diff options
Diffstat (limited to 'sys/contrib/openzfs/module/zfs/vdev.c')
-rw-r--r-- | sys/contrib/openzfs/module/zfs/vdev.c | 6457 |
1 files changed, 6457 insertions, 0 deletions
diff --git a/sys/contrib/openzfs/module/zfs/vdev.c b/sys/contrib/openzfs/module/zfs/vdev.c new file mode 100644 index 000000000000..c10c78ebf6db --- /dev/null +++ b/sys/contrib/openzfs/module/zfs/vdev.c @@ -0,0 +1,6457 @@ +/* + * CDDL HEADER START + * + * The contents of this file are subject to the terms of the + * Common Development and Distribution License (the "License"). + * You may not use this file except in compliance with the License. + * + * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE + * or https://opensource.org/licenses/CDDL-1.0. + * See the License for the specific language governing permissions + * and limitations under the License. + * + * When distributing Covered Code, include this CDDL HEADER in each + * file and include the License file at usr/src/OPENSOLARIS.LICENSE. + * If applicable, add the following below this CDDL HEADER, with the + * fields enclosed by brackets "[]" replaced with your own identifying + * information: Portions Copyright [yyyy] [name of copyright owner] + * + * CDDL HEADER END + */ + +/* + * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. + * Copyright (c) 2011, 2021 by Delphix. All rights reserved. + * Copyright 2017 Nexenta Systems, Inc. + * Copyright (c) 2014 Integros [integros.com] + * Copyright 2016 Toomas Soome <tsoome@me.com> + * Copyright 2017 Joyent, Inc. + * Copyright (c) 2017, Intel Corporation. + * Copyright (c) 2019, Datto Inc. All rights reserved. + * Copyright (c) 2021, Klara Inc. + * Copyright (c) 2021, 2023 Hewlett Packard Enterprise Development LP. + */ + +#include <sys/zfs_context.h> +#include <sys/fm/fs/zfs.h> +#include <sys/spa.h> +#include <sys/spa_impl.h> +#include <sys/bpobj.h> +#include <sys/dmu.h> +#include <sys/dmu_tx.h> +#include <sys/dsl_dir.h> +#include <sys/vdev_impl.h> +#include <sys/vdev_rebuild.h> +#include <sys/vdev_draid.h> +#include <sys/uberblock_impl.h> +#include <sys/metaslab.h> +#include <sys/metaslab_impl.h> +#include <sys/space_map.h> +#include <sys/space_reftree.h> +#include <sys/zio.h> +#include <sys/zap.h> +#include <sys/fs/zfs.h> +#include <sys/arc.h> +#include <sys/zil.h> +#include <sys/dsl_scan.h> +#include <sys/vdev_raidz.h> +#include <sys/abd.h> +#include <sys/vdev_initialize.h> +#include <sys/vdev_trim.h> +#include <sys/vdev_raidz.h> +#include <sys/zvol.h> +#include <sys/zfs_ratelimit.h> +#include "zfs_prop.h" + +/* + * One metaslab from each (normal-class) vdev is used by the ZIL. These are + * called "embedded slog metaslabs", are referenced by vdev_log_mg, and are + * part of the spa_embedded_log_class. The metaslab with the most free space + * in each vdev is selected for this purpose when the pool is opened (or a + * vdev is added). See vdev_metaslab_init(). + * + * Log blocks can be allocated from the following locations. Each one is tried + * in order until the allocation succeeds: + * 1. dedicated log vdevs, aka "slog" (spa_log_class) + * 2. embedded slog metaslabs (spa_embedded_log_class) + * 3. other metaslabs in normal vdevs (spa_normal_class) + * + * zfs_embedded_slog_min_ms disables the embedded slog if there are fewer + * than this number of metaslabs in the vdev. This ensures that we don't set + * aside an unreasonable amount of space for the ZIL. If set to less than + * 1 << (spa_slop_shift + 1), on small pools the usable space may be reduced + * (by more than 1<<spa_slop_shift) due to the embedded slog metaslab. + */ +static uint_t zfs_embedded_slog_min_ms = 64; + +/* default target for number of metaslabs per top-level vdev */ +static uint_t zfs_vdev_default_ms_count = 200; + +/* minimum number of metaslabs per top-level vdev */ +static uint_t zfs_vdev_min_ms_count = 16; + +/* practical upper limit of total metaslabs per top-level vdev */ +static uint_t zfs_vdev_ms_count_limit = 1ULL << 17; + +/* lower limit for metaslab size (512M) */ +static uint_t zfs_vdev_default_ms_shift = 29; + +/* upper limit for metaslab size (16G) */ +static uint_t zfs_vdev_max_ms_shift = 34; + +int vdev_validate_skip = B_FALSE; + +/* + * Since the DTL space map of a vdev is not expected to have a lot of + * entries, we default its block size to 4K. + */ +int zfs_vdev_dtl_sm_blksz = (1 << 12); + +/* + * Rate limit slow IO (delay) events to this many per second. + */ +static unsigned int zfs_slow_io_events_per_second = 20; + +/* + * Rate limit checksum events after this many checksum errors per second. + */ +static unsigned int zfs_checksum_events_per_second = 20; + +/* + * Ignore errors during scrub/resilver. Allows to work around resilver + * upon import when there are pool errors. + */ +static int zfs_scan_ignore_errors = 0; + +/* + * vdev-wide space maps that have lots of entries written to them at + * the end of each transaction can benefit from a higher I/O bandwidth + * (e.g. vdev_obsolete_sm), thus we default their block size to 128K. + */ +int zfs_vdev_standard_sm_blksz = (1 << 17); + +/* + * Tunable parameter for debugging or performance analysis. Setting this + * will cause pool corruption on power loss if a volatile out-of-order + * write cache is enabled. + */ +int zfs_nocacheflush = 0; + +/* + * Maximum and minimum ashift values that can be automatically set based on + * vdev's physical ashift (disk's physical sector size). While ASHIFT_MAX + * is higher than the maximum value, it is intentionally limited here to not + * excessively impact pool space efficiency. Higher ashift values may still + * be forced by vdev logical ashift or by user via ashift property, but won't + * be set automatically as a performance optimization. + */ +uint_t zfs_vdev_max_auto_ashift = 14; +uint_t zfs_vdev_min_auto_ashift = ASHIFT_MIN; + +void +vdev_dbgmsg(vdev_t *vd, const char *fmt, ...) +{ + va_list adx; + char buf[256]; + + va_start(adx, fmt); + (void) vsnprintf(buf, sizeof (buf), fmt, adx); + va_end(adx); + + if (vd->vdev_path != NULL) { + zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type, + vd->vdev_path, buf); + } else { + zfs_dbgmsg("%s-%llu vdev (guid %llu): %s", + vd->vdev_ops->vdev_op_type, + (u_longlong_t)vd->vdev_id, + (u_longlong_t)vd->vdev_guid, buf); + } +} + +void +vdev_dbgmsg_print_tree(vdev_t *vd, int indent) +{ + char state[20]; + + if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) { + zfs_dbgmsg("%*svdev %llu: %s", indent, "", + (u_longlong_t)vd->vdev_id, + vd->vdev_ops->vdev_op_type); + return; + } + + switch (vd->vdev_state) { + case VDEV_STATE_UNKNOWN: + (void) snprintf(state, sizeof (state), "unknown"); + break; + case VDEV_STATE_CLOSED: + (void) snprintf(state, sizeof (state), "closed"); + break; + case VDEV_STATE_OFFLINE: + (void) snprintf(state, sizeof (state), "offline"); + break; + case VDEV_STATE_REMOVED: + (void) snprintf(state, sizeof (state), "removed"); + break; + case VDEV_STATE_CANT_OPEN: + (void) snprintf(state, sizeof (state), "can't open"); + break; + case VDEV_STATE_FAULTED: + (void) snprintf(state, sizeof (state), "faulted"); + break; + case VDEV_STATE_DEGRADED: + (void) snprintf(state, sizeof (state), "degraded"); + break; + case VDEV_STATE_HEALTHY: + (void) snprintf(state, sizeof (state), "healthy"); + break; + default: + (void) snprintf(state, sizeof (state), "<state %u>", + (uint_t)vd->vdev_state); + } + + zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent, + "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type, + vd->vdev_islog ? " (log)" : "", + (u_longlong_t)vd->vdev_guid, + vd->vdev_path ? vd->vdev_path : "N/A", state); + + for (uint64_t i = 0; i < vd->vdev_children; i++) + vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2); +} + +/* + * Virtual device management. + */ + +static vdev_ops_t *const vdev_ops_table[] = { + &vdev_root_ops, + &vdev_raidz_ops, + &vdev_draid_ops, + &vdev_draid_spare_ops, + &vdev_mirror_ops, + &vdev_replacing_ops, + &vdev_spare_ops, + &vdev_disk_ops, + &vdev_file_ops, + &vdev_missing_ops, + &vdev_hole_ops, + &vdev_indirect_ops, + NULL +}; + +/* + * Given a vdev type, return the appropriate ops vector. + */ +static vdev_ops_t * +vdev_getops(const char *type) +{ + vdev_ops_t *ops, *const *opspp; + + for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) + if (strcmp(ops->vdev_op_type, type) == 0) + break; + + return (ops); +} + +/* + * Given a vdev and a metaslab class, find which metaslab group we're + * interested in. All vdevs may belong to two different metaslab classes. + * Dedicated slog devices use only the primary metaslab group, rather than a + * separate log group. For embedded slogs, the vdev_log_mg will be non-NULL. + */ +metaslab_group_t * +vdev_get_mg(vdev_t *vd, metaslab_class_t *mc) +{ + if (mc == spa_embedded_log_class(vd->vdev_spa) && + vd->vdev_log_mg != NULL) + return (vd->vdev_log_mg); + else + return (vd->vdev_mg); +} + +void +vdev_default_xlate(vdev_t *vd, const range_seg64_t *logical_rs, + range_seg64_t *physical_rs, range_seg64_t *remain_rs) +{ + (void) vd, (void) remain_rs; + + physical_rs->rs_start = logical_rs->rs_start; + physical_rs->rs_end = logical_rs->rs_end; +} + +/* + * Derive the enumerated allocation bias from string input. + * String origin is either the per-vdev zap or zpool(8). + */ +static vdev_alloc_bias_t +vdev_derive_alloc_bias(const char *bias) +{ + vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; + + if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0) + alloc_bias = VDEV_BIAS_LOG; + else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0) + alloc_bias = VDEV_BIAS_SPECIAL; + else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0) + alloc_bias = VDEV_BIAS_DEDUP; + + return (alloc_bias); +} + +/* + * Default asize function: return the MAX of psize with the asize of + * all children. This is what's used by anything other than RAID-Z. + */ +uint64_t +vdev_default_asize(vdev_t *vd, uint64_t psize, uint64_t txg) +{ + uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); + uint64_t csize; + + for (int c = 0; c < vd->vdev_children; c++) { + csize = vdev_psize_to_asize_txg(vd->vdev_child[c], psize, txg); + asize = MAX(asize, csize); + } + + return (asize); +} + +uint64_t +vdev_default_min_asize(vdev_t *vd) +{ + return (vd->vdev_min_asize); +} + +/* + * Get the minimum allocatable size. We define the allocatable size as + * the vdev's asize rounded to the nearest metaslab. This allows us to + * replace or attach devices which don't have the same physical size but + * can still satisfy the same number of allocations. + */ +uint64_t +vdev_get_min_asize(vdev_t *vd) +{ + vdev_t *pvd = vd->vdev_parent; + + /* + * If our parent is NULL (inactive spare or cache) or is the root, + * just return our own asize. + */ + if (pvd == NULL) + return (vd->vdev_asize); + + /* + * The top-level vdev just returns the allocatable size rounded + * to the nearest metaslab. + */ + if (vd == vd->vdev_top) + return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); + + return (pvd->vdev_ops->vdev_op_min_asize(pvd)); +} + +void +vdev_set_min_asize(vdev_t *vd) +{ + vd->vdev_min_asize = vdev_get_min_asize(vd); + + for (int c = 0; c < vd->vdev_children; c++) + vdev_set_min_asize(vd->vdev_child[c]); +} + +/* + * Get the minimal allocation size for the top-level vdev. + */ +uint64_t +vdev_get_min_alloc(vdev_t *vd) +{ + uint64_t min_alloc = 1ULL << vd->vdev_ashift; + + if (vd->vdev_ops->vdev_op_min_alloc != NULL) + min_alloc = vd->vdev_ops->vdev_op_min_alloc(vd); + + return (min_alloc); +} + +/* + * Get the parity level for a top-level vdev. + */ +uint64_t +vdev_get_nparity(vdev_t *vd) +{ + uint64_t nparity = 0; + + if (vd->vdev_ops->vdev_op_nparity != NULL) + nparity = vd->vdev_ops->vdev_op_nparity(vd); + + return (nparity); +} + +static int +vdev_prop_get_int(vdev_t *vd, vdev_prop_t prop, uint64_t *value) +{ + spa_t *spa = vd->vdev_spa; + objset_t *mos = spa->spa_meta_objset; + uint64_t objid; + int err; + + if (vd->vdev_root_zap != 0) { + objid = vd->vdev_root_zap; + } else if (vd->vdev_top_zap != 0) { + objid = vd->vdev_top_zap; + } else if (vd->vdev_leaf_zap != 0) { + objid = vd->vdev_leaf_zap; + } else { + return (EINVAL); + } + + err = zap_lookup(mos, objid, vdev_prop_to_name(prop), + sizeof (uint64_t), 1, value); + + if (err == ENOENT) + *value = vdev_prop_default_numeric(prop); + + return (err); +} + +/* + * Get the number of data disks for a top-level vdev. + */ +uint64_t +vdev_get_ndisks(vdev_t *vd) +{ + uint64_t ndisks = 1; + + if (vd->vdev_ops->vdev_op_ndisks != NULL) + ndisks = vd->vdev_ops->vdev_op_ndisks(vd); + + return (ndisks); +} + +vdev_t * +vdev_lookup_top(spa_t *spa, uint64_t vdev) +{ + vdev_t *rvd = spa->spa_root_vdev; + + ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); + + if (vdev < rvd->vdev_children) { + ASSERT(rvd->vdev_child[vdev] != NULL); + return (rvd->vdev_child[vdev]); + } + + return (NULL); +} + +vdev_t * +vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) +{ + vdev_t *mvd; + + if (vd->vdev_guid == guid) + return (vd); + + for (int c = 0; c < vd->vdev_children; c++) + if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != + NULL) + return (mvd); + + return (NULL); +} + +static int +vdev_count_leaves_impl(vdev_t *vd) +{ + int n = 0; + + if (vd->vdev_ops->vdev_op_leaf) + return (1); + + for (int c = 0; c < vd->vdev_children; c++) + n += vdev_count_leaves_impl(vd->vdev_child[c]); + + return (n); +} + +int +vdev_count_leaves(spa_t *spa) +{ + int rc; + + spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); + rc = vdev_count_leaves_impl(spa->spa_root_vdev); + spa_config_exit(spa, SCL_VDEV, FTAG); + + return (rc); +} + +void +vdev_add_child(vdev_t *pvd, vdev_t *cvd) +{ + size_t oldsize, newsize; + uint64_t id = cvd->vdev_id; + vdev_t **newchild; + + ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); + ASSERT(cvd->vdev_parent == NULL); + + cvd->vdev_parent = pvd; + + if (pvd == NULL) + return; + + ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); + + oldsize = pvd->vdev_children * sizeof (vdev_t *); + pvd->vdev_children = MAX(pvd->vdev_children, id + 1); + newsize = pvd->vdev_children * sizeof (vdev_t *); + + newchild = kmem_alloc(newsize, KM_SLEEP); + if (pvd->vdev_child != NULL) { + memcpy(newchild, pvd->vdev_child, oldsize); + kmem_free(pvd->vdev_child, oldsize); + } + + pvd->vdev_child = newchild; + pvd->vdev_child[id] = cvd; + + cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); + ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); + + /* + * Walk up all ancestors to update guid sum. + */ + for (; pvd != NULL; pvd = pvd->vdev_parent) + pvd->vdev_guid_sum += cvd->vdev_guid_sum; + + if (cvd->vdev_ops->vdev_op_leaf) { + list_insert_head(&cvd->vdev_spa->spa_leaf_list, cvd); + cvd->vdev_spa->spa_leaf_list_gen++; + } +} + +void +vdev_remove_child(vdev_t *pvd, vdev_t *cvd) +{ + int c; + uint_t id = cvd->vdev_id; + + ASSERT(cvd->vdev_parent == pvd); + + if (pvd == NULL) + return; + + ASSERT(id < pvd->vdev_children); + ASSERT(pvd->vdev_child[id] == cvd); + + pvd->vdev_child[id] = NULL; + cvd->vdev_parent = NULL; + + for (c = 0; c < pvd->vdev_children; c++) + if (pvd->vdev_child[c]) + break; + + if (c == pvd->vdev_children) { + kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); + pvd->vdev_child = NULL; + pvd->vdev_children = 0; + } + + if (cvd->vdev_ops->vdev_op_leaf) { + spa_t *spa = cvd->vdev_spa; + list_remove(&spa->spa_leaf_list, cvd); + spa->spa_leaf_list_gen++; + } + + /* + * Walk up all ancestors to update guid sum. + */ + for (; pvd != NULL; pvd = pvd->vdev_parent) + pvd->vdev_guid_sum -= cvd->vdev_guid_sum; +} + +/* + * Remove any holes in the child array. + */ +void +vdev_compact_children(vdev_t *pvd) +{ + vdev_t **newchild, *cvd; + int oldc = pvd->vdev_children; + int newc; + + ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); + + if (oldc == 0) + return; + + for (int c = newc = 0; c < oldc; c++) + if (pvd->vdev_child[c]) + newc++; + + if (newc > 0) { + newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP); + + for (int c = newc = 0; c < oldc; c++) { + if ((cvd = pvd->vdev_child[c]) != NULL) { + newchild[newc] = cvd; + cvd->vdev_id = newc++; + } + } + } else { + newchild = NULL; + } + + kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); + pvd->vdev_child = newchild; + pvd->vdev_children = newc; +} + +/* + * Allocate and minimally initialize a vdev_t. + */ +vdev_t * +vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) +{ + vdev_t *vd; + vdev_indirect_config_t *vic; + + vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); + vic = &vd->vdev_indirect_config; + + if (spa->spa_root_vdev == NULL) { + ASSERT(ops == &vdev_root_ops); + spa->spa_root_vdev = vd; + spa->spa_load_guid = spa_generate_guid(NULL); + } + + if (guid == 0 && ops != &vdev_hole_ops) { + if (spa->spa_root_vdev == vd) { + /* + * The root vdev's guid will also be the pool guid, + * which must be unique among all pools. + */ + guid = spa_generate_guid(NULL); + } else { + /* + * Any other vdev's guid must be unique within the pool. + */ + guid = spa_generate_guid(spa); + } + ASSERT(!spa_guid_exists(spa_guid(spa), guid)); + } + + vd->vdev_spa = spa; + vd->vdev_id = id; + vd->vdev_guid = guid; + vd->vdev_guid_sum = guid; + vd->vdev_ops = ops; + vd->vdev_state = VDEV_STATE_CLOSED; + vd->vdev_ishole = (ops == &vdev_hole_ops); + vic->vic_prev_indirect_vdev = UINT64_MAX; + + rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL); + mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL); + vd->vdev_obsolete_segments = range_tree_create(NULL, RANGE_SEG64, NULL, + 0, 0); + + /* + * Initialize rate limit structs for events. We rate limit ZIO delay + * and checksum events so that we don't overwhelm ZED with thousands + * of events when a disk is acting up. + */ + zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second, + 1); + zfs_ratelimit_init(&vd->vdev_deadman_rl, &zfs_slow_io_events_per_second, + 1); + zfs_ratelimit_init(&vd->vdev_checksum_rl, + &zfs_checksum_events_per_second, 1); + + /* + * Default Thresholds for tuning ZED + */ + vd->vdev_checksum_n = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_N); + vd->vdev_checksum_t = vdev_prop_default_numeric(VDEV_PROP_CHECKSUM_T); + vd->vdev_io_n = vdev_prop_default_numeric(VDEV_PROP_IO_N); + vd->vdev_io_t = vdev_prop_default_numeric(VDEV_PROP_IO_T); + + list_link_init(&vd->vdev_config_dirty_node); + list_link_init(&vd->vdev_state_dirty_node); + list_link_init(&vd->vdev_initialize_node); + list_link_init(&vd->vdev_leaf_node); + list_link_init(&vd->vdev_trim_node); + + mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL); + mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); + mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); + mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL); + + mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL); + mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL); + cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL); + cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL); + + mutex_init(&vd->vdev_trim_lock, NULL, MUTEX_DEFAULT, NULL); + mutex_init(&vd->vdev_autotrim_lock, NULL, MUTEX_DEFAULT, NULL); + mutex_init(&vd->vdev_trim_io_lock, NULL, MUTEX_DEFAULT, NULL); + cv_init(&vd->vdev_trim_cv, NULL, CV_DEFAULT, NULL); + cv_init(&vd->vdev_autotrim_cv, NULL, CV_DEFAULT, NULL); + cv_init(&vd->vdev_autotrim_kick_cv, NULL, CV_DEFAULT, NULL); + cv_init(&vd->vdev_trim_io_cv, NULL, CV_DEFAULT, NULL); + + mutex_init(&vd->vdev_rebuild_lock, NULL, MUTEX_DEFAULT, NULL); + cv_init(&vd->vdev_rebuild_cv, NULL, CV_DEFAULT, NULL); + + for (int t = 0; t < DTL_TYPES; t++) { + vd->vdev_dtl[t] = range_tree_create(NULL, RANGE_SEG64, NULL, 0, + 0); + } + + txg_list_create(&vd->vdev_ms_list, spa, + offsetof(struct metaslab, ms_txg_node)); + txg_list_create(&vd->vdev_dtl_list, spa, + offsetof(struct vdev, vdev_dtl_node)); + vd->vdev_stat.vs_timestamp = gethrtime(); + vdev_queue_init(vd); + + return (vd); +} + +/* + * Allocate a new vdev. The 'alloctype' is used to control whether we are + * creating a new vdev or loading an existing one - the behavior is slightly + * different for each case. + */ +int +vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, + int alloctype) +{ + vdev_ops_t *ops; + const char *type; + uint64_t guid = 0, islog; + vdev_t *vd; + vdev_indirect_config_t *vic; + const char *tmp = NULL; + int rc; + vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE; + boolean_t top_level = (parent && !parent->vdev_parent); + + ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); + + if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) + return (SET_ERROR(EINVAL)); + + if ((ops = vdev_getops(type)) == NULL) + return (SET_ERROR(EINVAL)); + + /* + * If this is a load, get the vdev guid from the nvlist. + * Otherwise, vdev_alloc_common() will generate one for us. + */ + if (alloctype == VDEV_ALLOC_LOAD) { + uint64_t label_id; + + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || + label_id != id) + return (SET_ERROR(EINVAL)); + + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) + return (SET_ERROR(EINVAL)); + } else if (alloctype == VDEV_ALLOC_SPARE) { + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) + return (SET_ERROR(EINVAL)); + } else if (alloctype == VDEV_ALLOC_L2CACHE) { + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) + return (SET_ERROR(EINVAL)); + } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) + return (SET_ERROR(EINVAL)); + } + + /* + * The first allocated vdev must be of type 'root'. + */ + if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) + return (SET_ERROR(EINVAL)); + + /* + * Determine whether we're a log vdev. + */ + islog = 0; + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); + if (islog && spa_version(spa) < SPA_VERSION_SLOGS) + return (SET_ERROR(ENOTSUP)); + + if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) + return (SET_ERROR(ENOTSUP)); + + if (top_level && alloctype == VDEV_ALLOC_ADD) { + const char *bias; + + /* + * If creating a top-level vdev, check for allocation + * classes input. + */ + if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS, + &bias) == 0) { + alloc_bias = vdev_derive_alloc_bias(bias); + + /* spa_vdev_add() expects feature to be enabled */ + if (spa->spa_load_state != SPA_LOAD_CREATE && + !spa_feature_is_enabled(spa, + SPA_FEATURE_ALLOCATION_CLASSES)) { + return (SET_ERROR(ENOTSUP)); + } + } + + /* spa_vdev_add() expects feature to be enabled */ + if (ops == &vdev_draid_ops && + spa->spa_load_state != SPA_LOAD_CREATE && + !spa_feature_is_enabled(spa, SPA_FEATURE_DRAID)) { + return (SET_ERROR(ENOTSUP)); + } + } + + /* + * Initialize the vdev specific data. This is done before calling + * vdev_alloc_common() since it may fail and this simplifies the + * error reporting and cleanup code paths. + */ + void *tsd = NULL; + if (ops->vdev_op_init != NULL) { + rc = ops->vdev_op_init(spa, nv, &tsd); + if (rc != 0) { + return (rc); + } + } + + vd = vdev_alloc_common(spa, id, guid, ops); + vd->vdev_tsd = tsd; + vd->vdev_islog = islog; + + if (top_level && alloc_bias != VDEV_BIAS_NONE) + vd->vdev_alloc_bias = alloc_bias; + + if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &tmp) == 0) + vd->vdev_path = spa_strdup(tmp); + + /* + * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a + * fault on a vdev and want it to persist across imports (like with + * zpool offline -f). + */ + rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp); + if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) { + vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; + vd->vdev_faulted = 1; + vd->vdev_label_aux = VDEV_AUX_EXTERNAL; + } + + if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &tmp) == 0) + vd->vdev_devid = spa_strdup(tmp); + if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, &tmp) == 0) + vd->vdev_physpath = spa_strdup(tmp); + + if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, + &tmp) == 0) + vd->vdev_enc_sysfs_path = spa_strdup(tmp); + + if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &tmp) == 0) + vd->vdev_fru = spa_strdup(tmp); + + /* + * Set the whole_disk property. If it's not specified, leave the value + * as -1. + */ + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, + &vd->vdev_wholedisk) != 0) + vd->vdev_wholedisk = -1ULL; + + vic = &vd->vdev_indirect_config; + + ASSERT0(vic->vic_mapping_object); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT, + &vic->vic_mapping_object); + ASSERT0(vic->vic_births_object); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS, + &vic->vic_births_object); + ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV, + &vic->vic_prev_indirect_vdev); + + /* + * Look for the 'not present' flag. This will only be set if the device + * was not present at the time of import. + */ + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, + &vd->vdev_not_present); + + /* + * Get the alignment requirement. Ignore pool ashift for vdev + * attach case. + */ + if (alloctype != VDEV_ALLOC_ATTACH) { + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, + &vd->vdev_ashift); + } else { + vd->vdev_attaching = B_TRUE; + } + + /* + * Retrieve the vdev creation time. + */ + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, + &vd->vdev_crtxg); + + if (vd->vdev_ops == &vdev_root_ops && + (alloctype == VDEV_ALLOC_LOAD || + alloctype == VDEV_ALLOC_SPLIT || + alloctype == VDEV_ALLOC_ROOTPOOL)) { + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_ROOT_ZAP, + &vd->vdev_root_zap); + } + + /* + * If we're a top-level vdev, try to load the allocation parameters. + */ + if (top_level && + (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, + &vd->vdev_ms_array); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, + &vd->vdev_ms_shift); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, + &vd->vdev_asize); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NONALLOCATING, + &vd->vdev_noalloc); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, + &vd->vdev_removing); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP, + &vd->vdev_top_zap); + vd->vdev_rz_expanding = nvlist_exists(nv, + ZPOOL_CONFIG_RAIDZ_EXPANDING); + } else { + ASSERT0(vd->vdev_top_zap); + } + + if (top_level && alloctype != VDEV_ALLOC_ATTACH) { + ASSERT(alloctype == VDEV_ALLOC_LOAD || + alloctype == VDEV_ALLOC_ADD || + alloctype == VDEV_ALLOC_SPLIT || + alloctype == VDEV_ALLOC_ROOTPOOL); + /* Note: metaslab_group_create() is now deferred */ + } + + if (vd->vdev_ops->vdev_op_leaf && + (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { + (void) nvlist_lookup_uint64(nv, + ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap); + } else { + ASSERT0(vd->vdev_leaf_zap); + } + + /* + * If we're a leaf vdev, try to load the DTL object and other state. + */ + + if (vd->vdev_ops->vdev_op_leaf && + (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || + alloctype == VDEV_ALLOC_ROOTPOOL)) { + if (alloctype == VDEV_ALLOC_LOAD) { + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, + &vd->vdev_dtl_object); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, + &vd->vdev_unspare); + } + + if (alloctype == VDEV_ALLOC_ROOTPOOL) { + uint64_t spare = 0; + + if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, + &spare) == 0 && spare) + spa_spare_add(vd); + } + + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, + &vd->vdev_offline); + + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, + &vd->vdev_resilver_txg); + + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REBUILD_TXG, + &vd->vdev_rebuild_txg); + + if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER)) + vdev_defer_resilver(vd); + + /* + * In general, when importing a pool we want to ignore the + * persistent fault state, as the diagnosis made on another + * system may not be valid in the current context. The only + * exception is if we forced a vdev to a persistently faulted + * state with 'zpool offline -f'. The persistent fault will + * remain across imports until cleared. + * + * Local vdevs will remain in the faulted state. + */ + if (spa_load_state(spa) == SPA_LOAD_OPEN || + spa_load_state(spa) == SPA_LOAD_IMPORT) { + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, + &vd->vdev_faulted); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, + &vd->vdev_degraded); + (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, + &vd->vdev_removed); + + if (vd->vdev_faulted || vd->vdev_degraded) { + const char *aux; + + vd->vdev_label_aux = + VDEV_AUX_ERR_EXCEEDED; + if (nvlist_lookup_string(nv, + ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && + strcmp(aux, "external") == 0) + vd->vdev_label_aux = VDEV_AUX_EXTERNAL; + else + vd->vdev_faulted = 0ULL; + } + } + } + + /* + * Add ourselves to the parent's list of children. + */ + vdev_add_child(parent, vd); + + *vdp = vd; + + return (0); +} + +void +vdev_free(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + + ASSERT3P(vd->vdev_initialize_thread, ==, NULL); + ASSERT3P(vd->vdev_trim_thread, ==, NULL); + ASSERT3P(vd->vdev_autotrim_thread, ==, NULL); + ASSERT3P(vd->vdev_rebuild_thread, ==, NULL); + + /* + * Scan queues are normally destroyed at the end of a scan. If the + * queue exists here, that implies the vdev is being removed while + * the scan is still running. + */ + if (vd->vdev_scan_io_queue != NULL) { + mutex_enter(&vd->vdev_scan_io_queue_lock); + dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue); + vd->vdev_scan_io_queue = NULL; + mutex_exit(&vd->vdev_scan_io_queue_lock); + } + + /* + * vdev_free() implies closing the vdev first. This is simpler than + * trying to ensure complicated semantics for all callers. + */ + vdev_close(vd); + + ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); + ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); + + /* + * Free all children. + */ + for (int c = 0; c < vd->vdev_children; c++) + vdev_free(vd->vdev_child[c]); + + ASSERT(vd->vdev_child == NULL); + ASSERT(vd->vdev_guid_sum == vd->vdev_guid); + + if (vd->vdev_ops->vdev_op_fini != NULL) + vd->vdev_ops->vdev_op_fini(vd); + + /* + * Discard allocation state. + */ + if (vd->vdev_mg != NULL) { + vdev_metaslab_fini(vd); + metaslab_group_destroy(vd->vdev_mg); + vd->vdev_mg = NULL; + } + if (vd->vdev_log_mg != NULL) { + ASSERT0(vd->vdev_ms_count); + metaslab_group_destroy(vd->vdev_log_mg); + vd->vdev_log_mg = NULL; + } + + ASSERT0(vd->vdev_stat.vs_space); + ASSERT0(vd->vdev_stat.vs_dspace); + ASSERT0(vd->vdev_stat.vs_alloc); + + /* + * Remove this vdev from its parent's child list. + */ + vdev_remove_child(vd->vdev_parent, vd); + + ASSERT(vd->vdev_parent == NULL); + ASSERT(!list_link_active(&vd->vdev_leaf_node)); + + /* + * Clean up vdev structure. + */ + vdev_queue_fini(vd); + + if (vd->vdev_path) + spa_strfree(vd->vdev_path); + if (vd->vdev_devid) + spa_strfree(vd->vdev_devid); + if (vd->vdev_physpath) + spa_strfree(vd->vdev_physpath); + + if (vd->vdev_enc_sysfs_path) + spa_strfree(vd->vdev_enc_sysfs_path); + + if (vd->vdev_fru) + spa_strfree(vd->vdev_fru); + + if (vd->vdev_isspare) + spa_spare_remove(vd); + if (vd->vdev_isl2cache) + spa_l2cache_remove(vd); + + txg_list_destroy(&vd->vdev_ms_list); + txg_list_destroy(&vd->vdev_dtl_list); + + mutex_enter(&vd->vdev_dtl_lock); + space_map_close(vd->vdev_dtl_sm); + for (int t = 0; t < DTL_TYPES; t++) { + range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); + range_tree_destroy(vd->vdev_dtl[t]); + } + mutex_exit(&vd->vdev_dtl_lock); + + EQUIV(vd->vdev_indirect_births != NULL, + vd->vdev_indirect_mapping != NULL); + if (vd->vdev_indirect_births != NULL) { + vdev_indirect_mapping_close(vd->vdev_indirect_mapping); + vdev_indirect_births_close(vd->vdev_indirect_births); + } + + if (vd->vdev_obsolete_sm != NULL) { + ASSERT(vd->vdev_removing || + vd->vdev_ops == &vdev_indirect_ops); + space_map_close(vd->vdev_obsolete_sm); + vd->vdev_obsolete_sm = NULL; + } + range_tree_destroy(vd->vdev_obsolete_segments); + rw_destroy(&vd->vdev_indirect_rwlock); + mutex_destroy(&vd->vdev_obsolete_lock); + + mutex_destroy(&vd->vdev_dtl_lock); + mutex_destroy(&vd->vdev_stat_lock); + mutex_destroy(&vd->vdev_probe_lock); + mutex_destroy(&vd->vdev_scan_io_queue_lock); + + mutex_destroy(&vd->vdev_initialize_lock); + mutex_destroy(&vd->vdev_initialize_io_lock); + cv_destroy(&vd->vdev_initialize_io_cv); + cv_destroy(&vd->vdev_initialize_cv); + + mutex_destroy(&vd->vdev_trim_lock); + mutex_destroy(&vd->vdev_autotrim_lock); + mutex_destroy(&vd->vdev_trim_io_lock); + cv_destroy(&vd->vdev_trim_cv); + cv_destroy(&vd->vdev_autotrim_cv); + cv_destroy(&vd->vdev_autotrim_kick_cv); + cv_destroy(&vd->vdev_trim_io_cv); + + mutex_destroy(&vd->vdev_rebuild_lock); + cv_destroy(&vd->vdev_rebuild_cv); + + zfs_ratelimit_fini(&vd->vdev_delay_rl); + zfs_ratelimit_fini(&vd->vdev_deadman_rl); + zfs_ratelimit_fini(&vd->vdev_checksum_rl); + + if (vd == spa->spa_root_vdev) + spa->spa_root_vdev = NULL; + + kmem_free(vd, sizeof (vdev_t)); +} + +/* + * Transfer top-level vdev state from svd to tvd. + */ +static void +vdev_top_transfer(vdev_t *svd, vdev_t *tvd) +{ + spa_t *spa = svd->vdev_spa; + metaslab_t *msp; + vdev_t *vd; + int t; + + ASSERT(tvd == tvd->vdev_top); + + tvd->vdev_ms_array = svd->vdev_ms_array; + tvd->vdev_ms_shift = svd->vdev_ms_shift; + tvd->vdev_ms_count = svd->vdev_ms_count; + tvd->vdev_top_zap = svd->vdev_top_zap; + + svd->vdev_ms_array = 0; + svd->vdev_ms_shift = 0; + svd->vdev_ms_count = 0; + svd->vdev_top_zap = 0; + + if (tvd->vdev_mg) + ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); + if (tvd->vdev_log_mg) + ASSERT3P(tvd->vdev_log_mg, ==, svd->vdev_log_mg); + tvd->vdev_mg = svd->vdev_mg; + tvd->vdev_log_mg = svd->vdev_log_mg; + tvd->vdev_ms = svd->vdev_ms; + + svd->vdev_mg = NULL; + svd->vdev_log_mg = NULL; + svd->vdev_ms = NULL; + + if (tvd->vdev_mg != NULL) + tvd->vdev_mg->mg_vd = tvd; + if (tvd->vdev_log_mg != NULL) + tvd->vdev_log_mg->mg_vd = tvd; + + tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm; + svd->vdev_checkpoint_sm = NULL; + + tvd->vdev_alloc_bias = svd->vdev_alloc_bias; + svd->vdev_alloc_bias = VDEV_BIAS_NONE; + + tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; + tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; + tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; + + svd->vdev_stat.vs_alloc = 0; + svd->vdev_stat.vs_space = 0; + svd->vdev_stat.vs_dspace = 0; + + /* + * State which may be set on a top-level vdev that's in the + * process of being removed. + */ + ASSERT0(tvd->vdev_indirect_config.vic_births_object); + ASSERT0(tvd->vdev_indirect_config.vic_mapping_object); + ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL); + ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL); + ASSERT3P(tvd->vdev_indirect_births, ==, NULL); + ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL); + ASSERT0(tvd->vdev_noalloc); + ASSERT0(tvd->vdev_removing); + ASSERT0(tvd->vdev_rebuilding); + tvd->vdev_noalloc = svd->vdev_noalloc; + tvd->vdev_removing = svd->vdev_removing; + tvd->vdev_rebuilding = svd->vdev_rebuilding; + tvd->vdev_rebuild_config = svd->vdev_rebuild_config; + tvd->vdev_indirect_config = svd->vdev_indirect_config; + tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping; + tvd->vdev_indirect_births = svd->vdev_indirect_births; + range_tree_swap(&svd->vdev_obsolete_segments, + &tvd->vdev_obsolete_segments); + tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm; + svd->vdev_indirect_config.vic_mapping_object = 0; + svd->vdev_indirect_config.vic_births_object = 0; + svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL; + svd->vdev_indirect_mapping = NULL; + svd->vdev_indirect_births = NULL; + svd->vdev_obsolete_sm = NULL; + svd->vdev_noalloc = 0; + svd->vdev_removing = 0; + svd->vdev_rebuilding = 0; + + for (t = 0; t < TXG_SIZE; t++) { + while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) + (void) txg_list_add(&tvd->vdev_ms_list, msp, t); + while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) + (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); + if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) + (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); + } + + if (list_link_active(&svd->vdev_config_dirty_node)) { + vdev_config_clean(svd); + vdev_config_dirty(tvd); + } + + if (list_link_active(&svd->vdev_state_dirty_node)) { + vdev_state_clean(svd); + vdev_state_dirty(tvd); + } + + tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; + svd->vdev_deflate_ratio = 0; + + tvd->vdev_islog = svd->vdev_islog; + svd->vdev_islog = 0; + + dsl_scan_io_queue_vdev_xfer(svd, tvd); +} + +static void +vdev_top_update(vdev_t *tvd, vdev_t *vd) +{ + if (vd == NULL) + return; + + vd->vdev_top = tvd; + + for (int c = 0; c < vd->vdev_children; c++) + vdev_top_update(tvd, vd->vdev_child[c]); +} + +/* + * Add a mirror/replacing vdev above an existing vdev. There is no need to + * call .vdev_op_init() since mirror/replacing vdevs do not have private state. + */ +vdev_t * +vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) +{ + spa_t *spa = cvd->vdev_spa; + vdev_t *pvd = cvd->vdev_parent; + vdev_t *mvd; + + ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); + + mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); + + mvd->vdev_asize = cvd->vdev_asize; + mvd->vdev_min_asize = cvd->vdev_min_asize; + mvd->vdev_max_asize = cvd->vdev_max_asize; + mvd->vdev_psize = cvd->vdev_psize; + mvd->vdev_ashift = cvd->vdev_ashift; + mvd->vdev_logical_ashift = cvd->vdev_logical_ashift; + mvd->vdev_physical_ashift = cvd->vdev_physical_ashift; + mvd->vdev_state = cvd->vdev_state; + mvd->vdev_crtxg = cvd->vdev_crtxg; + + vdev_remove_child(pvd, cvd); + vdev_add_child(pvd, mvd); + cvd->vdev_id = mvd->vdev_children; + vdev_add_child(mvd, cvd); + vdev_top_update(cvd->vdev_top, cvd->vdev_top); + + if (mvd == mvd->vdev_top) + vdev_top_transfer(cvd, mvd); + + return (mvd); +} + +/* + * Remove a 1-way mirror/replacing vdev from the tree. + */ +void +vdev_remove_parent(vdev_t *cvd) +{ + vdev_t *mvd = cvd->vdev_parent; + vdev_t *pvd = mvd->vdev_parent; + + ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); + + ASSERT(mvd->vdev_children == 1); + ASSERT(mvd->vdev_ops == &vdev_mirror_ops || + mvd->vdev_ops == &vdev_replacing_ops || + mvd->vdev_ops == &vdev_spare_ops); + cvd->vdev_ashift = mvd->vdev_ashift; + cvd->vdev_logical_ashift = mvd->vdev_logical_ashift; + cvd->vdev_physical_ashift = mvd->vdev_physical_ashift; + vdev_remove_child(mvd, cvd); + vdev_remove_child(pvd, mvd); + + /* + * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. + * Otherwise, we could have detached an offline device, and when we + * go to import the pool we'll think we have two top-level vdevs, + * instead of a different version of the same top-level vdev. + */ + if (mvd->vdev_top == mvd) { + uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; + cvd->vdev_orig_guid = cvd->vdev_guid; + cvd->vdev_guid += guid_delta; + cvd->vdev_guid_sum += guid_delta; + + /* + * If pool not set for autoexpand, we need to also preserve + * mvd's asize to prevent automatic expansion of cvd. + * Otherwise if we are adjusting the mirror by attaching and + * detaching children of non-uniform sizes, the mirror could + * autoexpand, unexpectedly requiring larger devices to + * re-establish the mirror. + */ + if (!cvd->vdev_spa->spa_autoexpand) + cvd->vdev_asize = mvd->vdev_asize; + } + cvd->vdev_id = mvd->vdev_id; + vdev_add_child(pvd, cvd); + vdev_top_update(cvd->vdev_top, cvd->vdev_top); + + if (cvd == cvd->vdev_top) + vdev_top_transfer(mvd, cvd); + + ASSERT(mvd->vdev_children == 0); + vdev_free(mvd); +} + +/* + * Choose GCD for spa_gcd_alloc. + */ +static uint64_t +vdev_gcd(uint64_t a, uint64_t b) +{ + while (b != 0) { + uint64_t t = b; + b = a % b; + a = t; + } + return (a); +} + +/* + * Set spa_min_alloc and spa_gcd_alloc. + */ +static void +vdev_spa_set_alloc(spa_t *spa, uint64_t min_alloc) +{ + if (min_alloc < spa->spa_min_alloc) + spa->spa_min_alloc = min_alloc; + if (spa->spa_gcd_alloc == INT_MAX) { + spa->spa_gcd_alloc = min_alloc; + } else { + spa->spa_gcd_alloc = vdev_gcd(min_alloc, + spa->spa_gcd_alloc); + } +} + +void +vdev_metaslab_group_create(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + + /* + * metaslab_group_create was delayed until allocation bias was available + */ + if (vd->vdev_mg == NULL) { + metaslab_class_t *mc; + + if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE) + vd->vdev_alloc_bias = VDEV_BIAS_LOG; + + ASSERT3U(vd->vdev_islog, ==, + (vd->vdev_alloc_bias == VDEV_BIAS_LOG)); + + switch (vd->vdev_alloc_bias) { + case VDEV_BIAS_LOG: + mc = spa_log_class(spa); + break; + case VDEV_BIAS_SPECIAL: + mc = spa_special_class(spa); + break; + case VDEV_BIAS_DEDUP: + mc = spa_dedup_class(spa); + break; + default: + mc = spa_normal_class(spa); + } + + vd->vdev_mg = metaslab_group_create(mc, vd, + spa->spa_alloc_count); + + if (!vd->vdev_islog) { + vd->vdev_log_mg = metaslab_group_create( + spa_embedded_log_class(spa), vd, 1); + } + + /* + * The spa ashift min/max only apply for the normal metaslab + * class. Class destination is late binding so ashift boundary + * setting had to wait until now. + */ + if (vd->vdev_top == vd && vd->vdev_ashift != 0 && + mc == spa_normal_class(spa) && vd->vdev_aux == NULL) { + if (vd->vdev_ashift > spa->spa_max_ashift) + spa->spa_max_ashift = vd->vdev_ashift; + if (vd->vdev_ashift < spa->spa_min_ashift) + spa->spa_min_ashift = vd->vdev_ashift; + + uint64_t min_alloc = vdev_get_min_alloc(vd); + vdev_spa_set_alloc(spa, min_alloc); + } + } +} + +int +vdev_metaslab_init(vdev_t *vd, uint64_t txg) +{ + spa_t *spa = vd->vdev_spa; + uint64_t oldc = vd->vdev_ms_count; + uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; + metaslab_t **mspp; + int error; + boolean_t expanding = (oldc != 0); + + ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); + + /* + * This vdev is not being allocated from yet or is a hole. + */ + if (vd->vdev_ms_shift == 0) + return (0); + + ASSERT(!vd->vdev_ishole); + + ASSERT(oldc <= newc); + + mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); + + if (expanding) { + memcpy(mspp, vd->vdev_ms, oldc * sizeof (*mspp)); + vmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); + } + + vd->vdev_ms = mspp; + vd->vdev_ms_count = newc; + + for (uint64_t m = oldc; m < newc; m++) { + uint64_t object = 0; + /* + * vdev_ms_array may be 0 if we are creating the "fake" + * metaslabs for an indirect vdev for zdb's leak detection. + * See zdb_leak_init(). + */ + if (txg == 0 && vd->vdev_ms_array != 0) { + error = dmu_read(spa->spa_meta_objset, + vd->vdev_ms_array, + m * sizeof (uint64_t), sizeof (uint64_t), &object, + DMU_READ_PREFETCH); + if (error != 0) { + vdev_dbgmsg(vd, "unable to read the metaslab " + "array [error=%d]", error); + return (error); + } + } + + error = metaslab_init(vd->vdev_mg, m, object, txg, + &(vd->vdev_ms[m])); + if (error != 0) { + vdev_dbgmsg(vd, "metaslab_init failed [error=%d]", + error); + return (error); + } + } + + /* + * Find the emptiest metaslab on the vdev and mark it for use for + * embedded slog by moving it from the regular to the log metaslab + * group. + */ + if (vd->vdev_mg->mg_class == spa_normal_class(spa) && + vd->vdev_ms_count > zfs_embedded_slog_min_ms && + avl_is_empty(&vd->vdev_log_mg->mg_metaslab_tree)) { + uint64_t slog_msid = 0; + uint64_t smallest = UINT64_MAX; + + /* + * Note, we only search the new metaslabs, because the old + * (pre-existing) ones may be active (e.g. have non-empty + * range_tree's), and we don't move them to the new + * metaslab_t. + */ + for (uint64_t m = oldc; m < newc; m++) { + uint64_t alloc = + space_map_allocated(vd->vdev_ms[m]->ms_sm); + if (alloc < smallest) { + slog_msid = m; + smallest = alloc; + } + } + metaslab_t *slog_ms = vd->vdev_ms[slog_msid]; + /* + * The metaslab was marked as dirty at the end of + * metaslab_init(). Remove it from the dirty list so that we + * can uninitialize and reinitialize it to the new class. + */ + if (txg != 0) { + (void) txg_list_remove_this(&vd->vdev_ms_list, + slog_ms, txg); + } + uint64_t sm_obj = space_map_object(slog_ms->ms_sm); + metaslab_fini(slog_ms); + VERIFY0(metaslab_init(vd->vdev_log_mg, slog_msid, sm_obj, txg, + &vd->vdev_ms[slog_msid])); + } + + if (txg == 0) + spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); + + /* + * If the vdev is marked as non-allocating then don't + * activate the metaslabs since we want to ensure that + * no allocations are performed on this device. + */ + if (vd->vdev_noalloc) { + /* track non-allocating vdev space */ + spa->spa_nonallocating_dspace += spa_deflate(spa) ? + vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space; + } else if (!expanding) { + metaslab_group_activate(vd->vdev_mg); + if (vd->vdev_log_mg != NULL) + metaslab_group_activate(vd->vdev_log_mg); + } + + if (txg == 0) + spa_config_exit(spa, SCL_ALLOC, FTAG); + + return (0); +} + +void +vdev_metaslab_fini(vdev_t *vd) +{ + if (vd->vdev_checkpoint_sm != NULL) { + ASSERT(spa_feature_is_active(vd->vdev_spa, + SPA_FEATURE_POOL_CHECKPOINT)); + space_map_close(vd->vdev_checkpoint_sm); + /* + * Even though we close the space map, we need to set its + * pointer to NULL. The reason is that vdev_metaslab_fini() + * may be called multiple times for certain operations + * (i.e. when destroying a pool) so we need to ensure that + * this clause never executes twice. This logic is similar + * to the one used for the vdev_ms clause below. + */ + vd->vdev_checkpoint_sm = NULL; + } + + if (vd->vdev_ms != NULL) { + metaslab_group_t *mg = vd->vdev_mg; + + metaslab_group_passivate(mg); + if (vd->vdev_log_mg != NULL) { + ASSERT(!vd->vdev_islog); + metaslab_group_passivate(vd->vdev_log_mg); + } + + uint64_t count = vd->vdev_ms_count; + for (uint64_t m = 0; m < count; m++) { + metaslab_t *msp = vd->vdev_ms[m]; + if (msp != NULL) + metaslab_fini(msp); + } + vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); + vd->vdev_ms = NULL; + vd->vdev_ms_count = 0; + + for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) { + ASSERT0(mg->mg_histogram[i]); + if (vd->vdev_log_mg != NULL) + ASSERT0(vd->vdev_log_mg->mg_histogram[i]); + } + } + ASSERT0(vd->vdev_ms_count); +} + +typedef struct vdev_probe_stats { + boolean_t vps_readable; + boolean_t vps_writeable; + int vps_flags; +} vdev_probe_stats_t; + +static void +vdev_probe_done(zio_t *zio) +{ + spa_t *spa = zio->io_spa; + vdev_t *vd = zio->io_vd; + vdev_probe_stats_t *vps = zio->io_private; + + ASSERT(vd->vdev_probe_zio != NULL); + + if (zio->io_type == ZIO_TYPE_READ) { + if (zio->io_error == 0) + vps->vps_readable = 1; + if (zio->io_error == 0 && spa_writeable(spa)) { + zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, + zio->io_offset, zio->io_size, zio->io_abd, + ZIO_CHECKSUM_OFF, vdev_probe_done, vps, + ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); + } else { + abd_free(zio->io_abd); + } + } else if (zio->io_type == ZIO_TYPE_WRITE) { + if (zio->io_error == 0) + vps->vps_writeable = 1; + abd_free(zio->io_abd); + } else if (zio->io_type == ZIO_TYPE_NULL) { + zio_t *pio; + zio_link_t *zl; + + vd->vdev_cant_read |= !vps->vps_readable; + vd->vdev_cant_write |= !vps->vps_writeable; + vdev_dbgmsg(vd, "probe done, cant_read=%u cant_write=%u", + vd->vdev_cant_read, vd->vdev_cant_write); + + if (vdev_readable(vd) && + (vdev_writeable(vd) || !spa_writeable(spa))) { + zio->io_error = 0; + } else { + ASSERT(zio->io_error != 0); + vdev_dbgmsg(vd, "failed probe"); + (void) zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, + spa, vd, NULL, NULL, 0); + zio->io_error = SET_ERROR(ENXIO); + } + + mutex_enter(&vd->vdev_probe_lock); + ASSERT(vd->vdev_probe_zio == zio); + vd->vdev_probe_zio = NULL; + mutex_exit(&vd->vdev_probe_lock); + + zl = NULL; + while ((pio = zio_walk_parents(zio, &zl)) != NULL) + if (!vdev_accessible(vd, pio)) + pio->io_error = SET_ERROR(ENXIO); + + kmem_free(vps, sizeof (*vps)); + } +} + +/* + * Determine whether this device is accessible. + * + * Read and write to several known locations: the pad regions of each + * vdev label but the first, which we leave alone in case it contains + * a VTOC. + */ +zio_t * +vdev_probe(vdev_t *vd, zio_t *zio) +{ + spa_t *spa = vd->vdev_spa; + vdev_probe_stats_t *vps = NULL; + zio_t *pio; + + ASSERT(vd->vdev_ops->vdev_op_leaf); + + /* + * Don't probe the probe. + */ + if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) + return (NULL); + + /* + * To prevent 'probe storms' when a device fails, we create + * just one probe i/o at a time. All zios that want to probe + * this vdev will become parents of the probe io. + */ + mutex_enter(&vd->vdev_probe_lock); + + if ((pio = vd->vdev_probe_zio) == NULL) { + vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); + + vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | + ZIO_FLAG_DONT_AGGREGATE | ZIO_FLAG_TRYHARD; + + if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { + /* + * vdev_cant_read and vdev_cant_write can only + * transition from TRUE to FALSE when we have the + * SCL_ZIO lock as writer; otherwise they can only + * transition from FALSE to TRUE. This ensures that + * any zio looking at these values can assume that + * failures persist for the life of the I/O. That's + * important because when a device has intermittent + * connectivity problems, we want to ensure that + * they're ascribed to the device (ENXIO) and not + * the zio (EIO). + * + * Since we hold SCL_ZIO as writer here, clear both + * values so the probe can reevaluate from first + * principles. + */ + vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; + vd->vdev_cant_read = B_FALSE; + vd->vdev_cant_write = B_FALSE; + } + + vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, + vdev_probe_done, vps, + vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); + + /* + * We can't change the vdev state in this context, so we + * kick off an async task to do it on our behalf. + */ + if (zio != NULL) { + vd->vdev_probe_wanted = B_TRUE; + spa_async_request(spa, SPA_ASYNC_PROBE); + } + } + + if (zio != NULL) + zio_add_child(zio, pio); + + mutex_exit(&vd->vdev_probe_lock); + + if (vps == NULL) { + ASSERT(zio != NULL); + return (NULL); + } + + for (int l = 1; l < VDEV_LABELS; l++) { + zio_nowait(zio_read_phys(pio, vd, + vdev_label_offset(vd->vdev_psize, l, + offsetof(vdev_label_t, vl_be)), VDEV_PAD_SIZE, + abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE), + ZIO_CHECKSUM_OFF, vdev_probe_done, vps, + ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); + } + + if (zio == NULL) + return (pio); + + zio_nowait(pio); + return (NULL); +} + +static void +vdev_load_child(void *arg) +{ + vdev_t *vd = arg; + + vd->vdev_load_error = vdev_load(vd); +} + +static void +vdev_open_child(void *arg) +{ + vdev_t *vd = arg; + + vd->vdev_open_thread = curthread; + vd->vdev_open_error = vdev_open(vd); + vd->vdev_open_thread = NULL; +} + +static boolean_t +vdev_uses_zvols(vdev_t *vd) +{ +#ifdef _KERNEL + if (zvol_is_zvol(vd->vdev_path)) + return (B_TRUE); +#endif + + for (int c = 0; c < vd->vdev_children; c++) + if (vdev_uses_zvols(vd->vdev_child[c])) + return (B_TRUE); + + return (B_FALSE); +} + +/* + * Returns B_TRUE if the passed child should be opened. + */ +static boolean_t +vdev_default_open_children_func(vdev_t *vd) +{ + (void) vd; + return (B_TRUE); +} + +/* + * Open the requested child vdevs. If any of the leaf vdevs are using + * a ZFS volume then do the opens in a single thread. This avoids a + * deadlock when the current thread is holding the spa_namespace_lock. + */ +static void +vdev_open_children_impl(vdev_t *vd, vdev_open_children_func_t *open_func) +{ + int children = vd->vdev_children; + + taskq_t *tq = taskq_create("vdev_open", children, minclsyspri, + children, children, TASKQ_PREPOPULATE); + vd->vdev_nonrot = B_TRUE; + + for (int c = 0; c < children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + + if (open_func(cvd) == B_FALSE) + continue; + + if (tq == NULL || vdev_uses_zvols(vd)) { + cvd->vdev_open_error = vdev_open(cvd); + } else { + VERIFY(taskq_dispatch(tq, vdev_open_child, + cvd, TQ_SLEEP) != TASKQID_INVALID); + } + + vd->vdev_nonrot &= cvd->vdev_nonrot; + } + + if (tq != NULL) { + taskq_wait(tq); + taskq_destroy(tq); + } +} + +/* + * Open all child vdevs. + */ +void +vdev_open_children(vdev_t *vd) +{ + vdev_open_children_impl(vd, vdev_default_open_children_func); +} + +/* + * Conditionally open a subset of child vdevs. + */ +void +vdev_open_children_subset(vdev_t *vd, vdev_open_children_func_t *open_func) +{ + vdev_open_children_impl(vd, open_func); +} + +/* + * Compute the raidz-deflation ratio. Note, we hard-code 128k (1 << 17) + * because it is the "typical" blocksize. Even though SPA_MAXBLOCKSIZE + * changed, this algorithm can not change, otherwise it would inconsistently + * account for existing bp's. We also hard-code txg 0 for the same reason + * since expanded RAIDZ vdevs can use a different asize for different birth + * txg's. + */ +static void +vdev_set_deflate_ratio(vdev_t *vd) +{ + if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) { + vd->vdev_deflate_ratio = (1 << 17) / + (vdev_psize_to_asize_txg(vd, 1 << 17, 0) >> + SPA_MINBLOCKSHIFT); + } +} + +/* + * Choose the best of two ashifts, preferring one between logical ashift + * (absolute minimum) and administrator defined maximum, otherwise take + * the biggest of the two. + */ +uint64_t +vdev_best_ashift(uint64_t logical, uint64_t a, uint64_t b) +{ + if (a > logical && a <= zfs_vdev_max_auto_ashift) { + if (b <= logical || b > zfs_vdev_max_auto_ashift) + return (a); + else + return (MAX(a, b)); + } else if (b <= logical || b > zfs_vdev_max_auto_ashift) + return (MAX(a, b)); + return (b); +} + +/* + * Maximize performance by inflating the configured ashift for top level + * vdevs to be as close to the physical ashift as possible while maintaining + * administrator defined limits and ensuring it doesn't go below the + * logical ashift. + */ +static void +vdev_ashift_optimize(vdev_t *vd) +{ + ASSERT(vd == vd->vdev_top); + + if (vd->vdev_ashift < vd->vdev_physical_ashift && + vd->vdev_physical_ashift <= zfs_vdev_max_auto_ashift) { + vd->vdev_ashift = MIN( + MAX(zfs_vdev_max_auto_ashift, vd->vdev_ashift), + MAX(zfs_vdev_min_auto_ashift, + vd->vdev_physical_ashift)); + } else { + /* + * If the logical and physical ashifts are the same, then + * we ensure that the top-level vdev's ashift is not smaller + * than our minimum ashift value. For the unusual case + * where logical ashift > physical ashift, we can't cap + * the calculated ashift based on max ashift as that + * would cause failures. + * We still check if we need to increase it to match + * the min ashift. + */ + vd->vdev_ashift = MAX(zfs_vdev_min_auto_ashift, + vd->vdev_ashift); + } +} + +/* + * Prepare a virtual device for access. + */ +int +vdev_open(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + int error; + uint64_t osize = 0; + uint64_t max_osize = 0; + uint64_t asize, max_asize, psize; + uint64_t logical_ashift = 0; + uint64_t physical_ashift = 0; + + ASSERT(vd->vdev_open_thread == curthread || + spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); + ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || + vd->vdev_state == VDEV_STATE_CANT_OPEN || + vd->vdev_state == VDEV_STATE_OFFLINE); + + vd->vdev_stat.vs_aux = VDEV_AUX_NONE; + vd->vdev_cant_read = B_FALSE; + vd->vdev_cant_write = B_FALSE; + vd->vdev_min_asize = vdev_get_min_asize(vd); + + /* + * If this vdev is not removed, check its fault status. If it's + * faulted, bail out of the open. + */ + if (!vd->vdev_removed && vd->vdev_faulted) { + ASSERT(vd->vdev_children == 0); + ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || + vd->vdev_label_aux == VDEV_AUX_EXTERNAL); + vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, + vd->vdev_label_aux); + return (SET_ERROR(ENXIO)); + } else if (vd->vdev_offline) { + ASSERT(vd->vdev_children == 0); + vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); + return (SET_ERROR(ENXIO)); + } + + error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, + &logical_ashift, &physical_ashift); + + /* Keep the device in removed state if unplugged */ + if (error == ENOENT && vd->vdev_removed) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_REMOVED, + VDEV_AUX_NONE); + return (error); + } + + /* + * Physical volume size should never be larger than its max size, unless + * the disk has shrunk while we were reading it or the device is buggy + * or damaged: either way it's not safe for use, bail out of the open. + */ + if (osize > max_osize) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_OPEN_FAILED); + return (SET_ERROR(ENXIO)); + } + + /* + * Reset the vdev_reopening flag so that we actually close + * the vdev on error. + */ + vd->vdev_reopening = B_FALSE; + if (zio_injection_enabled && error == 0) + error = zio_handle_device_injection(vd, NULL, SET_ERROR(ENXIO)); + + if (error) { + if (vd->vdev_removed && + vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) + vd->vdev_removed = B_FALSE; + + if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, + vd->vdev_stat.vs_aux); + } else { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + vd->vdev_stat.vs_aux); + } + return (error); + } + + vd->vdev_removed = B_FALSE; + + /* + * Recheck the faulted flag now that we have confirmed that + * the vdev is accessible. If we're faulted, bail. + */ + if (vd->vdev_faulted) { + ASSERT(vd->vdev_children == 0); + ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || + vd->vdev_label_aux == VDEV_AUX_EXTERNAL); + vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, + vd->vdev_label_aux); + return (SET_ERROR(ENXIO)); + } + + if (vd->vdev_degraded) { + ASSERT(vd->vdev_children == 0); + vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, + VDEV_AUX_ERR_EXCEEDED); + } else { + vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); + } + + /* + * For hole or missing vdevs we just return success. + */ + if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) + return (0); + + for (int c = 0; c < vd->vdev_children; c++) { + if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, + VDEV_AUX_NONE); + break; + } + } + + osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); + max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); + + if (vd->vdev_children == 0) { + if (osize < SPA_MINDEVSIZE) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_TOO_SMALL); + return (SET_ERROR(EOVERFLOW)); + } + psize = osize; + asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); + max_asize = max_osize - (VDEV_LABEL_START_SIZE + + VDEV_LABEL_END_SIZE); + } else { + if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - + (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_TOO_SMALL); + return (SET_ERROR(EOVERFLOW)); + } + psize = 0; + asize = osize; + max_asize = max_osize; + } + + /* + * If the vdev was expanded, record this so that we can re-create the + * uberblock rings in labels {2,3}, during the next sync. + */ + if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0)) + vd->vdev_copy_uberblocks = B_TRUE; + + vd->vdev_psize = psize; + + /* + * Make sure the allocatable size hasn't shrunk too much. + */ + if (asize < vd->vdev_min_asize) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_BAD_LABEL); + return (SET_ERROR(EINVAL)); + } + + /* + * We can always set the logical/physical ashift members since + * their values are only used to calculate the vdev_ashift when + * the device is first added to the config. These values should + * not be used for anything else since they may change whenever + * the device is reopened and we don't store them in the label. + */ + vd->vdev_physical_ashift = + MAX(physical_ashift, vd->vdev_physical_ashift); + vd->vdev_logical_ashift = MAX(logical_ashift, + vd->vdev_logical_ashift); + + if (vd->vdev_asize == 0) { + /* + * This is the first-ever open, so use the computed values. + * For compatibility, a different ashift can be requested. + */ + vd->vdev_asize = asize; + vd->vdev_max_asize = max_asize; + + /* + * If the vdev_ashift was not overridden at creation time, + * then set it the logical ashift and optimize the ashift. + */ + if (vd->vdev_ashift == 0) { + vd->vdev_ashift = vd->vdev_logical_ashift; + + if (vd->vdev_logical_ashift > ASHIFT_MAX) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_ASHIFT_TOO_BIG); + return (SET_ERROR(EDOM)); + } + + if (vd->vdev_top == vd && vd->vdev_attaching == B_FALSE) + vdev_ashift_optimize(vd); + vd->vdev_attaching = B_FALSE; + } + if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN || + vd->vdev_ashift > ASHIFT_MAX)) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_BAD_ASHIFT); + return (SET_ERROR(EDOM)); + } + } else { + /* + * Make sure the alignment required hasn't increased. + */ + if (vd->vdev_ashift > vd->vdev_top->vdev_ashift && + vd->vdev_ops->vdev_op_leaf) { + (void) zfs_ereport_post( + FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT, + spa, vd, NULL, NULL, 0); + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_BAD_LABEL); + return (SET_ERROR(EDOM)); + } + vd->vdev_max_asize = max_asize; + } + + /* + * If all children are healthy we update asize if either: + * The asize has increased, due to a device expansion caused by dynamic + * LUN growth or vdev replacement, and automatic expansion is enabled; + * making the additional space available. + * + * The asize has decreased, due to a device shrink usually caused by a + * vdev replace with a smaller device. This ensures that calculations + * based of max_asize and asize e.g. esize are always valid. It's safe + * to do this as we've already validated that asize is greater than + * vdev_min_asize. + */ + if (vd->vdev_state == VDEV_STATE_HEALTHY && + ((asize > vd->vdev_asize && + (vd->vdev_expanding || spa->spa_autoexpand)) || + (asize < vd->vdev_asize))) + vd->vdev_asize = asize; + + vdev_set_min_asize(vd); + + /* + * Ensure we can issue some IO before declaring the + * vdev open for business. + */ + if (vd->vdev_ops->vdev_op_leaf && + (error = zio_wait(vdev_probe(vd, NULL))) != 0) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, + VDEV_AUX_ERR_EXCEEDED); + return (error); + } + + /* + * Track the minimum allocation size. + */ + if (vd->vdev_top == vd && vd->vdev_ashift != 0 && + vd->vdev_islog == 0 && vd->vdev_aux == NULL) { + uint64_t min_alloc = vdev_get_min_alloc(vd); + vdev_spa_set_alloc(spa, min_alloc); + } + + /* + * If this is a leaf vdev, assess whether a resilver is needed. + * But don't do this if we are doing a reopen for a scrub, since + * this would just restart the scrub we are already doing. + */ + if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen) + dsl_scan_assess_vdev(spa->spa_dsl_pool, vd); + + return (0); +} + +static void +vdev_validate_child(void *arg) +{ + vdev_t *vd = arg; + + vd->vdev_validate_thread = curthread; + vd->vdev_validate_error = vdev_validate(vd); + vd->vdev_validate_thread = NULL; +} + +/* + * Called once the vdevs are all opened, this routine validates the label + * contents. This needs to be done before vdev_load() so that we don't + * inadvertently do repair I/Os to the wrong device. + * + * This function will only return failure if one of the vdevs indicates that it + * has since been destroyed or exported. This is only possible if + * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state + * will be updated but the function will return 0. + */ +int +vdev_validate(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + taskq_t *tq = NULL; + nvlist_t *label; + uint64_t guid = 0, aux_guid = 0, top_guid; + uint64_t state; + nvlist_t *nvl; + uint64_t txg; + int children = vd->vdev_children; + + if (vdev_validate_skip) + return (0); + + if (children > 0) { + tq = taskq_create("vdev_validate", children, minclsyspri, + children, children, TASKQ_PREPOPULATE); + } + + for (uint64_t c = 0; c < children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + + if (tq == NULL || vdev_uses_zvols(cvd)) { + vdev_validate_child(cvd); + } else { + VERIFY(taskq_dispatch(tq, vdev_validate_child, cvd, + TQ_SLEEP) != TASKQID_INVALID); + } + } + if (tq != NULL) { + taskq_wait(tq); + taskq_destroy(tq); + } + for (int c = 0; c < children; c++) { + int error = vd->vdev_child[c]->vdev_validate_error; + + if (error != 0) + return (SET_ERROR(EBADF)); + } + + + /* + * If the device has already failed, or was marked offline, don't do + * any further validation. Otherwise, label I/O will fail and we will + * overwrite the previous state. + */ + if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd)) + return (0); + + /* + * If we are performing an extreme rewind, we allow for a label that + * was modified at a point after the current txg. + * If config lock is not held do not check for the txg. spa_sync could + * be updating the vdev's label before updating spa_last_synced_txg. + */ + if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 || + spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG) + txg = UINT64_MAX; + else + txg = spa_last_synced_txg(spa); + + if ((label = vdev_label_read_config(vd, txg)) == NULL) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_BAD_LABEL); + vdev_dbgmsg(vd, "vdev_validate: failed reading config for " + "txg %llu", (u_longlong_t)txg); + return (0); + } + + /* + * Determine if this vdev has been split off into another + * pool. If so, then refuse to open it. + */ + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, + &aux_guid) == 0 && aux_guid == spa_guid(spa)) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_SPLIT_POOL); + nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool"); + return (0); + } + + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", + ZPOOL_CONFIG_POOL_GUID); + return (0); + } + + /* + * If config is not trusted then ignore the spa guid check. This is + * necessary because if the machine crashed during a re-guid the new + * guid might have been written to all of the vdev labels, but not the + * cached config. The check will be performed again once we have the + * trusted config from the MOS. + */ + if (spa->spa_trust_config && guid != spa_guid(spa)) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't " + "match config (%llu != %llu)", (u_longlong_t)guid, + (u_longlong_t)spa_guid(spa)); + return (0); + } + + if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) + != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, + &aux_guid) != 0) + aux_guid = 0; + + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", + ZPOOL_CONFIG_GUID); + return (0); + } + + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid) + != 0) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", + ZPOOL_CONFIG_TOP_GUID); + return (0); + } + + /* + * If this vdev just became a top-level vdev because its sibling was + * detached, it will have adopted the parent's vdev guid -- but the + * label may or may not be on disk yet. Fortunately, either version + * of the label will have the same top guid, so if we're a top-level + * vdev, we can safely compare to that instead. + * However, if the config comes from a cachefile that failed to update + * after the detach, a top-level vdev will appear as a non top-level + * vdev in the config. Also relax the constraints if we perform an + * extreme rewind. + * + * If we split this vdev off instead, then we also check the + * original pool's guid. We don't want to consider the vdev + * corrupt if it is partway through a split operation. + */ + if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) { + boolean_t mismatch = B_FALSE; + if (spa->spa_trust_config && !spa->spa_extreme_rewind) { + if (vd != vd->vdev_top || vd->vdev_guid != top_guid) + mismatch = B_TRUE; + } else { + if (vd->vdev_guid != top_guid && + vd->vdev_top->vdev_guid != guid) + mismatch = B_TRUE; + } + + if (mismatch) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: config guid " + "doesn't match label guid"); + vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu", + (u_longlong_t)vd->vdev_guid, + (u_longlong_t)vd->vdev_top->vdev_guid); + vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, " + "aux_guid %llu", (u_longlong_t)guid, + (u_longlong_t)top_guid, (u_longlong_t)aux_guid); + return (0); + } + } + + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, + &state) != 0) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label", + ZPOOL_CONFIG_POOL_STATE); + return (0); + } + + nvlist_free(label); + + /* + * If this is a verbatim import, no need to check the + * state of the pool. + */ + if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && + spa_load_state(spa) == SPA_LOAD_OPEN && + state != POOL_STATE_ACTIVE) { + vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) " + "for spa %s", (u_longlong_t)state, spa->spa_name); + return (SET_ERROR(EBADF)); + } + + /* + * If we were able to open and validate a vdev that was + * previously marked permanently unavailable, clear that state + * now. + */ + if (vd->vdev_not_present) + vd->vdev_not_present = 0; + + return (0); +} + +static void +vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd) +{ + char *old, *new; + if (svd->vdev_path != NULL && dvd->vdev_path != NULL) { + if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) { + zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed " + "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, + dvd->vdev_path, svd->vdev_path); + spa_strfree(dvd->vdev_path); + dvd->vdev_path = spa_strdup(svd->vdev_path); + } + } else if (svd->vdev_path != NULL) { + dvd->vdev_path = spa_strdup(svd->vdev_path); + zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'", + (u_longlong_t)dvd->vdev_guid, dvd->vdev_path); + } + + /* + * Our enclosure sysfs path may have changed between imports + */ + old = dvd->vdev_enc_sysfs_path; + new = svd->vdev_enc_sysfs_path; + if ((old != NULL && new == NULL) || + (old == NULL && new != NULL) || + ((old != NULL && new != NULL) && strcmp(new, old) != 0)) { + zfs_dbgmsg("vdev_copy_path: vdev %llu: vdev_enc_sysfs_path " + "changed from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid, + old, new); + + if (dvd->vdev_enc_sysfs_path) + spa_strfree(dvd->vdev_enc_sysfs_path); + + if (svd->vdev_enc_sysfs_path) { + dvd->vdev_enc_sysfs_path = spa_strdup( + svd->vdev_enc_sysfs_path); + } else { + dvd->vdev_enc_sysfs_path = NULL; + } + } +} + +/* + * Recursively copy vdev paths from one vdev to another. Source and destination + * vdev trees must have same geometry otherwise return error. Intended to copy + * paths from userland config into MOS config. + */ +int +vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd) +{ + if ((svd->vdev_ops == &vdev_missing_ops) || + (svd->vdev_ishole && dvd->vdev_ishole) || + (dvd->vdev_ops == &vdev_indirect_ops)) + return (0); + + if (svd->vdev_ops != dvd->vdev_ops) { + vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s", + svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type); + return (SET_ERROR(EINVAL)); + } + + if (svd->vdev_guid != dvd->vdev_guid) { + vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != " + "%llu)", (u_longlong_t)svd->vdev_guid, + (u_longlong_t)dvd->vdev_guid); + return (SET_ERROR(EINVAL)); + } + + if (svd->vdev_children != dvd->vdev_children) { + vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: " + "%llu != %llu", (u_longlong_t)svd->vdev_children, + (u_longlong_t)dvd->vdev_children); + return (SET_ERROR(EINVAL)); + } + + for (uint64_t i = 0; i < svd->vdev_children; i++) { + int error = vdev_copy_path_strict(svd->vdev_child[i], + dvd->vdev_child[i]); + if (error != 0) + return (error); + } + + if (svd->vdev_ops->vdev_op_leaf) + vdev_copy_path_impl(svd, dvd); + + return (0); +} + +static void +vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd) +{ + ASSERT(stvd->vdev_top == stvd); + ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id); + + for (uint64_t i = 0; i < dvd->vdev_children; i++) { + vdev_copy_path_search(stvd, dvd->vdev_child[i]); + } + + if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd)) + return; + + /* + * The idea here is that while a vdev can shift positions within + * a top vdev (when replacing, attaching mirror, etc.) it cannot + * step outside of it. + */ + vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid); + + if (vd == NULL || vd->vdev_ops != dvd->vdev_ops) + return; + + ASSERT(vd->vdev_ops->vdev_op_leaf); + + vdev_copy_path_impl(vd, dvd); +} + +/* + * Recursively copy vdev paths from one root vdev to another. Source and + * destination vdev trees may differ in geometry. For each destination leaf + * vdev, search a vdev with the same guid and top vdev id in the source. + * Intended to copy paths from userland config into MOS config. + */ +void +vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd) +{ + uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children); + ASSERT(srvd->vdev_ops == &vdev_root_ops); + ASSERT(drvd->vdev_ops == &vdev_root_ops); + + for (uint64_t i = 0; i < children; i++) { + vdev_copy_path_search(srvd->vdev_child[i], + drvd->vdev_child[i]); + } +} + +/* + * Close a virtual device. + */ +void +vdev_close(vdev_t *vd) +{ + vdev_t *pvd = vd->vdev_parent; + spa_t *spa __maybe_unused = vd->vdev_spa; + + ASSERT(vd != NULL); + ASSERT(vd->vdev_open_thread == curthread || + spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); + + /* + * If our parent is reopening, then we are as well, unless we are + * going offline. + */ + if (pvd != NULL && pvd->vdev_reopening) + vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); + + vd->vdev_ops->vdev_op_close(vd); + + /* + * We record the previous state before we close it, so that if we are + * doing a reopen(), we don't generate FMA ereports if we notice that + * it's still faulted. + */ + vd->vdev_prevstate = vd->vdev_state; + + if (vd->vdev_offline) + vd->vdev_state = VDEV_STATE_OFFLINE; + else + vd->vdev_state = VDEV_STATE_CLOSED; + vd->vdev_stat.vs_aux = VDEV_AUX_NONE; +} + +void +vdev_hold(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + + ASSERT(spa_is_root(spa)); + if (spa->spa_state == POOL_STATE_UNINITIALIZED) + return; + + for (int c = 0; c < vd->vdev_children; c++) + vdev_hold(vd->vdev_child[c]); + + if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_hold != NULL) + vd->vdev_ops->vdev_op_hold(vd); +} + +void +vdev_rele(vdev_t *vd) +{ + ASSERT(spa_is_root(vd->vdev_spa)); + for (int c = 0; c < vd->vdev_children; c++) + vdev_rele(vd->vdev_child[c]); + + if (vd->vdev_ops->vdev_op_leaf && vd->vdev_ops->vdev_op_rele != NULL) + vd->vdev_ops->vdev_op_rele(vd); +} + +/* + * Reopen all interior vdevs and any unopened leaves. We don't actually + * reopen leaf vdevs which had previously been opened as they might deadlock + * on the spa_config_lock. Instead we only obtain the leaf's physical size. + * If the leaf has never been opened then open it, as usual. + */ +void +vdev_reopen(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + + ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); + + /* set the reopening flag unless we're taking the vdev offline */ + vd->vdev_reopening = !vd->vdev_offline; + vdev_close(vd); + (void) vdev_open(vd); + + /* + * Call vdev_validate() here to make sure we have the same device. + * Otherwise, a device with an invalid label could be successfully + * opened in response to vdev_reopen(). + */ + if (vd->vdev_aux) { + (void) vdev_validate_aux(vd); + if (vdev_readable(vd) && vdev_writeable(vd) && + vd->vdev_aux == &spa->spa_l2cache) { + /* + * In case the vdev is present we should evict all ARC + * buffers and pointers to log blocks and reclaim their + * space before restoring its contents to L2ARC. + */ + if (l2arc_vdev_present(vd)) { + l2arc_rebuild_vdev(vd, B_TRUE); + } else { + l2arc_add_vdev(spa, vd); + } + spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD); + spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM); + } + } else { + (void) vdev_validate(vd); + } + + /* + * Recheck if resilver is still needed and cancel any + * scheduled resilver if resilver is unneeded. + */ + if (!vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL) && + spa->spa_async_tasks & SPA_ASYNC_RESILVER) { + mutex_enter(&spa->spa_async_lock); + spa->spa_async_tasks &= ~SPA_ASYNC_RESILVER; + mutex_exit(&spa->spa_async_lock); + } + + /* + * Reassess parent vdev's health. + */ + vdev_propagate_state(vd); +} + +int +vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) +{ + int error; + + /* + * Normally, partial opens (e.g. of a mirror) are allowed. + * For a create, however, we want to fail the request if + * there are any components we can't open. + */ + error = vdev_open(vd); + + if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { + vdev_close(vd); + return (error ? error : SET_ERROR(ENXIO)); + } + + /* + * Recursively load DTLs and initialize all labels. + */ + if ((error = vdev_dtl_load(vd)) != 0 || + (error = vdev_label_init(vd, txg, isreplacing ? + VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { + vdev_close(vd); + return (error); + } + + return (0); +} + +void +vdev_metaslab_set_size(vdev_t *vd) +{ + uint64_t asize = vd->vdev_asize; + uint64_t ms_count = asize >> zfs_vdev_default_ms_shift; + uint64_t ms_shift; + + /* + * There are two dimensions to the metaslab sizing calculation: + * the size of the metaslab and the count of metaslabs per vdev. + * + * The default values used below are a good balance between memory + * usage (larger metaslab size means more memory needed for loaded + * metaslabs; more metaslabs means more memory needed for the + * metaslab_t structs), metaslab load time (larger metaslabs take + * longer to load), and metaslab sync time (more metaslabs means + * more time spent syncing all of them). + * + * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs. + * The range of the dimensions are as follows: + * + * 2^29 <= ms_size <= 2^34 + * 16 <= ms_count <= 131,072 + * + * On the lower end of vdev sizes, we aim for metaslabs sizes of + * at least 512MB (2^29) to minimize fragmentation effects when + * testing with smaller devices. However, the count constraint + * of at least 16 metaslabs will override this minimum size goal. + * + * On the upper end of vdev sizes, we aim for a maximum metaslab + * size of 16GB. However, we will cap the total count to 2^17 + * metaslabs to keep our memory footprint in check and let the + * metaslab size grow from there if that limit is hit. + * + * The net effect of applying above constrains is summarized below. + * + * vdev size metaslab count + * --------------|----------------- + * < 8GB ~16 + * 8GB - 100GB one per 512MB + * 100GB - 3TB ~200 + * 3TB - 2PB one per 16GB + * > 2PB ~131,072 + * -------------------------------- + * + * Finally, note that all of the above calculate the initial + * number of metaslabs. Expanding a top-level vdev will result + * in additional metaslabs being allocated making it possible + * to exceed the zfs_vdev_ms_count_limit. + */ + + if (ms_count < zfs_vdev_min_ms_count) + ms_shift = highbit64(asize / zfs_vdev_min_ms_count); + else if (ms_count > zfs_vdev_default_ms_count) + ms_shift = highbit64(asize / zfs_vdev_default_ms_count); + else + ms_shift = zfs_vdev_default_ms_shift; + + if (ms_shift < SPA_MAXBLOCKSHIFT) { + ms_shift = SPA_MAXBLOCKSHIFT; + } else if (ms_shift > zfs_vdev_max_ms_shift) { + ms_shift = zfs_vdev_max_ms_shift; + /* cap the total count to constrain memory footprint */ + if ((asize >> ms_shift) > zfs_vdev_ms_count_limit) + ms_shift = highbit64(asize / zfs_vdev_ms_count_limit); + } + + vd->vdev_ms_shift = ms_shift; + ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT); +} + +void +vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) +{ + ASSERT(vd == vd->vdev_top); + /* indirect vdevs don't have metaslabs or dtls */ + ASSERT(vdev_is_concrete(vd) || flags == 0); + ASSERT(ISP2(flags)); + ASSERT(spa_writeable(vd->vdev_spa)); + + if (flags & VDD_METASLAB) + (void) txg_list_add(&vd->vdev_ms_list, arg, txg); + + if (flags & VDD_DTL) + (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); + + (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); +} + +void +vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) +{ + for (int c = 0; c < vd->vdev_children; c++) + vdev_dirty_leaves(vd->vdev_child[c], flags, txg); + + if (vd->vdev_ops->vdev_op_leaf) + vdev_dirty(vd->vdev_top, flags, vd, txg); +} + +/* + * DTLs. + * + * A vdev's DTL (dirty time log) is the set of transaction groups for which + * the vdev has less than perfect replication. There are four kinds of DTL: + * + * DTL_MISSING: txgs for which the vdev has no valid copies of the data + * + * DTL_PARTIAL: txgs for which data is available, but not fully replicated + * + * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon + * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of + * txgs that was scrubbed. + * + * DTL_OUTAGE: txgs which cannot currently be read, whether due to + * persistent errors or just some device being offline. + * Unlike the other three, the DTL_OUTAGE map is not generally + * maintained; it's only computed when needed, typically to + * determine whether a device can be detached. + * + * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device + * either has the data or it doesn't. + * + * For interior vdevs such as mirror and RAID-Z the picture is more complex. + * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because + * if any child is less than fully replicated, then so is its parent. + * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, + * comprising only those txgs which appear in 'maxfaults' or more children; + * those are the txgs we don't have enough replication to read. For example, + * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); + * thus, its DTL_MISSING consists of the set of txgs that appear in more than + * two child DTL_MISSING maps. + * + * It should be clear from the above that to compute the DTLs and outage maps + * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. + * Therefore, that is all we keep on disk. When loading the pool, or after + * a configuration change, we generate all other DTLs from first principles. + */ +void +vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) +{ + range_tree_t *rt = vd->vdev_dtl[t]; + + ASSERT(t < DTL_TYPES); + ASSERT(vd != vd->vdev_spa->spa_root_vdev); + ASSERT(spa_writeable(vd->vdev_spa)); + + mutex_enter(&vd->vdev_dtl_lock); + if (!range_tree_contains(rt, txg, size)) + range_tree_add(rt, txg, size); + mutex_exit(&vd->vdev_dtl_lock); +} + +boolean_t +vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) +{ + range_tree_t *rt = vd->vdev_dtl[t]; + boolean_t dirty = B_FALSE; + + ASSERT(t < DTL_TYPES); + ASSERT(vd != vd->vdev_spa->spa_root_vdev); + + /* + * While we are loading the pool, the DTLs have not been loaded yet. + * This isn't a problem but it can result in devices being tried + * which are known to not have the data. In which case, the import + * is relying on the checksum to ensure that we get the right data. + * Note that while importing we are only reading the MOS, which is + * always checksummed. + */ + mutex_enter(&vd->vdev_dtl_lock); + if (!range_tree_is_empty(rt)) + dirty = range_tree_contains(rt, txg, size); + mutex_exit(&vd->vdev_dtl_lock); + + return (dirty); +} + +boolean_t +vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) +{ + range_tree_t *rt = vd->vdev_dtl[t]; + boolean_t empty; + + mutex_enter(&vd->vdev_dtl_lock); + empty = range_tree_is_empty(rt); + mutex_exit(&vd->vdev_dtl_lock); + + return (empty); +} + +/* + * Check if the txg falls within the range which must be + * resilvered. DVAs outside this range can always be skipped. + */ +boolean_t +vdev_default_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, + uint64_t phys_birth) +{ + (void) dva, (void) psize; + + /* Set by sequential resilver. */ + if (phys_birth == TXG_UNKNOWN) + return (B_TRUE); + + return (vdev_dtl_contains(vd, DTL_PARTIAL, phys_birth, 1)); +} + +/* + * Returns B_TRUE if the vdev determines the DVA needs to be resilvered. + */ +boolean_t +vdev_dtl_need_resilver(vdev_t *vd, const dva_t *dva, size_t psize, + uint64_t phys_birth) +{ + ASSERT(vd != vd->vdev_spa->spa_root_vdev); + + if (vd->vdev_ops->vdev_op_need_resilver == NULL || + vd->vdev_ops->vdev_op_leaf) + return (B_TRUE); + + return (vd->vdev_ops->vdev_op_need_resilver(vd, dva, psize, + phys_birth)); +} + +/* + * Returns the lowest txg in the DTL range. + */ +static uint64_t +vdev_dtl_min(vdev_t *vd) +{ + ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); + ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); + ASSERT0(vd->vdev_children); + + return (range_tree_min(vd->vdev_dtl[DTL_MISSING]) - 1); +} + +/* + * Returns the highest txg in the DTL. + */ +static uint64_t +vdev_dtl_max(vdev_t *vd) +{ + ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); + ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); + ASSERT0(vd->vdev_children); + + return (range_tree_max(vd->vdev_dtl[DTL_MISSING])); +} + +/* + * Determine if a resilvering vdev should remove any DTL entries from + * its range. If the vdev was resilvering for the entire duration of the + * scan then it should excise that range from its DTLs. Otherwise, this + * vdev is considered partially resilvered and should leave its DTL + * entries intact. The comment in vdev_dtl_reassess() describes how we + * excise the DTLs. + */ +static boolean_t +vdev_dtl_should_excise(vdev_t *vd, boolean_t rebuild_done) +{ + ASSERT0(vd->vdev_children); + + if (vd->vdev_state < VDEV_STATE_DEGRADED) + return (B_FALSE); + + if (vd->vdev_resilver_deferred) + return (B_FALSE); + + if (range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) + return (B_TRUE); + + if (rebuild_done) { + vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; + vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; + + /* Rebuild not initiated by attach */ + if (vd->vdev_rebuild_txg == 0) + return (B_TRUE); + + /* + * When a rebuild completes without error then all missing data + * up to the rebuild max txg has been reconstructed and the DTL + * is eligible for excision. + */ + if (vrp->vrp_rebuild_state == VDEV_REBUILD_COMPLETE && + vdev_dtl_max(vd) <= vrp->vrp_max_txg) { + ASSERT3U(vrp->vrp_min_txg, <=, vdev_dtl_min(vd)); + ASSERT3U(vrp->vrp_min_txg, <, vd->vdev_rebuild_txg); + ASSERT3U(vd->vdev_rebuild_txg, <=, vrp->vrp_max_txg); + return (B_TRUE); + } + } else { + dsl_scan_t *scn = vd->vdev_spa->spa_dsl_pool->dp_scan; + dsl_scan_phys_t *scnp __maybe_unused = &scn->scn_phys; + + /* Resilver not initiated by attach */ + if (vd->vdev_resilver_txg == 0) + return (B_TRUE); + + /* + * When a resilver is initiated the scan will assign the + * scn_max_txg value to the highest txg value that exists + * in all DTLs. If this device's max DTL is not part of this + * scan (i.e. it is not in the range (scn_min_txg, scn_max_txg] + * then it is not eligible for excision. + */ + if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { + ASSERT3U(scnp->scn_min_txg, <=, vdev_dtl_min(vd)); + ASSERT3U(scnp->scn_min_txg, <, vd->vdev_resilver_txg); + ASSERT3U(vd->vdev_resilver_txg, <=, scnp->scn_max_txg); + return (B_TRUE); + } + } + + return (B_FALSE); +} + +/* + * Reassess DTLs after a config change or scrub completion. If txg == 0 no + * write operations will be issued to the pool. + */ +void +vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, + boolean_t scrub_done, boolean_t rebuild_done) +{ + spa_t *spa = vd->vdev_spa; + avl_tree_t reftree; + int minref; + + ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); + + for (int c = 0; c < vd->vdev_children; c++) + vdev_dtl_reassess(vd->vdev_child[c], txg, + scrub_txg, scrub_done, rebuild_done); + + if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux) + return; + + if (vd->vdev_ops->vdev_op_leaf) { + dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; + vdev_rebuild_t *vr = &vd->vdev_top->vdev_rebuild_config; + boolean_t check_excise = B_FALSE; + boolean_t wasempty = B_TRUE; + + mutex_enter(&vd->vdev_dtl_lock); + + /* + * If requested, pretend the scan or rebuild completed cleanly. + */ + if (zfs_scan_ignore_errors) { + if (scn != NULL) + scn->scn_phys.scn_errors = 0; + if (vr != NULL) + vr->vr_rebuild_phys.vrp_errors = 0; + } + + if (scrub_txg != 0 && + !range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { + wasempty = B_FALSE; + zfs_dbgmsg("guid:%llu txg:%llu scrub:%llu started:%d " + "dtl:%llu/%llu errors:%llu", + (u_longlong_t)vd->vdev_guid, (u_longlong_t)txg, + (u_longlong_t)scrub_txg, spa->spa_scrub_started, + (u_longlong_t)vdev_dtl_min(vd), + (u_longlong_t)vdev_dtl_max(vd), + (u_longlong_t)(scn ? scn->scn_phys.scn_errors : 0)); + } + + /* + * If we've completed a scrub/resilver or a rebuild cleanly + * then determine if this vdev should remove any DTLs. We + * only want to excise regions on vdevs that were available + * during the entire duration of this scan. + */ + if (rebuild_done && + vr != NULL && vr->vr_rebuild_phys.vrp_errors == 0) { + check_excise = B_TRUE; + } else { + if (spa->spa_scrub_started || + (scn != NULL && scn->scn_phys.scn_errors == 0)) { + check_excise = B_TRUE; + } + } + + if (scrub_txg && check_excise && + vdev_dtl_should_excise(vd, rebuild_done)) { + /* + * We completed a scrub, resilver or rebuild up to + * scrub_txg. If we did it without rebooting, then + * the scrub dtl will be valid, so excise the old + * region and fold in the scrub dtl. Otherwise, + * leave the dtl as-is if there was an error. + * + * There's little trick here: to excise the beginning + * of the DTL_MISSING map, we put it into a reference + * tree and then add a segment with refcnt -1 that + * covers the range [0, scrub_txg). This means + * that each txg in that range has refcnt -1 or 0. + * We then add DTL_SCRUB with a refcnt of 2, so that + * entries in the range [0, scrub_txg) will have a + * positive refcnt -- either 1 or 2. We then convert + * the reference tree into the new DTL_MISSING map. + */ + space_reftree_create(&reftree); + space_reftree_add_map(&reftree, + vd->vdev_dtl[DTL_MISSING], 1); + space_reftree_add_seg(&reftree, 0, scrub_txg, -1); + space_reftree_add_map(&reftree, + vd->vdev_dtl[DTL_SCRUB], 2); + space_reftree_generate_map(&reftree, + vd->vdev_dtl[DTL_MISSING], 1); + space_reftree_destroy(&reftree); + + if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) { + zfs_dbgmsg("update DTL_MISSING:%llu/%llu", + (u_longlong_t)vdev_dtl_min(vd), + (u_longlong_t)vdev_dtl_max(vd)); + } else if (!wasempty) { + zfs_dbgmsg("DTL_MISSING is now empty"); + } + } + range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); + range_tree_walk(vd->vdev_dtl[DTL_MISSING], + range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); + if (scrub_done) + range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); + range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); + if (!vdev_readable(vd)) + range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); + else + range_tree_walk(vd->vdev_dtl[DTL_MISSING], + range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); + + /* + * If the vdev was resilvering or rebuilding and no longer + * has any DTLs then reset the appropriate flag and dirty + * the top level so that we persist the change. + */ + if (txg != 0 && + range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && + range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) { + if (vd->vdev_rebuild_txg != 0) { + vd->vdev_rebuild_txg = 0; + vdev_config_dirty(vd->vdev_top); + } else if (vd->vdev_resilver_txg != 0) { + vd->vdev_resilver_txg = 0; + vdev_config_dirty(vd->vdev_top); + } + } + + mutex_exit(&vd->vdev_dtl_lock); + + if (txg != 0) + vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); + } else { + mutex_enter(&vd->vdev_dtl_lock); + for (int t = 0; t < DTL_TYPES; t++) { + /* account for child's outage in parent's missing map */ + int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; + if (t == DTL_SCRUB) { + /* leaf vdevs only */ + continue; + } + if (t == DTL_PARTIAL) { + /* i.e. non-zero */ + minref = 1; + } else if (vdev_get_nparity(vd) != 0) { + /* RAIDZ, DRAID */ + minref = vdev_get_nparity(vd) + 1; + } else { + /* any kind of mirror */ + minref = vd->vdev_children; + } + space_reftree_create(&reftree); + for (int c = 0; c < vd->vdev_children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + mutex_enter(&cvd->vdev_dtl_lock); + space_reftree_add_map(&reftree, + cvd->vdev_dtl[s], 1); + mutex_exit(&cvd->vdev_dtl_lock); + } + space_reftree_generate_map(&reftree, + vd->vdev_dtl[t], minref); + space_reftree_destroy(&reftree); + } + mutex_exit(&vd->vdev_dtl_lock); + } + + if (vd->vdev_top->vdev_ops == &vdev_raidz_ops) { + raidz_dtl_reassessed(vd); + } +} + +/* + * Iterate over all the vdevs except spare, and post kobj events + */ +void +vdev_post_kobj_evt(vdev_t *vd) +{ + if (vd->vdev_ops->vdev_op_kobj_evt_post && + vd->vdev_kobj_flag == B_FALSE) { + vd->vdev_kobj_flag = B_TRUE; + vd->vdev_ops->vdev_op_kobj_evt_post(vd); + } + + for (int c = 0; c < vd->vdev_children; c++) + vdev_post_kobj_evt(vd->vdev_child[c]); +} + +/* + * Iterate over all the vdevs except spare, and clear kobj events + */ +void +vdev_clear_kobj_evt(vdev_t *vd) +{ + vd->vdev_kobj_flag = B_FALSE; + + for (int c = 0; c < vd->vdev_children; c++) + vdev_clear_kobj_evt(vd->vdev_child[c]); +} + +int +vdev_dtl_load(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + objset_t *mos = spa->spa_meta_objset; + range_tree_t *rt; + int error = 0; + + if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { + ASSERT(vdev_is_concrete(vd)); + + /* + * If the dtl cannot be sync'd there is no need to open it. + */ + if (spa->spa_mode == SPA_MODE_READ && !spa->spa_read_spacemaps) + return (0); + + error = space_map_open(&vd->vdev_dtl_sm, mos, + vd->vdev_dtl_object, 0, -1ULL, 0); + if (error) + return (error); + ASSERT(vd->vdev_dtl_sm != NULL); + + rt = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); + error = space_map_load(vd->vdev_dtl_sm, rt, SM_ALLOC); + if (error == 0) { + mutex_enter(&vd->vdev_dtl_lock); + range_tree_walk(rt, range_tree_add, + vd->vdev_dtl[DTL_MISSING]); + mutex_exit(&vd->vdev_dtl_lock); + } + + range_tree_vacate(rt, NULL, NULL); + range_tree_destroy(rt); + + return (error); + } + + for (int c = 0; c < vd->vdev_children; c++) { + error = vdev_dtl_load(vd->vdev_child[c]); + if (error != 0) + break; + } + + return (error); +} + +static void +vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx) +{ + spa_t *spa = vd->vdev_spa; + objset_t *mos = spa->spa_meta_objset; + vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias; + const char *string; + + ASSERT(alloc_bias != VDEV_BIAS_NONE); + + string = + (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG : + (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL : + (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL; + + ASSERT(string != NULL); + VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS, + 1, strlen(string) + 1, string, tx)); + + if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) { + spa_activate_allocation_classes(spa, tx); + } +} + +void +vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx) +{ + spa_t *spa = vd->vdev_spa; + + VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx)); + VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, + zapobj, tx)); +} + +uint64_t +vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx) +{ + spa_t *spa = vd->vdev_spa; + uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA, + DMU_OT_NONE, 0, tx); + + ASSERT(zap != 0); + VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps, + zap, tx)); + + return (zap); +} + +void +vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx) +{ + if (vd->vdev_ops != &vdev_hole_ops && + vd->vdev_ops != &vdev_missing_ops && + vd->vdev_ops != &vdev_root_ops && + !vd->vdev_top->vdev_removing) { + if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) { + vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx); + } + if (vd == vd->vdev_top && vd->vdev_top_zap == 0) { + vd->vdev_top_zap = vdev_create_link_zap(vd, tx); + if (vd->vdev_alloc_bias != VDEV_BIAS_NONE) + vdev_zap_allocation_data(vd, tx); + } + } + if (vd->vdev_ops == &vdev_root_ops && vd->vdev_root_zap == 0 && + spa_feature_is_enabled(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) { + if (!spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2)) + spa_feature_incr(vd->vdev_spa, SPA_FEATURE_AVZ_V2, tx); + vd->vdev_root_zap = vdev_create_link_zap(vd, tx); + } + + for (uint64_t i = 0; i < vd->vdev_children; i++) { + vdev_construct_zaps(vd->vdev_child[i], tx); + } +} + +static void +vdev_dtl_sync(vdev_t *vd, uint64_t txg) +{ + spa_t *spa = vd->vdev_spa; + range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; + objset_t *mos = spa->spa_meta_objset; + range_tree_t *rtsync; + dmu_tx_t *tx; + uint64_t object = space_map_object(vd->vdev_dtl_sm); + + ASSERT(vdev_is_concrete(vd)); + ASSERT(vd->vdev_ops->vdev_op_leaf); + + tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); + + if (vd->vdev_detached || vd->vdev_top->vdev_removing) { + mutex_enter(&vd->vdev_dtl_lock); + space_map_free(vd->vdev_dtl_sm, tx); + space_map_close(vd->vdev_dtl_sm); + vd->vdev_dtl_sm = NULL; + mutex_exit(&vd->vdev_dtl_lock); + + /* + * We only destroy the leaf ZAP for detached leaves or for + * removed log devices. Removed data devices handle leaf ZAP + * cleanup later, once cancellation is no longer possible. + */ + if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached || + vd->vdev_top->vdev_islog)) { + vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx); + vd->vdev_leaf_zap = 0; + } + + dmu_tx_commit(tx); + return; + } + + if (vd->vdev_dtl_sm == NULL) { + uint64_t new_object; + + new_object = space_map_alloc(mos, zfs_vdev_dtl_sm_blksz, tx); + VERIFY3U(new_object, !=, 0); + + VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, + 0, -1ULL, 0)); + ASSERT(vd->vdev_dtl_sm != NULL); + } + + rtsync = range_tree_create(NULL, RANGE_SEG64, NULL, 0, 0); + + mutex_enter(&vd->vdev_dtl_lock); + range_tree_walk(rt, range_tree_add, rtsync); + mutex_exit(&vd->vdev_dtl_lock); + + space_map_truncate(vd->vdev_dtl_sm, zfs_vdev_dtl_sm_blksz, tx); + space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx); + range_tree_vacate(rtsync, NULL, NULL); + + range_tree_destroy(rtsync); + + /* + * If the object for the space map has changed then dirty + * the top level so that we update the config. + */ + if (object != space_map_object(vd->vdev_dtl_sm)) { + vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, " + "new object %llu", (u_longlong_t)txg, spa_name(spa), + (u_longlong_t)object, + (u_longlong_t)space_map_object(vd->vdev_dtl_sm)); + vdev_config_dirty(vd->vdev_top); + } + + dmu_tx_commit(tx); +} + +/* + * Determine whether the specified vdev can be offlined/detached/removed + * without losing data. + */ +boolean_t +vdev_dtl_required(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + vdev_t *tvd = vd->vdev_top; + uint8_t cant_read = vd->vdev_cant_read; + boolean_t required; + + ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); + + if (vd == spa->spa_root_vdev || vd == tvd) + return (B_TRUE); + + /* + * Temporarily mark the device as unreadable, and then determine + * whether this results in any DTL outages in the top-level vdev. + * If not, we can safely offline/detach/remove the device. + */ + vd->vdev_cant_read = B_TRUE; + vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); + required = !vdev_dtl_empty(tvd, DTL_OUTAGE); + vd->vdev_cant_read = cant_read; + vdev_dtl_reassess(tvd, 0, 0, B_FALSE, B_FALSE); + + if (!required && zio_injection_enabled) { + required = !!zio_handle_device_injection(vd, NULL, + SET_ERROR(ECHILD)); + } + + return (required); +} + +/* + * Determine if resilver is needed, and if so the txg range. + */ +boolean_t +vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) +{ + boolean_t needed = B_FALSE; + uint64_t thismin = UINT64_MAX; + uint64_t thismax = 0; + + if (vd->vdev_children == 0) { + mutex_enter(&vd->vdev_dtl_lock); + if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) && + vdev_writeable(vd)) { + + thismin = vdev_dtl_min(vd); + thismax = vdev_dtl_max(vd); + needed = B_TRUE; + } + mutex_exit(&vd->vdev_dtl_lock); + } else { + for (int c = 0; c < vd->vdev_children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + uint64_t cmin, cmax; + + if (vdev_resilver_needed(cvd, &cmin, &cmax)) { + thismin = MIN(thismin, cmin); + thismax = MAX(thismax, cmax); + needed = B_TRUE; + } + } + } + + if (needed && minp) { + *minp = thismin; + *maxp = thismax; + } + return (needed); +} + +/* + * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj + * will contain either the checkpoint spacemap object or zero if none exists. + * All other errors are returned to the caller. + */ +int +vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj) +{ + ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER)); + + if (vd->vdev_top_zap == 0) { + *sm_obj = 0; + return (0); + } + + int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap, + VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj); + if (error == ENOENT) { + *sm_obj = 0; + error = 0; + } + + return (error); +} + +int +vdev_load(vdev_t *vd) +{ + int children = vd->vdev_children; + int error = 0; + taskq_t *tq = NULL; + + /* + * It's only worthwhile to use the taskq for the root vdev, because the + * slow part is metaslab_init, and that only happens for top-level + * vdevs. + */ + if (vd->vdev_ops == &vdev_root_ops && vd->vdev_children > 0) { + tq = taskq_create("vdev_load", children, minclsyspri, + children, children, TASKQ_PREPOPULATE); + } + + /* + * Recursively load all children. + */ + for (int c = 0; c < vd->vdev_children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + + if (tq == NULL || vdev_uses_zvols(cvd)) { + cvd->vdev_load_error = vdev_load(cvd); + } else { + VERIFY(taskq_dispatch(tq, vdev_load_child, + cvd, TQ_SLEEP) != TASKQID_INVALID); + } + } + + if (tq != NULL) { + taskq_wait(tq); + taskq_destroy(tq); + } + + for (int c = 0; c < vd->vdev_children; c++) { + int error = vd->vdev_child[c]->vdev_load_error; + + if (error != 0) + return (error); + } + + vdev_set_deflate_ratio(vd); + + if (vd->vdev_ops == &vdev_raidz_ops) { + error = vdev_raidz_load(vd); + if (error != 0) + return (error); + } + + /* + * On spa_load path, grab the allocation bias from our zap + */ + if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { + spa_t *spa = vd->vdev_spa; + char bias_str[64]; + + error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, + VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str), + bias_str); + if (error == 0) { + ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE); + vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str); + } else if (error != ENOENT) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + vdev_dbgmsg(vd, "vdev_load: zap_lookup(top_zap=%llu) " + "failed [error=%d]", + (u_longlong_t)vd->vdev_top_zap, error); + return (error); + } + } + + if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { + spa_t *spa = vd->vdev_spa; + uint64_t failfast; + + error = zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap, + vdev_prop_to_name(VDEV_PROP_FAILFAST), sizeof (failfast), + 1, &failfast); + if (error == 0) { + vd->vdev_failfast = failfast & 1; + } else if (error == ENOENT) { + vd->vdev_failfast = vdev_prop_default_numeric( + VDEV_PROP_FAILFAST); + } else { + vdev_dbgmsg(vd, + "vdev_load: zap_lookup(top_zap=%llu) " + "failed [error=%d]", + (u_longlong_t)vd->vdev_top_zap, error); + } + } + + /* + * Load any rebuild state from the top-level vdev zap. + */ + if (vd == vd->vdev_top && vd->vdev_top_zap != 0) { + error = vdev_rebuild_load(vd); + if (error && error != ENOTSUP) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + vdev_dbgmsg(vd, "vdev_load: vdev_rebuild_load " + "failed [error=%d]", error); + return (error); + } + } + + if (vd->vdev_top_zap != 0 || vd->vdev_leaf_zap != 0) { + uint64_t zapobj; + + if (vd->vdev_top_zap != 0) + zapobj = vd->vdev_top_zap; + else + zapobj = vd->vdev_leaf_zap; + + error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_N, + &vd->vdev_checksum_n); + if (error && error != ENOENT) + vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " + "failed [error=%d]", (u_longlong_t)zapobj, error); + + error = vdev_prop_get_int(vd, VDEV_PROP_CHECKSUM_T, + &vd->vdev_checksum_t); + if (error && error != ENOENT) + vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " + "failed [error=%d]", (u_longlong_t)zapobj, error); + + error = vdev_prop_get_int(vd, VDEV_PROP_IO_N, + &vd->vdev_io_n); + if (error && error != ENOENT) + vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " + "failed [error=%d]", (u_longlong_t)zapobj, error); + + error = vdev_prop_get_int(vd, VDEV_PROP_IO_T, + &vd->vdev_io_t); + if (error && error != ENOENT) + vdev_dbgmsg(vd, "vdev_load: zap_lookup(zap=%llu) " + "failed [error=%d]", (u_longlong_t)zapobj, error); + } + + /* + * If this is a top-level vdev, initialize its metaslabs. + */ + if (vd == vd->vdev_top && vdev_is_concrete(vd)) { + vdev_metaslab_group_create(vd); + + if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, " + "asize=%llu", (u_longlong_t)vd->vdev_ashift, + (u_longlong_t)vd->vdev_asize); + return (SET_ERROR(ENXIO)); + } + + error = vdev_metaslab_init(vd, 0); + if (error != 0) { + vdev_dbgmsg(vd, "vdev_load: metaslab_init failed " + "[error=%d]", error); + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + return (error); + } + + uint64_t checkpoint_sm_obj; + error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj); + if (error == 0 && checkpoint_sm_obj != 0) { + objset_t *mos = spa_meta_objset(vd->vdev_spa); + ASSERT(vd->vdev_asize != 0); + ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL); + + error = space_map_open(&vd->vdev_checkpoint_sm, + mos, checkpoint_sm_obj, 0, vd->vdev_asize, + vd->vdev_ashift); + if (error != 0) { + vdev_dbgmsg(vd, "vdev_load: space_map_open " + "failed for checkpoint spacemap (obj %llu) " + "[error=%d]", + (u_longlong_t)checkpoint_sm_obj, error); + return (error); + } + ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL); + + /* + * Since the checkpoint_sm contains free entries + * exclusively we can use space_map_allocated() to + * indicate the cumulative checkpointed space that + * has been freed. + */ + vd->vdev_stat.vs_checkpoint_space = + -space_map_allocated(vd->vdev_checkpoint_sm); + vd->vdev_spa->spa_checkpoint_info.sci_dspace += + vd->vdev_stat.vs_checkpoint_space; + } else if (error != 0) { + vdev_dbgmsg(vd, "vdev_load: failed to retrieve " + "checkpoint space map object from vdev ZAP " + "[error=%d]", error); + return (error); + } + } + + /* + * If this is a leaf vdev, load its DTL. + */ + if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed " + "[error=%d]", error); + return (error); + } + + uint64_t obsolete_sm_object; + error = vdev_obsolete_sm_object(vd, &obsolete_sm_object); + if (error == 0 && obsolete_sm_object != 0) { + objset_t *mos = vd->vdev_spa->spa_meta_objset; + ASSERT(vd->vdev_asize != 0); + ASSERT3P(vd->vdev_obsolete_sm, ==, NULL); + + if ((error = space_map_open(&vd->vdev_obsolete_sm, mos, + obsolete_sm_object, 0, vd->vdev_asize, 0))) { + vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + vdev_dbgmsg(vd, "vdev_load: space_map_open failed for " + "obsolete spacemap (obj %llu) [error=%d]", + (u_longlong_t)obsolete_sm_object, error); + return (error); + } + } else if (error != 0) { + vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete " + "space map object from vdev ZAP [error=%d]", error); + return (error); + } + + return (0); +} + +/* + * The special vdev case is used for hot spares and l2cache devices. Its + * sole purpose it to set the vdev state for the associated vdev. To do this, + * we make sure that we can open the underlying device, then try to read the + * label, and make sure that the label is sane and that it hasn't been + * repurposed to another pool. + */ +int +vdev_validate_aux(vdev_t *vd) +{ + nvlist_t *label; + uint64_t guid, version; + uint64_t state; + + if (!vdev_readable(vd)) + return (0); + + if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + return (-1); + } + + if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || + !SPA_VERSION_IS_SUPPORTED(version) || + nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || + guid != vd->vdev_guid || + nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { + vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + nvlist_free(label); + return (-1); + } + + /* + * We don't actually check the pool state here. If it's in fact in + * use by another pool, we update this fact on the fly when requested. + */ + nvlist_free(label); + return (0); +} + +static void +vdev_destroy_ms_flush_data(vdev_t *vd, dmu_tx_t *tx) +{ + objset_t *mos = spa_meta_objset(vd->vdev_spa); + + if (vd->vdev_top_zap == 0) + return; + + uint64_t object = 0; + int err = zap_lookup(mos, vd->vdev_top_zap, + VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1, &object); + if (err == ENOENT) + return; + VERIFY0(err); + + VERIFY0(dmu_object_free(mos, object, tx)); + VERIFY0(zap_remove(mos, vd->vdev_top_zap, + VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, tx)); +} + +/* + * Free the objects used to store this vdev's spacemaps, and the array + * that points to them. + */ +void +vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx) +{ + if (vd->vdev_ms_array == 0) + return; + + objset_t *mos = vd->vdev_spa->spa_meta_objset; + uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift; + size_t array_bytes = array_count * sizeof (uint64_t); + uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP); + VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0, + array_bytes, smobj_array, 0)); + + for (uint64_t i = 0; i < array_count; i++) { + uint64_t smobj = smobj_array[i]; + if (smobj == 0) + continue; + + space_map_free_obj(mos, smobj, tx); + } + + kmem_free(smobj_array, array_bytes); + VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx)); + vdev_destroy_ms_flush_data(vd, tx); + vd->vdev_ms_array = 0; +} + +static void +vdev_remove_empty_log(vdev_t *vd, uint64_t txg) +{ + spa_t *spa = vd->vdev_spa; + + ASSERT(vd->vdev_islog); + ASSERT(vd == vd->vdev_top); + ASSERT3U(txg, ==, spa_syncing_txg(spa)); + + dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); + + vdev_destroy_spacemaps(vd, tx); + if (vd->vdev_top_zap != 0) { + vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx); + vd->vdev_top_zap = 0; + } + + dmu_tx_commit(tx); +} + +void +vdev_sync_done(vdev_t *vd, uint64_t txg) +{ + metaslab_t *msp; + boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); + + ASSERT(vdev_is_concrete(vd)); + + while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) + != NULL) + metaslab_sync_done(msp, txg); + + if (reassess) { + metaslab_sync_reassess(vd->vdev_mg); + if (vd->vdev_log_mg != NULL) + metaslab_sync_reassess(vd->vdev_log_mg); + } +} + +void +vdev_sync(vdev_t *vd, uint64_t txg) +{ + spa_t *spa = vd->vdev_spa; + vdev_t *lvd; + metaslab_t *msp; + + ASSERT3U(txg, ==, spa->spa_syncing_txg); + dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); + if (range_tree_space(vd->vdev_obsolete_segments) > 0) { + ASSERT(vd->vdev_removing || + vd->vdev_ops == &vdev_indirect_ops); + + vdev_indirect_sync_obsolete(vd, tx); + + /* + * If the vdev is indirect, it can't have dirty + * metaslabs or DTLs. + */ + if (vd->vdev_ops == &vdev_indirect_ops) { + ASSERT(txg_list_empty(&vd->vdev_ms_list, txg)); + ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg)); + dmu_tx_commit(tx); + return; + } + } + + ASSERT(vdev_is_concrete(vd)); + + if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 && + !vd->vdev_removing) { + ASSERT(vd == vd->vdev_top); + ASSERT0(vd->vdev_indirect_config.vic_mapping_object); + vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, + DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); + ASSERT(vd->vdev_ms_array != 0); + vdev_config_dirty(vd); + } + + while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { + metaslab_sync(msp, txg); + (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); + } + + while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) + vdev_dtl_sync(lvd, txg); + + /* + * If this is an empty log device being removed, destroy the + * metadata associated with it. + */ + if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) + vdev_remove_empty_log(vd, txg); + + (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); + dmu_tx_commit(tx); +} + +/* + * Return the amount of space that should be (or was) allocated for the given + * psize (compressed block size) in the given TXG. Note that for expanded + * RAIDZ vdevs, the size allocated for older BP's may be larger. See + * vdev_raidz_asize(). + */ +uint64_t +vdev_psize_to_asize_txg(vdev_t *vd, uint64_t psize, uint64_t txg) +{ + return (vd->vdev_ops->vdev_op_asize(vd, psize, txg)); +} + +uint64_t +vdev_psize_to_asize(vdev_t *vd, uint64_t psize) +{ + return (vdev_psize_to_asize_txg(vd, psize, 0)); +} + +/* + * Mark the given vdev faulted. A faulted vdev behaves as if the device could + * not be opened, and no I/O is attempted. + */ +int +vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) +{ + vdev_t *vd, *tvd; + + spa_vdev_state_enter(spa, SCL_NONE); + + if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) + return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); + + if (!vd->vdev_ops->vdev_op_leaf) + return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); + + tvd = vd->vdev_top; + + /* + * If user did a 'zpool offline -f' then make the fault persist across + * reboots. + */ + if (aux == VDEV_AUX_EXTERNAL_PERSIST) { + /* + * There are two kinds of forced faults: temporary and + * persistent. Temporary faults go away at pool import, while + * persistent faults stay set. Both types of faults can be + * cleared with a zpool clear. + * + * We tell if a vdev is persistently faulted by looking at the + * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at + * import then it's a persistent fault. Otherwise, it's + * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external" + * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This + * tells vdev_config_generate() (which gets run later) to set + * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist. + */ + vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL; + vd->vdev_tmpoffline = B_FALSE; + aux = VDEV_AUX_EXTERNAL; + } else { + vd->vdev_tmpoffline = B_TRUE; + } + + /* + * We don't directly use the aux state here, but if we do a + * vdev_reopen(), we need this value to be present to remember why we + * were faulted. + */ + vd->vdev_label_aux = aux; + + /* + * Faulted state takes precedence over degraded. + */ + vd->vdev_delayed_close = B_FALSE; + vd->vdev_faulted = 1ULL; + vd->vdev_degraded = 0ULL; + vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); + + /* + * If this device has the only valid copy of the data, then + * back off and simply mark the vdev as degraded instead. + */ + if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { + vd->vdev_degraded = 1ULL; + vd->vdev_faulted = 0ULL; + + /* + * If we reopen the device and it's not dead, only then do we + * mark it degraded. + */ + vdev_reopen(tvd); + + if (vdev_readable(vd)) + vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); + } + + return (spa_vdev_state_exit(spa, vd, 0)); +} + +/* + * Mark the given vdev degraded. A degraded vdev is purely an indication to the + * user that something is wrong. The vdev continues to operate as normal as far + * as I/O is concerned. + */ +int +vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) +{ + vdev_t *vd; + + spa_vdev_state_enter(spa, SCL_NONE); + + if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) + return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); + + if (!vd->vdev_ops->vdev_op_leaf) + return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); + + /* + * If the vdev is already faulted, then don't do anything. + */ + if (vd->vdev_faulted || vd->vdev_degraded) + return (spa_vdev_state_exit(spa, NULL, 0)); + + vd->vdev_degraded = 1ULL; + if (!vdev_is_dead(vd)) + vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, + aux); + + return (spa_vdev_state_exit(spa, vd, 0)); +} + +int +vdev_remove_wanted(spa_t *spa, uint64_t guid) +{ + vdev_t *vd; + + spa_vdev_state_enter(spa, SCL_NONE); + + if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) + return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); + + /* + * If the vdev is already removed, or expanding which can trigger + * repartition add/remove events, then don't do anything. + */ + if (vd->vdev_removed || vd->vdev_expanding) + return (spa_vdev_state_exit(spa, NULL, 0)); + + /* + * Confirm the vdev has been removed, otherwise don't do anything. + */ + if (vd->vdev_ops->vdev_op_leaf && !zio_wait(vdev_probe(vd, NULL))) + return (spa_vdev_state_exit(spa, NULL, SET_ERROR(EEXIST))); + + vd->vdev_remove_wanted = B_TRUE; + spa_async_request(spa, SPA_ASYNC_REMOVE); + + return (spa_vdev_state_exit(spa, vd, 0)); +} + + +/* + * Online the given vdev. + * + * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached + * spare device should be detached when the device finishes resilvering. + * Second, the online should be treated like a 'test' online case, so no FMA + * events are generated if the device fails to open. + */ +int +vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) +{ + vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; + boolean_t wasoffline; + vdev_state_t oldstate; + + spa_vdev_state_enter(spa, SCL_NONE); + + if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) + return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); + + wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline); + oldstate = vd->vdev_state; + + tvd = vd->vdev_top; + vd->vdev_offline = B_FALSE; + vd->vdev_tmpoffline = B_FALSE; + vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); + vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); + + /* XXX - L2ARC 1.0 does not support expansion */ + if (!vd->vdev_aux) { + for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) + pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) || + spa->spa_autoexpand); + vd->vdev_expansion_time = gethrestime_sec(); + } + + vdev_reopen(tvd); + vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; + + if (!vd->vdev_aux) { + for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) + pvd->vdev_expanding = B_FALSE; + } + + if (newstate) + *newstate = vd->vdev_state; + if ((flags & ZFS_ONLINE_UNSPARE) && + !vdev_is_dead(vd) && vd->vdev_parent && + vd->vdev_parent->vdev_ops == &vdev_spare_ops && + vd->vdev_parent->vdev_child[0] == vd) + vd->vdev_unspare = B_TRUE; + + if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { + + /* XXX - L2ARC 1.0 does not support expansion */ + if (vd->vdev_aux) + return (spa_vdev_state_exit(spa, vd, ENOTSUP)); + spa->spa_ccw_fail_time = 0; + spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); + } + + /* Restart initializing if necessary */ + mutex_enter(&vd->vdev_initialize_lock); + if (vdev_writeable(vd) && + vd->vdev_initialize_thread == NULL && + vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) { + (void) vdev_initialize(vd); + } + mutex_exit(&vd->vdev_initialize_lock); + + /* + * Restart trimming if necessary. We do not restart trimming for cache + * devices here. This is triggered by l2arc_rebuild_vdev() + * asynchronously for the whole device or in l2arc_evict() as it evicts + * space for upcoming writes. + */ + mutex_enter(&vd->vdev_trim_lock); + if (vdev_writeable(vd) && !vd->vdev_isl2cache && + vd->vdev_trim_thread == NULL && + vd->vdev_trim_state == VDEV_TRIM_ACTIVE) { + (void) vdev_trim(vd, vd->vdev_trim_rate, vd->vdev_trim_partial, + vd->vdev_trim_secure); + } + mutex_exit(&vd->vdev_trim_lock); + + if (wasoffline || + (oldstate < VDEV_STATE_DEGRADED && + vd->vdev_state >= VDEV_STATE_DEGRADED)) { + spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE); + + /* + * Asynchronously detach spare vdev if resilver or + * rebuild is not required + */ + if (vd->vdev_unspare && + !dsl_scan_resilvering(spa->spa_dsl_pool) && + !dsl_scan_resilver_scheduled(spa->spa_dsl_pool) && + !vdev_rebuild_active(tvd)) + spa_async_request(spa, SPA_ASYNC_DETACH_SPARE); + } + return (spa_vdev_state_exit(spa, vd, 0)); +} + +static int +vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) +{ + vdev_t *vd, *tvd; + int error = 0; + uint64_t generation; + metaslab_group_t *mg; + +top: + spa_vdev_state_enter(spa, SCL_ALLOC); + + if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) + return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENODEV))); + + if (!vd->vdev_ops->vdev_op_leaf) + return (spa_vdev_state_exit(spa, NULL, SET_ERROR(ENOTSUP))); + + if (vd->vdev_ops == &vdev_draid_spare_ops) + return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); + + tvd = vd->vdev_top; + mg = tvd->vdev_mg; + generation = spa->spa_config_generation + 1; + + /* + * If the device isn't already offline, try to offline it. + */ + if (!vd->vdev_offline) { + /* + * If this device has the only valid copy of some data, + * don't allow it to be offlined. Log devices are always + * expendable. + */ + if (!tvd->vdev_islog && vd->vdev_aux == NULL && + vdev_dtl_required(vd)) + return (spa_vdev_state_exit(spa, NULL, + SET_ERROR(EBUSY))); + + /* + * If the top-level is a slog and it has had allocations + * then proceed. We check that the vdev's metaslab group + * is not NULL since it's possible that we may have just + * added this vdev but not yet initialized its metaslabs. + */ + if (tvd->vdev_islog && mg != NULL) { + /* + * Prevent any future allocations. + */ + ASSERT3P(tvd->vdev_log_mg, ==, NULL); + metaslab_group_passivate(mg); + (void) spa_vdev_state_exit(spa, vd, 0); + + error = spa_reset_logs(spa); + + /* + * If the log device was successfully reset but has + * checkpointed data, do not offline it. + */ + if (error == 0 && + tvd->vdev_checkpoint_sm != NULL) { + ASSERT3U(space_map_allocated( + tvd->vdev_checkpoint_sm), !=, 0); + error = ZFS_ERR_CHECKPOINT_EXISTS; + } + + spa_vdev_state_enter(spa, SCL_ALLOC); + + /* + * Check to see if the config has changed. + */ + if (error || generation != spa->spa_config_generation) { + metaslab_group_activate(mg); + if (error) + return (spa_vdev_state_exit(spa, + vd, error)); + (void) spa_vdev_state_exit(spa, vd, 0); + goto top; + } + ASSERT0(tvd->vdev_stat.vs_alloc); + } + + /* + * Offline this device and reopen its top-level vdev. + * If the top-level vdev is a log device then just offline + * it. Otherwise, if this action results in the top-level + * vdev becoming unusable, undo it and fail the request. + */ + vd->vdev_offline = B_TRUE; + vdev_reopen(tvd); + + if (!tvd->vdev_islog && vd->vdev_aux == NULL && + vdev_is_dead(tvd)) { + vd->vdev_offline = B_FALSE; + vdev_reopen(tvd); + return (spa_vdev_state_exit(spa, NULL, + SET_ERROR(EBUSY))); + } + + /* + * Add the device back into the metaslab rotor so that + * once we online the device it's open for business. + */ + if (tvd->vdev_islog && mg != NULL) + metaslab_group_activate(mg); + } + + vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); + + return (spa_vdev_state_exit(spa, vd, 0)); +} + +int +vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) +{ + int error; + + mutex_enter(&spa->spa_vdev_top_lock); + error = vdev_offline_locked(spa, guid, flags); + mutex_exit(&spa->spa_vdev_top_lock); + + return (error); +} + +/* + * Clear the error counts associated with this vdev. Unlike vdev_online() and + * vdev_offline(), we assume the spa config is locked. We also clear all + * children. If 'vd' is NULL, then the user wants to clear all vdevs. + */ +void +vdev_clear(spa_t *spa, vdev_t *vd) +{ + vdev_t *rvd = spa->spa_root_vdev; + + ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); + + if (vd == NULL) + vd = rvd; + + vd->vdev_stat.vs_read_errors = 0; + vd->vdev_stat.vs_write_errors = 0; + vd->vdev_stat.vs_checksum_errors = 0; + vd->vdev_stat.vs_slow_ios = 0; + + for (int c = 0; c < vd->vdev_children; c++) + vdev_clear(spa, vd->vdev_child[c]); + + /* + * It makes no sense to "clear" an indirect or removed vdev. + */ + if (!vdev_is_concrete(vd) || vd->vdev_removed) + return; + + /* + * If we're in the FAULTED state or have experienced failed I/O, then + * clear the persistent state and attempt to reopen the device. We + * also mark the vdev config dirty, so that the new faulted state is + * written out to disk. + */ + if (vd->vdev_faulted || vd->vdev_degraded || + !vdev_readable(vd) || !vdev_writeable(vd)) { + /* + * When reopening in response to a clear event, it may be due to + * a fmadm repair request. In this case, if the device is + * still broken, we want to still post the ereport again. + */ + vd->vdev_forcefault = B_TRUE; + + vd->vdev_faulted = vd->vdev_degraded = 0ULL; + vd->vdev_cant_read = B_FALSE; + vd->vdev_cant_write = B_FALSE; + vd->vdev_stat.vs_aux = 0; + + vdev_reopen(vd == rvd ? rvd : vd->vdev_top); + + vd->vdev_forcefault = B_FALSE; + + if (vd != rvd && vdev_writeable(vd->vdev_top)) + vdev_state_dirty(vd->vdev_top); + + /* If a resilver isn't required, check if vdevs can be culled */ + if (vd->vdev_aux == NULL && !vdev_is_dead(vd) && + !dsl_scan_resilvering(spa->spa_dsl_pool) && + !dsl_scan_resilver_scheduled(spa->spa_dsl_pool)) + spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); + + spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR); + } + + /* + * When clearing a FMA-diagnosed fault, we always want to + * unspare the device, as we assume that the original spare was + * done in response to the FMA fault. + */ + if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && + vd->vdev_parent->vdev_ops == &vdev_spare_ops && + vd->vdev_parent->vdev_child[0] == vd) + vd->vdev_unspare = B_TRUE; + + /* Clear recent error events cache (i.e. duplicate events tracking) */ + zfs_ereport_clear(spa, vd); +} + +boolean_t +vdev_is_dead(vdev_t *vd) +{ + /* + * Holes and missing devices are always considered "dead". + * This simplifies the code since we don't have to check for + * these types of devices in the various code paths. + * Instead we rely on the fact that we skip over dead devices + * before issuing I/O to them. + */ + return (vd->vdev_state < VDEV_STATE_DEGRADED || + vd->vdev_ops == &vdev_hole_ops || + vd->vdev_ops == &vdev_missing_ops); +} + +boolean_t +vdev_readable(vdev_t *vd) +{ + return (!vdev_is_dead(vd) && !vd->vdev_cant_read); +} + +boolean_t +vdev_writeable(vdev_t *vd) +{ + return (!vdev_is_dead(vd) && !vd->vdev_cant_write && + vdev_is_concrete(vd)); +} + +boolean_t +vdev_allocatable(vdev_t *vd) +{ + uint64_t state = vd->vdev_state; + + /* + * We currently allow allocations from vdevs which may be in the + * process of reopening (i.e. VDEV_STATE_CLOSED). If the device + * fails to reopen then we'll catch it later when we're holding + * the proper locks. Note that we have to get the vdev state + * in a local variable because although it changes atomically, + * we're asking two separate questions about it. + */ + return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && + !vd->vdev_cant_write && vdev_is_concrete(vd) && + vd->vdev_mg->mg_initialized); +} + +boolean_t +vdev_accessible(vdev_t *vd, zio_t *zio) +{ + ASSERT(zio->io_vd == vd); + + if (vdev_is_dead(vd) || vd->vdev_remove_wanted) + return (B_FALSE); + + if (zio->io_type == ZIO_TYPE_READ) + return (!vd->vdev_cant_read); + + if (zio->io_type == ZIO_TYPE_WRITE) + return (!vd->vdev_cant_write); + + return (B_TRUE); +} + +static void +vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs) +{ + /* + * Exclude the dRAID spare when aggregating to avoid double counting + * the ops and bytes. These IOs are counted by the physical leaves. + */ + if (cvd->vdev_ops == &vdev_draid_spare_ops) + return; + + for (int t = 0; t < VS_ZIO_TYPES; t++) { + vs->vs_ops[t] += cvs->vs_ops[t]; + vs->vs_bytes[t] += cvs->vs_bytes[t]; + } + + cvs->vs_scan_removing = cvd->vdev_removing; +} + +/* + * Get extended stats + */ +static void +vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx) +{ + (void) cvd; + + int t, b; + for (t = 0; t < ZIO_TYPES; t++) { + for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++) + vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b]; + + for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) { + vsx->vsx_total_histo[t][b] += + cvsx->vsx_total_histo[t][b]; + } + } + + for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { + for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) { + vsx->vsx_queue_histo[t][b] += + cvsx->vsx_queue_histo[t][b]; + } + vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t]; + vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t]; + + for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++) + vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b]; + + for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++) + vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b]; + } + +} + +boolean_t +vdev_is_spacemap_addressable(vdev_t *vd) +{ + if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2)) + return (B_TRUE); + + /* + * If double-word space map entries are not enabled we assume + * 47 bits of the space map entry are dedicated to the entry's + * offset (see SM_OFFSET_BITS in space_map.h). We then use that + * to calculate the maximum address that can be described by a + * space map entry for the given device. + */ + uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS; + + if (shift >= 63) /* detect potential overflow */ + return (B_TRUE); + + return (vd->vdev_asize < (1ULL << shift)); +} + +/* + * Get statistics for the given vdev. + */ +static void +vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) +{ + int t; + /* + * If we're getting stats on the root vdev, aggregate the I/O counts + * over all top-level vdevs (i.e. the direct children of the root). + */ + if (!vd->vdev_ops->vdev_op_leaf) { + if (vs) { + memset(vs->vs_ops, 0, sizeof (vs->vs_ops)); + memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes)); + } + if (vsx) + memset(vsx, 0, sizeof (*vsx)); + + for (int c = 0; c < vd->vdev_children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + vdev_stat_t *cvs = &cvd->vdev_stat; + vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex; + + vdev_get_stats_ex_impl(cvd, cvs, cvsx); + if (vs) + vdev_get_child_stat(cvd, vs, cvs); + if (vsx) + vdev_get_child_stat_ex(cvd, vsx, cvsx); + } + } else { + /* + * We're a leaf. Just copy our ZIO active queue stats in. The + * other leaf stats are updated in vdev_stat_update(). + */ + if (!vsx) + return; + + memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex)); + + for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) { + vsx->vsx_active_queue[t] = vd->vdev_queue.vq_cactive[t]; + vsx->vsx_pend_queue[t] = vdev_queue_class_length(vd, t); + } + } +} + +void +vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx) +{ + vdev_t *tvd = vd->vdev_top; + mutex_enter(&vd->vdev_stat_lock); + if (vs) { + memcpy(vs, &vd->vdev_stat, sizeof (*vs)); + vs->vs_timestamp = gethrtime() - vs->vs_timestamp; + vs->vs_state = vd->vdev_state; + vs->vs_rsize = vdev_get_min_asize(vd); + + if (vd->vdev_ops->vdev_op_leaf) { + vs->vs_pspace = vd->vdev_psize; + vs->vs_rsize += VDEV_LABEL_START_SIZE + + VDEV_LABEL_END_SIZE; + /* + * Report initializing progress. Since we don't + * have the initializing locks held, this is only + * an estimate (although a fairly accurate one). + */ + vs->vs_initialize_bytes_done = + vd->vdev_initialize_bytes_done; + vs->vs_initialize_bytes_est = + vd->vdev_initialize_bytes_est; + vs->vs_initialize_state = vd->vdev_initialize_state; + vs->vs_initialize_action_time = + vd->vdev_initialize_action_time; + + /* + * Report manual TRIM progress. Since we don't have + * the manual TRIM locks held, this is only an + * estimate (although fairly accurate one). + */ + vs->vs_trim_notsup = !vd->vdev_has_trim; + vs->vs_trim_bytes_done = vd->vdev_trim_bytes_done; + vs->vs_trim_bytes_est = vd->vdev_trim_bytes_est; + vs->vs_trim_state = vd->vdev_trim_state; + vs->vs_trim_action_time = vd->vdev_trim_action_time; + + /* Set when there is a deferred resilver. */ + vs->vs_resilver_deferred = vd->vdev_resilver_deferred; + } + + /* + * Report expandable space on top-level, non-auxiliary devices + * only. The expandable space is reported in terms of metaslab + * sized units since that determines how much space the pool + * can expand. + */ + if (vd->vdev_aux == NULL && tvd != NULL) { + vs->vs_esize = P2ALIGN( + vd->vdev_max_asize - vd->vdev_asize, + 1ULL << tvd->vdev_ms_shift); + } + + vs->vs_configured_ashift = vd->vdev_top != NULL + ? vd->vdev_top->vdev_ashift : vd->vdev_ashift; + vs->vs_logical_ashift = vd->vdev_logical_ashift; + if (vd->vdev_physical_ashift <= ASHIFT_MAX) + vs->vs_physical_ashift = vd->vdev_physical_ashift; + else + vs->vs_physical_ashift = 0; + + /* + * Report fragmentation and rebuild progress for top-level, + * non-auxiliary, concrete devices. + */ + if (vd->vdev_aux == NULL && vd == vd->vdev_top && + vdev_is_concrete(vd)) { + /* + * The vdev fragmentation rating doesn't take into + * account the embedded slog metaslab (vdev_log_mg). + * Since it's only one metaslab, it would have a tiny + * impact on the overall fragmentation. + */ + vs->vs_fragmentation = (vd->vdev_mg != NULL) ? + vd->vdev_mg->mg_fragmentation : 0; + } + vs->vs_noalloc = MAX(vd->vdev_noalloc, + tvd ? tvd->vdev_noalloc : 0); + } + + vdev_get_stats_ex_impl(vd, vs, vsx); + mutex_exit(&vd->vdev_stat_lock); +} + +void +vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) +{ + return (vdev_get_stats_ex(vd, vs, NULL)); +} + +void +vdev_clear_stats(vdev_t *vd) +{ + mutex_enter(&vd->vdev_stat_lock); + vd->vdev_stat.vs_space = 0; + vd->vdev_stat.vs_dspace = 0; + vd->vdev_stat.vs_alloc = 0; + mutex_exit(&vd->vdev_stat_lock); +} + +void +vdev_scan_stat_init(vdev_t *vd) +{ + vdev_stat_t *vs = &vd->vdev_stat; + + for (int c = 0; c < vd->vdev_children; c++) + vdev_scan_stat_init(vd->vdev_child[c]); + + mutex_enter(&vd->vdev_stat_lock); + vs->vs_scan_processed = 0; + mutex_exit(&vd->vdev_stat_lock); +} + +void +vdev_stat_update(zio_t *zio, uint64_t psize) +{ + spa_t *spa = zio->io_spa; + vdev_t *rvd = spa->spa_root_vdev; + vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; + vdev_t *pvd; + uint64_t txg = zio->io_txg; +/* Suppress ASAN false positive */ +#ifdef __SANITIZE_ADDRESS__ + vdev_stat_t *vs = vd ? &vd->vdev_stat : NULL; + vdev_stat_ex_t *vsx = vd ? &vd->vdev_stat_ex : NULL; +#else + vdev_stat_t *vs = &vd->vdev_stat; + vdev_stat_ex_t *vsx = &vd->vdev_stat_ex; +#endif + zio_type_t type = zio->io_type; + int flags = zio->io_flags; + + /* + * If this i/o is a gang leader, it didn't do any actual work. + */ + if (zio->io_gang_tree) + return; + + if (zio->io_error == 0) { + /* + * If this is a root i/o, don't count it -- we've already + * counted the top-level vdevs, and vdev_get_stats() will + * aggregate them when asked. This reduces contention on + * the root vdev_stat_lock and implicitly handles blocks + * that compress away to holes, for which there is no i/o. + * (Holes never create vdev children, so all the counters + * remain zero, which is what we want.) + * + * Note: this only applies to successful i/o (io_error == 0) + * because unlike i/o counts, errors are not additive. + * When reading a ditto block, for example, failure of + * one top-level vdev does not imply a root-level error. + */ + if (vd == rvd) + return; + + ASSERT(vd == zio->io_vd); + + if (flags & ZIO_FLAG_IO_BYPASS) + return; + + mutex_enter(&vd->vdev_stat_lock); + + if (flags & ZIO_FLAG_IO_REPAIR) { + /* + * Repair is the result of a resilver issued by the + * scan thread (spa_sync). + */ + if (flags & ZIO_FLAG_SCAN_THREAD) { + dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; + dsl_scan_phys_t *scn_phys = &scn->scn_phys; + uint64_t *processed = &scn_phys->scn_processed; + + if (vd->vdev_ops->vdev_op_leaf) + atomic_add_64(processed, psize); + vs->vs_scan_processed += psize; + } + + /* + * Repair is the result of a rebuild issued by the + * rebuild thread (vdev_rebuild_thread). To avoid + * double counting repaired bytes the virtual dRAID + * spare vdev is excluded from the processed bytes. + */ + if (zio->io_priority == ZIO_PRIORITY_REBUILD) { + vdev_t *tvd = vd->vdev_top; + vdev_rebuild_t *vr = &tvd->vdev_rebuild_config; + vdev_rebuild_phys_t *vrp = &vr->vr_rebuild_phys; + uint64_t *rebuilt = &vrp->vrp_bytes_rebuilt; + + if (vd->vdev_ops->vdev_op_leaf && + vd->vdev_ops != &vdev_draid_spare_ops) { + atomic_add_64(rebuilt, psize); + } + vs->vs_rebuild_processed += psize; + } + + if (flags & ZIO_FLAG_SELF_HEAL) + vs->vs_self_healed += psize; + } + + /* + * The bytes/ops/histograms are recorded at the leaf level and + * aggregated into the higher level vdevs in vdev_get_stats(). + */ + if (vd->vdev_ops->vdev_op_leaf && + (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) { + zio_type_t vs_type = type; + zio_priority_t priority = zio->io_priority; + + /* + * TRIM ops and bytes are reported to user space as + * ZIO_TYPE_IOCTL. This is done to preserve the + * vdev_stat_t structure layout for user space. + */ + if (type == ZIO_TYPE_TRIM) + vs_type = ZIO_TYPE_IOCTL; + + /* + * Solely for the purposes of 'zpool iostat -lqrw' + * reporting use the priority to categorize the IO. + * Only the following are reported to user space: + * + * ZIO_PRIORITY_SYNC_READ, + * ZIO_PRIORITY_SYNC_WRITE, + * ZIO_PRIORITY_ASYNC_READ, + * ZIO_PRIORITY_ASYNC_WRITE, + * ZIO_PRIORITY_SCRUB, + * ZIO_PRIORITY_TRIM, + * ZIO_PRIORITY_REBUILD. + */ + if (priority == ZIO_PRIORITY_INITIALIZING) { + ASSERT3U(type, ==, ZIO_TYPE_WRITE); + priority = ZIO_PRIORITY_ASYNC_WRITE; + } else if (priority == ZIO_PRIORITY_REMOVAL) { + priority = ((type == ZIO_TYPE_WRITE) ? + ZIO_PRIORITY_ASYNC_WRITE : + ZIO_PRIORITY_ASYNC_READ); + } + + vs->vs_ops[vs_type]++; + vs->vs_bytes[vs_type] += psize; + + if (flags & ZIO_FLAG_DELEGATED) { + vsx->vsx_agg_histo[priority] + [RQ_HISTO(zio->io_size)]++; + } else { + vsx->vsx_ind_histo[priority] + [RQ_HISTO(zio->io_size)]++; + } + + if (zio->io_delta && zio->io_delay) { + vsx->vsx_queue_histo[priority] + [L_HISTO(zio->io_delta - zio->io_delay)]++; + vsx->vsx_disk_histo[type] + [L_HISTO(zio->io_delay)]++; + vsx->vsx_total_histo[type] + [L_HISTO(zio->io_delta)]++; + } + } + + mutex_exit(&vd->vdev_stat_lock); + return; + } + + if (flags & ZIO_FLAG_SPECULATIVE) + return; + + /* + * If this is an I/O error that is going to be retried, then ignore the + * error. Otherwise, the user may interpret B_FAILFAST I/O errors as + * hard errors, when in reality they can happen for any number of + * innocuous reasons (bus resets, MPxIO link failure, etc). + */ + if (zio->io_error == EIO && + !(zio->io_flags & ZIO_FLAG_IO_RETRY)) + return; + + /* + * Intent logs writes won't propagate their error to the root + * I/O so don't mark these types of failures as pool-level + * errors. + */ + if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) + return; + + if (type == ZIO_TYPE_WRITE && txg != 0 && + (!(flags & ZIO_FLAG_IO_REPAIR) || + (flags & ZIO_FLAG_SCAN_THREAD) || + spa->spa_claiming)) { + /* + * This is either a normal write (not a repair), or it's + * a repair induced by the scrub thread, or it's a repair + * made by zil_claim() during spa_load() in the first txg. + * In the normal case, we commit the DTL change in the same + * txg as the block was born. In the scrub-induced repair + * case, we know that scrubs run in first-pass syncing context, + * so we commit the DTL change in spa_syncing_txg(spa). + * In the zil_claim() case, we commit in spa_first_txg(spa). + * + * We currently do not make DTL entries for failed spontaneous + * self-healing writes triggered by normal (non-scrubbing) + * reads, because we have no transactional context in which to + * do so -- and it's not clear that it'd be desirable anyway. + */ + if (vd->vdev_ops->vdev_op_leaf) { + uint64_t commit_txg = txg; + if (flags & ZIO_FLAG_SCAN_THREAD) { + ASSERT(flags & ZIO_FLAG_IO_REPAIR); + ASSERT(spa_sync_pass(spa) == 1); + vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); + commit_txg = spa_syncing_txg(spa); + } else if (spa->spa_claiming) { + ASSERT(flags & ZIO_FLAG_IO_REPAIR); + commit_txg = spa_first_txg(spa); + } + ASSERT(commit_txg >= spa_syncing_txg(spa)); + if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) + return; + for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) + vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); + vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); + } + if (vd != rvd) + vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); + } +} + +int64_t +vdev_deflated_space(vdev_t *vd, int64_t space) +{ + ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0); + ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); + + return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio); +} + +/* + * Update the in-core space usage stats for this vdev, its metaslab class, + * and the root vdev. + */ +void +vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, + int64_t space_delta) +{ + (void) defer_delta; + int64_t dspace_delta; + spa_t *spa = vd->vdev_spa; + vdev_t *rvd = spa->spa_root_vdev; + + ASSERT(vd == vd->vdev_top); + + /* + * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion + * factor. We must calculate this here and not at the root vdev + * because the root vdev's psize-to-asize is simply the max of its + * children's, thus not accurate enough for us. + */ + dspace_delta = vdev_deflated_space(vd, space_delta); + + mutex_enter(&vd->vdev_stat_lock); + /* ensure we won't underflow */ + if (alloc_delta < 0) { + ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta); + } + + vd->vdev_stat.vs_alloc += alloc_delta; + vd->vdev_stat.vs_space += space_delta; + vd->vdev_stat.vs_dspace += dspace_delta; + mutex_exit(&vd->vdev_stat_lock); + + /* every class but log contributes to root space stats */ + if (vd->vdev_mg != NULL && !vd->vdev_islog) { + ASSERT(!vd->vdev_isl2cache); + mutex_enter(&rvd->vdev_stat_lock); + rvd->vdev_stat.vs_alloc += alloc_delta; + rvd->vdev_stat.vs_space += space_delta; + rvd->vdev_stat.vs_dspace += dspace_delta; + mutex_exit(&rvd->vdev_stat_lock); + } + /* Note: metaslab_class_space_update moved to metaslab_space_update */ +} + +/* + * Mark a top-level vdev's config as dirty, placing it on the dirty list + * so that it will be written out next time the vdev configuration is synced. + * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. + */ +void +vdev_config_dirty(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + vdev_t *rvd = spa->spa_root_vdev; + int c; + + ASSERT(spa_writeable(spa)); + + /* + * If this is an aux vdev (as with l2cache and spare devices), then we + * update the vdev config manually and set the sync flag. + */ + if (vd->vdev_aux != NULL) { + spa_aux_vdev_t *sav = vd->vdev_aux; + nvlist_t **aux; + uint_t naux; + + for (c = 0; c < sav->sav_count; c++) { + if (sav->sav_vdevs[c] == vd) + break; + } + + if (c == sav->sav_count) { + /* + * We're being removed. There's nothing more to do. + */ + ASSERT(sav->sav_sync == B_TRUE); + return; + } + + sav->sav_sync = B_TRUE; + + if (nvlist_lookup_nvlist_array(sav->sav_config, + ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { + VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, + ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); + } + + ASSERT(c < naux); + + /* + * Setting the nvlist in the middle if the array is a little + * sketchy, but it will work. + */ + nvlist_free(aux[c]); + aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); + + return; + } + + /* + * The dirty list is protected by the SCL_CONFIG lock. The caller + * must either hold SCL_CONFIG as writer, or must be the sync thread + * (which holds SCL_CONFIG as reader). There's only one sync thread, + * so this is sufficient to ensure mutual exclusion. + */ + ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || + (dsl_pool_sync_context(spa_get_dsl(spa)) && + spa_config_held(spa, SCL_CONFIG, RW_READER))); + + if (vd == rvd) { + for (c = 0; c < rvd->vdev_children; c++) + vdev_config_dirty(rvd->vdev_child[c]); + } else { + ASSERT(vd == vd->vdev_top); + + if (!list_link_active(&vd->vdev_config_dirty_node) && + vdev_is_concrete(vd)) { + list_insert_head(&spa->spa_config_dirty_list, vd); + } + } +} + +void +vdev_config_clean(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + + ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || + (dsl_pool_sync_context(spa_get_dsl(spa)) && + spa_config_held(spa, SCL_CONFIG, RW_READER))); + + ASSERT(list_link_active(&vd->vdev_config_dirty_node)); + list_remove(&spa->spa_config_dirty_list, vd); +} + +/* + * Mark a top-level vdev's state as dirty, so that the next pass of + * spa_sync() can convert this into vdev_config_dirty(). We distinguish + * the state changes from larger config changes because they require + * much less locking, and are often needed for administrative actions. + */ +void +vdev_state_dirty(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + + ASSERT(spa_writeable(spa)); + ASSERT(vd == vd->vdev_top); + + /* + * The state list is protected by the SCL_STATE lock. The caller + * must either hold SCL_STATE as writer, or must be the sync thread + * (which holds SCL_STATE as reader). There's only one sync thread, + * so this is sufficient to ensure mutual exclusion. + */ + ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || + (dsl_pool_sync_context(spa_get_dsl(spa)) && + spa_config_held(spa, SCL_STATE, RW_READER))); + + if (!list_link_active(&vd->vdev_state_dirty_node) && + vdev_is_concrete(vd)) + list_insert_head(&spa->spa_state_dirty_list, vd); +} + +void +vdev_state_clean(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + + ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || + (dsl_pool_sync_context(spa_get_dsl(spa)) && + spa_config_held(spa, SCL_STATE, RW_READER))); + + ASSERT(list_link_active(&vd->vdev_state_dirty_node)); + list_remove(&spa->spa_state_dirty_list, vd); +} + +/* + * Propagate vdev state up from children to parent. + */ +void +vdev_propagate_state(vdev_t *vd) +{ + spa_t *spa = vd->vdev_spa; + vdev_t *rvd = spa->spa_root_vdev; + int degraded = 0, faulted = 0; + int corrupted = 0; + vdev_t *child; + + if (vd->vdev_children > 0) { + for (int c = 0; c < vd->vdev_children; c++) { + child = vd->vdev_child[c]; + + /* + * Don't factor holes or indirect vdevs into the + * decision. + */ + if (!vdev_is_concrete(child)) + continue; + + if (!vdev_readable(child) || + (!vdev_writeable(child) && spa_writeable(spa))) { + /* + * Root special: if there is a top-level log + * device, treat the root vdev as if it were + * degraded. + */ + if (child->vdev_islog && vd == rvd) + degraded++; + else + faulted++; + } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { + degraded++; + } + + if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) + corrupted++; + } + + vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); + + /* + * Root special: if there is a top-level vdev that cannot be + * opened due to corrupted metadata, then propagate the root + * vdev's aux state as 'corrupt' rather than 'insufficient + * replicas'. + */ + if (corrupted && vd == rvd && + rvd->vdev_state == VDEV_STATE_CANT_OPEN) + vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, + VDEV_AUX_CORRUPT_DATA); + } + + if (vd->vdev_parent) + vdev_propagate_state(vd->vdev_parent); +} + +/* + * Set a vdev's state. If this is during an open, we don't update the parent + * state, because we're in the process of opening children depth-first. + * Otherwise, we propagate the change to the parent. + * + * If this routine places a device in a faulted state, an appropriate ereport is + * generated. + */ +void +vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) +{ + uint64_t save_state; + spa_t *spa = vd->vdev_spa; + + if (state == vd->vdev_state) { + /* + * Since vdev_offline() code path is already in an offline + * state we can miss a statechange event to OFFLINE. Check + * the previous state to catch this condition. + */ + if (vd->vdev_ops->vdev_op_leaf && + (state == VDEV_STATE_OFFLINE) && + (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) { + /* post an offline state change */ + zfs_post_state_change(spa, vd, vd->vdev_prevstate); + } + vd->vdev_stat.vs_aux = aux; + return; + } + + save_state = vd->vdev_state; + + vd->vdev_state = state; + vd->vdev_stat.vs_aux = aux; + + /* + * If we are setting the vdev state to anything but an open state, then + * always close the underlying device unless the device has requested + * a delayed close (i.e. we're about to remove or fault the device). + * Otherwise, we keep accessible but invalid devices open forever. + * We don't call vdev_close() itself, because that implies some extra + * checks (offline, etc) that we don't want here. This is limited to + * leaf devices, because otherwise closing the device will affect other + * children. + */ + if (!vd->vdev_delayed_close && vdev_is_dead(vd) && + vd->vdev_ops->vdev_op_leaf) + vd->vdev_ops->vdev_op_close(vd); + + if (vd->vdev_removed && + state == VDEV_STATE_CANT_OPEN && + (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { + /* + * If the previous state is set to VDEV_STATE_REMOVED, then this + * device was previously marked removed and someone attempted to + * reopen it. If this failed due to a nonexistent device, then + * keep the device in the REMOVED state. We also let this be if + * it is one of our special test online cases, which is only + * attempting to online the device and shouldn't generate an FMA + * fault. + */ + vd->vdev_state = VDEV_STATE_REMOVED; + vd->vdev_stat.vs_aux = VDEV_AUX_NONE; + } else if (state == VDEV_STATE_REMOVED) { + vd->vdev_removed = B_TRUE; + } else if (state == VDEV_STATE_CANT_OPEN) { + /* + * If we fail to open a vdev during an import or recovery, we + * mark it as "not available", which signifies that it was + * never there to begin with. Failure to open such a device + * is not considered an error. + */ + if ((spa_load_state(spa) == SPA_LOAD_IMPORT || + spa_load_state(spa) == SPA_LOAD_RECOVER) && + vd->vdev_ops->vdev_op_leaf) + vd->vdev_not_present = 1; + + /* + * Post the appropriate ereport. If the 'prevstate' field is + * set to something other than VDEV_STATE_UNKNOWN, it indicates + * that this is part of a vdev_reopen(). In this case, we don't + * want to post the ereport if the device was already in the + * CANT_OPEN state beforehand. + * + * If the 'checkremove' flag is set, then this is an attempt to + * online the device in response to an insertion event. If we + * hit this case, then we have detected an insertion event for a + * faulted or offline device that wasn't in the removed state. + * In this scenario, we don't post an ereport because we are + * about to replace the device, or attempt an online with + * vdev_forcefault, which will generate the fault for us. + */ + if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && + !vd->vdev_not_present && !vd->vdev_checkremove && + vd != spa->spa_root_vdev) { + const char *class; + + switch (aux) { + case VDEV_AUX_OPEN_FAILED: + class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; + break; + case VDEV_AUX_CORRUPT_DATA: + class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; + break; + case VDEV_AUX_NO_REPLICAS: + class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; + break; + case VDEV_AUX_BAD_GUID_SUM: + class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; + break; + case VDEV_AUX_TOO_SMALL: + class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; + break; + case VDEV_AUX_BAD_LABEL: + class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; + break; + case VDEV_AUX_BAD_ASHIFT: + class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT; + break; + default: + class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; + } + + (void) zfs_ereport_post(class, spa, vd, NULL, NULL, + save_state); + } + + /* Erase any notion of persistent removed state */ + vd->vdev_removed = B_FALSE; + } else { + vd->vdev_removed = B_FALSE; + } + + /* + * Notify ZED of any significant state-change on a leaf vdev. + * + */ + if (vd->vdev_ops->vdev_op_leaf) { + /* preserve original state from a vdev_reopen() */ + if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) && + (vd->vdev_prevstate != vd->vdev_state) && + (save_state <= VDEV_STATE_CLOSED)) + save_state = vd->vdev_prevstate; + + /* filter out state change due to initial vdev_open */ + if (save_state > VDEV_STATE_CLOSED) + zfs_post_state_change(spa, vd, save_state); + } + + if (!isopen && vd->vdev_parent) + vdev_propagate_state(vd->vdev_parent); +} + +boolean_t +vdev_children_are_offline(vdev_t *vd) +{ + ASSERT(!vd->vdev_ops->vdev_op_leaf); + + for (uint64_t i = 0; i < vd->vdev_children; i++) { + if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE) + return (B_FALSE); + } + + return (B_TRUE); +} + +/* + * Check the vdev configuration to ensure that it's capable of supporting + * a root pool. We do not support partial configuration. + */ +boolean_t +vdev_is_bootable(vdev_t *vd) +{ + if (!vd->vdev_ops->vdev_op_leaf) { + const char *vdev_type = vd->vdev_ops->vdev_op_type; + + if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) + return (B_FALSE); + } + + for (int c = 0; c < vd->vdev_children; c++) { + if (!vdev_is_bootable(vd->vdev_child[c])) + return (B_FALSE); + } + return (B_TRUE); +} + +boolean_t +vdev_is_concrete(vdev_t *vd) +{ + vdev_ops_t *ops = vd->vdev_ops; + if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops || + ops == &vdev_missing_ops || ops == &vdev_root_ops) { + return (B_FALSE); + } else { + return (B_TRUE); + } +} + +/* + * Determine if a log device has valid content. If the vdev was + * removed or faulted in the MOS config then we know that + * the content on the log device has already been written to the pool. + */ +boolean_t +vdev_log_state_valid(vdev_t *vd) +{ + if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && + !vd->vdev_removed) + return (B_TRUE); + + for (int c = 0; c < vd->vdev_children; c++) + if (vdev_log_state_valid(vd->vdev_child[c])) + return (B_TRUE); + + return (B_FALSE); +} + +/* + * Expand a vdev if possible. + */ +void +vdev_expand(vdev_t *vd, uint64_t txg) +{ + ASSERT(vd->vdev_top == vd); + ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); + ASSERT(vdev_is_concrete(vd)); + + vdev_set_deflate_ratio(vd); + + if ((vd->vdev_spa->spa_raidz_expand == NULL || + vd->vdev_spa->spa_raidz_expand->vre_vdev_id != vd->vdev_id) && + (vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count && + vdev_is_concrete(vd)) { + vdev_metaslab_group_create(vd); + VERIFY(vdev_metaslab_init(vd, txg) == 0); + vdev_config_dirty(vd); + } +} + +/* + * Split a vdev. + */ +void +vdev_split(vdev_t *vd) +{ + vdev_t *cvd, *pvd = vd->vdev_parent; + + VERIFY3U(pvd->vdev_children, >, 1); + + vdev_remove_child(pvd, vd); + vdev_compact_children(pvd); + + ASSERT3P(pvd->vdev_child, !=, NULL); + + cvd = pvd->vdev_child[0]; + if (pvd->vdev_children == 1) { + vdev_remove_parent(cvd); + cvd->vdev_splitting = B_TRUE; + } + vdev_propagate_state(cvd); +} + +void +vdev_deadman(vdev_t *vd, const char *tag) +{ + for (int c = 0; c < vd->vdev_children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + + vdev_deadman(cvd, tag); + } + + if (vd->vdev_ops->vdev_op_leaf) { + vdev_queue_t *vq = &vd->vdev_queue; + + mutex_enter(&vq->vq_lock); + if (vq->vq_active > 0) { + spa_t *spa = vd->vdev_spa; + zio_t *fio; + uint64_t delta; + + zfs_dbgmsg("slow vdev: %s has %u active IOs", + vd->vdev_path, vq->vq_active); + + /* + * Look at the head of all the pending queues, + * if any I/O has been outstanding for longer than + * the spa_deadman_synctime invoke the deadman logic. + */ + fio = list_head(&vq->vq_active_list); + delta = gethrtime() - fio->io_timestamp; + if (delta > spa_deadman_synctime(spa)) + zio_deadman(fio, tag); + } + mutex_exit(&vq->vq_lock); + } +} + +void +vdev_defer_resilver(vdev_t *vd) +{ + ASSERT(vd->vdev_ops->vdev_op_leaf); + + vd->vdev_resilver_deferred = B_TRUE; + vd->vdev_spa->spa_resilver_deferred = B_TRUE; +} + +/* + * Clears the resilver deferred flag on all leaf devs under vd. Returns + * B_TRUE if we have devices that need to be resilvered and are available to + * accept resilver I/Os. + */ +boolean_t +vdev_clear_resilver_deferred(vdev_t *vd, dmu_tx_t *tx) +{ + boolean_t resilver_needed = B_FALSE; + spa_t *spa = vd->vdev_spa; + + for (int c = 0; c < vd->vdev_children; c++) { + vdev_t *cvd = vd->vdev_child[c]; + resilver_needed |= vdev_clear_resilver_deferred(cvd, tx); + } + + if (vd == spa->spa_root_vdev && + spa_feature_is_active(spa, SPA_FEATURE_RESILVER_DEFER)) { + spa_feature_decr(spa, SPA_FEATURE_RESILVER_DEFER, tx); + vdev_config_dirty(vd); + spa->spa_resilver_deferred = B_FALSE; + return (resilver_needed); + } + + if (!vdev_is_concrete(vd) || vd->vdev_aux || + !vd->vdev_ops->vdev_op_leaf) + return (resilver_needed); + + vd->vdev_resilver_deferred = B_FALSE; + + return (!vdev_is_dead(vd) && !vd->vdev_offline && + vdev_resilver_needed(vd, NULL, NULL)); +} + +boolean_t +vdev_xlate_is_empty(range_seg64_t *rs) +{ + return (rs->rs_start == rs->rs_end); +} + +/* + * Translate a logical range to the first contiguous physical range for the + * specified vdev_t. This function is initially called with a leaf vdev and + * will walk each parent vdev until it reaches a top-level vdev. Once the + * top-level is reached the physical range is initialized and the recursive + * function begins to unwind. As it unwinds it calls the parent's vdev + * specific translation function to do the real conversion. + */ +void +vdev_xlate(vdev_t *vd, const range_seg64_t *logical_rs, + range_seg64_t *physical_rs, range_seg64_t *remain_rs) +{ + /* + * Walk up the vdev tree + */ + if (vd != vd->vdev_top) { + vdev_xlate(vd->vdev_parent, logical_rs, physical_rs, + remain_rs); + } else { + /* + * We've reached the top-level vdev, initialize the physical + * range to the logical range and set an empty remaining + * range then start to unwind. + */ + physical_rs->rs_start = logical_rs->rs_start; + physical_rs->rs_end = logical_rs->rs_end; + + remain_rs->rs_start = logical_rs->rs_start; + remain_rs->rs_end = logical_rs->rs_start; + + return; + } + + vdev_t *pvd = vd->vdev_parent; + ASSERT3P(pvd, !=, NULL); + ASSERT3P(pvd->vdev_ops->vdev_op_xlate, !=, NULL); + + /* + * As this recursive function unwinds, translate the logical + * range into its physical and any remaining components by calling + * the vdev specific translate function. + */ + range_seg64_t intermediate = { 0 }; + pvd->vdev_ops->vdev_op_xlate(vd, physical_rs, &intermediate, remain_rs); + + physical_rs->rs_start = intermediate.rs_start; + physical_rs->rs_end = intermediate.rs_end; +} + +void +vdev_xlate_walk(vdev_t *vd, const range_seg64_t *logical_rs, + vdev_xlate_func_t *func, void *arg) +{ + range_seg64_t iter_rs = *logical_rs; + range_seg64_t physical_rs; + range_seg64_t remain_rs; + + while (!vdev_xlate_is_empty(&iter_rs)) { + + vdev_xlate(vd, &iter_rs, &physical_rs, &remain_rs); + + /* + * With raidz and dRAID, it's possible that the logical range + * does not live on this leaf vdev. Only when there is a non- + * zero physical size call the provided function. + */ + if (!vdev_xlate_is_empty(&physical_rs)) + func(arg, &physical_rs); + + iter_rs = remain_rs; + } +} + +static char * +vdev_name(vdev_t *vd, char *buf, int buflen) +{ + if (vd->vdev_path == NULL) { + if (strcmp(vd->vdev_ops->vdev_op_type, "root") == 0) { + strlcpy(buf, vd->vdev_spa->spa_name, buflen); + } else if (!vd->vdev_ops->vdev_op_leaf) { + snprintf(buf, buflen, "%s-%llu", + vd->vdev_ops->vdev_op_type, + (u_longlong_t)vd->vdev_id); + } + } else { + strlcpy(buf, vd->vdev_path, buflen); + } + return (buf); +} + +/* + * Look at the vdev tree and determine whether any devices are currently being + * replaced. + */ +boolean_t +vdev_replace_in_progress(vdev_t *vdev) +{ + ASSERT(spa_config_held(vdev->vdev_spa, SCL_ALL, RW_READER) != 0); + + if (vdev->vdev_ops == &vdev_replacing_ops) + return (B_TRUE); + + /* + * A 'spare' vdev indicates that we have a replace in progress, unless + * it has exactly two children, and the second, the hot spare, has + * finished being resilvered. + */ + if (vdev->vdev_ops == &vdev_spare_ops && (vdev->vdev_children > 2 || + !vdev_dtl_empty(vdev->vdev_child[1], DTL_MISSING))) + return (B_TRUE); + + for (int i = 0; i < vdev->vdev_children; i++) { + if (vdev_replace_in_progress(vdev->vdev_child[i])) + return (B_TRUE); + } + + return (B_FALSE); +} + +/* + * Add a (source=src, propname=propval) list to an nvlist. + */ +static void +vdev_prop_add_list(nvlist_t *nvl, const char *propname, const char *strval, + uint64_t intval, zprop_source_t src) +{ + nvlist_t *propval; + + propval = fnvlist_alloc(); + fnvlist_add_uint64(propval, ZPROP_SOURCE, src); + + if (strval != NULL) + fnvlist_add_string(propval, ZPROP_VALUE, strval); + else + fnvlist_add_uint64(propval, ZPROP_VALUE, intval); + + fnvlist_add_nvlist(nvl, propname, propval); + nvlist_free(propval); +} + +static void +vdev_props_set_sync(void *arg, dmu_tx_t *tx) +{ + vdev_t *vd; + nvlist_t *nvp = arg; + spa_t *spa = dmu_tx_pool(tx)->dp_spa; + objset_t *mos = spa->spa_meta_objset; + nvpair_t *elem = NULL; + uint64_t vdev_guid; + uint64_t objid; + nvlist_t *nvprops; + + vdev_guid = fnvlist_lookup_uint64(nvp, ZPOOL_VDEV_PROPS_SET_VDEV); + nvprops = fnvlist_lookup_nvlist(nvp, ZPOOL_VDEV_PROPS_SET_PROPS); + vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE); + + /* this vdev could get removed while waiting for this sync task */ + if (vd == NULL) + return; + + /* + * Set vdev property values in the vdev props mos object. + */ + if (vd->vdev_root_zap != 0) { + objid = vd->vdev_root_zap; + } else if (vd->vdev_top_zap != 0) { + objid = vd->vdev_top_zap; + } else if (vd->vdev_leaf_zap != 0) { + objid = vd->vdev_leaf_zap; + } else { + panic("unexpected vdev type"); + } + + mutex_enter(&spa->spa_props_lock); + + while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { + uint64_t intval; + const char *strval; + vdev_prop_t prop; + const char *propname = nvpair_name(elem); + zprop_type_t proptype; + + switch (prop = vdev_name_to_prop(propname)) { + case VDEV_PROP_USERPROP: + if (vdev_prop_user(propname)) { + strval = fnvpair_value_string(elem); + if (strlen(strval) == 0) { + /* remove the property if value == "" */ + (void) zap_remove(mos, objid, propname, + tx); + } else { + VERIFY0(zap_update(mos, objid, propname, + 1, strlen(strval) + 1, strval, tx)); + } + spa_history_log_internal(spa, "vdev set", tx, + "vdev_guid=%llu: %s=%s", + (u_longlong_t)vdev_guid, nvpair_name(elem), + strval); + } + break; + default: + /* normalize the property name */ + propname = vdev_prop_to_name(prop); + proptype = vdev_prop_get_type(prop); + + if (nvpair_type(elem) == DATA_TYPE_STRING) { + ASSERT(proptype == PROP_TYPE_STRING); + strval = fnvpair_value_string(elem); + VERIFY0(zap_update(mos, objid, propname, + 1, strlen(strval) + 1, strval, tx)); + spa_history_log_internal(spa, "vdev set", tx, + "vdev_guid=%llu: %s=%s", + (u_longlong_t)vdev_guid, nvpair_name(elem), + strval); + } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { + intval = fnvpair_value_uint64(elem); + + if (proptype == PROP_TYPE_INDEX) { + const char *unused; + VERIFY0(vdev_prop_index_to_string( + prop, intval, &unused)); + } + VERIFY0(zap_update(mos, objid, propname, + sizeof (uint64_t), 1, &intval, tx)); + spa_history_log_internal(spa, "vdev set", tx, + "vdev_guid=%llu: %s=%lld", + (u_longlong_t)vdev_guid, + nvpair_name(elem), (longlong_t)intval); + } else { + panic("invalid vdev property type %u", + nvpair_type(elem)); + } + } + + } + + mutex_exit(&spa->spa_props_lock); +} + +int +vdev_prop_set(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) +{ + spa_t *spa = vd->vdev_spa; + nvpair_t *elem = NULL; + uint64_t vdev_guid; + nvlist_t *nvprops; + int error = 0; + + ASSERT(vd != NULL); + + /* Check that vdev has a zap we can use */ + if (vd->vdev_root_zap == 0 && + vd->vdev_top_zap == 0 && + vd->vdev_leaf_zap == 0) + return (SET_ERROR(EINVAL)); + + if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_SET_VDEV, + &vdev_guid) != 0) + return (SET_ERROR(EINVAL)); + + if (nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_SET_PROPS, + &nvprops) != 0) + return (SET_ERROR(EINVAL)); + + if ((vd = spa_lookup_by_guid(spa, vdev_guid, B_TRUE)) == NULL) + return (SET_ERROR(EINVAL)); + + while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { + const char *propname = nvpair_name(elem); + vdev_prop_t prop = vdev_name_to_prop(propname); + uint64_t intval = 0; + const char *strval = NULL; + + if (prop == VDEV_PROP_USERPROP && !vdev_prop_user(propname)) { + error = EINVAL; + goto end; + } + + if (vdev_prop_readonly(prop)) { + error = EROFS; + goto end; + } + + /* Special Processing */ + switch (prop) { + case VDEV_PROP_PATH: + if (vd->vdev_path == NULL) { + error = EROFS; + break; + } + if (nvpair_value_string(elem, &strval) != 0) { + error = EINVAL; + break; + } + /* New path must start with /dev/ */ + if (strncmp(strval, "/dev/", 5)) { + error = EINVAL; + break; + } + error = spa_vdev_setpath(spa, vdev_guid, strval); + break; + case VDEV_PROP_ALLOCATING: + if (nvpair_value_uint64(elem, &intval) != 0) { + error = EINVAL; + break; + } + if (intval != vd->vdev_noalloc) + break; + if (intval == 0) + error = spa_vdev_noalloc(spa, vdev_guid); + else + error = spa_vdev_alloc(spa, vdev_guid); + break; + case VDEV_PROP_FAILFAST: + if (nvpair_value_uint64(elem, &intval) != 0) { + error = EINVAL; + break; + } + vd->vdev_failfast = intval & 1; + break; + case VDEV_PROP_CHECKSUM_N: + if (nvpair_value_uint64(elem, &intval) != 0) { + error = EINVAL; + break; + } + vd->vdev_checksum_n = intval; + break; + case VDEV_PROP_CHECKSUM_T: + if (nvpair_value_uint64(elem, &intval) != 0) { + error = EINVAL; + break; + } + vd->vdev_checksum_t = intval; + break; + case VDEV_PROP_IO_N: + if (nvpair_value_uint64(elem, &intval) != 0) { + error = EINVAL; + break; + } + vd->vdev_io_n = intval; + break; + case VDEV_PROP_IO_T: + if (nvpair_value_uint64(elem, &intval) != 0) { + error = EINVAL; + break; + } + vd->vdev_io_t = intval; + break; + default: + /* Most processing is done in vdev_props_set_sync */ + break; + } +end: + if (error != 0) { + intval = error; + vdev_prop_add_list(outnvl, propname, strval, intval, 0); + return (error); + } + } + + return (dsl_sync_task(spa->spa_name, NULL, vdev_props_set_sync, + innvl, 6, ZFS_SPACE_CHECK_EXTRA_RESERVED)); +} + +int +vdev_prop_get(vdev_t *vd, nvlist_t *innvl, nvlist_t *outnvl) +{ + spa_t *spa = vd->vdev_spa; + objset_t *mos = spa->spa_meta_objset; + int err = 0; + uint64_t objid; + uint64_t vdev_guid; + nvpair_t *elem = NULL; + nvlist_t *nvprops = NULL; + uint64_t intval = 0; + char *strval = NULL; + const char *propname = NULL; + vdev_prop_t prop; + + ASSERT(vd != NULL); + ASSERT(mos != NULL); + + if (nvlist_lookup_uint64(innvl, ZPOOL_VDEV_PROPS_GET_VDEV, + &vdev_guid) != 0) + return (SET_ERROR(EINVAL)); + + nvlist_lookup_nvlist(innvl, ZPOOL_VDEV_PROPS_GET_PROPS, &nvprops); + + if (vd->vdev_root_zap != 0) { + objid = vd->vdev_root_zap; + } else if (vd->vdev_top_zap != 0) { + objid = vd->vdev_top_zap; + } else if (vd->vdev_leaf_zap != 0) { + objid = vd->vdev_leaf_zap; + } else { + return (SET_ERROR(EINVAL)); + } + ASSERT(objid != 0); + + mutex_enter(&spa->spa_props_lock); + + if (nvprops != NULL) { + char namebuf[64] = { 0 }; + + while ((elem = nvlist_next_nvpair(nvprops, elem)) != NULL) { + intval = 0; + strval = NULL; + propname = nvpair_name(elem); + prop = vdev_name_to_prop(propname); + zprop_source_t src = ZPROP_SRC_DEFAULT; + uint64_t integer_size, num_integers; + + switch (prop) { + /* Special Read-only Properties */ + case VDEV_PROP_NAME: + strval = vdev_name(vd, namebuf, + sizeof (namebuf)); + if (strval == NULL) + continue; + vdev_prop_add_list(outnvl, propname, strval, 0, + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_CAPACITY: + /* percent used */ + intval = (vd->vdev_stat.vs_dspace == 0) ? 0 : + (vd->vdev_stat.vs_alloc * 100 / + vd->vdev_stat.vs_dspace); + vdev_prop_add_list(outnvl, propname, NULL, + intval, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_STATE: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_state, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_GUID: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_guid, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_ASIZE: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_asize, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_PSIZE: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_psize, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_ASHIFT: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_ashift, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_SIZE: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_dspace, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_FREE: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_dspace - + vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_ALLOCATED: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_alloc, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_EXPANDSZ: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_esize, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_FRAGMENTATION: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_fragmentation, + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_PARITY: + vdev_prop_add_list(outnvl, propname, NULL, + vdev_get_nparity(vd), ZPROP_SRC_NONE); + continue; + case VDEV_PROP_PATH: + if (vd->vdev_path == NULL) + continue; + vdev_prop_add_list(outnvl, propname, + vd->vdev_path, 0, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_DEVID: + if (vd->vdev_devid == NULL) + continue; + vdev_prop_add_list(outnvl, propname, + vd->vdev_devid, 0, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_PHYS_PATH: + if (vd->vdev_physpath == NULL) + continue; + vdev_prop_add_list(outnvl, propname, + vd->vdev_physpath, 0, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_ENC_PATH: + if (vd->vdev_enc_sysfs_path == NULL) + continue; + vdev_prop_add_list(outnvl, propname, + vd->vdev_enc_sysfs_path, 0, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_FRU: + if (vd->vdev_fru == NULL) + continue; + vdev_prop_add_list(outnvl, propname, + vd->vdev_fru, 0, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_PARENT: + if (vd->vdev_parent != NULL) { + strval = vdev_name(vd->vdev_parent, + namebuf, sizeof (namebuf)); + vdev_prop_add_list(outnvl, propname, + strval, 0, ZPROP_SRC_NONE); + } + continue; + case VDEV_PROP_CHILDREN: + if (vd->vdev_children > 0) + strval = kmem_zalloc(ZAP_MAXVALUELEN, + KM_SLEEP); + for (uint64_t i = 0; i < vd->vdev_children; + i++) { + const char *vname; + + vname = vdev_name(vd->vdev_child[i], + namebuf, sizeof (namebuf)); + if (vname == NULL) + vname = "(unknown)"; + if (strlen(strval) > 0) + strlcat(strval, ",", + ZAP_MAXVALUELEN); + strlcat(strval, vname, ZAP_MAXVALUELEN); + } + if (strval != NULL) { + vdev_prop_add_list(outnvl, propname, + strval, 0, ZPROP_SRC_NONE); + kmem_free(strval, ZAP_MAXVALUELEN); + } + continue; + case VDEV_PROP_NUMCHILDREN: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_children, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_READ_ERRORS: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_read_errors, + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_WRITE_ERRORS: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_write_errors, + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_CHECKSUM_ERRORS: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_checksum_errors, + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_INITIALIZE_ERRORS: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_initialize_errors, + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_OPS_NULL: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_ops[ZIO_TYPE_NULL], + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_OPS_READ: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_ops[ZIO_TYPE_READ], + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_OPS_WRITE: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_ops[ZIO_TYPE_WRITE], + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_OPS_FREE: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_ops[ZIO_TYPE_FREE], + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_OPS_CLAIM: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_ops[ZIO_TYPE_CLAIM], + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_OPS_TRIM: + /* + * TRIM ops and bytes are reported to user + * space as ZIO_TYPE_IOCTL. This is done to + * preserve the vdev_stat_t structure layout + * for user space. + */ + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_ops[ZIO_TYPE_IOCTL], + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_BYTES_NULL: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_bytes[ZIO_TYPE_NULL], + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_BYTES_READ: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_bytes[ZIO_TYPE_READ], + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_BYTES_WRITE: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_bytes[ZIO_TYPE_WRITE], + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_BYTES_FREE: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_bytes[ZIO_TYPE_FREE], + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_BYTES_CLAIM: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_bytes[ZIO_TYPE_CLAIM], + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_BYTES_TRIM: + /* + * TRIM ops and bytes are reported to user + * space as ZIO_TYPE_IOCTL. This is done to + * preserve the vdev_stat_t structure layout + * for user space. + */ + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_stat.vs_bytes[ZIO_TYPE_IOCTL], + ZPROP_SRC_NONE); + continue; + case VDEV_PROP_REMOVING: + vdev_prop_add_list(outnvl, propname, NULL, + vd->vdev_removing, ZPROP_SRC_NONE); + continue; + case VDEV_PROP_RAIDZ_EXPANDING: + /* Only expose this for raidz */ + if (vd->vdev_ops == &vdev_raidz_ops) { + vdev_prop_add_list(outnvl, propname, + NULL, vd->vdev_rz_expanding, + ZPROP_SRC_NONE); + } + continue; + /* Numeric Properites */ + case VDEV_PROP_ALLOCATING: + /* Leaf vdevs cannot have this property */ + if (vd->vdev_mg == NULL && + vd->vdev_top != NULL) { + src = ZPROP_SRC_NONE; + intval = ZPROP_BOOLEAN_NA; + } else { + err = vdev_prop_get_int(vd, prop, + &intval); + if (err && err != ENOENT) + break; + + if (intval == + vdev_prop_default_numeric(prop)) + src = ZPROP_SRC_DEFAULT; + else + src = ZPROP_SRC_LOCAL; + } + + vdev_prop_add_list(outnvl, propname, NULL, + intval, src); + break; + case VDEV_PROP_FAILFAST: + src = ZPROP_SRC_LOCAL; + strval = NULL; + + err = zap_lookup(mos, objid, nvpair_name(elem), + sizeof (uint64_t), 1, &intval); + if (err == ENOENT) { + intval = vdev_prop_default_numeric( + prop); + err = 0; + } else if (err) { + break; + } + if (intval == vdev_prop_default_numeric(prop)) + src = ZPROP_SRC_DEFAULT; + + vdev_prop_add_list(outnvl, propname, strval, + intval, src); + break; + case VDEV_PROP_CHECKSUM_N: + case VDEV_PROP_CHECKSUM_T: + case VDEV_PROP_IO_N: + case VDEV_PROP_IO_T: + err = vdev_prop_get_int(vd, prop, &intval); + if (err && err != ENOENT) + break; + + if (intval == vdev_prop_default_numeric(prop)) + src = ZPROP_SRC_DEFAULT; + else + src = ZPROP_SRC_LOCAL; + + vdev_prop_add_list(outnvl, propname, NULL, + intval, src); + break; + /* Text Properties */ + case VDEV_PROP_COMMENT: + /* Exists in the ZAP below */ + /* FALLTHRU */ + case VDEV_PROP_USERPROP: + /* User Properites */ + src = ZPROP_SRC_LOCAL; + + err = zap_length(mos, objid, nvpair_name(elem), + &integer_size, &num_integers); + if (err) + break; + + switch (integer_size) { + case 8: + /* User properties cannot be integers */ + err = EINVAL; + break; + case 1: + /* string property */ + strval = kmem_alloc(num_integers, + KM_SLEEP); + err = zap_lookup(mos, objid, + nvpair_name(elem), 1, + num_integers, strval); + if (err) { + kmem_free(strval, + num_integers); + break; + } + vdev_prop_add_list(outnvl, propname, + strval, 0, src); + kmem_free(strval, num_integers); + break; + } + break; + default: + err = ENOENT; + break; + } + if (err) + break; + } + } else { + /* + * Get all properties from the MOS vdev property object. + */ + zap_cursor_t zc; + zap_attribute_t za; + for (zap_cursor_init(&zc, mos, objid); + (err = zap_cursor_retrieve(&zc, &za)) == 0; + zap_cursor_advance(&zc)) { + intval = 0; + strval = NULL; + zprop_source_t src = ZPROP_SRC_DEFAULT; + propname = za.za_name; + + switch (za.za_integer_length) { + case 8: + /* We do not allow integer user properties */ + /* This is likely an internal value */ + break; + case 1: + /* string property */ + strval = kmem_alloc(za.za_num_integers, + KM_SLEEP); + err = zap_lookup(mos, objid, za.za_name, 1, + za.za_num_integers, strval); + if (err) { + kmem_free(strval, za.za_num_integers); + break; + } + vdev_prop_add_list(outnvl, propname, strval, 0, + src); + kmem_free(strval, za.za_num_integers); + break; + + default: + break; + } + } + zap_cursor_fini(&zc); + } + + mutex_exit(&spa->spa_props_lock); + if (err && err != ENOENT) { + return (err); + } + + return (0); +} + +EXPORT_SYMBOL(vdev_fault); +EXPORT_SYMBOL(vdev_degrade); +EXPORT_SYMBOL(vdev_online); +EXPORT_SYMBOL(vdev_offline); +EXPORT_SYMBOL(vdev_clear); + +ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_count, UINT, ZMOD_RW, + "Target number of metaslabs per top-level vdev"); + +ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, default_ms_shift, UINT, ZMOD_RW, + "Default lower limit for metaslab size"); + +ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, max_ms_shift, UINT, ZMOD_RW, + "Default upper limit for metaslab size"); + +ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, min_ms_count, UINT, ZMOD_RW, + "Minimum number of metaslabs per top-level vdev"); + +ZFS_MODULE_PARAM(zfs_vdev, zfs_vdev_, ms_count_limit, UINT, ZMOD_RW, + "Practical upper limit of total metaslabs per top-level vdev"); + +ZFS_MODULE_PARAM(zfs, zfs_, slow_io_events_per_second, UINT, ZMOD_RW, + "Rate limit slow IO (delay) events to this many per second"); + +/* BEGIN CSTYLED */ +ZFS_MODULE_PARAM(zfs, zfs_, checksum_events_per_second, UINT, ZMOD_RW, + "Rate limit checksum events to this many checksum errors per second " + "(do not set below ZED threshold)."); +/* END CSTYLED */ + +ZFS_MODULE_PARAM(zfs, zfs_, scan_ignore_errors, INT, ZMOD_RW, + "Ignore errors during resilver/scrub"); + +ZFS_MODULE_PARAM(zfs_vdev, vdev_, validate_skip, INT, ZMOD_RW, + "Bypass vdev_validate()"); + +ZFS_MODULE_PARAM(zfs, zfs_, nocacheflush, INT, ZMOD_RW, + "Disable cache flushes"); + +ZFS_MODULE_PARAM(zfs, zfs_, embedded_slog_min_ms, UINT, ZMOD_RW, + "Minimum number of metaslabs required to dedicate one for log blocks"); + +/* BEGIN CSTYLED */ +ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, min_auto_ashift, + param_set_min_auto_ashift, param_get_uint, ZMOD_RW, + "Minimum ashift used when creating new top-level vdevs"); + +ZFS_MODULE_PARAM_CALL(zfs_vdev, zfs_vdev_, max_auto_ashift, + param_set_max_auto_ashift, param_get_uint, ZMOD_RW, + "Maximum ashift used when optimizing for logical -> physical sector " + "size on new top-level vdevs"); +/* END CSTYLED */ |