aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/RDFRegisters.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen/RDFRegisters.cpp')
-rw-r--r--llvm/lib/CodeGen/RDFRegisters.cpp380
1 files changed, 380 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/RDFRegisters.cpp b/llvm/lib/CodeGen/RDFRegisters.cpp
new file mode 100644
index 000000000000..bd8661816e71
--- /dev/null
+++ b/llvm/lib/CodeGen/RDFRegisters.cpp
@@ -0,0 +1,380 @@
+//===- RDFRegisters.cpp ---------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/BitVector.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineOperand.h"
+#include "llvm/CodeGen/RDFRegisters.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <cassert>
+#include <cstdint>
+#include <set>
+#include <utility>
+
+using namespace llvm;
+using namespace rdf;
+
+PhysicalRegisterInfo::PhysicalRegisterInfo(const TargetRegisterInfo &tri,
+ const MachineFunction &mf)
+ : TRI(tri) {
+ RegInfos.resize(TRI.getNumRegs());
+
+ BitVector BadRC(TRI.getNumRegs());
+ for (const TargetRegisterClass *RC : TRI.regclasses()) {
+ for (MCPhysReg R : *RC) {
+ RegInfo &RI = RegInfos[R];
+ if (RI.RegClass != nullptr && !BadRC[R]) {
+ if (RC->LaneMask != RI.RegClass->LaneMask) {
+ BadRC.set(R);
+ RI.RegClass = nullptr;
+ }
+ } else
+ RI.RegClass = RC;
+ }
+ }
+
+ UnitInfos.resize(TRI.getNumRegUnits());
+
+ for (uint32_t U = 0, NU = TRI.getNumRegUnits(); U != NU; ++U) {
+ if (UnitInfos[U].Reg != 0)
+ continue;
+ MCRegUnitRootIterator R(U, &TRI);
+ assert(R.isValid());
+ RegisterId F = *R;
+ ++R;
+ if (R.isValid()) {
+ UnitInfos[U].Mask = LaneBitmask::getAll();
+ UnitInfos[U].Reg = F;
+ } else {
+ for (MCRegUnitMaskIterator I(F, &TRI); I.isValid(); ++I) {
+ std::pair<uint32_t,LaneBitmask> P = *I;
+ UnitInfo &UI = UnitInfos[P.first];
+ UI.Reg = F;
+ if (P.second.any()) {
+ UI.Mask = P.second;
+ } else {
+ if (const TargetRegisterClass *RC = RegInfos[F].RegClass)
+ UI.Mask = RC->LaneMask;
+ else
+ UI.Mask = LaneBitmask::getAll();
+ }
+ }
+ }
+ }
+
+ for (const uint32_t *RM : TRI.getRegMasks())
+ RegMasks.insert(RM);
+ for (const MachineBasicBlock &B : mf)
+ for (const MachineInstr &In : B)
+ for (const MachineOperand &Op : In.operands())
+ if (Op.isRegMask())
+ RegMasks.insert(Op.getRegMask());
+
+ MaskInfos.resize(RegMasks.size()+1);
+ for (uint32_t M = 1, NM = RegMasks.size(); M <= NM; ++M) {
+ BitVector PU(TRI.getNumRegUnits());
+ const uint32_t *MB = RegMasks.get(M);
+ for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) {
+ if (!(MB[i/32] & (1u << (i%32))))
+ continue;
+ for (MCRegUnitIterator U(i, &TRI); U.isValid(); ++U)
+ PU.set(*U);
+ }
+ MaskInfos[M].Units = PU.flip();
+ }
+}
+
+RegisterRef PhysicalRegisterInfo::normalize(RegisterRef RR) const {
+ return RR;
+}
+
+std::set<RegisterId> PhysicalRegisterInfo::getAliasSet(RegisterId Reg) const {
+ // Do not include RR in the alias set.
+ std::set<RegisterId> AS;
+ assert(isRegMaskId(Reg) || Register::isPhysicalRegister(Reg));
+ if (isRegMaskId(Reg)) {
+ // XXX SLOW
+ const uint32_t *MB = getRegMaskBits(Reg);
+ for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) {
+ if (MB[i/32] & (1u << (i%32)))
+ continue;
+ AS.insert(i);
+ }
+ for (const uint32_t *RM : RegMasks) {
+ RegisterId MI = getRegMaskId(RM);
+ if (MI != Reg && aliasMM(RegisterRef(Reg), RegisterRef(MI)))
+ AS.insert(MI);
+ }
+ return AS;
+ }
+
+ for (MCRegAliasIterator AI(Reg, &TRI, false); AI.isValid(); ++AI)
+ AS.insert(*AI);
+ for (const uint32_t *RM : RegMasks) {
+ RegisterId MI = getRegMaskId(RM);
+ if (aliasRM(RegisterRef(Reg), RegisterRef(MI)))
+ AS.insert(MI);
+ }
+ return AS;
+}
+
+bool PhysicalRegisterInfo::aliasRR(RegisterRef RA, RegisterRef RB) const {
+ assert(Register::isPhysicalRegister(RA.Reg));
+ assert(Register::isPhysicalRegister(RB.Reg));
+
+ MCRegUnitMaskIterator UMA(RA.Reg, &TRI);
+ MCRegUnitMaskIterator UMB(RB.Reg, &TRI);
+ // Reg units are returned in the numerical order.
+ while (UMA.isValid() && UMB.isValid()) {
+ // Skip units that are masked off in RA.
+ std::pair<RegisterId,LaneBitmask> PA = *UMA;
+ if (PA.second.any() && (PA.second & RA.Mask).none()) {
+ ++UMA;
+ continue;
+ }
+ // Skip units that are masked off in RB.
+ std::pair<RegisterId,LaneBitmask> PB = *UMB;
+ if (PB.second.any() && (PB.second & RB.Mask).none()) {
+ ++UMB;
+ continue;
+ }
+
+ if (PA.first == PB.first)
+ return true;
+ if (PA.first < PB.first)
+ ++UMA;
+ else if (PB.first < PA.first)
+ ++UMB;
+ }
+ return false;
+}
+
+bool PhysicalRegisterInfo::aliasRM(RegisterRef RR, RegisterRef RM) const {
+ assert(Register::isPhysicalRegister(RR.Reg) && isRegMaskId(RM.Reg));
+ const uint32_t *MB = getRegMaskBits(RM.Reg);
+ bool Preserved = MB[RR.Reg/32] & (1u << (RR.Reg%32));
+ // If the lane mask information is "full", e.g. when the given lane mask
+ // is a superset of the lane mask from the register class, check the regmask
+ // bit directly.
+ if (RR.Mask == LaneBitmask::getAll())
+ return !Preserved;
+ const TargetRegisterClass *RC = RegInfos[RR.Reg].RegClass;
+ if (RC != nullptr && (RR.Mask & RC->LaneMask) == RC->LaneMask)
+ return !Preserved;
+
+ // Otherwise, check all subregisters whose lane mask overlaps the given
+ // mask. For each such register, if it is preserved by the regmask, then
+ // clear the corresponding bits in the given mask. If at the end, all
+ // bits have been cleared, the register does not alias the regmask (i.e.
+ // is it preserved by it).
+ LaneBitmask M = RR.Mask;
+ for (MCSubRegIndexIterator SI(RR.Reg, &TRI); SI.isValid(); ++SI) {
+ LaneBitmask SM = TRI.getSubRegIndexLaneMask(SI.getSubRegIndex());
+ if ((SM & RR.Mask).none())
+ continue;
+ unsigned SR = SI.getSubReg();
+ if (!(MB[SR/32] & (1u << (SR%32))))
+ continue;
+ // The subregister SR is preserved.
+ M &= ~SM;
+ if (M.none())
+ return false;
+ }
+
+ return true;
+}
+
+bool PhysicalRegisterInfo::aliasMM(RegisterRef RM, RegisterRef RN) const {
+ assert(isRegMaskId(RM.Reg) && isRegMaskId(RN.Reg));
+ unsigned NumRegs = TRI.getNumRegs();
+ const uint32_t *BM = getRegMaskBits(RM.Reg);
+ const uint32_t *BN = getRegMaskBits(RN.Reg);
+
+ for (unsigned w = 0, nw = NumRegs/32; w != nw; ++w) {
+ // Intersect the negations of both words. Disregard reg=0,
+ // i.e. 0th bit in the 0th word.
+ uint32_t C = ~BM[w] & ~BN[w];
+ if (w == 0)
+ C &= ~1;
+ if (C)
+ return true;
+ }
+
+ // Check the remaining registers in the last word.
+ unsigned TailRegs = NumRegs % 32;
+ if (TailRegs == 0)
+ return false;
+ unsigned TW = NumRegs / 32;
+ uint32_t TailMask = (1u << TailRegs) - 1;
+ if (~BM[TW] & ~BN[TW] & TailMask)
+ return true;
+
+ return false;
+}
+
+RegisterRef PhysicalRegisterInfo::mapTo(RegisterRef RR, unsigned R) const {
+ if (RR.Reg == R)
+ return RR;
+ if (unsigned Idx = TRI.getSubRegIndex(R, RR.Reg))
+ return RegisterRef(R, TRI.composeSubRegIndexLaneMask(Idx, RR.Mask));
+ if (unsigned Idx = TRI.getSubRegIndex(RR.Reg, R)) {
+ const RegInfo &RI = RegInfos[R];
+ LaneBitmask RCM = RI.RegClass ? RI.RegClass->LaneMask
+ : LaneBitmask::getAll();
+ LaneBitmask M = TRI.reverseComposeSubRegIndexLaneMask(Idx, RR.Mask);
+ return RegisterRef(R, M & RCM);
+ }
+ llvm_unreachable("Invalid arguments: unrelated registers?");
+}
+
+bool RegisterAggr::hasAliasOf(RegisterRef RR) const {
+ if (PhysicalRegisterInfo::isRegMaskId(RR.Reg))
+ return Units.anyCommon(PRI.getMaskUnits(RR.Reg));
+
+ for (MCRegUnitMaskIterator U(RR.Reg, &PRI.getTRI()); U.isValid(); ++U) {
+ std::pair<uint32_t,LaneBitmask> P = *U;
+ if (P.second.none() || (P.second & RR.Mask).any())
+ if (Units.test(P.first))
+ return true;
+ }
+ return false;
+}
+
+bool RegisterAggr::hasCoverOf(RegisterRef RR) const {
+ if (PhysicalRegisterInfo::isRegMaskId(RR.Reg)) {
+ BitVector T(PRI.getMaskUnits(RR.Reg));
+ return T.reset(Units).none();
+ }
+
+ for (MCRegUnitMaskIterator U(RR.Reg, &PRI.getTRI()); U.isValid(); ++U) {
+ std::pair<uint32_t,LaneBitmask> P = *U;
+ if (P.second.none() || (P.second & RR.Mask).any())
+ if (!Units.test(P.first))
+ return false;
+ }
+ return true;
+}
+
+RegisterAggr &RegisterAggr::insert(RegisterRef RR) {
+ if (PhysicalRegisterInfo::isRegMaskId(RR.Reg)) {
+ Units |= PRI.getMaskUnits(RR.Reg);
+ return *this;
+ }
+
+ for (MCRegUnitMaskIterator U(RR.Reg, &PRI.getTRI()); U.isValid(); ++U) {
+ std::pair<uint32_t,LaneBitmask> P = *U;
+ if (P.second.none() || (P.second & RR.Mask).any())
+ Units.set(P.first);
+ }
+ return *this;
+}
+
+RegisterAggr &RegisterAggr::insert(const RegisterAggr &RG) {
+ Units |= RG.Units;
+ return *this;
+}
+
+RegisterAggr &RegisterAggr::intersect(RegisterRef RR) {
+ return intersect(RegisterAggr(PRI).insert(RR));
+}
+
+RegisterAggr &RegisterAggr::intersect(const RegisterAggr &RG) {
+ Units &= RG.Units;
+ return *this;
+}
+
+RegisterAggr &RegisterAggr::clear(RegisterRef RR) {
+ return clear(RegisterAggr(PRI).insert(RR));
+}
+
+RegisterAggr &RegisterAggr::clear(const RegisterAggr &RG) {
+ Units.reset(RG.Units);
+ return *this;
+}
+
+RegisterRef RegisterAggr::intersectWith(RegisterRef RR) const {
+ RegisterAggr T(PRI);
+ T.insert(RR).intersect(*this);
+ if (T.empty())
+ return RegisterRef();
+ RegisterRef NR = T.makeRegRef();
+ assert(NR);
+ return NR;
+}
+
+RegisterRef RegisterAggr::clearIn(RegisterRef RR) const {
+ return RegisterAggr(PRI).insert(RR).clear(*this).makeRegRef();
+}
+
+RegisterRef RegisterAggr::makeRegRef() const {
+ int U = Units.find_first();
+ if (U < 0)
+ return RegisterRef();
+
+ auto AliasedRegs = [this] (uint32_t Unit, BitVector &Regs) {
+ for (MCRegUnitRootIterator R(Unit, &PRI.getTRI()); R.isValid(); ++R)
+ for (MCSuperRegIterator S(*R, &PRI.getTRI(), true); S.isValid(); ++S)
+ Regs.set(*S);
+ };
+
+ // Find the set of all registers that are aliased to all the units
+ // in this aggregate.
+
+ // Get all the registers aliased to the first unit in the bit vector.
+ BitVector Regs(PRI.getTRI().getNumRegs());
+ AliasedRegs(U, Regs);
+ U = Units.find_next(U);
+
+ // For each other unit, intersect it with the set of all registers
+ // aliased that unit.
+ while (U >= 0) {
+ BitVector AR(PRI.getTRI().getNumRegs());
+ AliasedRegs(U, AR);
+ Regs &= AR;
+ U = Units.find_next(U);
+ }
+
+ // If there is at least one register remaining, pick the first one,
+ // and consolidate the masks of all of its units contained in this
+ // aggregate.
+
+ int F = Regs.find_first();
+ if (F <= 0)
+ return RegisterRef();
+
+ LaneBitmask M;
+ for (MCRegUnitMaskIterator I(F, &PRI.getTRI()); I.isValid(); ++I) {
+ std::pair<uint32_t,LaneBitmask> P = *I;
+ if (Units.test(P.first))
+ M |= P.second.none() ? LaneBitmask::getAll() : P.second;
+ }
+ return RegisterRef(F, M);
+}
+
+void RegisterAggr::print(raw_ostream &OS) const {
+ OS << '{';
+ for (int U = Units.find_first(); U >= 0; U = Units.find_next(U))
+ OS << ' ' << printRegUnit(U, &PRI.getTRI());
+ OS << " }";
+}
+
+RegisterAggr::rr_iterator::rr_iterator(const RegisterAggr &RG,
+ bool End)
+ : Owner(&RG) {
+ for (int U = RG.Units.find_first(); U >= 0; U = RG.Units.find_next(U)) {
+ RegisterRef R = RG.PRI.getRefForUnit(U);
+ Masks[R.Reg] |= R.Mask;
+ }
+ Pos = End ? Masks.end() : Masks.begin();
+ Index = End ? Masks.size() : 0;
+}