aboutsummaryrefslogtreecommitdiff
path: root/llvm/lib/CodeGen/RDFLiveness.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'llvm/lib/CodeGen/RDFLiveness.cpp')
-rw-r--r--llvm/lib/CodeGen/RDFLiveness.cpp1118
1 files changed, 1118 insertions, 0 deletions
diff --git a/llvm/lib/CodeGen/RDFLiveness.cpp b/llvm/lib/CodeGen/RDFLiveness.cpp
new file mode 100644
index 000000000000..0bcd27f8ea45
--- /dev/null
+++ b/llvm/lib/CodeGen/RDFLiveness.cpp
@@ -0,0 +1,1118 @@
+//===- RDFLiveness.cpp ----------------------------------------------------===//
+//
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
+//
+//===----------------------------------------------------------------------===//
+//
+// Computation of the liveness information from the data-flow graph.
+//
+// The main functionality of this code is to compute block live-in
+// information. With the live-in information in place, the placement
+// of kill flags can also be recalculated.
+//
+// The block live-in calculation is based on the ideas from the following
+// publication:
+//
+// Dibyendu Das, Ramakrishna Upadrasta, Benoit Dupont de Dinechin.
+// "Efficient Liveness Computation Using Merge Sets and DJ-Graphs."
+// ACM Transactions on Architecture and Code Optimization, Association for
+// Computing Machinery, 2012, ACM TACO Special Issue on "High-Performance
+// and Embedded Architectures and Compilers", 8 (4),
+// <10.1145/2086696.2086706>. <hal-00647369>
+//
+#include "llvm/ADT/BitVector.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/SetVector.h"
+#include "llvm/CodeGen/MachineBasicBlock.h"
+#include "llvm/CodeGen/MachineDominanceFrontier.h"
+#include "llvm/CodeGen/MachineDominators.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/RDFLiveness.h"
+#include "llvm/CodeGen/RDFGraph.h"
+#include "llvm/CodeGen/RDFRegisters.h"
+#include "llvm/CodeGen/TargetRegisterInfo.h"
+#include "llvm/MC/LaneBitmask.h"
+#include "llvm/MC/MCRegisterInfo.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/ErrorHandling.h"
+#include "llvm/Support/raw_ostream.h"
+#include <algorithm>
+#include <cassert>
+#include <cstdint>
+#include <iterator>
+#include <map>
+#include <utility>
+#include <vector>
+
+using namespace llvm;
+using namespace rdf;
+
+static cl::opt<unsigned> MaxRecNest("rdf-liveness-max-rec", cl::init(25),
+ cl::Hidden, cl::desc("Maximum recursion level"));
+
+namespace llvm {
+namespace rdf {
+
+ raw_ostream &operator<< (raw_ostream &OS, const Print<Liveness::RefMap> &P) {
+ OS << '{';
+ for (auto &I : P.Obj) {
+ OS << ' ' << printReg(I.first, &P.G.getTRI()) << '{';
+ for (auto J = I.second.begin(), E = I.second.end(); J != E; ) {
+ OS << Print<NodeId>(J->first, P.G) << PrintLaneMaskOpt(J->second);
+ if (++J != E)
+ OS << ',';
+ }
+ OS << '}';
+ }
+ OS << " }";
+ return OS;
+ }
+
+} // end namespace rdf
+} // end namespace llvm
+
+// The order in the returned sequence is the order of reaching defs in the
+// upward traversal: the first def is the closest to the given reference RefA,
+// the next one is further up, and so on.
+// The list ends at a reaching phi def, or when the reference from RefA is
+// covered by the defs in the list (see FullChain).
+// This function provides two modes of operation:
+// (1) Returning the sequence of reaching defs for a particular reference
+// node. This sequence will terminate at the first phi node [1].
+// (2) Returning a partial sequence of reaching defs, where the final goal
+// is to traverse past phi nodes to the actual defs arising from the code
+// itself.
+// In mode (2), the register reference for which the search was started
+// may be different from the reference node RefA, for which this call was
+// made, hence the argument RefRR, which holds the original register.
+// Also, some definitions may have already been encountered in a previous
+// call that will influence register covering. The register references
+// already defined are passed in through DefRRs.
+// In mode (1), the "continuation" considerations do not apply, and the
+// RefRR is the same as the register in RefA, and the set DefRRs is empty.
+//
+// [1] It is possible for multiple phi nodes to be included in the returned
+// sequence:
+// SubA = phi ...
+// SubB = phi ...
+// ... = SuperAB(rdef:SubA), SuperAB"(rdef:SubB)
+// However, these phi nodes are independent from one another in terms of
+// the data-flow.
+
+NodeList Liveness::getAllReachingDefs(RegisterRef RefRR,
+ NodeAddr<RefNode*> RefA, bool TopShadows, bool FullChain,
+ const RegisterAggr &DefRRs) {
+ NodeList RDefs; // Return value.
+ SetVector<NodeId> DefQ;
+ SetVector<NodeId> Owners;
+
+ // Dead defs will be treated as if they were live, since they are actually
+ // on the data-flow path. They cannot be ignored because even though they
+ // do not generate meaningful values, they still modify registers.
+
+ // If the reference is undefined, there is nothing to do.
+ if (RefA.Addr->getFlags() & NodeAttrs::Undef)
+ return RDefs;
+
+ // The initial queue should not have reaching defs for shadows. The
+ // whole point of a shadow is that it will have a reaching def that
+ // is not aliased to the reaching defs of the related shadows.
+ NodeId Start = RefA.Id;
+ auto SNA = DFG.addr<RefNode*>(Start);
+ if (NodeId RD = SNA.Addr->getReachingDef())
+ DefQ.insert(RD);
+ if (TopShadows) {
+ for (auto S : DFG.getRelatedRefs(RefA.Addr->getOwner(DFG), RefA))
+ if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
+ DefQ.insert(RD);
+ }
+
+ // Collect all the reaching defs, going up until a phi node is encountered,
+ // or there are no more reaching defs. From this set, the actual set of
+ // reaching defs will be selected.
+ // The traversal upwards must go on until a covering def is encountered.
+ // It is possible that a collection of non-covering (individually) defs
+ // will be sufficient, but keep going until a covering one is found.
+ for (unsigned i = 0; i < DefQ.size(); ++i) {
+ auto TA = DFG.addr<DefNode*>(DefQ[i]);
+ if (TA.Addr->getFlags() & NodeAttrs::PhiRef)
+ continue;
+ // Stop at the covering/overwriting def of the initial register reference.
+ RegisterRef RR = TA.Addr->getRegRef(DFG);
+ if (!DFG.IsPreservingDef(TA))
+ if (RegisterAggr::isCoverOf(RR, RefRR, PRI))
+ continue;
+ // Get the next level of reaching defs. This will include multiple
+ // reaching defs for shadows.
+ for (auto S : DFG.getRelatedRefs(TA.Addr->getOwner(DFG), TA))
+ if (NodeId RD = NodeAddr<RefNode*>(S).Addr->getReachingDef())
+ DefQ.insert(RD);
+ }
+
+ // Remove all non-phi defs that are not aliased to RefRR, and collect
+ // the owners of the remaining defs.
+ SetVector<NodeId> Defs;
+ for (NodeId N : DefQ) {
+ auto TA = DFG.addr<DefNode*>(N);
+ bool IsPhi = TA.Addr->getFlags() & NodeAttrs::PhiRef;
+ if (!IsPhi && !PRI.alias(RefRR, TA.Addr->getRegRef(DFG)))
+ continue;
+ Defs.insert(TA.Id);
+ Owners.insert(TA.Addr->getOwner(DFG).Id);
+ }
+
+ // Return the MachineBasicBlock containing a given instruction.
+ auto Block = [this] (NodeAddr<InstrNode*> IA) -> MachineBasicBlock* {
+ if (IA.Addr->getKind() == NodeAttrs::Stmt)
+ return NodeAddr<StmtNode*>(IA).Addr->getCode()->getParent();
+ assert(IA.Addr->getKind() == NodeAttrs::Phi);
+ NodeAddr<PhiNode*> PA = IA;
+ NodeAddr<BlockNode*> BA = PA.Addr->getOwner(DFG);
+ return BA.Addr->getCode();
+ };
+ // Less(A,B) iff instruction A is further down in the dominator tree than B.
+ auto Less = [&Block,this] (NodeId A, NodeId B) -> bool {
+ if (A == B)
+ return false;
+ auto OA = DFG.addr<InstrNode*>(A), OB = DFG.addr<InstrNode*>(B);
+ MachineBasicBlock *BA = Block(OA), *BB = Block(OB);
+ if (BA != BB)
+ return MDT.dominates(BB, BA);
+ // They are in the same block.
+ bool StmtA = OA.Addr->getKind() == NodeAttrs::Stmt;
+ bool StmtB = OB.Addr->getKind() == NodeAttrs::Stmt;
+ if (StmtA) {
+ if (!StmtB) // OB is a phi and phis dominate statements.
+ return true;
+ MachineInstr *CA = NodeAddr<StmtNode*>(OA).Addr->getCode();
+ MachineInstr *CB = NodeAddr<StmtNode*>(OB).Addr->getCode();
+ // The order must be linear, so tie-break such equalities.
+ if (CA == CB)
+ return A < B;
+ return MDT.dominates(CB, CA);
+ } else {
+ // OA is a phi.
+ if (StmtB)
+ return false;
+ // Both are phis. There is no ordering between phis (in terms of
+ // the data-flow), so tie-break this via node id comparison.
+ return A < B;
+ }
+ };
+
+ std::vector<NodeId> Tmp(Owners.begin(), Owners.end());
+ llvm::sort(Tmp, Less);
+
+ // The vector is a list of instructions, so that defs coming from
+ // the same instruction don't need to be artificially ordered.
+ // Then, when computing the initial segment, and iterating over an
+ // instruction, pick the defs that contribute to the covering (i.e. is
+ // not covered by previously added defs). Check the defs individually,
+ // i.e. first check each def if is covered or not (without adding them
+ // to the tracking set), and then add all the selected ones.
+
+ // The reason for this is this example:
+ // *d1<A>, *d2<B>, ... Assume A and B are aliased (can happen in phi nodes).
+ // *d3<C> If A \incl BuC, and B \incl AuC, then *d2 would be
+ // covered if we added A first, and A would be covered
+ // if we added B first.
+
+ RegisterAggr RRs(DefRRs);
+
+ auto DefInSet = [&Defs] (NodeAddr<RefNode*> TA) -> bool {
+ return TA.Addr->getKind() == NodeAttrs::Def &&
+ Defs.count(TA.Id);
+ };
+ for (NodeId T : Tmp) {
+ if (!FullChain && RRs.hasCoverOf(RefRR))
+ break;
+ auto TA = DFG.addr<InstrNode*>(T);
+ bool IsPhi = DFG.IsCode<NodeAttrs::Phi>(TA);
+ NodeList Ds;
+ for (NodeAddr<DefNode*> DA : TA.Addr->members_if(DefInSet, DFG)) {
+ RegisterRef QR = DA.Addr->getRegRef(DFG);
+ // Add phi defs even if they are covered by subsequent defs. This is
+ // for cases where the reached use is not covered by any of the defs
+ // encountered so far: the phi def is needed to expose the liveness
+ // of that use to the entry of the block.
+ // Example:
+ // phi d1<R3>(,d2,), ... Phi def d1 is covered by d2.
+ // d2<R3>(d1,,u3), ...
+ // ..., u3<D1>(d2) This use needs to be live on entry.
+ if (FullChain || IsPhi || !RRs.hasCoverOf(QR))
+ Ds.push_back(DA);
+ }
+ RDefs.insert(RDefs.end(), Ds.begin(), Ds.end());
+ for (NodeAddr<DefNode*> DA : Ds) {
+ // When collecting a full chain of definitions, do not consider phi
+ // defs to actually define a register.
+ uint16_t Flags = DA.Addr->getFlags();
+ if (!FullChain || !(Flags & NodeAttrs::PhiRef))
+ if (!(Flags & NodeAttrs::Preserving)) // Don't care about Undef here.
+ RRs.insert(DA.Addr->getRegRef(DFG));
+ }
+ }
+
+ auto DeadP = [](const NodeAddr<DefNode*> DA) -> bool {
+ return DA.Addr->getFlags() & NodeAttrs::Dead;
+ };
+ RDefs.resize(std::distance(RDefs.begin(), llvm::remove_if(RDefs, DeadP)));
+
+ return RDefs;
+}
+
+std::pair<NodeSet,bool>
+Liveness::getAllReachingDefsRec(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
+ NodeSet &Visited, const NodeSet &Defs) {
+ return getAllReachingDefsRecImpl(RefRR, RefA, Visited, Defs, 0, MaxRecNest);
+}
+
+std::pair<NodeSet,bool>
+Liveness::getAllReachingDefsRecImpl(RegisterRef RefRR, NodeAddr<RefNode*> RefA,
+ NodeSet &Visited, const NodeSet &Defs, unsigned Nest, unsigned MaxNest) {
+ if (Nest > MaxNest)
+ return { NodeSet(), false };
+ // Collect all defined registers. Do not consider phis to be defining
+ // anything, only collect "real" definitions.
+ RegisterAggr DefRRs(PRI);
+ for (NodeId D : Defs) {
+ const auto DA = DFG.addr<const DefNode*>(D);
+ if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
+ DefRRs.insert(DA.Addr->getRegRef(DFG));
+ }
+
+ NodeList RDs = getAllReachingDefs(RefRR, RefA, false, true, DefRRs);
+ if (RDs.empty())
+ return { Defs, true };
+
+ // Make a copy of the preexisting definitions and add the newly found ones.
+ NodeSet TmpDefs = Defs;
+ for (NodeAddr<NodeBase*> R : RDs)
+ TmpDefs.insert(R.Id);
+
+ NodeSet Result = Defs;
+
+ for (NodeAddr<DefNode*> DA : RDs) {
+ Result.insert(DA.Id);
+ if (!(DA.Addr->getFlags() & NodeAttrs::PhiRef))
+ continue;
+ NodeAddr<PhiNode*> PA = DA.Addr->getOwner(DFG);
+ if (Visited.count(PA.Id))
+ continue;
+ Visited.insert(PA.Id);
+ // Go over all phi uses and get the reaching defs for each use.
+ for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
+ const auto &T = getAllReachingDefsRecImpl(RefRR, U, Visited, TmpDefs,
+ Nest+1, MaxNest);
+ if (!T.second)
+ return { T.first, false };
+ Result.insert(T.first.begin(), T.first.end());
+ }
+ }
+
+ return { Result, true };
+}
+
+/// Find the nearest ref node aliased to RefRR, going upwards in the data
+/// flow, starting from the instruction immediately preceding Inst.
+NodeAddr<RefNode*> Liveness::getNearestAliasedRef(RegisterRef RefRR,
+ NodeAddr<InstrNode*> IA) {
+ NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
+ NodeList Ins = BA.Addr->members(DFG);
+ NodeId FindId = IA.Id;
+ auto E = Ins.rend();
+ auto B = std::find_if(Ins.rbegin(), E,
+ [FindId] (const NodeAddr<InstrNode*> T) {
+ return T.Id == FindId;
+ });
+ // Do not scan IA (which is what B would point to).
+ if (B != E)
+ ++B;
+
+ do {
+ // Process the range of instructions from B to E.
+ for (NodeAddr<InstrNode*> I : make_range(B, E)) {
+ NodeList Refs = I.Addr->members(DFG);
+ NodeAddr<RefNode*> Clob, Use;
+ // Scan all the refs in I aliased to RefRR, and return the one that
+ // is the closest to the output of I, i.e. def > clobber > use.
+ for (NodeAddr<RefNode*> R : Refs) {
+ if (!PRI.alias(R.Addr->getRegRef(DFG), RefRR))
+ continue;
+ if (DFG.IsDef(R)) {
+ // If it's a non-clobbering def, just return it.
+ if (!(R.Addr->getFlags() & NodeAttrs::Clobbering))
+ return R;
+ Clob = R;
+ } else {
+ Use = R;
+ }
+ }
+ if (Clob.Id != 0)
+ return Clob;
+ if (Use.Id != 0)
+ return Use;
+ }
+
+ // Go up to the immediate dominator, if any.
+ MachineBasicBlock *BB = BA.Addr->getCode();
+ BA = NodeAddr<BlockNode*>();
+ if (MachineDomTreeNode *N = MDT.getNode(BB)) {
+ if ((N = N->getIDom()))
+ BA = DFG.findBlock(N->getBlock());
+ }
+ if (!BA.Id)
+ break;
+
+ Ins = BA.Addr->members(DFG);
+ B = Ins.rbegin();
+ E = Ins.rend();
+ } while (true);
+
+ return NodeAddr<RefNode*>();
+}
+
+NodeSet Liveness::getAllReachedUses(RegisterRef RefRR,
+ NodeAddr<DefNode*> DefA, const RegisterAggr &DefRRs) {
+ NodeSet Uses;
+
+ // If the original register is already covered by all the intervening
+ // defs, no more uses can be reached.
+ if (DefRRs.hasCoverOf(RefRR))
+ return Uses;
+
+ // Add all directly reached uses.
+ // If the def is dead, it does not provide a value for any use.
+ bool IsDead = DefA.Addr->getFlags() & NodeAttrs::Dead;
+ NodeId U = !IsDead ? DefA.Addr->getReachedUse() : 0;
+ while (U != 0) {
+ auto UA = DFG.addr<UseNode*>(U);
+ if (!(UA.Addr->getFlags() & NodeAttrs::Undef)) {
+ RegisterRef UR = UA.Addr->getRegRef(DFG);
+ if (PRI.alias(RefRR, UR) && !DefRRs.hasCoverOf(UR))
+ Uses.insert(U);
+ }
+ U = UA.Addr->getSibling();
+ }
+
+ // Traverse all reached defs. This time dead defs cannot be ignored.
+ for (NodeId D = DefA.Addr->getReachedDef(), NextD; D != 0; D = NextD) {
+ auto DA = DFG.addr<DefNode*>(D);
+ NextD = DA.Addr->getSibling();
+ RegisterRef DR = DA.Addr->getRegRef(DFG);
+ // If this def is already covered, it cannot reach anything new.
+ // Similarly, skip it if it is not aliased to the interesting register.
+ if (DefRRs.hasCoverOf(DR) || !PRI.alias(RefRR, DR))
+ continue;
+ NodeSet T;
+ if (DFG.IsPreservingDef(DA)) {
+ // If it is a preserving def, do not update the set of intervening defs.
+ T = getAllReachedUses(RefRR, DA, DefRRs);
+ } else {
+ RegisterAggr NewDefRRs = DefRRs;
+ NewDefRRs.insert(DR);
+ T = getAllReachedUses(RefRR, DA, NewDefRRs);
+ }
+ Uses.insert(T.begin(), T.end());
+ }
+ return Uses;
+}
+
+void Liveness::computePhiInfo() {
+ RealUseMap.clear();
+
+ NodeList Phis;
+ NodeAddr<FuncNode*> FA = DFG.getFunc();
+ NodeList Blocks = FA.Addr->members(DFG);
+ for (NodeAddr<BlockNode*> BA : Blocks) {
+ auto Ps = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
+ Phis.insert(Phis.end(), Ps.begin(), Ps.end());
+ }
+
+ // phi use -> (map: reaching phi -> set of registers defined in between)
+ std::map<NodeId,std::map<NodeId,RegisterAggr>> PhiUp;
+ std::vector<NodeId> PhiUQ; // Work list of phis for upward propagation.
+ std::map<NodeId,RegisterAggr> PhiDRs; // Phi -> registers defined by it.
+
+ // Go over all phis.
+ for (NodeAddr<PhiNode*> PhiA : Phis) {
+ // Go over all defs and collect the reached uses that are non-phi uses
+ // (i.e. the "real uses").
+ RefMap &RealUses = RealUseMap[PhiA.Id];
+ NodeList PhiRefs = PhiA.Addr->members(DFG);
+
+ // Have a work queue of defs whose reached uses need to be found.
+ // For each def, add to the queue all reached (non-phi) defs.
+ SetVector<NodeId> DefQ;
+ NodeSet PhiDefs;
+ RegisterAggr DRs(PRI);
+ for (NodeAddr<RefNode*> R : PhiRefs) {
+ if (!DFG.IsRef<NodeAttrs::Def>(R))
+ continue;
+ DRs.insert(R.Addr->getRegRef(DFG));
+ DefQ.insert(R.Id);
+ PhiDefs.insert(R.Id);
+ }
+ PhiDRs.insert(std::make_pair(PhiA.Id, DRs));
+
+ // Collect the super-set of all possible reached uses. This set will
+ // contain all uses reached from this phi, either directly from the
+ // phi defs, or (recursively) via non-phi defs reached by the phi defs.
+ // This set of uses will later be trimmed to only contain these uses that
+ // are actually reached by the phi defs.
+ for (unsigned i = 0; i < DefQ.size(); ++i) {
+ NodeAddr<DefNode*> DA = DFG.addr<DefNode*>(DefQ[i]);
+ // Visit all reached uses. Phi defs should not really have the "dead"
+ // flag set, but check it anyway for consistency.
+ bool IsDead = DA.Addr->getFlags() & NodeAttrs::Dead;
+ NodeId UN = !IsDead ? DA.Addr->getReachedUse() : 0;
+ while (UN != 0) {
+ NodeAddr<UseNode*> A = DFG.addr<UseNode*>(UN);
+ uint16_t F = A.Addr->getFlags();
+ if ((F & (NodeAttrs::Undef | NodeAttrs::PhiRef)) == 0) {
+ RegisterRef R = PRI.normalize(A.Addr->getRegRef(DFG));
+ RealUses[R.Reg].insert({A.Id,R.Mask});
+ }
+ UN = A.Addr->getSibling();
+ }
+ // Visit all reached defs, and add them to the queue. These defs may
+ // override some of the uses collected here, but that will be handled
+ // later.
+ NodeId DN = DA.Addr->getReachedDef();
+ while (DN != 0) {
+ NodeAddr<DefNode*> A = DFG.addr<DefNode*>(DN);
+ for (auto T : DFG.getRelatedRefs(A.Addr->getOwner(DFG), A)) {
+ uint16_t Flags = NodeAddr<DefNode*>(T).Addr->getFlags();
+ // Must traverse the reached-def chain. Consider:
+ // def(D0) -> def(R0) -> def(R0) -> use(D0)
+ // The reachable use of D0 passes through a def of R0.
+ if (!(Flags & NodeAttrs::PhiRef))
+ DefQ.insert(T.Id);
+ }
+ DN = A.Addr->getSibling();
+ }
+ }
+ // Filter out these uses that appear to be reachable, but really
+ // are not. For example:
+ //
+ // R1:0 = d1
+ // = R1:0 u2 Reached by d1.
+ // R0 = d3
+ // = R1:0 u4 Still reached by d1: indirectly through
+ // the def d3.
+ // R1 = d5
+ // = R1:0 u6 Not reached by d1 (covered collectively
+ // by d3 and d5), but following reached
+ // defs and uses from d1 will lead here.
+ for (auto UI = RealUses.begin(), UE = RealUses.end(); UI != UE; ) {
+ // For each reached register UI->first, there is a set UI->second, of
+ // uses of it. For each such use, check if it is reached by this phi,
+ // i.e. check if the set of its reaching uses intersects the set of
+ // this phi's defs.
+ NodeRefSet Uses = UI->second;
+ UI->second.clear();
+ for (std::pair<NodeId,LaneBitmask> I : Uses) {
+ auto UA = DFG.addr<UseNode*>(I.first);
+ // Undef flag is checked above.
+ assert((UA.Addr->getFlags() & NodeAttrs::Undef) == 0);
+ RegisterRef R(UI->first, I.second);
+ // Calculate the exposed part of the reached use.
+ RegisterAggr Covered(PRI);
+ for (NodeAddr<DefNode*> DA : getAllReachingDefs(R, UA)) {
+ if (PhiDefs.count(DA.Id))
+ break;
+ Covered.insert(DA.Addr->getRegRef(DFG));
+ }
+ if (RegisterRef RC = Covered.clearIn(R)) {
+ // We are updating the map for register UI->first, so we need
+ // to map RC to be expressed in terms of that register.
+ RegisterRef S = PRI.mapTo(RC, UI->first);
+ UI->second.insert({I.first, S.Mask});
+ }
+ }
+ UI = UI->second.empty() ? RealUses.erase(UI) : std::next(UI);
+ }
+
+ // If this phi reaches some "real" uses, add it to the queue for upward
+ // propagation.
+ if (!RealUses.empty())
+ PhiUQ.push_back(PhiA.Id);
+
+ // Go over all phi uses and check if the reaching def is another phi.
+ // Collect the phis that are among the reaching defs of these uses.
+ // While traversing the list of reaching defs for each phi use, accumulate
+ // the set of registers defined between this phi (PhiA) and the owner phi
+ // of the reaching def.
+ NodeSet SeenUses;
+
+ for (auto I : PhiRefs) {
+ if (!DFG.IsRef<NodeAttrs::Use>(I) || SeenUses.count(I.Id))
+ continue;
+ NodeAddr<PhiUseNode*> PUA = I;
+ if (PUA.Addr->getReachingDef() == 0)
+ continue;
+
+ RegisterRef UR = PUA.Addr->getRegRef(DFG);
+ NodeList Ds = getAllReachingDefs(UR, PUA, true, false, NoRegs);
+ RegisterAggr DefRRs(PRI);
+
+ for (NodeAddr<DefNode*> D : Ds) {
+ if (D.Addr->getFlags() & NodeAttrs::PhiRef) {
+ NodeId RP = D.Addr->getOwner(DFG).Id;
+ std::map<NodeId,RegisterAggr> &M = PhiUp[PUA.Id];
+ auto F = M.find(RP);
+ if (F == M.end())
+ M.insert(std::make_pair(RP, DefRRs));
+ else
+ F->second.insert(DefRRs);
+ }
+ DefRRs.insert(D.Addr->getRegRef(DFG));
+ }
+
+ for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PhiA, PUA))
+ SeenUses.insert(T.Id);
+ }
+ }
+
+ if (Trace) {
+ dbgs() << "Phi-up-to-phi map with intervening defs:\n";
+ for (auto I : PhiUp) {
+ dbgs() << "phi " << Print<NodeId>(I.first, DFG) << " -> {";
+ for (auto R : I.second)
+ dbgs() << ' ' << Print<NodeId>(R.first, DFG)
+ << Print<RegisterAggr>(R.second, DFG);
+ dbgs() << " }\n";
+ }
+ }
+
+ // Propagate the reached registers up in the phi chain.
+ //
+ // The following type of situation needs careful handling:
+ //
+ // phi d1<R1:0> (1)
+ // |
+ // ... d2<R1>
+ // |
+ // phi u3<R1:0> (2)
+ // |
+ // ... u4<R1>
+ //
+ // The phi node (2) defines a register pair R1:0, and reaches a "real"
+ // use u4 of just R1. The same phi node is also known to reach (upwards)
+ // the phi node (1). However, the use u4 is not reached by phi (1),
+ // because of the intervening definition d2 of R1. The data flow between
+ // phis (1) and (2) is restricted to R1:0 minus R1, i.e. R0.
+ //
+ // When propagating uses up the phi chains, get the all reaching defs
+ // for a given phi use, and traverse the list until the propagated ref
+ // is covered, or until reaching the final phi. Only assume that the
+ // reference reaches the phi in the latter case.
+
+ for (unsigned i = 0; i < PhiUQ.size(); ++i) {
+ auto PA = DFG.addr<PhiNode*>(PhiUQ[i]);
+ NodeList PUs = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG);
+ RefMap &RUM = RealUseMap[PA.Id];
+
+ for (NodeAddr<UseNode*> UA : PUs) {
+ std::map<NodeId,RegisterAggr> &PUM = PhiUp[UA.Id];
+ RegisterRef UR = PRI.normalize(UA.Addr->getRegRef(DFG));
+ for (const std::pair<const NodeId, RegisterAggr> &P : PUM) {
+ bool Changed = false;
+ const RegisterAggr &MidDefs = P.second;
+
+ // Collect the set PropUp of uses that are reached by the current
+ // phi PA, and are not covered by any intervening def between the
+ // currently visited use UA and the upward phi P.
+
+ if (MidDefs.hasCoverOf(UR))
+ continue;
+
+ // General algorithm:
+ // for each (R,U) : U is use node of R, U is reached by PA
+ // if MidDefs does not cover (R,U)
+ // then add (R-MidDefs,U) to RealUseMap[P]
+ //
+ for (const std::pair<const RegisterId, NodeRefSet> &T : RUM) {
+ RegisterRef R(T.first);
+ // The current phi (PA) could be a phi for a regmask. It could
+ // reach a whole variety of uses that are not related to the
+ // specific upward phi (P.first).
+ const RegisterAggr &DRs = PhiDRs.at(P.first);
+ if (!DRs.hasAliasOf(R))
+ continue;
+ R = PRI.mapTo(DRs.intersectWith(R), T.first);
+ for (std::pair<NodeId,LaneBitmask> V : T.second) {
+ LaneBitmask M = R.Mask & V.second;
+ if (M.none())
+ continue;
+ if (RegisterRef SS = MidDefs.clearIn(RegisterRef(R.Reg, M))) {
+ NodeRefSet &RS = RealUseMap[P.first][SS.Reg];
+ Changed |= RS.insert({V.first,SS.Mask}).second;
+ }
+ }
+ }
+
+ if (Changed)
+ PhiUQ.push_back(P.first);
+ }
+ }
+ }
+
+ if (Trace) {
+ dbgs() << "Real use map:\n";
+ for (auto I : RealUseMap) {
+ dbgs() << "phi " << Print<NodeId>(I.first, DFG);
+ NodeAddr<PhiNode*> PA = DFG.addr<PhiNode*>(I.first);
+ NodeList Ds = PA.Addr->members_if(DFG.IsRef<NodeAttrs::Def>, DFG);
+ if (!Ds.empty()) {
+ RegisterRef RR = NodeAddr<DefNode*>(Ds[0]).Addr->getRegRef(DFG);
+ dbgs() << '<' << Print<RegisterRef>(RR, DFG) << '>';
+ } else {
+ dbgs() << "<noreg>";
+ }
+ dbgs() << " -> " << Print<RefMap>(I.second, DFG) << '\n';
+ }
+ }
+}
+
+void Liveness::computeLiveIns() {
+ // Populate the node-to-block map. This speeds up the calculations
+ // significantly.
+ NBMap.clear();
+ for (NodeAddr<BlockNode*> BA : DFG.getFunc().Addr->members(DFG)) {
+ MachineBasicBlock *BB = BA.Addr->getCode();
+ for (NodeAddr<InstrNode*> IA : BA.Addr->members(DFG)) {
+ for (NodeAddr<RefNode*> RA : IA.Addr->members(DFG))
+ NBMap.insert(std::make_pair(RA.Id, BB));
+ NBMap.insert(std::make_pair(IA.Id, BB));
+ }
+ }
+
+ MachineFunction &MF = DFG.getMF();
+
+ // Compute IDF first, then the inverse.
+ decltype(IIDF) IDF;
+ for (MachineBasicBlock &B : MF) {
+ auto F1 = MDF.find(&B);
+ if (F1 == MDF.end())
+ continue;
+ SetVector<MachineBasicBlock*> IDFB(F1->second.begin(), F1->second.end());
+ for (unsigned i = 0; i < IDFB.size(); ++i) {
+ auto F2 = MDF.find(IDFB[i]);
+ if (F2 != MDF.end())
+ IDFB.insert(F2->second.begin(), F2->second.end());
+ }
+ // Add B to the IDF(B). This will put B in the IIDF(B).
+ IDFB.insert(&B);
+ IDF[&B].insert(IDFB.begin(), IDFB.end());
+ }
+
+ for (auto I : IDF)
+ for (auto S : I.second)
+ IIDF[S].insert(I.first);
+
+ computePhiInfo();
+
+ NodeAddr<FuncNode*> FA = DFG.getFunc();
+ NodeList Blocks = FA.Addr->members(DFG);
+
+ // Build the phi live-on-entry map.
+ for (NodeAddr<BlockNode*> BA : Blocks) {
+ MachineBasicBlock *MB = BA.Addr->getCode();
+ RefMap &LON = PhiLON[MB];
+ for (auto P : BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG))
+ for (const RefMap::value_type &S : RealUseMap[P.Id])
+ LON[S.first].insert(S.second.begin(), S.second.end());
+ }
+
+ if (Trace) {
+ dbgs() << "Phi live-on-entry map:\n";
+ for (auto &I : PhiLON)
+ dbgs() << "block #" << I.first->getNumber() << " -> "
+ << Print<RefMap>(I.second, DFG) << '\n';
+ }
+
+ // Build the phi live-on-exit map. Each phi node has some set of reached
+ // "real" uses. Propagate this set backwards into the block predecessors
+ // through the reaching defs of the corresponding phi uses.
+ for (NodeAddr<BlockNode*> BA : Blocks) {
+ NodeList Phis = BA.Addr->members_if(DFG.IsCode<NodeAttrs::Phi>, DFG);
+ for (NodeAddr<PhiNode*> PA : Phis) {
+ RefMap &RUs = RealUseMap[PA.Id];
+ if (RUs.empty())
+ continue;
+
+ NodeSet SeenUses;
+ for (auto U : PA.Addr->members_if(DFG.IsRef<NodeAttrs::Use>, DFG)) {
+ if (!SeenUses.insert(U.Id).second)
+ continue;
+ NodeAddr<PhiUseNode*> PUA = U;
+ if (PUA.Addr->getReachingDef() == 0)
+ continue;
+
+ // Each phi has some set (possibly empty) of reached "real" uses,
+ // that is, uses that are part of the compiled program. Such a use
+ // may be located in some farther block, but following a chain of
+ // reaching defs will eventually lead to this phi.
+ // Any chain of reaching defs may fork at a phi node, but there
+ // will be a path upwards that will lead to this phi. Now, this
+ // chain will need to fork at this phi, since some of the reached
+ // uses may have definitions joining in from multiple predecessors.
+ // For each reached "real" use, identify the set of reaching defs
+ // coming from each predecessor P, and add them to PhiLOX[P].
+ //
+ auto PrA = DFG.addr<BlockNode*>(PUA.Addr->getPredecessor());
+ RefMap &LOX = PhiLOX[PrA.Addr->getCode()];
+
+ for (const std::pair<const RegisterId, NodeRefSet> &RS : RUs) {
+ // We need to visit each individual use.
+ for (std::pair<NodeId,LaneBitmask> P : RS.second) {
+ // Create a register ref corresponding to the use, and find
+ // all reaching defs starting from the phi use, and treating
+ // all related shadows as a single use cluster.
+ RegisterRef S(RS.first, P.second);
+ NodeList Ds = getAllReachingDefs(S, PUA, true, false, NoRegs);
+ for (NodeAddr<DefNode*> D : Ds) {
+ // Calculate the mask corresponding to the visited def.
+ RegisterAggr TA(PRI);
+ TA.insert(D.Addr->getRegRef(DFG)).intersect(S);
+ LaneBitmask TM = TA.makeRegRef().Mask;
+ LOX[S.Reg].insert({D.Id, TM});
+ }
+ }
+ }
+
+ for (NodeAddr<PhiUseNode*> T : DFG.getRelatedRefs(PA, PUA))
+ SeenUses.insert(T.Id);
+ } // for U : phi uses
+ } // for P : Phis
+ } // for B : Blocks
+
+ if (Trace) {
+ dbgs() << "Phi live-on-exit map:\n";
+ for (auto &I : PhiLOX)
+ dbgs() << "block #" << I.first->getNumber() << " -> "
+ << Print<RefMap>(I.second, DFG) << '\n';
+ }
+
+ RefMap LiveIn;
+ traverse(&MF.front(), LiveIn);
+
+ // Add function live-ins to the live-in set of the function entry block.
+ LiveMap[&MF.front()].insert(DFG.getLiveIns());
+
+ if (Trace) {
+ // Dump the liveness map
+ for (MachineBasicBlock &B : MF) {
+ std::vector<RegisterRef> LV;
+ for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
+ LV.push_back(RegisterRef(I->PhysReg, I->LaneMask));
+ llvm::sort(LV);
+ dbgs() << printMBBReference(B) << "\t rec = {";
+ for (auto I : LV)
+ dbgs() << ' ' << Print<RegisterRef>(I, DFG);
+ dbgs() << " }\n";
+ //dbgs() << "\tcomp = " << Print<RegisterAggr>(LiveMap[&B], DFG) << '\n';
+
+ LV.clear();
+ const RegisterAggr &LG = LiveMap[&B];
+ for (auto I = LG.rr_begin(), E = LG.rr_end(); I != E; ++I)
+ LV.push_back(*I);
+ llvm::sort(LV);
+ dbgs() << "\tcomp = {";
+ for (auto I : LV)
+ dbgs() << ' ' << Print<RegisterRef>(I, DFG);
+ dbgs() << " }\n";
+
+ }
+ }
+}
+
+void Liveness::resetLiveIns() {
+ for (auto &B : DFG.getMF()) {
+ // Remove all live-ins.
+ std::vector<unsigned> T;
+ for (auto I = B.livein_begin(), E = B.livein_end(); I != E; ++I)
+ T.push_back(I->PhysReg);
+ for (auto I : T)
+ B.removeLiveIn(I);
+ // Add the newly computed live-ins.
+ const RegisterAggr &LiveIns = LiveMap[&B];
+ for (auto I = LiveIns.rr_begin(), E = LiveIns.rr_end(); I != E; ++I) {
+ RegisterRef R = *I;
+ B.addLiveIn({MCPhysReg(R.Reg), R.Mask});
+ }
+ }
+}
+
+void Liveness::resetKills() {
+ for (auto &B : DFG.getMF())
+ resetKills(&B);
+}
+
+void Liveness::resetKills(MachineBasicBlock *B) {
+ auto CopyLiveIns = [this] (MachineBasicBlock *B, BitVector &LV) -> void {
+ for (auto I : B->liveins()) {
+ MCSubRegIndexIterator S(I.PhysReg, &TRI);
+ if (!S.isValid()) {
+ LV.set(I.PhysReg);
+ continue;
+ }
+ do {
+ LaneBitmask M = TRI.getSubRegIndexLaneMask(S.getSubRegIndex());
+ if ((M & I.LaneMask).any())
+ LV.set(S.getSubReg());
+ ++S;
+ } while (S.isValid());
+ }
+ };
+
+ BitVector LiveIn(TRI.getNumRegs()), Live(TRI.getNumRegs());
+ CopyLiveIns(B, LiveIn);
+ for (auto SI : B->successors())
+ CopyLiveIns(SI, Live);
+
+ for (auto I = B->rbegin(), E = B->rend(); I != E; ++I) {
+ MachineInstr *MI = &*I;
+ if (MI->isDebugInstr())
+ continue;
+
+ MI->clearKillInfo();
+ for (auto &Op : MI->operands()) {
+ // An implicit def of a super-register may not necessarily start a
+ // live range of it, since an implicit use could be used to keep parts
+ // of it live. Instead of analyzing the implicit operands, ignore
+ // implicit defs.
+ if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
+ continue;
+ Register R = Op.getReg();
+ if (!Register::isPhysicalRegister(R))
+ continue;
+ for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
+ Live.reset(*SR);
+ }
+ for (auto &Op : MI->operands()) {
+ if (!Op.isReg() || !Op.isUse() || Op.isUndef())
+ continue;
+ Register R = Op.getReg();
+ if (!Register::isPhysicalRegister(R))
+ continue;
+ bool IsLive = false;
+ for (MCRegAliasIterator AR(R, &TRI, true); AR.isValid(); ++AR) {
+ if (!Live[*AR])
+ continue;
+ IsLive = true;
+ break;
+ }
+ if (!IsLive)
+ Op.setIsKill(true);
+ for (MCSubRegIterator SR(R, &TRI, true); SR.isValid(); ++SR)
+ Live.set(*SR);
+ }
+ }
+}
+
+// Helper function to obtain the basic block containing the reaching def
+// of the given use.
+MachineBasicBlock *Liveness::getBlockWithRef(NodeId RN) const {
+ auto F = NBMap.find(RN);
+ if (F != NBMap.end())
+ return F->second;
+ llvm_unreachable("Node id not in map");
+}
+
+void Liveness::traverse(MachineBasicBlock *B, RefMap &LiveIn) {
+ // The LiveIn map, for each (physical) register, contains the set of live
+ // reaching defs of that register that are live on entry to the associated
+ // block.
+
+ // The summary of the traversal algorithm:
+ //
+ // R is live-in in B, if there exists a U(R), such that rdef(R) dom B
+ // and (U \in IDF(B) or B dom U).
+ //
+ // for (C : children) {
+ // LU = {}
+ // traverse(C, LU)
+ // LiveUses += LU
+ // }
+ //
+ // LiveUses -= Defs(B);
+ // LiveUses += UpwardExposedUses(B);
+ // for (C : IIDF[B])
+ // for (U : LiveUses)
+ // if (Rdef(U) dom C)
+ // C.addLiveIn(U)
+ //
+
+ // Go up the dominator tree (depth-first).
+ MachineDomTreeNode *N = MDT.getNode(B);
+ for (auto I : *N) {
+ RefMap L;
+ MachineBasicBlock *SB = I->getBlock();
+ traverse(SB, L);
+
+ for (auto S : L)
+ LiveIn[S.first].insert(S.second.begin(), S.second.end());
+ }
+
+ if (Trace) {
+ dbgs() << "\n-- " << printMBBReference(*B) << ": " << __func__
+ << " after recursion into: {";
+ for (auto I : *N)
+ dbgs() << ' ' << I->getBlock()->getNumber();
+ dbgs() << " }\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
+ }
+
+ // Add reaching defs of phi uses that are live on exit from this block.
+ RefMap &PUs = PhiLOX[B];
+ for (auto &S : PUs)
+ LiveIn[S.first].insert(S.second.begin(), S.second.end());
+
+ if (Trace) {
+ dbgs() << "after LOX\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
+ }
+
+ // The LiveIn map at this point has all defs that are live-on-exit from B,
+ // as if they were live-on-entry to B. First, we need to filter out all
+ // defs that are present in this block. Then we will add reaching defs of
+ // all upward-exposed uses.
+
+ // To filter out the defs, first make a copy of LiveIn, and then re-populate
+ // LiveIn with the defs that should remain.
+ RefMap LiveInCopy = LiveIn;
+ LiveIn.clear();
+
+ for (const std::pair<const RegisterId, NodeRefSet> &LE : LiveInCopy) {
+ RegisterRef LRef(LE.first);
+ NodeRefSet &NewDefs = LiveIn[LRef.Reg]; // To be filled.
+ const NodeRefSet &OldDefs = LE.second;
+ for (NodeRef OR : OldDefs) {
+ // R is a def node that was live-on-exit
+ auto DA = DFG.addr<DefNode*>(OR.first);
+ NodeAddr<InstrNode*> IA = DA.Addr->getOwner(DFG);
+ NodeAddr<BlockNode*> BA = IA.Addr->getOwner(DFG);
+ if (B != BA.Addr->getCode()) {
+ // Defs from a different block need to be preserved. Defs from this
+ // block will need to be processed further, except for phi defs, the
+ // liveness of which is handled through the PhiLON/PhiLOX maps.
+ NewDefs.insert(OR);
+ continue;
+ }
+
+ // Defs from this block need to stop the liveness from being
+ // propagated upwards. This only applies to non-preserving defs,
+ // and to the parts of the register actually covered by those defs.
+ // (Note that phi defs should always be preserving.)
+ RegisterAggr RRs(PRI);
+ LRef.Mask = OR.second;
+
+ if (!DFG.IsPreservingDef(DA)) {
+ assert(!(IA.Addr->getFlags() & NodeAttrs::Phi));
+ // DA is a non-phi def that is live-on-exit from this block, and
+ // that is also located in this block. LRef is a register ref
+ // whose use this def reaches. If DA covers LRef, then no part
+ // of LRef is exposed upwards.A
+ if (RRs.insert(DA.Addr->getRegRef(DFG)).hasCoverOf(LRef))
+ continue;
+ }
+
+ // DA itself was not sufficient to cover LRef. In general, it is
+ // the last in a chain of aliased defs before the exit from this block.
+ // There could be other defs in this block that are a part of that
+ // chain. Check that now: accumulate the registers from these defs,
+ // and if they all together cover LRef, it is not live-on-entry.
+ for (NodeAddr<DefNode*> TA : getAllReachingDefs(DA)) {
+ // DefNode -> InstrNode -> BlockNode.
+ NodeAddr<InstrNode*> ITA = TA.Addr->getOwner(DFG);
+ NodeAddr<BlockNode*> BTA = ITA.Addr->getOwner(DFG);
+ // Reaching defs are ordered in the upward direction.
+ if (BTA.Addr->getCode() != B) {
+ // We have reached past the beginning of B, and the accumulated
+ // registers are not covering LRef. The first def from the
+ // upward chain will be live.
+ // Subtract all accumulated defs (RRs) from LRef.
+ RegisterRef T = RRs.clearIn(LRef);
+ assert(T);
+ NewDefs.insert({TA.Id,T.Mask});
+ break;
+ }
+
+ // TA is in B. Only add this def to the accumulated cover if it is
+ // not preserving.
+ if (!(TA.Addr->getFlags() & NodeAttrs::Preserving))
+ RRs.insert(TA.Addr->getRegRef(DFG));
+ // If this is enough to cover LRef, then stop.
+ if (RRs.hasCoverOf(LRef))
+ break;
+ }
+ }
+ }
+
+ emptify(LiveIn);
+
+ if (Trace) {
+ dbgs() << "after defs in block\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
+ }
+
+ // Scan the block for upward-exposed uses and add them to the tracking set.
+ for (auto I : DFG.getFunc().Addr->findBlock(B, DFG).Addr->members(DFG)) {
+ NodeAddr<InstrNode*> IA = I;
+ if (IA.Addr->getKind() != NodeAttrs::Stmt)
+ continue;
+ for (NodeAddr<UseNode*> UA : IA.Addr->members_if(DFG.IsUse, DFG)) {
+ if (UA.Addr->getFlags() & NodeAttrs::Undef)
+ continue;
+ RegisterRef RR = PRI.normalize(UA.Addr->getRegRef(DFG));
+ for (NodeAddr<DefNode*> D : getAllReachingDefs(UA))
+ if (getBlockWithRef(D.Id) != B)
+ LiveIn[RR.Reg].insert({D.Id,RR.Mask});
+ }
+ }
+
+ if (Trace) {
+ dbgs() << "after uses in block\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterAggr>(LiveMap[B], DFG) << '\n';
+ }
+
+ // Phi uses should not be propagated up the dominator tree, since they
+ // are not dominated by their corresponding reaching defs.
+ RegisterAggr &Local = LiveMap[B];
+ RefMap &LON = PhiLON[B];
+ for (auto &R : LON) {
+ LaneBitmask M;
+ for (auto P : R.second)
+ M |= P.second;
+ Local.insert(RegisterRef(R.first,M));
+ }
+
+ if (Trace) {
+ dbgs() << "after phi uses in block\n";
+ dbgs() << " LiveIn: " << Print<RefMap>(LiveIn, DFG) << '\n';
+ dbgs() << " Local: " << Print<RegisterAggr>(Local, DFG) << '\n';
+ }
+
+ for (auto C : IIDF[B]) {
+ RegisterAggr &LiveC = LiveMap[C];
+ for (const std::pair<const RegisterId, NodeRefSet> &S : LiveIn)
+ for (auto R : S.second)
+ if (MDT.properlyDominates(getBlockWithRef(R.first), C))
+ LiveC.insert(RegisterRef(S.first, R.second));
+ }
+}
+
+void Liveness::emptify(RefMap &M) {
+ for (auto I = M.begin(), E = M.end(); I != E; )
+ I = I->second.empty() ? M.erase(I) : std::next(I);
+}