aboutsummaryrefslogtreecommitdiff
path: root/lib/lsan/lsan_common.cc
diff options
context:
space:
mode:
Diffstat (limited to 'lib/lsan/lsan_common.cc')
-rw-r--r--lib/lsan/lsan_common.cc449
1 files changed, 324 insertions, 125 deletions
diff --git a/lib/lsan/lsan_common.cc b/lib/lsan/lsan_common.cc
index e2971e999aa6..152588411e2f 100644
--- a/lib/lsan/lsan_common.cc
+++ b/lib/lsan/lsan_common.cc
@@ -16,27 +16,38 @@
#include "sanitizer_common/sanitizer_common.h"
#include "sanitizer_common/sanitizer_flags.h"
+#include "sanitizer_common/sanitizer_placement_new.h"
#include "sanitizer_common/sanitizer_stackdepot.h"
#include "sanitizer_common/sanitizer_stacktrace.h"
#include "sanitizer_common/sanitizer_stoptheworld.h"
+#include "sanitizer_common/sanitizer_suppressions.h"
+#include "sanitizer_common/sanitizer_report_decorator.h"
#if CAN_SANITIZE_LEAKS
namespace __lsan {
+// This mutex is used to prevent races between DoLeakCheck and IgnoreObject.
+BlockingMutex global_mutex(LINKER_INITIALIZED);
+
+THREADLOCAL int disable_counter;
+bool DisabledInThisThread() { return disable_counter > 0; }
+
Flags lsan_flags;
static void InitializeFlags() {
Flags *f = flags();
// Default values.
- f->report_blocks = false;
+ f->report_objects = false;
f->resolution = 0;
f->max_leaks = 0;
f->exitcode = 23;
+ f->suppressions="";
f->use_registers = true;
f->use_globals = true;
f->use_stacks = true;
f->use_tls = true;
f->use_unaligned = false;
+ f->verbosity = 0;
f->log_pointers = false;
f->log_threads = false;
@@ -47,25 +58,60 @@ static void InitializeFlags() {
ParseFlag(options, &f->use_stacks, "use_stacks");
ParseFlag(options, &f->use_tls, "use_tls");
ParseFlag(options, &f->use_unaligned, "use_unaligned");
- ParseFlag(options, &f->report_blocks, "report_blocks");
+ ParseFlag(options, &f->report_objects, "report_objects");
ParseFlag(options, &f->resolution, "resolution");
CHECK_GE(&f->resolution, 0);
ParseFlag(options, &f->max_leaks, "max_leaks");
CHECK_GE(&f->max_leaks, 0);
+ ParseFlag(options, &f->verbosity, "verbosity");
ParseFlag(options, &f->log_pointers, "log_pointers");
ParseFlag(options, &f->log_threads, "log_threads");
ParseFlag(options, &f->exitcode, "exitcode");
+ ParseFlag(options, &f->suppressions, "suppressions");
+ }
+}
+
+SuppressionContext *suppression_ctx;
+
+void InitializeSuppressions() {
+ CHECK(!suppression_ctx);
+ ALIGNED(64) static char placeholder_[sizeof(SuppressionContext)];
+ suppression_ctx = new(placeholder_) SuppressionContext;
+ char *suppressions_from_file;
+ uptr buffer_size;
+ if (ReadFileToBuffer(flags()->suppressions, &suppressions_from_file,
+ &buffer_size, 1 << 26 /* max_len */))
+ suppression_ctx->Parse(suppressions_from_file);
+ if (flags()->suppressions[0] && !buffer_size) {
+ Printf("LeakSanitizer: failed to read suppressions file '%s'\n",
+ flags()->suppressions);
+ Die();
}
+ if (&__lsan_default_suppressions)
+ suppression_ctx->Parse(__lsan_default_suppressions());
}
void InitCommonLsan() {
InitializeFlags();
- InitializePlatformSpecificModules();
+ if (common_flags()->detect_leaks) {
+ // Initialization which can fail or print warnings should only be done if
+ // LSan is actually enabled.
+ InitializeSuppressions();
+ InitializePlatformSpecificModules();
+ }
}
+class Decorator: private __sanitizer::AnsiColorDecorator {
+ public:
+ Decorator() : __sanitizer::AnsiColorDecorator(PrintsToTtyCached()) { }
+ const char *Error() { return Red(); }
+ const char *Leak() { return Blue(); }
+ const char *End() { return Default(); }
+};
+
static inline bool CanBeAHeapPointer(uptr p) {
// Since our heap is located in mmap-ed memory, we can assume a sensible lower
- // boundary on heap addresses.
+ // bound on heap addresses.
const uptr kMinAddress = 4 * 4096;
if (p < kMinAddress) return false;
#ifdef __x86_64__
@@ -76,13 +122,14 @@ static inline bool CanBeAHeapPointer(uptr p) {
#endif
}
-// Scan the memory range, looking for byte patterns that point into allocator
-// chunks. Mark those chunks with tag and add them to the frontier.
-// There are two usage modes for this function: finding non-leaked chunks
-// (tag = kReachable) and finding indirectly leaked chunks
-// (tag = kIndirectlyLeaked). In the second case, there's no flood fill,
-// so frontier = 0.
-void ScanRangeForPointers(uptr begin, uptr end, InternalVector<uptr> *frontier,
+// Scans the memory range, looking for byte patterns that point into allocator
+// chunks. Marks those chunks with |tag| and adds them to |frontier|.
+// There are two usage modes for this function: finding reachable or ignored
+// chunks (|tag| = kReachable or kIgnored) and finding indirectly leaked chunks
+// (|tag| = kIndirectlyLeaked). In the second case, there's no flood fill,
+// so |frontier| = 0.
+void ScanRangeForPointers(uptr begin, uptr end,
+ Frontier *frontier,
const char *region_type, ChunkTag tag) {
const uptr alignment = flags()->pointer_alignment();
if (flags()->log_pointers)
@@ -90,28 +137,34 @@ void ScanRangeForPointers(uptr begin, uptr end, InternalVector<uptr> *frontier,
uptr pp = begin;
if (pp % alignment)
pp = pp + alignment - pp % alignment;
- for (; pp + sizeof(uptr) <= end; pp += alignment) {
- void *p = *reinterpret_cast<void**>(pp);
+ for (; pp + sizeof(void *) <= end; pp += alignment) { // NOLINT
+ void *p = *reinterpret_cast<void **>(pp);
if (!CanBeAHeapPointer(reinterpret_cast<uptr>(p))) continue;
- // FIXME: PointsIntoChunk is SLOW because GetBlockBegin() in
- // LargeMmapAllocator involves a lock and a linear search.
- void *chunk = PointsIntoChunk(p);
+ uptr chunk = PointsIntoChunk(p);
if (!chunk) continue;
+ // Pointers to self don't count. This matters when tag == kIndirectlyLeaked.
+ if (chunk == begin) continue;
LsanMetadata m(chunk);
+ // Reachable beats ignored beats leaked.
if (m.tag() == kReachable) continue;
+ if (m.tag() == kIgnored && tag != kReachable) continue;
m.set_tag(tag);
if (flags()->log_pointers)
- Report("%p: found %p pointing into chunk %p-%p of size %llu.\n", pp, p,
- chunk, reinterpret_cast<uptr>(chunk) + m.requested_size(),
- m.requested_size());
+ Report("%p: found %p pointing into chunk %p-%p of size %zu.\n", pp, p,
+ chunk, chunk + m.requested_size(), m.requested_size());
if (frontier)
- frontier->push_back(reinterpret_cast<uptr>(chunk));
+ frontier->push_back(chunk);
}
}
-// Scan thread data (stacks and TLS) for heap pointers.
+void ForEachExtraStackRangeCb(uptr begin, uptr end, void* arg) {
+ Frontier *frontier = reinterpret_cast<Frontier *>(arg);
+ ScanRangeForPointers(begin, end, frontier, "FAKE STACK", kReachable);
+}
+
+// Scans thread data (stacks and TLS) for heap pointers.
static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
- InternalVector<uptr> *frontier) {
+ Frontier *frontier) {
InternalScopedBuffer<uptr> registers(SuspendedThreadsList::RegisterCount());
uptr registers_begin = reinterpret_cast<uptr>(registers.data());
uptr registers_end = registers_begin + registers.size();
@@ -150,13 +203,14 @@ static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
// signal handler on alternate stack). Again, consider the entire stack
// range to be reachable.
if (flags()->log_threads)
- Report("WARNING: stack_pointer not in stack_range.\n");
+ Report("WARNING: stack pointer not in stack range.\n");
} else {
// Shrink the stack range to ignore out-of-scope values.
stack_begin = sp;
}
ScanRangeForPointers(stack_begin, stack_end, frontier, "STACK",
kReachable);
+ ForEachExtraStackRange(os_id, ForEachExtraStackRangeCb, frontier);
}
if (flags()->use_tls) {
@@ -178,152 +232,210 @@ static void ProcessThreads(SuspendedThreadsList const &suspended_threads,
}
}
-static void FloodFillReachable(InternalVector<uptr> *frontier) {
+static void FloodFillTag(Frontier *frontier, ChunkTag tag) {
while (frontier->size()) {
uptr next_chunk = frontier->back();
frontier->pop_back();
- LsanMetadata m(reinterpret_cast<void *>(next_chunk));
+ LsanMetadata m(next_chunk);
ScanRangeForPointers(next_chunk, next_chunk + m.requested_size(), frontier,
- "HEAP", kReachable);
+ "HEAP", tag);
}
}
-// Mark leaked chunks which are reachable from other leaked chunks.
-void MarkIndirectlyLeakedCb::operator()(void *p) const {
- p = GetUserBegin(p);
- LsanMetadata m(p);
+// ForEachChunk callback. If the chunk is marked as leaked, marks all chunks
+// which are reachable from it as indirectly leaked.
+static void MarkIndirectlyLeakedCb(uptr chunk, void *arg) {
+ chunk = GetUserBegin(chunk);
+ LsanMetadata m(chunk);
if (m.allocated() && m.tag() != kReachable) {
- ScanRangeForPointers(reinterpret_cast<uptr>(p),
- reinterpret_cast<uptr>(p) + m.requested_size(),
+ ScanRangeForPointers(chunk, chunk + m.requested_size(),
/* frontier */ 0, "HEAP", kIndirectlyLeaked);
}
}
-// Set the appropriate tag on each chunk.
+// ForEachChunk callback. If chunk is marked as ignored, adds its address to
+// frontier.
+static void CollectIgnoredCb(uptr chunk, void *arg) {
+ CHECK(arg);
+ chunk = GetUserBegin(chunk);
+ LsanMetadata m(chunk);
+ if (m.allocated() && m.tag() == kIgnored)
+ reinterpret_cast<Frontier *>(arg)->push_back(chunk);
+}
+
+// Sets the appropriate tag on each chunk.
static void ClassifyAllChunks(SuspendedThreadsList const &suspended_threads) {
// Holds the flood fill frontier.
- InternalVector<uptr> frontier(GetPageSizeCached());
+ Frontier frontier(GetPageSizeCached());
if (flags()->use_globals)
ProcessGlobalRegions(&frontier);
ProcessThreads(suspended_threads, &frontier);
- FloodFillReachable(&frontier);
+ FloodFillTag(&frontier, kReachable);
+ // The check here is relatively expensive, so we do this in a separate flood
+ // fill. That way we can skip the check for chunks that are reachable
+ // otherwise.
+ if (flags()->log_pointers)
+ Report("Processing platform-specific allocations.\n");
ProcessPlatformSpecificAllocations(&frontier);
- FloodFillReachable(&frontier);
+ FloodFillTag(&frontier, kReachable);
- // Now all reachable chunks are marked. Iterate over leaked chunks and mark
- // those that are reachable from other leaked chunks.
if (flags()->log_pointers)
- Report("Now scanning leaked blocks for pointers.\n");
- ForEachChunk(MarkIndirectlyLeakedCb());
-}
+ Report("Scanning ignored chunks.\n");
+ CHECK_EQ(0, frontier.size());
+ ForEachChunk(CollectIgnoredCb, &frontier);
+ FloodFillTag(&frontier, kIgnored);
-void ClearTagCb::operator()(void *p) const {
- p = GetUserBegin(p);
- LsanMetadata m(p);
- m.set_tag(kDirectlyLeaked);
+ // Iterate over leaked chunks and mark those that are reachable from other
+ // leaked chunks.
+ if (flags()->log_pointers)
+ Report("Scanning leaked chunks.\n");
+ ForEachChunk(MarkIndirectlyLeakedCb, 0 /* arg */);
}
static void PrintStackTraceById(u32 stack_trace_id) {
CHECK(stack_trace_id);
uptr size = 0;
const uptr *trace = StackDepotGet(stack_trace_id, &size);
- StackTrace::PrintStack(trace, size, common_flags()->symbolize,
- common_flags()->strip_path_prefix, 0);
-}
-
-static void LockAndSuspendThreads(StopTheWorldCallback callback, void *arg) {
- LockThreadRegistry();
- LockAllocator();
- StopTheWorld(callback, arg);
- // Allocator must be unlocked by the callback.
- UnlockThreadRegistry();
+ StackTrace::PrintStack(trace, size);
}
-///// Normal leak checking. /////
-
-void CollectLeaksCb::operator()(void *p) const {
- p = GetUserBegin(p);
- LsanMetadata m(p);
+// ForEachChunk callback. Aggregates unreachable chunks into a LeakReport.
+static void CollectLeaksCb(uptr chunk, void *arg) {
+ CHECK(arg);
+ LeakReport *leak_report = reinterpret_cast<LeakReport *>(arg);
+ chunk = GetUserBegin(chunk);
+ LsanMetadata m(chunk);
if (!m.allocated()) return;
- if (m.tag() != kReachable) {
+ if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
uptr resolution = flags()->resolution;
if (resolution > 0) {
uptr size = 0;
const uptr *trace = StackDepotGet(m.stack_trace_id(), &size);
size = Min(size, resolution);
- leak_report_->Add(StackDepotPut(trace, size), m.requested_size(),
- m.tag());
+ leak_report->Add(StackDepotPut(trace, size), m.requested_size(), m.tag());
} else {
- leak_report_->Add(m.stack_trace_id(), m.requested_size(), m.tag());
+ leak_report->Add(m.stack_trace_id(), m.requested_size(), m.tag());
}
}
}
-static void CollectLeaks(LeakReport *leak_report) {
- ForEachChunk(CollectLeaksCb(leak_report));
-}
-
-void PrintLeakedCb::operator()(void *p) const {
- p = GetUserBegin(p);
- LsanMetadata m(p);
+// ForEachChunkCallback. Prints addresses of unreachable chunks.
+static void PrintLeakedCb(uptr chunk, void *arg) {
+ chunk = GetUserBegin(chunk);
+ LsanMetadata m(chunk);
if (!m.allocated()) return;
- if (m.tag() != kReachable) {
- CHECK(m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked);
- Printf("%s leaked %llu byte block at %p\n",
+ if (m.tag() == kDirectlyLeaked || m.tag() == kIndirectlyLeaked) {
+ Printf("%s leaked %zu byte object at %p.\n",
m.tag() == kDirectlyLeaked ? "Directly" : "Indirectly",
- m.requested_size(), p);
+ m.requested_size(), chunk);
}
}
+static void PrintMatchedSuppressions() {
+ InternalMmapVector<Suppression *> matched(1);
+ suppression_ctx->GetMatched(&matched);
+ if (!matched.size())
+ return;
+ const char *line = "-----------------------------------------------------";
+ Printf("%s\n", line);
+ Printf("Suppressions used:\n");
+ Printf(" count bytes template\n");
+ for (uptr i = 0; i < matched.size(); i++)
+ Printf("%7zu %10zu %s\n", static_cast<uptr>(matched[i]->hit_count),
+ matched[i]->weight, matched[i]->templ);
+ Printf("%s\n\n", line);
+}
+
static void PrintLeaked() {
- Printf("Reporting individual blocks:\n");
- Printf("============================\n");
- ForEachChunk(PrintLeakedCb());
Printf("\n");
+ Printf("Reporting individual objects:\n");
+ ForEachChunk(PrintLeakedCb, 0 /* arg */);
}
-enum LeakCheckResult {
- kFatalError,
- kLeaksFound,
- kNoLeaks
+struct DoLeakCheckParam {
+ bool success;
+ LeakReport leak_report;
};
static void DoLeakCheckCallback(const SuspendedThreadsList &suspended_threads,
void *arg) {
- LeakCheckResult *result = reinterpret_cast<LeakCheckResult *>(arg);
- CHECK_EQ(*result, kFatalError);
- // Allocator must not be locked when we call GetRegionBegin().
- UnlockAllocator();
+ DoLeakCheckParam *param = reinterpret_cast<DoLeakCheckParam *>(arg);
+ CHECK(param);
+ CHECK(!param->success);
+ CHECK(param->leak_report.IsEmpty());
ClassifyAllChunks(suspended_threads);
- LeakReport leak_report;
- CollectLeaks(&leak_report);
- if (leak_report.IsEmpty()) {
- *result = kNoLeaks;
- return;
- }
- Printf("\n");
- Printf("=================================================================\n");
- Report("ERROR: LeakSanitizer: detected memory leaks\n");
- leak_report.PrintLargest(flags()->max_leaks);
- if (flags()->report_blocks)
+ ForEachChunk(CollectLeaksCb, &param->leak_report);
+ if (!param->leak_report.IsEmpty() && flags()->report_objects)
PrintLeaked();
- leak_report.PrintSummary();
- Printf("\n");
- ForEachChunk(ClearTagCb());
- *result = kLeaksFound;
+ param->success = true;
}
void DoLeakCheck() {
- LeakCheckResult result = kFatalError;
- LockAndSuspendThreads(DoLeakCheckCallback, &result);
- if (result == kFatalError) {
+ EnsureMainThreadIDIsCorrect();
+ BlockingMutexLock l(&global_mutex);
+ static bool already_done;
+ if (already_done) return;
+ already_done = true;
+ if (&__lsan_is_turned_off && __lsan_is_turned_off())
+ return;
+
+ DoLeakCheckParam param;
+ param.success = false;
+ LockThreadRegistry();
+ LockAllocator();
+ StopTheWorld(DoLeakCheckCallback, &param);
+ UnlockAllocator();
+ UnlockThreadRegistry();
+
+ if (!param.success) {
Report("LeakSanitizer has encountered a fatal error.\n");
Die();
- } else if (result == kLeaksFound) {
- if (flags()->exitcode)
- internal__exit(flags()->exitcode);
}
+ uptr have_unsuppressed = param.leak_report.ApplySuppressions();
+ if (have_unsuppressed) {
+ Decorator d;
+ Printf("\n"
+ "================================================================="
+ "\n");
+ Printf("%s", d.Error());
+ Report("ERROR: LeakSanitizer: detected memory leaks\n");
+ Printf("%s", d.End());
+ param.leak_report.PrintLargest(flags()->max_leaks);
+ }
+ if (have_unsuppressed || (flags()->verbosity >= 1)) {
+ PrintMatchedSuppressions();
+ param.leak_report.PrintSummary();
+ }
+ if (have_unsuppressed && flags()->exitcode)
+ internal__exit(flags()->exitcode);
+}
+
+static Suppression *GetSuppressionForAddr(uptr addr) {
+ static const uptr kMaxAddrFrames = 16;
+ InternalScopedBuffer<AddressInfo> addr_frames(kMaxAddrFrames);
+ for (uptr i = 0; i < kMaxAddrFrames; i++) new (&addr_frames[i]) AddressInfo();
+ uptr addr_frames_num = Symbolizer::Get()->SymbolizeCode(
+ addr, addr_frames.data(), kMaxAddrFrames);
+ for (uptr i = 0; i < addr_frames_num; i++) {
+ Suppression* s;
+ if (suppression_ctx->Match(addr_frames[i].function, SuppressionLeak, &s) ||
+ suppression_ctx->Match(addr_frames[i].file, SuppressionLeak, &s) ||
+ suppression_ctx->Match(addr_frames[i].module, SuppressionLeak, &s))
+ return s;
+ }
+ return 0;
+}
+
+static Suppression *GetSuppressionForStack(u32 stack_trace_id) {
+ uptr size = 0;
+ const uptr *trace = StackDepotGet(stack_trace_id, &size);
+ for (uptr i = 0; i < size; i++) {
+ Suppression *s =
+ GetSuppressionForAddr(StackTrace::GetPreviousInstructionPc(trace[i]));
+ if (s) return s;
+ }
+ return 0;
}
///// LeakReport implementation. /////
@@ -333,7 +445,7 @@ void DoLeakCheck() {
// real-world applications.
// FIXME: Get rid of this limit by changing the implementation of LeakReport to
// use a hash table.
-const uptr kMaxLeaksConsidered = 1000;
+const uptr kMaxLeaksConsidered = 5000;
void LeakReport::Add(u32 stack_trace_id, uptr leaked_size, ChunkTag tag) {
CHECK(tag == kDirectlyLeaked || tag == kIndirectlyLeaked);
@@ -347,35 +459,47 @@ void LeakReport::Add(u32 stack_trace_id, uptr leaked_size, ChunkTag tag) {
}
if (leaks_.size() == kMaxLeaksConsidered) return;
Leak leak = { /* hit_count */ 1, leaked_size, stack_trace_id,
- is_directly_leaked };
+ is_directly_leaked, /* is_suppressed */ false };
leaks_.push_back(leak);
}
-static bool IsLarger(const Leak &leak1, const Leak &leak2) {
- return leak1.total_size > leak2.total_size;
+static bool LeakComparator(const Leak &leak1, const Leak &leak2) {
+ if (leak1.is_directly_leaked == leak2.is_directly_leaked)
+ return leak1.total_size > leak2.total_size;
+ else
+ return leak1.is_directly_leaked;
}
-void LeakReport::PrintLargest(uptr max_leaks) {
+void LeakReport::PrintLargest(uptr num_leaks_to_print) {
CHECK(leaks_.size() <= kMaxLeaksConsidered);
Printf("\n");
if (leaks_.size() == kMaxLeaksConsidered)
- Printf("Too many leaks! Only the first %llu leaks encountered will be "
+ Printf("Too many leaks! Only the first %zu leaks encountered will be "
"reported.\n",
kMaxLeaksConsidered);
- if (max_leaks > 0 && max_leaks < leaks_.size())
- Printf("The %llu largest leak(s):\n", max_leaks);
- InternalSort(&leaks_, leaks_.size(), IsLarger);
- max_leaks = max_leaks > 0 ? Min(max_leaks, leaks_.size()) : leaks_.size();
- for (uptr i = 0; i < max_leaks; i++) {
- Printf("%s leak of %llu byte(s) in %llu object(s) allocated from:\n",
+
+ uptr unsuppressed_count = 0;
+ for (uptr i = 0; i < leaks_.size(); i++)
+ if (!leaks_[i].is_suppressed) unsuppressed_count++;
+ if (num_leaks_to_print > 0 && num_leaks_to_print < unsuppressed_count)
+ Printf("The %zu largest leak(s):\n", num_leaks_to_print);
+ InternalSort(&leaks_, leaks_.size(), LeakComparator);
+ uptr leaks_printed = 0;
+ Decorator d;
+ for (uptr i = 0; i < leaks_.size(); i++) {
+ if (leaks_[i].is_suppressed) continue;
+ Printf("%s", d.Leak());
+ Printf("%s leak of %zu byte(s) in %zu object(s) allocated from:\n",
leaks_[i].is_directly_leaked ? "Direct" : "Indirect",
leaks_[i].total_size, leaks_[i].hit_count);
+ Printf("%s", d.End());
PrintStackTraceById(leaks_[i].stack_trace_id);
- Printf("\n");
+ leaks_printed++;
+ if (leaks_printed == num_leaks_to_print) break;
}
- if (max_leaks < leaks_.size()) {
- uptr remaining = leaks_.size() - max_leaks;
- Printf("Omitting %llu more leak(s).\n", remaining);
+ if (leaks_printed < unsuppressed_count) {
+ uptr remaining = unsuppressed_count - leaks_printed;
+ Printf("Omitting %zu more leak(s).\n", remaining);
}
}
@@ -383,11 +507,86 @@ void LeakReport::PrintSummary() {
CHECK(leaks_.size() <= kMaxLeaksConsidered);
uptr bytes = 0, allocations = 0;
for (uptr i = 0; i < leaks_.size(); i++) {
+ if (leaks_[i].is_suppressed) continue;
bytes += leaks_[i].total_size;
allocations += leaks_[i].hit_count;
}
- Printf("SUMMARY: LeakSanitizer: %llu byte(s) leaked in %llu allocation(s).\n",
- bytes, allocations);
+ InternalScopedBuffer<char> summary(kMaxSummaryLength);
+ internal_snprintf(summary.data(), summary.size(),
+ "%zu byte(s) leaked in %zu allocation(s).", bytes,
+ allocations);
+ ReportErrorSummary(summary.data());
+}
+
+uptr LeakReport::ApplySuppressions() {
+ uptr unsuppressed_count = 0;
+ for (uptr i = 0; i < leaks_.size(); i++) {
+ Suppression *s = GetSuppressionForStack(leaks_[i].stack_trace_id);
+ if (s) {
+ s->weight += leaks_[i].total_size;
+ s->hit_count += leaks_[i].hit_count;
+ leaks_[i].is_suppressed = true;
+ } else {
+ unsuppressed_count++;
+ }
+ }
+ return unsuppressed_count;
}
} // namespace __lsan
#endif // CAN_SANITIZE_LEAKS
+
+using namespace __lsan; // NOLINT
+
+extern "C" {
+SANITIZER_INTERFACE_ATTRIBUTE
+void __lsan_ignore_object(const void *p) {
+#if CAN_SANITIZE_LEAKS
+ if (!common_flags()->detect_leaks)
+ return;
+ // Cannot use PointsIntoChunk or LsanMetadata here, since the allocator is not
+ // locked.
+ BlockingMutexLock l(&global_mutex);
+ IgnoreObjectResult res = IgnoreObjectLocked(p);
+ if (res == kIgnoreObjectInvalid && flags()->verbosity >= 2)
+ Report("__lsan_ignore_object(): no heap object found at %p", p);
+ if (res == kIgnoreObjectAlreadyIgnored && flags()->verbosity >= 2)
+ Report("__lsan_ignore_object(): "
+ "heap object at %p is already being ignored\n", p);
+ if (res == kIgnoreObjectSuccess && flags()->verbosity >= 3)
+ Report("__lsan_ignore_object(): ignoring heap object at %p\n", p);
+#endif // CAN_SANITIZE_LEAKS
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __lsan_disable() {
+#if CAN_SANITIZE_LEAKS
+ __lsan::disable_counter++;
+#endif
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __lsan_enable() {
+#if CAN_SANITIZE_LEAKS
+ if (!__lsan::disable_counter && common_flags()->detect_leaks) {
+ Report("Unmatched call to __lsan_enable().\n");
+ Die();
+ }
+ __lsan::disable_counter--;
+#endif
+}
+
+SANITIZER_INTERFACE_ATTRIBUTE
+void __lsan_do_leak_check() {
+#if CAN_SANITIZE_LEAKS
+ if (common_flags()->detect_leaks)
+ __lsan::DoLeakCheck();
+#endif // CAN_SANITIZE_LEAKS
+}
+
+#if !SANITIZER_SUPPORTS_WEAK_HOOKS
+SANITIZER_INTERFACE_ATTRIBUTE SANITIZER_WEAK_ATTRIBUTE
+int __lsan_is_turned_off() {
+ return 0;
+}
+#endif
+} // extern "C"