an lwb are considered "stable" on disk, and will survive
+ * any sudden loss of power. At this point, any threads waiting for the
+ * lwb to reach this state are signalled, and the "waiter" structures
+ * are marked "done".
+ */
+static void
+zil_lwb_flush_vdevs_done(zio_t *zio)
+{
+ lwb_t *lwb = zio->io_private;
+ zilog_t *zilog = lwb->lwb_zilog;
+ zil_commit_waiter_t *zcw;
+ itx_t *itx;
+
+ spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
+
+ hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
+
+ mutex_enter(&zilog->zl_lock);
+
+ zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
+
+ lwb->lwb_root_zio = NULL;
+
+ ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
+ lwb->lwb_state = LWB_STATE_FLUSH_DONE;
+
+ if (zilog->zl_last_lwb_opened == lwb) {
+ /*
+ * Remember the highest committed log sequence number
+ * for ztest. We only update this value when all the log
+ * writes succeeded, because ztest wants to ASSERT that
+ * it got the whole log chain.
+ */
+ zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
+ }
+
+ while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
+ zil_itx_destroy(itx);
+
+ while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
+ mutex_enter(&zcw->zcw_lock);
+
+ ASSERT3P(zcw->zcw_lwb, ==, lwb);
+ zcw->zcw_lwb = NULL;
+ /*
+ * We expect any ZIO errors from child ZIOs to have been
+ * propagated "up" to this specific LWB's root ZIO, in
+ * order for this error handling to work correctly. This
+ * includes ZIO errors from either this LWB's write or
+ * flush, as well as any errors from other dependent LWBs
+ * (e.g. a root LWB ZIO that might be a child of this LWB).
+ *
+ * With that said, it's important to note that LWB flush
+ * errors are not propagated up to the LWB root ZIO.
+ * This is incorrect behavior, and results in VDEV flush
+ * errors not being handled correctly here. See the
+ * comment above the call to "zio_flush" for details.
+ */
+
+ zcw->zcw_zio_error = zio->io_error;
+
+ ASSERT3B(zcw->zcw_done, ==, B_FALSE);
+ zcw->zcw_done = B_TRUE;
+ cv_broadcast(&zcw->zcw_cv);
+
+ mutex_exit(&zcw->zcw_lock);
+ }
+
+ uint64_t txg = lwb->lwb_issued_txg;
+
+ /* Once we drop the lock, lwb may be freed by zil_sync(). */
+ mutex_exit(&zilog->zl_lock);
+
+ mutex_enter(&zilog->zl_lwb_io_lock);
+ ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
+ zilog->zl_lwb_inflight[txg & TXG_MASK]--;
+ if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
+ cv_broadcast(&zilog->zl_lwb_io_cv);
+ mutex_exit(&zilog->zl_lwb_io_lock);
+}
+
+/*
+ * Wait for the completion of all issued write/flush of that txg provided.
+ * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
+ */
+static void
+zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
+{
+ ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
+
+ mutex_enter(&zilog->zl_lwb_io_lock);
+ while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
+ cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
+ mutex_exit(&zilog->zl_lwb_io_lock);
+
+#ifdef ZFS_DEBUG
+ mutex_enter(&zilog->zl_lock);
+ mutex_enter(&zilog->zl_lwb_io_lock);
+ lwb_t *lwb = list_head(&zilog->zl_lwb_list);
+ while (lwb != NULL) {
+ if (lwb->lwb_issued_txg <= txg) {
+ ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
+ ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
+ IMPLY(lwb->lwb_issued_txg > 0,
+ lwb->lwb_state == LWB_STATE_FLUSH_DONE);
+ }
+ IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
+ lwb->lwb_state == LWB_STATE_FLUSH_DONE,
+ lwb->lwb_buf == NULL);
+ lwb = list_next(&zilog->zl_lwb_list, lwb);
+ }
+ mutex_exit(&zilog->zl_lwb_io_lock);
+ mutex_exit(&zilog->zl_lock);
+#endif
+}
+
+/*
+ * This is called when an lwb's write zio completes. The callback's
+ * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
+ * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
+ * in writing out this specific lwb's data, and in the case that cache
+ * flushes have been deferred, vdevs involved in writing the data for
+ * previous lwbs. The writes corresponding to all the vdevs in the
+ * lwb_vdev_tree will have completed by the time this is called, due to
+ * the zio dependencies configured in zil_lwb_set_zio_dependency(),
+ * which takes deferred flushes into account. The lwb will be "done"
+ * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
+ * completion callback for the lwb's root zio.
+ */
+static void
+zil_lwb_write_done(zio_t *zio)
+{
+ lwb_t *lwb = zio->io_private;
+ spa_t *spa = zio->io_spa;
+ zilog_t *zilog = lwb->lwb_zilog;
+ avl_tree_t *t = &lwb->lwb_vdev_tree;
+ void *cookie = NULL;
+ zil_vdev_node_t *zv;
+ lwb_t *nlwb;
+
+ ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
+
+ abd_free(zio->io_abd);
+ zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
+ lwb->lwb_buf = NULL;
+
+ mutex_enter(&zilog->zl_lock);
+ ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
+ lwb->lwb_state = LWB_STATE_WRITE_DONE;
+ lwb->lwb_child_zio = NULL;
+ lwb->lwb_write_zio = NULL;
+
+ /*
+ * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
+ * called for it yet, and when it will be, it won't be able to make
+ * its write ZIO a parent this ZIO. In such case we can not defer
+ * our flushes or below may be a race between the done callbacks.
+ */
+ nlwb = list_next(&zilog->zl_lwb_list, lwb);
+ if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
+ nlwb = NULL;
+ mutex_exit(&zilog->zl_lock);
+
+ if (avl_numnodes(t) == 0)
+ return;
+
+ /*
+ * If there was an IO error, we're not going to call zio_flush()
+ * on these vdevs, so we simply empty the tree and free the
+ * nodes. We avoid calling zio_flush() since there isn't any
+ * good reason for doing so, after the lwb block failed to be
+ * written out.
+ *
+ * Additionally, we don't perform any further error handling at
+ * this point (e.g. setting "zcw_zio_error" appropriately), as
+ * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
+ * we expect any error seen here, to have been propagated to
+ * that function).
+ */
+ if (zio->io_error != 0) {
+ while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
+ kmem_free(zv, sizeof (*zv));
+ return;
+ }
+
+ /*
+ * If this lwb does not have any threads waiting for it to
+ * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
+ * command to the vdevs written to by "this" lwb, and instead
+ * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
+ * command for those vdevs. Thus, we merge the vdev tree of
+ * "this" lwb with the vdev tree of the "next" lwb in the list,
+ * and assume the "next" lwb will handle flushing the vdevs (or
+ * deferring the flush(s) again).
+ *
+ * This is a useful performance optimization, especially for
+ * workloads with lots of async write activity and few sync
+ * write and/or fsync activity, as it has the potential to
+ * coalesce multiple flush commands to a vdev into one.
+ */
+ if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
+ zil_lwb_flush_defer(lwb, nlwb);
+ ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
+ return;
+ }
+
+ while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
+ vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
+ if (vd != NULL && !vd->vdev_nowritecache) {
+ /*
+ * The "ZIO_FLAG_DONT_PROPAGATE" is currently
+ * always used within "zio_flush". This means,
+ * any errors when flushing the vdev(s), will
+ * (unfortunately) not be handled correctly,
+ * since these "zio_flush" errors will not be
+ * propagated up to "zil_lwb_flush_vdevs_done".
+ */
+ zio_flush(lwb->lwb_root_zio, vd);
+ }
+ kmem_free(zv, sizeof (*zv));
+ }
+}
+
+/*
+ * Build the zio dependency chain, which is used to preserve the ordering of
+ * lwb completions that is required by the semantics of the ZIL. Each new lwb
+ * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
+ * cannot complete until the previous lwb's zio completes.
+ *
+ * This is required by the semantics of zil_commit(): the commit waiters
+ * attached to the lwbs will be woken in the lwb zio's completion callback,
+ * so this zio dependency graph ensures the waiters are woken in the correct
+ * order (the same order the lwbs were created).
+ */
+static void
+zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
+{
+ ASSERT(MUTEX_HELD(&zilog->zl_lock));
+
+ lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
+ if (prev_lwb == NULL ||
+ prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
+ return;
+
+ /*
+ * If the previous lwb's write hasn't already completed, we also want
+ * to order the completion of the lwb write zios (above, we only order
+ * the completion of the lwb root zios). This is required because of
+ * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb.
+ *
+ * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous
+ * lwb will rely on this lwb to flush the vdevs written to by that
+ * previous lwb. Thus, we need to ensure this lwb doesn't issue the
+ * flush until after the previous lwb's write completes. We ensure
+ * this ordering by setting the zio parent/child relationship here.
+ *
+ * Without this relationship on the lwb's write zio, it's possible
+ * for this lwb's write to complete prior to the previous lwb's write
+ * completing; and thus, the vdevs for the previous lwb would be
+ * flushed prior to that lwb's data being written to those vdevs (the
+ * vdevs are flushed in the lwb write zio's completion handler,
+ * zil_lwb_write_done()).
+ */
+ if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
+ ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
+ zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio);
+ } else {
+ ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
+ }
+
+ ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
+ zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
+}
+
+
+/*
+ * This function's purpose is to "open" an lwb such that it is ready to
+ * accept new itxs being committed to it. This function is idempotent; if
+ * the passed in lwb has already been opened, it is essentially a no-op.
+ */
+static void
+zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
+{
+ ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
+
+ if (lwb->lwb_state != LWB_STATE_NEW) {
+ ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
+ return;
+ }
+
+ mutex_enter(&zilog->zl_lock);
+ lwb->lwb_state = LWB_STATE_OPENED;
+ zilog->zl_last_lwb_opened = lwb;
+ mutex_exit(&zilog->zl_lock);
+}
+
+/*
+ * Define a limited set of intent log block sizes.
+ *
+ * These must be a multiple of 4KB. Note only the amount used (again
+ * aligned to 4KB) actually gets written. However, we can't always just
+ * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
+ */
+static const struct {
+ uint64_t limit;
+ uint64_t blksz;
+} zil_block_buckets[] = {
+ { 4096, 4096 }, /* non TX_WRITE */
+ { 8192 + 4096, 8192 + 4096 }, /* database */
+ { 32768 + 4096, 32768 + 4096 }, /* NFS writes */
+ { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */
+ { 131072, 131072 }, /* < 128KB writes */
+ { 131072 +4096, 65536 + 4096 }, /* 128KB writes */
+ { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */
+};
+
+/*
+ * Maximum block size used by the ZIL. This is picked up when the ZIL is
+ * initialized. Otherwise this should not be used directly; see
+ * zl_max_block_size instead.
+ */
+static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
+
+/*
+ * Close the log block for being issued and allocate the next one.
+ * Has to be called under zl_issuer_lock to chain more lwbs.
+ */
+static lwb_t *
+zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
+{
+ int i;
+
+ ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
+ ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
+ lwb->lwb_state = LWB_STATE_CLOSED;
+
+ /*
+ * If there was an allocation failure then returned NULL will trigger
+ * zil_commit_writer_stall() at the caller. This is inherently racy,
+ * since allocation may not have happened yet.
+ */
+ if (lwb->lwb_error != 0)
+ return (NULL);
+
+ /*
+ * Log blocks are pre-allocated. Here we select the size of the next
+ * block, based on size used in the last block.
+ * - first find the smallest bucket that will fit the block from a
+ * limited set of block sizes. This is because it's faster to write
+ * blocks allocated from the same metaslab as they are adjacent or
+ * close.
+ * - next find the maximum from the new suggested size and an array of
+ * previous sizes. This lessens a picket fence effect of wrongly
+ * guessing the size if we have a stream of say 2k, 64k, 2k, 64k
+ * requests.
+ *
+ * Note we only write what is used, but we can't just allocate
+ * the maximum block size because we can exhaust the available
+ * pool log space.
+ */
+ uint64_t zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
+ for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
+ continue;
+ zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
+ zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
+ for (i = 0; i < ZIL_PREV_BLKS; i++)
+ zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
+ DTRACE_PROBE3(zil__block__size, zilog_t *, zilog,
+ uint64_t, zil_blksz,
+ uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]);
+ zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
+
+ return (zil_alloc_lwb(zilog, zil_blksz, NULL, 0, 0, state));
+}
+
+/*
+ * Finalize previously closed block and issue the write zio.
+ */
+static void
+zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
+{
+ spa_t *spa = zilog->zl_spa;
+ zil_chain_t *zilc;
+ boolean_t slog;
+ zbookmark_phys_t zb;
+ zio_priority_t prio;
+ int error;
+
+ ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
+
+ /* Actually fill the lwb with the data. */
+ for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
+ itx = list_next(&lwb->lwb_itxs, itx))
+ zil_lwb_commit(zilog, lwb, itx);
+ lwb->lwb_nused = lwb->lwb_nfilled;
+
+ lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
+ ZIO_FLAG_CANFAIL);
+
+ /*
+ * The lwb is now ready to be issued, but it can be only if it already
+ * got its block pointer allocated or the allocation has failed.
+ * Otherwise leave it as-is, relying on some other thread to issue it
+ * after allocating its block pointer via calling zil_lwb_write_issue()
+ * for the previous lwb(s) in the chain.
+ */
+ mutex_enter(&zilog->zl_lock);
+ lwb->lwb_state = LWB_STATE_READY;
+ if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
+ mutex_exit(&zilog->zl_lock);
+ return;
+ }
+ mutex_exit(&zilog->zl_lock);
+
+next_lwb:
+ if (lwb->lwb_slim)
+ zilc = (zil_chain_t *)lwb->lwb_buf;
+ else
+ zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
+ int wsz = lwb->lwb_sz;
+ if (lwb->lwb_error == 0) {
+ abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
+ if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
+ prio = ZIO_PRIORITY_SYNC_WRITE;
+ else
+ prio = ZIO_PRIORITY_ASYNC_WRITE;
+ SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
+ ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
+ lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
+ lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
+ &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
+ lwb, prio, ZIO_FLAG_CANFAIL, &zb);
+ zil_lwb_add_block(lwb, &lwb->lwb_blk);
+
+ if (lwb->lwb_slim) {
+ /* For Slim ZIL only write what is used. */
+ wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
+ int);
+ ASSERT3S(wsz, <=, lwb->lwb_sz);
+ zio_shrink(lwb->lwb_write_zio, wsz);
+ wsz = lwb->lwb_write_zio->io_size;
+ }
+ memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
+ zilc->zc_pad = 0;
+ zilc->zc_nused = lwb->lwb_nused;
+ zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
+ } else {
+ /*
+ * We can't write the lwb if there was an allocation failure,
+ * so create a null zio instead just to maintain dependencies.
+ */
+ lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
+ zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
+ lwb->lwb_write_zio->io_error = lwb->lwb_error;
+ }
+ if (lwb->lwb_child_zio)
+ zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
+
+ /*
+ * Open transaction to allocate the next block pointer.
+ */
+ dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
+ VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
+ dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
+ uint64_t txg = dmu_tx_get_txg(tx);
+
+ /*
+ * Allocate next the block pointer unless we are already in error.
+ */
+ lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
+ blkptr_t *bp = &zilc->zc_next_blk;
+ BP_ZERO(bp);
+ error = lwb->lwb_error;
+ if (error == 0) {
+ error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
+ &slog);
+ }
+ if (error == 0) {
+ ASSERT3U(bp->blk_birth, ==, txg);
+ BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
+ ZIO_CHECKSUM_ZILOG);
+ bp->blk_cksum = lwb->lwb_blk.blk_cksum;
+ bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
+ }
+
+ /*
+ * Reduce TXG open time by incrementing inflight counter and committing
+ * the transaciton. zil_sync() will wait for it to return to zero.
+ */
+ mutex_enter(&zilog->zl_lwb_io_lock);
+ lwb->lwb_issued_txg = txg;
+ zilog->zl_lwb_inflight[txg & TXG_MASK]++;
+ zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
+ mutex_exit(&zilog->zl_lwb_io_lock);
+ dmu_tx_commit(tx);
+
+ spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
+
+ /*
+ * We've completed all potentially blocking operations. Update the
+ * nlwb and allow it proceed without possible lock order reversals.
+ */
+ mutex_enter(&zilog->zl_lock);
+ zil_lwb_set_zio_dependency(zilog, lwb);
+ lwb->lwb_state = LWB_STATE_ISSUED;
+
+ if (nlwb) {
+ nlwb->lwb_blk = *bp;
+ nlwb->lwb_error = error;
+ nlwb->lwb_slog = slog;
+ nlwb->lwb_alloc_txg = txg;
+ if (nlwb->lwb_state != LWB_STATE_READY)
+ nlwb = NULL;
+ }
+ mutex_exit(&zilog->zl_lock);
+
+ if (lwb->lwb_slog) {
+ ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
+ ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
+ lwb->lwb_nused);
+ ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
+ wsz);
+ ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
+ BP_GET_LSIZE(&lwb->lwb_blk));
+ } else {
+ ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
+ ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
+ lwb->lwb_nused);
+ ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
+ wsz);
+ ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
+ BP_GET_LSIZE(&lwb->lwb_blk));
+ }
+ lwb->lwb_issued_timestamp = gethrtime();
+ if (lwb->lwb_child_zio)
+ zio_nowait(lwb->lwb_child_zio);
+ zio_nowait(lwb->lwb_write_zio);
+ zio_nowait(lwb->lwb_root_zio);
+
+ /*
+ * If nlwb was ready when we gave it the block pointer,
+ * it is on us to issue it and possibly following ones.
+ */
+ lwb = nlwb;
+ if (lwb)
+ goto next_lwb;
+}
+
+/*
+ * Maximum amount of data that can be put into single log block.
+ */
+uint64_t
+zil_max_log_data(zilog_t *zilog, size_t hdrsize)
+{
+ return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
+}
+
+/*
+ * Maximum amount of log space we agree to waste to reduce number of
+ * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
+ */
+static inline uint64_t
+zil_max_waste_space(zilog_t *zilog)
+{
+ return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
+}
+
+/*
+ * Maximum amount of write data for WR_COPIED. For correctness, consumers
+ * must fall back to WR_NEED_COPY if we can't fit the entire record into one
+ * maximum sized log block, because each WR_COPIED record must fit in a
+ * single log block. Below that it is a tradeoff of additional memory copy
+ * and possibly worse log space efficiency vs additional range lock/unlock.
+ */
+static uint_t zil_maxcopied = 7680;
+
+uint64_t
+zil_max_copied_data(zilog_t *zilog)
+{
+ uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
+ return (MIN(max_data, zil_maxcopied));
+}
+
+/*
+ * Estimate space needed in the lwb for the itx. Allocate more lwbs or
+ * split the itx as needed, but don't touch the actual transaction data.
+ * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
+ * to chain more lwbs.
+ */
+static lwb_t *
+zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
+{
+ itx_t *citx;
+ lr_t *lr, *clr;
+ lr_write_t *lrw;
+ uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
+
+ ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
+ ASSERT3P(lwb, !=, NULL);
+ ASSERT3P(lwb->lwb_buf, !=, NULL);
+
+ zil_lwb_write_open(zilog, lwb);
+
+ lr = &itx->itx_lr;
+ lrw = (lr_write_t *)lr;
+
+ /*
+ * A commit itx doesn't represent any on-disk state; instead
+ * it's simply used as a place holder on the commit list, and
+ * provides a mechanism for attaching a "commit waiter" onto the
+ * correct lwb (such that the waiter can be signalled upon
+ * completion of that lwb). Thus, we don't process this itx's
+ * log record if it's a commit itx (these itx's don't have log
+ * records), and instead link the itx's waiter onto the lwb's
+ * list of waiters.
+ *
+ * For more details, see the comment above zil_commit().
+ */
+ if (lr->lrc_txtype == TX_COMMIT) {
+ zil_commit_waiter_link_lwb(itx->itx_private, lwb);
+ list_insert_tail(&lwb->lwb_itxs, itx);
+ return (lwb);
+ }
+
+ if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
+ dlen = P2ROUNDUP_TYPED(
+ lrw->lr_length, sizeof (uint64_t), uint64_t);
+ } else {
+ dlen = 0;
+ }
+ reclen = lr->lrc_reclen;
+ zilog->zl_cur_used += (reclen + dlen);
+
+cont:
+ /*
+ * If this record won't fit in the current log block, start a new one.
+ * For WR_NEED_COPY optimize layout for minimal number of chunks.
+ */
+ lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
+ max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
+ if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
+ lwb_sp < zil_max_waste_space(zilog) &&
+ (dlen % max_log_data == 0 ||
+ lwb_sp < reclen + dlen % max_log_data))) {
+ list_insert_tail(ilwbs, lwb);
+ lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
+ if (lwb == NULL)
+ return (NULL);
+ lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
+
+ /*
+ * There must be enough space in the new, empty log block to
+ * hold reclen. For WR_COPIED, we need to fit the whole
+ * record in one block, and reclen is the header size + the
+ * data size. For WR_NEED_COPY, we can create multiple
+ * records, splitting the data into multiple blocks, so we
+ * only need to fit one word of data per block; in this case
+ * reclen is just the header size (no data).
+ */
+ ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
+ }
+
+ dnow = MIN(dlen, lwb_sp - reclen);
+ if (dlen > dnow) {
+ ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
+ ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
+ citx = zil_itx_clone(itx);
+ clr = &citx->itx_lr;
+ lr_write_t *clrw = (lr_write_t *)clr;
+ clrw->lr_length = dnow;
+ lrw->lr_offset += dnow;
+ lrw->lr_length -= dnow;
+ } else {
+ citx = itx;
+ clr = lr;
+ }
+
+ /*
+ * We're actually making an entry, so update lrc_seq to be the
+ * log record sequence number. Note that this is generally not
+ * equal to the itx sequence number because not all transactions
+ * are synchronous, and sometimes spa_sync() gets there first.
+ */
+ clr->lrc_seq = ++zilog->zl_lr_seq;
+
+ lwb->lwb_nused += reclen + dnow;
+ ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
+ ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
+
+ zil_lwb_add_txg(lwb, lr->lrc_txg);
+ list_insert_tail(&lwb->lwb_itxs, citx);
+
+ dlen -= dnow;
+ if (dlen > 0) {
+ zilog->zl_cur_used += reclen;
+ goto cont;
+ }
+
+ if (lr->lrc_txtype == TX_WRITE &&
+ lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
+ txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
+
+ return (lwb);
+}
+
+/*
+ * Fill the actual transaction data into the lwb, following zil_lwb_assign().
+ * Does not require locking.
+ */
+static void
+zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
+{
+ lr_t *lr, *lrb;
+ lr_write_t *lrw, *lrwb;
+ char *lr_buf;
+ uint64_t dlen, reclen;
+
+ lr = &itx->itx_lr;
+ lrw = (lr_write_t *)lr;
+
+ if (lr->lrc_txtype == TX_COMMIT)
+ return;
+
+ if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
+ dlen = P2ROUNDUP_TYPED(
+ lrw->lr_length, sizeof (uint64_t), uint64_t);
+ } else {
+ dlen = 0;
+ }
+ reclen = lr->lrc_reclen;
+ ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
+
+ lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
+ memcpy(lr_buf, lr, reclen);
+ lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */
+ lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */
+
+ ZIL_STAT_BUMP(zilog, zil_itx_count);
+
+ /*
+ * If it's a write, fetch the data or get its blkptr as appropriate.
+ */
+ if (lr->lrc_txtype == TX_WRITE) {
+ if (itx->itx_wr_state == WR_COPIED) {
+ ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
+ ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
+ lrw->lr_length);
+ } else {
+ char *dbuf;
+ int error;
+
+ if (itx->itx_wr_state == WR_NEED_COPY) {
+ dbuf = lr_buf + reclen;
+ lrb->lrc_reclen += dlen;
+ ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
+ ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
+ dlen);
+ } else {
+ ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
+ dbuf = NULL;
+ ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
+ ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
+ lrw->lr_length);
+ if (lwb->lwb_child_zio == NULL) {
+ lwb->lwb_child_zio = zio_null(NULL,
+ zilog->zl_spa, NULL, NULL, NULL,
+ ZIO_FLAG_CANFAIL);
+ }
+ }
+
+ /*
+ * The "lwb_child_zio" we pass in will become a child of
+ * "lwb_write_zio", when one is created, so one will be
+ * a parent of any zio's created by the "zl_get_data".
+ * This way "lwb_write_zio" will first wait for children
+ * block pointers before own writing, and then for their
+ * writing completion before the vdev cache flushing.
+ */
+ error = zilog->zl_get_data(itx->itx_private,
+ itx->itx_gen, lrwb, dbuf, lwb,
+ lwb->lwb_child_zio);
+ if (dbuf != NULL && error == 0) {
+ /* Zero any padding bytes in the last block. */
+ memset((char *)dbuf + lrwb->lr_length, 0,
+ dlen - lrwb->lr_length);
+ }
+
+ /*
+ * Typically, the only return values we should see from
+ * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
+ * EALREADY. However, it is also possible to see other
+ * error values such as ENOSPC or EINVAL from
+ * dmu_read() -> dnode_hold() -> dnode_hold_impl() or
+ * ENXIO as well as a multitude of others from the
+ * block layer through dmu_buf_hold() -> dbuf_read()
+ * -> zio_wait(), as well as through dmu_read() ->
+ * dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
+ * zio_wait(). When these errors happen, we can assume
+ * that neither an immediate write nor an indirect
+ * write occurred, so we need to fall back to
+ * txg_wait_synced(). This is unusual, so we print to
+ * dmesg whenever one of these errors occurs.
+ */
+ switch (error) {
+ case 0:
+ break;
+ default:
+ cmn_err(CE_WARN, "zil_lwb_commit() received "
+ "unexpected error %d from ->zl_get_data()"
+ ". Falling back to txg_wait_synced().",
+ error);
+ zfs_fallthrough;
+ case EIO:
+ txg_wait_synced(zilog->zl_dmu_pool,
+ lr->lrc_txg);
+ zfs_fallthrough;
+ case ENOENT:
+ zfs_fallthrough;
+ case EEXIST:
+ zfs_fallthrough;
+ case EALREADY:
+ return;
+ }
+ }
+ }
+
+ lwb->lwb_nfilled += reclen + dlen;
+ ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
+ ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
+}
+
+itx_t *
+zil_itx_create(uint64_t txtype, size_t olrsize)
+{
+ size_t itxsize, lrsize;
+ itx_t *itx;
+
+ lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
+ itxsize = offsetof(itx_t, itx_lr) + lrsize;
+
+ itx = zio_data_buf_alloc(itxsize);
+ itx->itx_lr.lrc_txtype = txtype;
+ itx->itx_lr.lrc_reclen = lrsize;
+ itx->itx_lr.lrc_seq = 0; /* defensive */
+ memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
+ itx->itx_sync = B_TRUE; /* default is synchronous */
+ itx->itx_callback = NULL;
+ itx->itx_callback_data = NULL;
+ itx->itx_size = itxsize;
+
+ return (itx);
+}
+
+static itx_t *
+zil_itx_clone(itx_t *oitx)
+{
+ itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
+ memcpy(itx, oitx, oitx->itx_size);
+ itx->itx_callback = NULL;
+ itx->itx_callback_data = NULL;
+ return (itx);
+}
+
+void
+zil_itx_destroy(itx_t *itx)
+{
+ IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
+ IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
+
+ if (itx->itx_callback != NULL)
+ itx->itx_callback(itx->itx_callback_data);
+
+ zio_data_buf_free(itx, itx->itx_size);
+}
+
+/*
+ * Free up the sync and async itxs. The itxs_t has already been detached
+ * so no locks are needed.
+ */
+static void
+zil_itxg_clean(void *arg)
+{
+ itx_t *itx;
+ list_t *list;
+ avl_tree_t *t;
+ void *cookie;
+ itxs_t *itxs = arg;
+ itx_async_node_t *ian;
+
+ list = &itxs->i_sync_list;
+ while ((itx = list_remove_head(list)) != NULL) {
+ /*
+ * In the general case, commit itxs will not be found
+ * here, as they'll be committed to an lwb via
+ * zil_lwb_assign(), and free'd in that function. Having
+ * said that, it is still possible for commit itxs to be
+ * found here, due to the following race:
+ *
+ * - a thread calls zil_commit() which assigns the
+ * commit itx to a per-txg i_sync_list
+ * - zil_itxg_clean() is called (e.g. via spa_sync())
+ * while the waiter is still on the i_sync_list
+ *
+ * There's nothing to prevent syncing the txg while the
+ * waiter is on the i_sync_list. This normally doesn't
+ * happen because spa_sync() is slower than zil_commit(),
+ * but if zil_commit() calls txg_wait_synced() (e.g.
+ * because zil_create() or zil_commit_writer_stall() is
+ * called) we will hit this case.
+ */
+ if (itx->itx_lr.lrc_txtype == TX_COMMIT)
+ zil_commit_waiter_skip(itx->itx_private);
+
+ zil_itx_destroy(itx);
+ }
+
+ cookie = NULL;
+ t = &itxs->i_async_tree;
+ while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
+ list = &ian->ia_list;
+ while ((itx = list_remove_head(list)) != NULL) {
+ /* commit itxs should never be on the async lists. */
+ ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
+ zil_itx_destroy(itx);
+ }
+ list_destroy(list);
+ kmem_free(ian, sizeof (itx_async_node_t));
+ }
+ avl_destroy(t);
+
+ kmem_free(itxs, sizeof (itxs_t));
+}
+
+static int
+zil_aitx_compare(const void *x1, const void *x2)
+{
+ const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
+ const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
+
+ return (TREE_CMP(o1, o2));
+}
+
+/*
+ * Remove all async itx with the given oid.
+ */
+void
+zil_remove_async(zilog_t *zilog, uint64_t oid)
+{
+ uint64_t otxg, txg;
+ itx_async_node_t *ian;
+ avl_tree_t *t;
+ avl_index_t where;
+ list_t clean_list;
+ itx_t *itx;
+
+ ASSERT(oid != 0);
+ list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
+
+ if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
+ otxg = ZILTEST_TXG;
+ else
+ otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
+
+ for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
+ itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
+
+ mutex_enter(&itxg->itxg_lock);
+ if (itxg->itxg_txg != txg) {
+ mutex_exit(&itxg->itxg_lock);
+ continue;
+ }
+
+ /*
+ * Locate the object node and append its list.
+ */
+ t = &itxg->itxg_itxs->i_async_tree;
+ ian = avl_find(t, &oid, &where);
+ if (ian != NULL)
+ list_move_tail(&clean_list, &ian->ia_list);
+ mutex_exit(&itxg->itxg_lock);
+ }
+ while ((itx = list_remove_head(&clean_list)) != NULL) {
+ /* commit itxs should never be on the async lists. */
+ ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
+ zil_itx_destroy(itx);
+ }
+ list_destroy(&clean_list);
+}
+
+void
+zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
+{
+ uint64_t txg;
+ itxg_t *itxg;
+ itxs_t *itxs, *clean = NULL;
+
+ /*
+ * Ensure the data of a renamed file is committed before the rename.
+ */
+ if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
+ zil_async_to_sync(zilog, itx->itx_oid);
+
+ if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
+ txg = ZILTEST_TXG;
+ else
+ txg = dmu_tx_get_txg(tx);
+
+ itxg = &zilog->zl_itxg[txg & TXG_MASK];
+ mutex_enter(&itxg->itxg_lock);
+ itxs = itxg->itxg_itxs;
+ if (itxg->itxg_txg != txg) {
+ if (itxs != NULL) {
+ /*
+ * The zil_clean callback hasn't got around to cleaning
+ * this itxg. Save the itxs for release below.
+ * This should be rare.
+ */
+ zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
+ "txg %llu", (u_longlong_t)itxg->itxg_txg);
+ clean = itxg->itxg_itxs;
+ }
+ itxg->itxg_txg = txg;
+ itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
+ KM_SLEEP);
+
+ list_create(&itxs->i_sync_list, sizeof (itx_t),
+ offsetof(itx_t, itx_node));
+ avl_create(&itxs->i_async_tree, zil_aitx_compare,
+ sizeof (itx_async_node_t),
+ offsetof(itx_async_node_t, ia_node));
+ }
+ if (itx->itx_sync) {
+ list_insert_tail(&itxs->i_sync_list, itx);
+ } else {
+ avl_tree_t *t = &itxs->i_async_tree;
+ uint64_t foid =
+ LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
+ itx_async_node_t *ian;
+ avl_index_t where;
+
+ ian = avl_find(t, &foid, &where);
+ if (ian == NULL) {
+ ian = kmem_alloc(sizeof (itx_async_node_t),
+ KM_SLEEP);
+ list_create(&ian->ia_list, sizeof (itx_t),
+ offsetof(itx_t, itx_node));
+ ian->ia_foid = foid;
+ avl_insert(t, ian, where);
+ }
+ list_insert_tail(&ian->ia_list, itx);
+ }
+
+ itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
+
+ /*
+ * We don't want to dirty the ZIL using ZILTEST_TXG, because
+ * zil_clean() will never be called using ZILTEST_TXG. Thus, we
+ * need to be careful to always dirty the ZIL using the "real"
+ * TXG (not itxg_txg) even when the SPA is frozen.
+ */
+ zilog_dirty(zilog, dmu_tx_get_txg(tx));
+ mutex_exit(&itxg->itxg_lock);
+
+ /* Release the old itxs now we've dropped the lock */
+ if (clean != NULL)
+ zil_itxg_clean(clean);
+}
+
+/*
+ * If there are any in-memory intent log transactions which have now been
+ * synced then start up a taskq to free them. We should only do this after we
+ * have written out the uberblocks (i.e. txg has been committed) so that
+ * don't inadvertently clean out in-memory log records that would be required
+ * by zil_commit().
+ */
+void
+zil_clean(zilog_t *zilog, uint64_t synced_txg)
+{
+ itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
+ itxs_t *clean_me;
+
+ ASSERT3U(synced_txg, <, ZILTEST_TXG);
+
+ mutex_enter(&itxg->itxg_lock);
+ if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
+ mutex_exit(&itxg->itxg_lock);
+ return;
+ }
+ ASSERT3U(itxg->itxg_txg, <=, synced_txg);
+ ASSERT3U(itxg->itxg_txg, !=, 0);
+ clean_me = itxg->itxg_itxs;
+ itxg->itxg_itxs = NULL;
+ itxg->itxg_txg = 0;
+ mutex_exit(&itxg->itxg_lock);
+ /*
+ * Preferably start a task queue to free up the old itxs but
+ * if taskq_dispatch can't allocate resources to do that then
+ * free it in-line. This should be rare. Note, using TQ_SLEEP
+ * created a bad performance problem.
+ */
+ ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
+ ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
+ taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
+ zil_itxg_clean, clean_me, TQ_NOSLEEP);
+ if (id == TASKQID_INVALID)
+ zil_itxg_clean(clean_me);
+}
+
+/*
+ * This function will traverse the queue of itxs that need to be
+ * committed, and move them onto the ZIL's zl_itx_commit_list.
+ */
+static uint64_t
+zil_get_commit_list(zilog_t *zilog)
+{
+ uint64_t otxg, txg, wtxg = 0;
+ list_t *commit_list = &zilog->zl_itx_commit_list;
+
+ ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
+
+ if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
+ otxg = ZILTEST_TXG;
+ else
+ otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
+
+ /*
+ * This is inherently racy, since there is nothing to prevent
+ * the last synced txg from changing. That's okay since we'll
+ * only commit things in the future.
+ */
+ for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
+ itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
+
+ mutex_enter(&itxg->itxg_lock);
+ if (itxg->itxg_txg != txg) {
+ mutex_exit(&itxg->itxg_lock);
+ continue;
+ }
+
+ /*
+ * If we're adding itx records to the zl_itx_commit_list,
+ * then the zil better be dirty in this "txg". We can assert
+ * that here since we're holding the itxg_lock which will
+ * prevent spa_sync from cleaning it. Once we add the itxs
+ * to the zl_itx_commit_list we must commit it to disk even
+ * if it's unnecessary (i.e. the txg was synced).
+ */
+ ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
+ spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
+ list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
+ if (unlikely(zilog->zl_suspend > 0)) {
+ /*
+ * ZIL was just suspended, but we lost the race.
+ * Allow all earlier itxs to be committed, but ask
+ * caller to do txg_wait_synced(txg) for any new.
+ */
+ if (!list_is_empty(sync_list))
+ wtxg = MAX(wtxg, txg);
+ } else {
+ list_move_tail(commit_list, sync_list);
+ }
+
+ mutex_exit(&itxg->itxg_lock);
+ }
+ return (wtxg);
+}
+
+/*
+ * Move the async itxs for a specified object to commit into sync lists.
+ */
+void
+zil_async_to_sync(zilog_t *zilog, uint64_t foid)
+{
+ uint64_t otxg, txg;
+ itx_async_node_t *ian;
+ avl_tree_t *t;
+ avl_index_t where;
+
+ if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
+ otxg = ZILTEST_TXG;
+ else
+ otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
+
+ /*
+ * This is inherently racy, since there is nothing to prevent
+ * the last synced txg from changing.
+ */
+ for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
+ itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
+
+ mutex_enter(&itxg->itxg_lock);
+ if (itxg->itxg_txg != txg) {
+ mutex_exit(&itxg->itxg_lock);
+ continue;
+ }
+
+ /*
+ * If a foid is specified then find that node and append its
+ * list. Otherwise walk the tree appending all the lists
+ * to the sync list. We add to the end rather than the
+ * beginning to ensure the create has happened.
+ */
+ t = &itxg->itxg_itxs->i_async_tree;
+ if (foid != 0) {
+ ian = avl_find(t, &foid, &where);
+ if (ian != NULL) {
+ list_move_tail(&itxg->itxg_itxs->i_sync_list,
+ &ian->ia_list);
+ }
+ } else {
+ void *cookie = NULL;
+
+ while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
+ list_move_tail(&itxg->itxg_itxs->i_sync_list,
+ &ian->ia_list);
+ list_destroy(&ian->ia_list);
+ kmem_free(ian, sizeof (itx_async_node_t));
+ }
+ }
+ mutex_exit(&itxg->itxg_lock);
+ }
+}
+
+/*
+ * This function will prune commit itxs that are at the head of the
+ * commit list (it won't prune past the first non-commit itx), and
+ * either: a) attach them to the last lwb that's still pending
+ * completion, or b) skip them altogether.
+ *
+ * This is used as a performance optimization to prevent commit itxs
+ * from generating new lwbs when it's unnecessary to do so.
+ */
+static void
+zil_prune_commit_list(zilog_t *zilog)
+{
+ itx_t *itx;
+
+ ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
+
+ while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
+ lr_t *lrc = &itx->itx_lr;
+ if (lrc->lrc_txtype != TX_COMMIT)
+ break;
+
+ mutex_enter(&zilog->zl_lock);
+
+ lwb_t *last_lwb = zilog->zl_last_lwb_opened;
+ if (last_lwb == NULL ||
+ last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
+ /*
+ * All of the itxs this waiter was waiting on
+ * must have already completed (or there were
+ * never any itx's for it to wait on), so it's
+ * safe to skip this waiter and mark it done.
+ */
+ zil_commit_waiter_skip(itx->itx_private);
+ } else {
+ zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
+ }
+
+ mutex_exit(&zilog->zl_lock);
+
+ list_remove(&zilog->zl_itx_commit_list, itx);
+ zil_itx_destroy(itx);
+ }
+
+ IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
+}
+
+static void
+zil_commit_writer_stall(zilog_t *zilog)
+{
+ /*
+ * When zio_alloc_zil() fails to allocate the next lwb block on
+ * disk, we must call txg_wait_synced() to ensure all of the
+ * lwbs in the zilog's zl_lwb_list are synced and then freed (in
+ * zil_sync()), such that any subsequent ZIL writer (i.e. a call
+ * to zil_process_commit_list()) will have to call zil_create(),
+ * and start a new ZIL chain.
+ *
+ * Since zil_alloc_zil() failed, the lwb that was previously
+ * issued does not have a pointer to the "next" lwb on disk.
+ * Thus, if another ZIL writer thread was to allocate the "next"
+ * on-disk lwb, that block could be leaked in the event of a
+ * crash (because the previous lwb on-disk would not point to
+ * it).
+ *
+ * We must hold the zilog's zl_issuer_lock while we do this, to
+ * ensure no new threads enter zil_process_commit_list() until
+ * all lwb's in the zl_lwb_list have been synced and freed
+ * (which is achieved via the txg_wait_synced() call).
+ */
+ ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
+ txg_wait_synced(zilog->zl_dmu_pool, 0);
+ ASSERT(list_is_empty(&zilog->zl_lwb_list));
+}
+
+static void
+zil_burst_done(zilog_t *zilog)
+{
+ if (!list_is_empty(&zilog->zl_itx_commit_list) ||
+ zilog->zl_cur_used == 0)
+ return;
+
+ if (zilog->zl_parallel)
+ zilog->zl_parallel--;
+
+ zilog->zl_cur_used = 0;
+}
+
+/*
+ * This function will traverse the commit list, creating new lwbs as
+ * needed, and committing the itxs from the commit list to these newly
+ * created lwbs. Additionally, as a new lwb is created, the previous
+ * lwb will be issued to the zio layer to be written to disk.
+ */
+static void
+zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
+{
+ spa_t *spa = zilog->zl_spa;
+ list_t nolwb_itxs;
+ list_t nolwb_waiters;
+ lwb_t *lwb, *plwb;
+ itx_t *itx;
+
+ ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
+
+ /*
+ * Return if there's nothing to commit before we dirty the fs by
+ * calling zil_create().
+ */
+ if (list_is_empty(&zilog->zl_itx_commit_list))
+ return;
+
+ list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
+ list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
+ offsetof(zil_commit_waiter_t, zcw_node));
+
+ lwb = list_tail(&zilog->zl_lwb_list);
+ if (lwb == NULL) {
+ lwb = zil_create(zilog);
+ } else {
+ /*
+ * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
+ * have already been created (zl_lwb_list not empty).
+ */
+ zil_commit_activate_saxattr_feature(zilog);
+ ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
+ lwb->lwb_state == LWB_STATE_OPENED);
+
+ /*
+ * If the lwb is still opened, it means the workload is really
+ * multi-threaded and we won the chance of write aggregation.
+ * If it is not opened yet, but previous lwb is still not
+ * flushed, it still means the workload is multi-threaded, but
+ * there was too much time between the commits to aggregate, so
+ * we try aggregation next times, but without too much hopes.
+ */
+ if (lwb->lwb_state == LWB_STATE_OPENED) {
+ zilog->zl_parallel = ZIL_BURSTS;
+ } else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
+ != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
+ zilog->zl_parallel = MAX(zilog->zl_parallel,
+ ZIL_BURSTS / 2);
+ }
+ }
+
+ while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
+ lr_t *lrc = &itx->itx_lr;
+ uint64_t txg = lrc->lrc_txg;
+
+ ASSERT3U(txg, !=, 0);
+
+ if (lrc->lrc_txtype == TX_COMMIT) {
+ DTRACE_PROBE2(zil__process__commit__itx,
+ zilog_t *, zilog, itx_t *, itx);
+ } else {
+ DTRACE_PROBE2(zil__process__normal__itx,
+ zilog_t *, zilog, itx_t *, itx);
+ }
+
+ boolean_t synced = txg <= spa_last_synced_txg(spa);
+ boolean_t frozen = txg > spa_freeze_txg(spa);
+
+ /*
+ * If the txg of this itx has already been synced out, then
+ * we don't need to commit this itx to an lwb. This is
+ * because the data of this itx will have already been
+ * written to the main pool. This is inherently racy, and
+ * it's still ok to commit an itx whose txg has already
+ * been synced; this will result in a write that's
+ * unnecessary, but will do no harm.
+ *
+ * With that said, we always want to commit TX_COMMIT itxs
+ * to an lwb, regardless of whether or not that itx's txg
+ * has been synced out. We do this to ensure any OPENED lwb
+ * will always have at least one zil_commit_waiter_t linked
+ * to the lwb.
+ *
+ * As a counter-example, if we skipped TX_COMMIT itx's
+ * whose txg had already been synced, the following
+ * situation could occur if we happened to be racing with
+ * spa_sync:
+ *
+ * 1. We commit a non-TX_COMMIT itx to an lwb, where the
+ * itx's txg is 10 and the last synced txg is 9.
+ * 2. spa_sync finishes syncing out txg 10.
+ * 3. We move to the next itx in the list, it's a TX_COMMIT
+ * whose txg is 10, so we skip it rather than committing
+ * it to the lwb used in (1).
+ *
+ * If the itx that is skipped in (3) is the last TX_COMMIT
+ * itx in the commit list, than it's possible for the lwb
+ * used in (1) to remain in the OPENED state indefinitely.
+ *
+ * To prevent the above scenario from occurring, ensuring
+ * that once an lwb is OPENED it will transition to ISSUED
+ * and eventually DONE, we always commit TX_COMMIT itx's to
+ * an lwb here, even if that itx's txg has already been
+ * synced.
+ *
+ * Finally, if the pool is frozen, we _always_ commit the
+ * itx. The point of freezing the pool is to prevent data
+ * from being written to the main pool via spa_sync, and
+ * instead rely solely on the ZIL to persistently store the
+ * data; i.e. when the pool is frozen, the last synced txg
+ * value can't be trusted.
+ */
+ if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
+ if (lwb != NULL) {
+ lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
+ if (lwb == NULL) {
+ list_insert_tail(&nolwb_itxs, itx);
+ } else if ((zcw->zcw_lwb != NULL &&
+ zcw->zcw_lwb != lwb) || zcw->zcw_done) {
+ /*
+ * Our lwb is done, leave the rest of
+ * itx list to somebody else who care.
+ */
+ zilog->zl_parallel = ZIL_BURSTS;
+ break;
+ }
+ } else {
+ if (lrc->lrc_txtype == TX_COMMIT) {
+ zil_commit_waiter_link_nolwb(
+ itx->itx_private, &nolwb_waiters);
+ }
+ list_insert_tail(&nolwb_itxs, itx);
+ }
+ } else {
+ ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
+ zil_itx_destroy(itx);
+ }
+ }
+
+ if (lwb == NULL) {
+ /*
+ * This indicates zio_alloc_zil() failed to allocate the
+ * "next" lwb on-disk. When this happens, we must stall
+ * the ZIL write pipeline; see the comment within
+ * zil_commit_writer_stall() for more details.
+ */
+ while ((lwb = list_remove_head(ilwbs)) != NULL)
+ zil_lwb_write_issue(zilog, lwb);
+ zil_commit_writer_stall(zilog);
+
+ /*
+ * Additionally, we have to signal and mark the "nolwb"
+ * waiters as "done" here, since without an lwb, we
+ * can't do this via zil_lwb_flush_vdevs_done() like
+ * normal.
+ */
+ zil_commit_waiter_t *zcw;
+ while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
+ zil_commit_waiter_skip(zcw);
+
+ /*
+ * And finally, we have to destroy the itx's that
+ * couldn't be committed to an lwb; this will also call
+ * the itx's callback if one exists for the itx.
+ */
+ while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
+ zil_itx_destroy(itx);
+ } else {
+ ASSERT(list_is_empty(&nolwb_waiters));
+ ASSERT3P(lwb, !=, NULL);
+ ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
+ lwb->lwb_state == LWB_STATE_OPENED);
+
+ /*
+ * At this point, the ZIL block pointed at by the "lwb"
+ * variable is in "new" or "opened" state.
+ *
+ * If it's "new", then no itxs have been committed to it, so
+ * there's no point in issuing its zio (i.e. it's "empty").
+ *
+ * If it's "opened", then it contains one or more itxs that
+ * eventually need to be committed to stable storage. In
+ * this case we intentionally do not issue the lwb's zio
+ * to disk yet, and instead rely on one of the following
+ * two mechanisms for issuing the zio:
+ *
+ * 1. Ideally, there will be more ZIL activity occurring on
+ * the system, such that this function will be immediately
+ * called again by different thread and this lwb will be
+ * closed by zil_lwb_assign(). This way, the lwb will be
+ * "full" when it is issued to disk, and we'll make use of
+ * the lwb's size the best we can.
+ *
+ * 2. If there isn't sufficient ZIL activity occurring on
+ * the system, zil_commit_waiter() will close it and issue
+ * the zio. If this occurs, the lwb is not guaranteed
+ * to be "full" by the time its zio is issued, and means
+ * the size of the lwb was "too large" given the amount
+ * of ZIL activity occurring on the system at that time.
+ *
+ * We do this for a couple of reasons:
+ *
+ * 1. To try and reduce the number of IOPs needed to
+ * write the same number of itxs. If an lwb has space
+ * available in its buffer for more itxs, and more itxs
+ * will be committed relatively soon (relative to the
+ * latency of performing a write), then it's beneficial
+ * to wait for these "next" itxs. This way, more itxs
+ * can be committed to stable storage with fewer writes.
+ *
+ * 2. To try and use the largest lwb block size that the
+ * incoming rate of itxs can support. Again, this is to
+ * try and pack as many itxs into as few lwbs as
+ * possible, without significantly impacting the latency
+ * of each individual itx.
+ */
+ if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) {
+ list_insert_tail(ilwbs, lwb);
+ lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
+ zil_burst_done(zilog);
+ if (lwb == NULL) {
+ while ((lwb = list_remove_head(ilwbs)) != NULL)
+ zil_lwb_write_issue(zilog, lwb);
+ zil_commit_writer_stall(zilog);
+ }
+ }
+ }
+}
+
+/*
+ * This function is responsible for ensuring the passed in commit waiter
+ * (and associated commit itx) is committed to an lwb. If the waiter is
+ * not already committed to an lwb, all itxs in the zilog's queue of
+ * itxs will be processed. The assumption is the passed in waiter's
+ * commit itx will found in the queue just like the other non-commit
+ * itxs, such that when the entire queue is processed, the waiter will
+ * have been committed to an lwb.
+ *
+ * The lwb associated with the passed in waiter is not guaranteed to
+ * have been issued by the time this function completes. If the lwb is
+ * not issued, we rely on future calls to zil_commit_writer() to issue
+ * the lwb, or the timeout mechanism found in zil_commit_waiter().
+ */
+static uint64_t
+zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
+{
+ list_t ilwbs;
+ lwb_t *lwb;
+ uint64_t wtxg = 0;
+
+ ASSERT(!MUTEX_HELD(&zilog->zl_lock));
+ ASSERT(spa_writeable(zilog->zl_spa));
+
+ list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
+ mutex_enter(&zilog->zl_issuer_lock);
+
+ if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
+ /*
+ * It's possible that, while we were waiting to acquire
+ * the "zl_issuer_lock", another thread committed this
+ * waiter to an lwb. If that occurs, we bail out early,
+ * without processing any of the zilog's queue of itxs.
+ *
+ * On certain workloads and system configurations, the
+ * "zl_issuer_lock" can become highly contended. In an
+ * attempt to reduce this contention, we immediately drop
+ * the lock if the waiter has already been processed.
+ *
+ * We've measured this optimization to reduce CPU spent
+ * contending on this lock by up to 5%, using a system
+ * with 32 CPUs, low latency storage (~50 usec writes),
+ * and 1024 threads performing sync writes.
+ */
+ goto out;
+ }
+
+ ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
+
+ wtxg = zil_get_commit_list(zilog);
+ zil_prune_commit_list(zilog);
+ zil_process_commit_list(zilog, zcw, &ilwbs);
+
+out:
+ mutex_exit(&zilog->zl_issuer_lock);
+ while ((lwb = list_remove_head(&ilwbs)) != NULL)
+ zil_lwb_write_issue(zilog, lwb);
+ list_destroy(&ilwbs);
+ return (wtxg);
+}
+
+static void
+zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
+{
+ ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
+ ASSERT(MUTEX_HELD(&zcw->zcw_lock));
+ ASSERT3B(zcw->zcw_done, ==, B_FALSE);
+
+ lwb_t *lwb = zcw->zcw_lwb;
+ ASSERT3P(lwb, !=, NULL);
+ ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
+
+ /*
+ * If the lwb has already been issued by another thread, we can
+ * immediately return since there's no work to be done (the
+ * point of this function is to issue the lwb). Additionally, we
+ * do this prior to acquiring the zl_issuer_lock, to avoid
+ * acquiring it when it's not necessary to do so.
+ */
+ if (lwb->lwb_state != LWB_STATE_OPENED)
+ return;
+
+ /*
+ * In order to call zil_lwb_write_close() we must hold the
+ * zilog's "zl_issuer_lock". We can't simply acquire that lock,
+ * since we're already holding the commit waiter's "zcw_lock",
+ * and those two locks are acquired in the opposite order
+ * elsewhere.
+ */
+ mutex_exit(&zcw->zcw_lock);
+ mutex_enter(&zilog->zl_issuer_lock);
+ mutex_enter(&zcw->zcw_lock);
+
+ /*
+ * Since we just dropped and re-acquired the commit waiter's
+ * lock, we have to re-check to see if the waiter was marked
+ * "done" during that process. If the waiter was marked "done",
+ * the "lwb" pointer is no longer valid (it can be free'd after
+ * the waiter is marked "done"), so without this check we could
+ * wind up with a use-after-free error below.
+ */
+ if (zcw->zcw_done) {
+ mutex_exit(&zilog->zl_issuer_lock);
+ return;
+ }
+
+ ASSERT3P(lwb, ==, zcw->zcw_lwb);
+
+ /*
+ * We've already checked this above, but since we hadn't acquired
+ * the zilog's zl_issuer_lock, we have to perform this check a
+ * second time while holding the lock.
+ *
+ * We don't need to hold the zl_lock since the lwb cannot transition
+ * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
+ * _can_ transition from CLOSED to DONE, but it's OK to race with
+ * that transition since we treat the lwb the same, whether it's in
+ * the CLOSED, ISSUED or DONE states.
+ *
+ * The important thing, is we treat the lwb differently depending on
+ * if it's OPENED or CLOSED, and block any other threads that might
+ * attempt to close/issue this lwb. For that reason we hold the
+ * zl_issuer_lock when checking the lwb_state; we must not call
+ * zil_lwb_write_close() if the lwb had already been closed/issued.
+ *
+ * See the comment above the lwb_state_t structure definition for
+ * more details on the lwb states, and locking requirements.
+ */
+ if (lwb->lwb_state != LWB_STATE_OPENED) {
+ mutex_exit(&zilog->zl_issuer_lock);
+ return;
+ }
+
+ /*
+ * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
+ * is still open. But we have to drop it to avoid a deadlock in case
+ * callback of zio issued by zil_lwb_write_issue() try to get it,
+ * while zil_lwb_write_issue() is blocked on attempt to issue next
+ * lwb it found in LWB_STATE_READY state.
+ */
+ mutex_exit(&zcw->zcw_lock);
+
+ /*
+ * As described in the comments above zil_commit_waiter() and
+ * zil_process_commit_list(), we need to issue this lwb's zio
+ * since we've reached the commit waiter's timeout and it still
+ * hasn't been issued.
+ */
+ lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
+
+ ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
+
+ zil_burst_done(zilog);
+
+ if (nlwb == NULL) {
+ /*
+ * When zil_lwb_write_close() returns NULL, this
+ * indicates zio_alloc_zil() failed to allocate the
+ * "next" lwb on-disk. When this occurs, the ZIL write
+ * pipeline must be stalled; see the comment within the
+ * zil_commit_writer_stall() function for more details.
+ */
+ zil_lwb_write_issue(zilog, lwb);
+ zil_commit_writer_stall(zilog);
+ mutex_exit(&zilog->zl_issuer_lock);
+ } else {
+ mutex_exit(&zilog->zl_issuer_lock);
+ zil_lwb_write_issue(zilog, lwb);
+ }
+ mutex_enter(&zcw->zcw_lock);
+}
+
+/*
+ * This function is responsible for performing the following two tasks:
+ *
+ * 1. its primary responsibility is to block until the given "commit
+ * waiter" is considered "done".
+ *
+ * 2. its secondary responsibility is to issue the zio for the lwb that
+ * the given "commit waiter" is waiting on, if this function has
+ * waited "long enough" and the lwb is still in the "open" state.
+ *
+ * Given a sufficient amount of itxs being generated and written using
+ * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
+ * function. If this does not occur, this secondary responsibility will
+ * ensure the lwb is issued even if there is not other synchronous
+ * activity on the system.
+ *
+ * For more details, see zil_process_commit_list(); more specifically,
+ * the comment at the bottom of that function.
+ */
+static void
+zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
+{
+ ASSERT(!MUTEX_HELD(&zilog->zl_lock));
+ ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
+ ASSERT(spa_writeable(zilog->zl_spa));
+
+ mutex_enter(&zcw->zcw_lock);
+
+ /*
+ * The timeout is scaled based on the lwb latency to avoid
+ * significantly impacting the latency of each individual itx.
+ * For more details, see the comment at the bottom of the
+ * zil_process_commit_list() function.
+ */
+ int pct = MAX(zfs_commit_timeout_pct, 1);
+ hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
+ hrtime_t wakeup = gethrtime() + sleep;
+ boolean_t timedout = B_FALSE;
+
+ while (!zcw->zcw_done) {
+ ASSERT(MUTEX_HELD(&zcw->zcw_lock));
+
+ lwb_t *lwb = zcw->zcw_lwb;
+
+ /*
+ * Usually, the waiter will have a non-NULL lwb field here,
+ * but it's possible for it to be NULL as a result of
+ * zil_commit() racing with spa_sync().
+ *
+ * When zil_clean() is called, it's possible for the itxg
+ * list (which may be cleaned via a taskq) to contain
+ * commit itxs. When this occurs, the commit waiters linked
+ * off of these commit itxs will not be committed to an
+ * lwb. Additionally, these commit waiters will not be
+ * marked done until zil_commit_waiter_skip() is called via
+ * zil_itxg_clean().
+ *
+ * Thus, it's possible for this commit waiter (i.e. the
+ * "zcw" variable) to be found in this "in between" state;
+ * where it's "zcw_lwb" field is NULL, and it hasn't yet
+ * been skipped, so it's "zcw_done" field is still B_FALSE.
+ */
+ IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
+
+ if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
+ ASSERT3B(timedout, ==, B_FALSE);
+
+ /*
+ * If the lwb hasn't been issued yet, then we
+ * need to wait with a timeout, in case this
+ * function needs to issue the lwb after the
+ * timeout is reached; responsibility (2) from
+ * the comment above this function.
+ */
+ int rc = cv_timedwait_hires(&zcw->zcw_cv,
+ &zcw->zcw_lock, wakeup, USEC2NSEC(1),
+ CALLOUT_FLAG_ABSOLUTE);
+
+ if (rc != -1 || zcw->zcw_done)
+ continue;
+
+ timedout = B_TRUE;
+ zil_commit_waiter_timeout(zilog, zcw);
+
+ if (!zcw->zcw_done) {
+ /*
+ * If the commit waiter has already been
+ * marked "done", it's possible for the
+ * waiter's lwb structure to have already
+ * been freed. Thus, we can only reliably
+ * make these assertions if the waiter
+ * isn't done.
+ */
+ ASSERT3P(lwb, ==, zcw->zcw_lwb);
+ ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
+ }
+ } else {
+ /*
+ * If the lwb isn't open, then it must have already
+ * been issued. In that case, there's no need to
+ * use a timeout when waiting for the lwb to
+ * complete.
+ *
+ * Additionally, if the lwb is NULL, the waiter
+ * will soon be signaled and marked done via
+ * zil_clean() and zil_itxg_clean(), so no timeout
+ * is required.
+ */
+
+ IMPLY(lwb != NULL,
+ lwb->lwb_state == LWB_STATE_CLOSED ||
+ lwb->lwb_state == LWB_STATE_READY ||
+ lwb->lwb_state == LWB_STATE_ISSUED ||
+ lwb->lwb_state == LWB_STATE_WRITE_DONE ||
+ lwb->lwb_state == LWB_STATE_FLUSH_DONE);
+ cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
+ }
+ }
+
+ mutex_exit(&zcw->zcw_lock);
+}
+
+static zil_commit_waiter_t *
+zil_alloc_commit_waiter(void)
+{
+ zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
+
+ cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
+ mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
+ list_link_init(&zcw->zcw_node);
+ zcw->zcw_lwb = NULL;
+ zcw->zcw_done = B_FALSE;
+ zcw->zcw_zio_error = 0;
+
+ return (zcw);
+}
+
+static void
+zil_free_commit_waiter(zil_commit_waiter_t *zcw)
+{
+ ASSERT(!list_link_active(&zcw->zcw_node));
+ ASSERT3P(zcw->zcw_lwb, ==, NULL);
+ ASSERT3B(zcw->zcw_done, ==, B_TRUE);
+ mutex_destroy(&zcw->zcw_lock);
+ cv_destroy(&zcw->zcw_cv);
+ kmem_cache_free(zil_zcw_cache, zcw);
+}
+
+/*
+ * This function is used to create a TX_COMMIT itx and assign it. This
+ * way, it will be linked into the ZIL's list of synchronous itxs, and
+ * then later committed to an lwb (or skipped) when
+ * zil_process_commit_list() is called.
+ */
+static void
+zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
+{
+ dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
+
+ /*
+ * Since we are not going to create any new dirty data, and we
+ * can even help with clearing the existing dirty data, we
+ * should not be subject to the dirty data based delays. We
+ * use TXG_NOTHROTTLE to bypass the delay mechanism.
+ */
+ VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
+
+ itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
+ itx->itx_sync = B_TRUE;
+ itx->itx_private = zcw;
+
+ zil_itx_assign(zilog, itx, tx);
+
+ dmu_tx_commit(tx);
+}
+
+/*
+ * Commit ZFS Intent Log transactions (itxs) to stable storage.
+ *
+ * When writing ZIL transactions to the on-disk representation of the
+ * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
+ * itxs can be committed to a single lwb. Once a lwb is written and
+ * committed to stable storage (i.e. the lwb is written, and vdevs have
+ * been flushed), each itx that was committed to that lwb is also
+ * considered to be committed to stable storage.
+ *
+ * When an itx is committed to an lwb, the log record (lr_t) contained
+ * by the itx is copied into the lwb's zio buffer, and once this buffer
+ * is written to disk, it becomes an on-disk ZIL block.
+ *
+ * As itxs are generated, they're inserted into the ZIL's queue of
+ * uncommitted itxs. The semantics of zil_commit() are such that it will
+ * block until all itxs that were in the queue when it was called, are
+ * committed to stable storage.
+ *
+ * If "foid" is zero, this means all "synchronous" and "asynchronous"
+ * itxs, for all objects in the dataset, will be committed to stable
+ * storage prior to zil_commit() returning. If "foid" is non-zero, all
+ * "synchronous" itxs for all objects, but only "asynchronous" itxs
+ * that correspond to the foid passed in, will be committed to stable
+ * storage prior to zil_commit() returning.
+ *
+ * Generally speaking, when zil_commit() is called, the consumer doesn't
+ * actually care about _all_ of the uncommitted itxs. Instead, they're
+ * simply trying to waiting for a specific itx to be committed to disk,
+ * but the interface(s) for interacting with the ZIL don't allow such
+ * fine-grained communication. A better interface would allow a consumer
+ * to create and assign an itx, and then pass a reference to this itx to
+ * zil_commit(); such that zil_commit() would return as soon as that
+ * specific itx was committed to disk (instead of waiting for _all_
+ * itxs to be committed).
+ *
+ * When a thread calls zil_commit() a special "commit itx" will be
+ * generated, along with a corresponding "waiter" for this commit itx.
+ * zil_commit() will wait on this waiter's CV, such that when the waiter
+ * is marked done, and signaled, zil_commit() will return.
+ *
+ * This commit itx is inserted into the queue of uncommitted itxs. This
+ * provides an easy mechanism for determining which itxs were in the
+ * queue prior to zil_commit() having been called, and which itxs were
+ * added after zil_commit() was called.
+ *
+ * The commit itx is special; it doesn't have any on-disk representation.
+ * When a commit itx is "committed" to an lwb, the waiter associated
+ * with it is linked onto the lwb's list of waiters. Then, when that lwb
+ * completes, each waiter on the lwb's list is marked done and signaled
+ * -- allowing the thread waiting on the waiter to return from zil_commit().
+ *
+ * It's important to point out a few critical factors that allow us
+ * to make use of the commit itxs, commit waiters, per-lwb lists of
+ * commit waiters, and zio completion callbacks like we're doing:
+ *
+ * 1. The list of waiters for each lwb is traversed, and each commit
+ * waiter is marked "done" and signaled, in the zio completion
+ * callback of the lwb's zio[*].
+ *
+ * * Actually, the waiters are signaled in the zio completion
+ * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
+ * that are sent to the vdevs upon completion of the lwb zio.
+ *
+ * 2. When the itxs are inserted into the ZIL's queue of uncommitted
+ * itxs, the order in which they are inserted is preserved[*]; as
+ * itxs are added to the queue, they are added to the tail of
+ * in-memory linked lists.
+ *
+ * When committing the itxs to lwbs (to be written to disk), they
+ * are committed in the same order in which the itxs were added to
+ * the uncommitted queue's linked list(s); i.e. the linked list of
+ * itxs to commit is traversed from head to tail, and each itx is
+ * committed to an lwb in that order.
+ *
+ * * To clarify:
+ *
+ * - the order of "sync" itxs is preserved w.r.t. other
+ * "sync" itxs, regardless of the corresponding objects.
+ * - the order of "async" itxs is preserved w.r.t. other
+ * "async" itxs corresponding to the same object.
+ * - the order of "async" itxs is *not* preserved w.r.t. other
+ * "async" itxs corresponding to different objects.
+ * - the order of "sync" itxs w.r.t. "async" itxs (or vice
+ * versa) is *not* preserved, even for itxs that correspond
+ * to the same object.
+ *
+ * For more details, see: zil_itx_assign(), zil_async_to_sync(),
+ * zil_get_commit_list(), and zil_process_commit_list().
+ *
+ * 3. The lwbs represent a linked list of blocks on disk. Thus, any
+ * lwb cannot be considered committed to stable storage, until its
+ * "previous" lwb is also committed to stable storage. This fact,
+ * coupled with the fact described above, means that itxs are
+ * committed in (roughly) the order in which they were generated.
+ * This is essential because itxs are dependent on prior itxs.
+ * Thus, we *must not* deem an itx as being committed to stable
+ * storage, until *all* prior itxs have also been committed to
+ * stable storage.
+ *
+ * To enforce this ordering of lwb zio's, while still leveraging as
+ * much of the underlying storage performance as possible, we rely
+ * on two fundamental concepts:
+ *
+ * 1. The creation and issuance of lwb zio's is protected by
+ * the zilog's "zl_issuer_lock", which ensures only a single
+ * thread is creating and/or issuing lwb's at a time
+ * 2. The "previous" lwb is a child of the "current" lwb
+ * (leveraging the zio parent-child dependency graph)
+ *
+ * By relying on this parent-child zio relationship, we can have
+ * many lwb zio's concurrently issued to the underlying storage,
+ * but the order in which they complete will be the same order in
+ * which they were created.
+ */
+void
+zil_commit(zilog_t *zilog, uint64_t foid)
+{
+ /*
+ * We should never attempt to call zil_commit on a snapshot for
+ * a couple of reasons:
+ *
+ * 1. A snapshot may never be modified, thus it cannot have any
+ * in-flight itxs that would have modified the dataset.
+ *
+ * 2. By design, when zil_commit() is called, a commit itx will
+ * be assigned to this zilog; as a result, the zilog will be
+ * dirtied. We must not dirty the zilog of a snapshot; there's
+ * checks in the code that enforce this invariant, and will
+ * cause a panic if it's not upheld.
+ */
+ ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
+
+ if (zilog->zl_sync == ZFS_SYNC_DISABLED)
+ return;
+
+ if (!spa_writeable(zilog->zl_spa)) {
+ /*
+ * If the SPA is not writable, there should never be any
+ * pending itxs waiting to be committed to disk. If that
+ * weren't true, we'd skip writing those itxs out, and
+ * would break the semantics of zil_commit(); thus, we're
+ * verifying that truth before we return to the caller.
+ */
+ ASSERT(list_is_empty(&zilog->zl_lwb_list));
+ ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
+ for (int i = 0; i < TXG_SIZE; i++)
+ ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
+ return;
+ }
+
+ /*
+ * If the ZIL is suspended, we don't want to dirty it by calling
+ * zil_commit_itx_assign() below, nor can we write out
+ * lwbs like would be done in zil_commit_write(). Thus, we
+ * simply rely on txg_wait_synced() to maintain the necessary
+ * semantics, and avoid calling those functions altogether.
+ */
+ if (zilog->zl_suspend > 0) {
+ txg_wait_synced(zilog->zl_dmu_pool, 0);
+ return;
+ }
+
+ zil_commit_impl(zilog, foid);
+}
+
+void
+zil_commit_impl(zilog_t *zilog, uint64_t foid)
+{
+ ZIL_STAT_BUMP(zilog, zil_commit_count);
+
+ /*
+ * Move the "async" itxs for the specified foid to the "sync"
+ * queues, such that they will be later committed (or skipped)
+ * to an lwb when zil_process_commit_list() is called.
+ *
+ * Since these "async" itxs must be committed prior to this
+ * call to zil_commit returning, we must perform this operation
+ * before we call zil_commit_itx_assign().
+ */
+ zil_async_to_sync(zilog, foid);
+
+ /*
+ * We allocate a new "waiter" structure which will initially be
+ * linked to the commit itx using the itx's "itx_private" field.
+ * Since the commit itx doesn't represent any on-disk state,
+ * when it's committed to an lwb, rather than copying the its
+ * lr_t into the lwb's buffer, the commit itx's "waiter" will be
+ * added to the lwb's list of waiters. Then, when the lwb is
+ * committed to stable storage, each waiter in the lwb's list of
+ * waiters will be marked "done", and signalled.
+ *
+ * We must create the waiter and assign the commit itx prior to
+ * calling zil_commit_writer(), or else our specific commit itx
+ * is not guaranteed to be committed to an lwb prior to calling
+ * zil_commit_waiter().
+ */
+ zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
+ zil_commit_itx_assign(zilog, zcw);
+
+ uint64_t wtxg = zil_commit_writer(zilog, zcw);
+ zil_commit_waiter(zilog, zcw);
+
+ if (zcw->zcw_zio_error != 0) {
+ /*
+ * If there was an error writing out the ZIL blocks that
+ * this thread is waiting on, then we fallback to
+ * relying on spa_sync() to write out the data this
+ * thread is waiting on. Obviously this has performance
+ * implications, but the expectation is for this to be
+ * an exceptional case, and shouldn't occur often.
+ */
+ DTRACE_PROBE2(zil__commit__io__error,
+ zilog_t *, zilog, zil_commit_waiter_t *, zcw);
+ txg_wait_synced(zilog->zl_dmu_pool, 0);
+ } else if (wtxg != 0) {
+ txg_wait_synced(zilog->zl_dmu_pool, wtxg);
+ }
+
+ zil_free_commit_waiter(zcw);
+}
+
+/*
+ * Called in syncing context to free committed log blocks and update log header.
+ */
+void
+zil_sync(zilog_t *zilog, dmu_tx_t *tx)
+{
+ zil_header_t *zh = zil_header_in_syncing_context(zilog);
+ uint64_t txg = dmu_tx_get_txg(tx);
+ spa_t *spa = zilog->zl_spa;
+ uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
+ lwb_t *lwb;
+
+ /*
+ * We don't zero out zl_destroy_txg, so make sure we don't try
+ * to destroy it twice.
+ */
+ if (spa_sync_pass(spa) != 1)
+ return;
+
+ zil_lwb_flush_wait_all(zilog, txg);
+
+ mutex_enter(&zilog->zl_lock);
+
+ ASSERT(zilog->zl_stop_sync == 0);
+
+ if (*replayed_seq != 0) {
+ ASSERT(zh->zh_replay_seq < *replayed_seq);
+ zh->zh_replay_seq = *replayed_seq;
+ *replayed_seq = 0;
+ }
+
+ if (zilog->zl_destroy_txg == txg) {
+ blkptr_t blk = zh->zh_log;
+ dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
+
+ ASSERT(list_is_empty(&zilog->zl_lwb_list));
+
+ memset(zh, 0, sizeof (zil_header_t));
+ memset(zilog->zl_replayed_seq, 0,
+ sizeof (zilog->zl_replayed_seq));
+
+ if (zilog->zl_keep_first) {
+ /*
+ * If this block was part of log chain that couldn't
+ * be claimed because a device was missing during
+ * zil_claim(), but that device later returns,
+ * then this block could erroneously appear valid.
+ * To guard against this, assign a new GUID to the new
+ * log chain so it doesn't matter what blk points to.
+ */
+ zil_init_log_chain(zilog, &blk);
+ zh->zh_log = blk;
+ } else {
+ /*
+ * A destroyed ZIL chain can't contain any TX_SETSAXATTR
+ * records. So, deactivate the feature for this dataset.
+ * We activate it again when we start a new ZIL chain.
+ */
+ if (dsl_dataset_feature_is_active(ds,
+ SPA_FEATURE_ZILSAXATTR))
+ dsl_dataset_deactivate_feature(ds,
+ SPA_FEATURE_ZILSAXATTR, tx);
+ }
+ }
+
+ while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
+ zh->zh_log = lwb->lwb_blk;
+ if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
+ lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
+ break;
+ list_remove(&zilog->zl_lwb_list, lwb);
+ if (!BP_IS_HOLE(&lwb->lwb_blk))
+ zio_free(spa, txg, &lwb->lwb_blk);
+ zil_free_lwb(zilog, lwb);
+
+ /*
+ * If we don't have anything left in the lwb list then
+ * we've had an allocation failure and we need to zero
+ * out the zil_header blkptr so that we don't end
+ * up freeing the same block twice.
+ */
+ if (list_is_empty(&zilog->zl_lwb_list))
+ BP_ZERO(&zh->zh_log);
+ }
+
+ mutex_exit(&zilog->zl_lock);
+}
+
+static int
+zil_lwb_cons(void *vbuf, void *unused, int kmflag)
+{
+ (void) unused, (void) kmflag;
+ lwb_t *lwb = vbuf;
+ list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
+ list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
+ offsetof(zil_commit_waiter_t, zcw_node));
+ avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
+ sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
+ mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
+ return (0);
+}
+
+static void
+zil_lwb_dest(void *vbuf, void *unused)
+{
+ (void) unused;
+ lwb_t *lwb = vbuf;
+ mutex_destroy(&lwb->lwb_vdev_lock);
+ avl_destroy(&lwb->lwb_vdev_tree);
+ list_destroy(&lwb->lwb_waiters);
+ list_destroy(&lwb->lwb_itxs);
+}
+
+void
+zil_init(void)
+{
+ zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
+ sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
+
+ zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
+ sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
+
+ zil_sums_init(&zil_sums_global);
+ zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
+ KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
+ KSTAT_FLAG_VIRTUAL);
+
+ if (zil_kstats_global != NULL) {
+ zil_kstats_global->ks_data = &zil_stats;
+ zil_kstats_global->ks_update = zil_kstats_global_update;
+ zil_kstats_global->ks_private = NULL;
+ kstat_install(zil_kstats_global);
+ }
+}
+
+void
+zil_fini(void)
+{
+ kmem_cache_destroy(zil_zcw_cache);
+ kmem_cache_destroy(zil_lwb_cache);
+
+ if (zil_kstats_global != NULL) {
+ kstat_delete(zil_kstats_global);
+ zil_kstats_global = NULL;
+ }
+
+ zil_sums_fini(&zil_sums_global);
+}
+
+void
+zil_set_sync(zilog_t *zilog, uint64_t sync)
+{
+ zilog->zl_sync = sync;
+}
+
+void
+zil_set_logbias(zilog_t *zilog, uint64_t logbias)
+{
+ zilog->zl_logbias = logbias;
+}
+
+zilog_t *
+zil_alloc(objset_t *os, zil_header_t *zh_phys)
+{
+ zilog_t *zilog;
+
+ zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
+
+ zilog->zl_header = zh_phys;
+ zilog->zl_os = os;
+ zilog->zl_spa = dmu_objset_spa(os);
+ zilog->zl_dmu_pool = dmu_objset_pool(os);
+ zilog->zl_destroy_txg = TXG_INITIAL - 1;
+ zilog->zl_logbias = dmu_objset_logbias(os);
+ zilog->zl_sync = dmu_objset_syncprop(os);
+ zilog->zl_dirty_max_txg = 0;
+ zilog->zl_last_lwb_opened = NULL;
+ zilog->zl_last_lwb_latency = 0;
+ zilog->zl_max_block_size = zil_maxblocksize;
+
+ mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
+ mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
+
+ for (int i = 0; i < TXG_SIZE; i++) {
+ mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
+ MUTEX_DEFAULT, NULL);
+ }
+
+ list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
+ offsetof(lwb_t, lwb_node));
+
+ list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
+ offsetof(itx_t, itx_node));
+
+ cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
+ cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
+
+ return (zilog);
+}
+
+void
+zil_free(zilog_t *zilog)
+{
+ int i;
+
+ zilog->zl_stop_sync = 1;
+
+ ASSERT0(zilog->zl_suspend);
+ ASSERT0(zilog->zl_suspending);
+
+ ASSERT(list_is_empty(&zilog->zl_lwb_list));
+ list_destroy(&zilog->zl_lwb_list);
+
+ ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
+ list_destroy(&zilog->zl_itx_commit_list);
+
+ for (i = 0; i < TXG_SIZE; i++) {
+ /*
+ * It's possible for an itx to be generated that doesn't dirty
+ * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
+ * callback to remove the entry. We remove those here.
+ *
+ * Also free up the ziltest itxs.
+ */
+ if (zilog->zl_itxg[i].itxg_itxs)
+ zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
+ mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
+ }
+
+ mutex_destroy(&zilog->zl_issuer_lock);
+ mutex_destroy(&zilog->zl_lock);
+ mutex_destroy(&zilog->zl_lwb_io_lock);
+
+ cv_destroy(&zilog->zl_cv_suspend);
+ cv_destroy(&zilog->zl_lwb_io_cv);
+
+ kmem_free(zilog, sizeof (zilog_t));
+}
+
+/*
+ * Open an intent log.
+ */
+zilog_t *
+zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
+{
+ zilog_t *zilog = dmu_objset_zil(os);
+
+ ASSERT3P(zilog->zl_get_data, ==, NULL);
+ ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
+ ASSERT(list_is_empty(&zilog->zl_lwb_list));
+
+ zilog->zl_get_data = get_data;
+ zilog->zl_sums = zil_sums;
+
+ return (zilog);
+}
+
+/*
+ * Close an intent log.
+ */
+void
+zil_close(zilog_t *zilog)
+{
+ lwb_t *lwb;
+ uint64_t txg;
+
+ if (!dmu_objset_is_snapshot(zilog->zl_os)) {
+ zil_commit(zilog, 0);
+ } else {
+ ASSERT(list_is_empty(&zilog->zl_lwb_list));
+ ASSERT0(zilog->zl_dirty_max_txg);
+ ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
+ }
+
+ mutex_enter(&zilog->zl_lock);
+ txg = zilog->zl_dirty_max_txg;
+ lwb = list_tail(&zilog->zl_lwb_list);
+ if (lwb != NULL) {
+ txg = MAX(txg, lwb->lwb_alloc_txg);
+ txg = MAX(txg, lwb->lwb_max_txg);
+ }
+ mutex_exit(&zilog->zl_lock);
+
+ /*
+ * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
+ * on the time when the dmu_tx transaction is assigned in
+ * zil_lwb_write_issue().
+ */
+ mutex_enter(&zilog->zl_lwb_io_lock);
+ txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
+ mutex_exit(&zilog->zl_lwb_io_lock);
+
+ /*
+ * We need to use txg_wait_synced() to wait until that txg is synced.
+ * zil_sync() will guarantee all lwbs up to that txg have been
+ * written out, flushed, and cleaned.
+ */
+ if (txg != 0)
+ txg_wait_synced(zilog->zl_dmu_pool, txg);
+
+ if (zilog_is_dirty(zilog))
+ zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
+ (u_longlong_t)txg);
+ if (txg < spa_freeze_txg(zilog->zl_spa))
+ VERIFY(!zilog_is_dirty(zilog));
+
+ zilog->zl_get_data = NULL;
+
+ /*
+ * We should have only one lwb left on the list; remove it now.
+ */
+ mutex_enter(&zilog->zl_lock);
+ lwb = list_remove_head(&zilog->zl_lwb_list);
+ if (lwb != NULL) {
+ ASSERT(list_is_empty(&zilog->zl_lwb_list));
+ ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
+ zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
+ zil_free_lwb(zilog, lwb);
+ }
+ mutex_exit(&zilog->zl_lock);
+}
+
+static const char *suspend_tag = "zil suspending";
+
+/*
+ * Suspend an intent log. While in suspended mode, we still honor
+ * synchronous semantics, but we rely on txg_wait_synced() to do it.
+ * On old version pools, we suspend the log briefly when taking a
+ * snapshot so that it will have an empty intent log.
+ *
+ * Long holds are not really intended to be used the way we do here --
+ * held for such a short time. A concurrent caller of dsl_dataset_long_held()
+ * could fail. Therefore we take pains to only put a long hold if it is
+ * actually necessary. Fortunately, it will only be necessary if the
+ * objset is currently mounted (or the ZVOL equivalent). In that case it
+ * will already have a long hold, so we are not really making things any worse.
+ *
+ * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
+ * zvol_state_t), and use their mechanism to prevent their hold from being
+ * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
+ * very little gain.
+ *
+ * if cookiep == NULL, this does both the suspend & resume.
+ * Otherwise, it returns with the dataset "long held", and the cookie
+ * should be passed into zil_resume().
+ */
+int
+zil_suspend(const char *osname, void **cookiep)
+{
+ objset_t *os;
+ zilog_t *zilog;
+ const zil_header_t *zh;
+ int error;
+
+ error = dmu_objset_hold(osname, suspend_tag, &os);
+ if (error != 0)
+ return (error);
+ zilog = dmu_objset_zil(os);
+
+ mutex_enter(&zilog->zl_lock);
+ zh = zilog->zl_header;
+
+ if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
+ mutex_exit(&zilog->zl_lock);
+ dmu_objset_rele(os, suspend_tag);
+ return (SET_ERROR(EBUSY));
+ }
+
+ /*
+ * Don't put a long hold in the cases where we can avoid it. This
+ * is when there is no cookie so we are doing a suspend & resume
+ * (i.e. called from zil_vdev_offline()), and there's nothing to do
+ * for the suspend because it's already suspended, or there's no ZIL.
+ */
+ if (cookiep == NULL && !zilog->zl_suspending &&
+ (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
+ mutex_exit(&zilog->zl_lock);
+ dmu_objset_rele(os, suspend_tag);
+ return (0);
+ }
+
+ dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
+ dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
+
+ zilog->zl_suspend++;
+
+ if (zilog->zl_suspend > 1) {
+ /*
+ * Someone else is already suspending it.
+ * Just wait for them to finish.
+ */
+
+ while (zilog->zl_suspending)
+ cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
+ mutex_exit(&zilog->zl_lock);
+
+ if (cookiep == NULL)
+ zil_resume(os);
+ else
+ *cookiep = os;
+ return (0);
+ }
+
+ /*
+ * If there is no pointer to an on-disk block, this ZIL must not
+ * be active (e.g. filesystem not mounted), so there's nothing
+ * to clean up.
+ */
+ if (BP_IS_HOLE(&zh->zh_log)) {
+ ASSERT(cookiep != NULL); /* fast path already handled */
+
+ *cookiep = os;
+ mutex_exit(&zilog->zl_lock);
+ return (0);
+ }
+
+ /*
+ * The ZIL has work to do. Ensure that the associated encryption
+ * key will remain mapped while we are committing the log by
+ * grabbing a reference to it. If the key isn't loaded we have no
+ * choice but to return an error until the wrapping key is loaded.
+ */
+ if (os->os_encrypted &&
+ dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
+ zilog->zl_suspend--;
+ mutex_exit(&zilog->zl_lock);
+ dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
+ dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
+ return (SET_ERROR(EACCES));
+ }
+
+ zilog->zl_suspending = B_TRUE;
+ mutex_exit(&zilog->zl_lock);
+
+ /*
+ * We need to use zil_commit_impl to ensure we wait for all
+ * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
+ * to disk before proceeding. If we used zil_commit instead, it
+ * would just call txg_wait_synced(), because zl_suspend is set.
+ * txg_wait_synced() doesn't wait for these lwb's to be
+ * LWB_STATE_FLUSH_DONE before returning.
+ */
+ zil_commit_impl(zilog, 0);
+
+ /*
+ * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
+ * use txg_wait_synced() to ensure the data from the zilog has
+ * migrated to the main pool before calling zil_destroy().
+ */
+ txg_wait_synced(zilog->zl_dmu_pool, 0);
+
+ zil_destroy(zilog, B_FALSE);
+
+ mutex_enter(&zilog->zl_lock);
+ zilog->zl_suspending = B_FALSE;
+ cv_broadcast(&zilog->zl_cv_suspend);
+ mutex_exit(&zilog->zl_lock);
+
+ if (os->os_encrypted)
+ dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
+
+ if (cookiep == NULL)
+ zil_resume(os);
+ else
+ *cookiep = os;
+ return (0);
+}
+
+void
+zil_resume(void *cookie)
+{
+ objset_t *os = cookie;
+ zilog_t *zilog = dmu_objset_zil(os);
+
+ mutex_enter(&zilog->zl_lock);
+ ASSERT(zilog->zl_suspend != 0);
+ zilog->zl_suspend--;
+ mutex_exit(&zilog->zl_lock);
+ dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
+ dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
+}
+
+typedef struct zil_replay_arg {
+ zil_replay_func_t *const *zr_replay;
+ void *zr_arg;
+ boolean_t zr_byteswap;
+ char *zr_lr;
+} zil_replay_arg_t;
+
+static int
+zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
+{
+ char name[ZFS_MAX_DATASET_NAME_LEN];
+
+ zilog->zl_replaying_seq--; /* didn't actually replay this one */
+
+ dmu_objset_name(zilog->zl_os, name);
+
+ cmn_err(CE_WARN, "ZFS replay transaction error %d, "
+ "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
+ (u_longlong_t)lr->lrc_seq,
+ (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
+ (lr->lrc_txtype & TX_CI) ? "CI" : "");
+
+ return (error);
+}
+
+static int
+zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
+ uint64_t claim_txg)
+{
+ zil_replay_arg_t *zr = zra;
+ const zil_header_t *zh = zilog->zl_header;
+ uint64_t reclen = lr->lrc_reclen;
+ uint64_t txtype = lr->lrc_txtype;
+ int error = 0;
+
+ zilog->zl_replaying_seq = lr->lrc_seq;
+
+ if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
+ return (0);
+
+ if (lr->lrc_txg < claim_txg) /* already committed */
+ return (0);
+
+ /* Strip case-insensitive bit, still present in log record */
+ txtype &= ~TX_CI;
+
+ if (txtype == 0 || txtype >= TX_MAX_TYPE)
+ return (zil_replay_error(zilog, lr, EINVAL));
+
+ /*
+ * If this record type can be logged out of order, the object
+ * (lr_foid) may no longer exist. That's legitimate, not an error.
+ */
+ if (TX_OOO(txtype)) {
+ error = dmu_object_info(zilog->zl_os,
+ LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
+ if (error == ENOENT || error == EEXIST)
+ return (0);
+ }
+
+ /*
+ * Make a copy of the data so we can revise and extend it.
+ */
+ memcpy(zr->zr_lr, lr, reclen);
+
+ /*
+ * If this is a TX_WRITE with a blkptr, suck in the data.
+ */
+ if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
+ error = zil_read_log_data(zilog, (lr_write_t *)lr,
+ zr->zr_lr + reclen);
+ if (error != 0)
+ return (zil_replay_error(zilog, lr, error));
+ }
+
+ /*
+ * The log block containing this lr may have been byteswapped
+ * so that we can easily examine common fields like lrc_txtype.
+ * However, the log is a mix of different record types, and only the
+ * replay vectors know how to byteswap their records. Therefore, if
+ * the lr was byteswapped, undo it before invoking the replay vector.
+ */
+ if (zr->zr_byteswap)
+ byteswap_uint64_array(zr->zr_lr, reclen);
+
+ /*
+ * We must now do two things atomically: replay this log record,
+ * and update the log header sequence number to reflect the fact that
+ * we did so. At the end of each replay function the sequence number
+ * is updated if we are in replay mode.
+ */
+ error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
+ if (error != 0) {
+ /*
+ * The DMU's dnode layer doesn't see removes until the txg
+ * commits, so a subsequent claim can spuriously fail with
+ * EEXIST. So if we receive any error we try syncing out
+ * any removes then retry the transaction. Note that we
+ * specify B_FALSE for byteswap now, so we don't do it twice.
+ */
+ txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
+ error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
+ if (error != 0)
+ return (zil_replay_error(zilog, lr, error));
+ }
+ return (0);
+}
+
+static int
+zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
+{
+ (void) bp, (void) arg, (void) claim_txg;
+
+ zilog->zl_replay_blks++;
+
+ return (0);
+}
+
+/*
+ * If this dataset has a non-empty intent log, replay it and destroy it.
+ * Return B_TRUE if there were any entries to replay.
+ */
+boolean_t
+zil_replay(objset_t *os, void *arg,
+ zil_replay_func_t *const replay_func[TX_MAX_TYPE])
+{
+ zilog_t *zilog = dmu_objset_zil(os);
+ const zil_header_t *zh = zilog->zl_header;
+ zil_replay_arg_t zr;
+
+ if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
+ return (zil_destroy(zilog, B_TRUE));
+ }
+
+ zr.zr_replay = replay_func;
+ zr.zr_arg = arg;
+ zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
+ zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
+
+ /*
+ * Wait for in-progress removes to sync before starting replay.
+ */
+ txg_wait_synced(zilog->zl_dmu_pool, 0);
+
+ zilog->zl_replay = B_TRUE;
+ zilog->zl_replay_time = ddi_get_lbolt();
+ ASSERT(zilog->zl_replay_blks == 0);
+ (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
+ zh->zh_claim_txg, B_TRUE);
+ vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
+
+ zil_destroy(zilog, B_FALSE);
+ txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
+ zilog->zl_replay = B_FALSE;
+
+ return (B_TRUE);
+}
+
+boolean_t
+zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
+{
+ if (zilog->zl_sync == ZFS_SYNC_DISABLED)
+ return (B_TRUE);
+
+ if (zilog->zl_replay) {
+ dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
+ zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
+ zilog->zl_replaying_seq;
+ return (B_TRUE);
+ }
+
+ return (B_FALSE);
+}
+
+int
+zil_reset(const char *osname, void *arg)
+{
+ (void) arg;
+
+ int error = zil_suspend(osname, NULL);
+ /* EACCES means crypto key not loaded */
+ if ((error == EACCES) || (error == EBUSY))
+ return (SET_ERROR(error));
+ if (error != 0)
+ return (SET_ERROR(EEXIST));
+ return (0);
+}
+
+EXPORT_SYMBOL(zil_alloc);
+EXPORT_SYMBOL(zil_free);
+EXPORT_SYMBOL(zil_open);
+EXPORT_SYMBOL(zil_close);
+EXPORT_SYMBOL(zil_replay);
+EXPORT_SYMBOL(zil_replaying);
+EXPORT_SYMBOL(zil_destroy);
+EXPORT_SYMBOL(zil_destroy_sync);
+EXPORT_SYMBOL(zil_itx_create);
+EXPORT_SYMBOL(zil_itx_destroy);
+EXPORT_SYMBOL(zil_itx_assign);
+EXPORT_SYMBOL(zil_commit);
+EXPORT_SYMBOL(zil_claim);
+EXPORT_SYMBOL(zil_check_log_chain);
+EXPORT_SYMBOL(zil_sync);
+EXPORT_SYMBOL(zil_clean);
+EXPORT_SYMBOL(zil_suspend);
+EXPORT_SYMBOL(zil_resume);
+EXPORT_SYMBOL(zil_lwb_add_block);
+EXPORT_SYMBOL(zil_bp_tree_add);
+EXPORT_SYMBOL(zil_set_sync);
+EXPORT_SYMBOL(zil_set_logbias);
+EXPORT_SYMBOL(zil_sums_init);
+EXPORT_SYMBOL(zil_sums_fini);
+EXPORT_SYMBOL(zil_kstat_values_update);
+
+ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
+ "ZIL block open timeout percentage");
+
+ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
+ "Disable intent logging replay");
+
+ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
+ "Disable ZIL cache flushes");
+
+ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
+ "Limit in bytes slog sync writes per commit");
+
+ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
+ "Limit in bytes of ZIL log block size");
+
+ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
+ "Limit in bytes WR_COPIED size");