diff options
Diffstat (limited to 'lib/Transforms/Scalar/LoopIdiomRecognize.cpp')
-rw-r--r-- | lib/Transforms/Scalar/LoopIdiomRecognize.cpp | 594 |
1 files changed, 594 insertions, 0 deletions
diff --git a/lib/Transforms/Scalar/LoopIdiomRecognize.cpp b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp new file mode 100644 index 000000000000..d7fa149492bd --- /dev/null +++ b/lib/Transforms/Scalar/LoopIdiomRecognize.cpp @@ -0,0 +1,594 @@ +//===-- LoopIdiomRecognize.cpp - Loop idiom recognition -------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass implements an idiom recognizer that transforms simple loops into a +// non-loop form. In cases that this kicks in, it can be a significant +// performance win. +// +//===----------------------------------------------------------------------===// +// +// TODO List: +// +// Future loop memory idioms to recognize: +// memcmp, memmove, strlen, etc. +// Future floating point idioms to recognize in -ffast-math mode: +// fpowi +// Future integer operation idioms to recognize: +// ctpop, ctlz, cttz +// +// Beware that isel's default lowering for ctpop is highly inefficient for +// i64 and larger types when i64 is legal and the value has few bits set. It +// would be good to enhance isel to emit a loop for ctpop in this case. +// +// We should enhance the memset/memcpy recognition to handle multiple stores in +// the loop. This would handle things like: +// void foo(_Complex float *P) +// for (i) { __real__(*P) = 0; __imag__(*P) = 0; } +// +// This could recognize common matrix multiplies and dot product idioms and +// replace them with calls to BLAS (if linked in??). +// +//===----------------------------------------------------------------------===// + +#define DEBUG_TYPE "loop-idiom" +#include "llvm/Transforms/Scalar.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Module.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/LoopPass.h" +#include "llvm/Analysis/ScalarEvolutionExpressions.h" +#include "llvm/Analysis/ScalarEvolutionExpander.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Target/TargetLibraryInfo.h" +#include "llvm/Transforms/Utils/Local.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/IRBuilder.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/Statistic.h" +using namespace llvm; + +STATISTIC(NumMemSet, "Number of memset's formed from loop stores"); +STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores"); + +namespace { + class LoopIdiomRecognize : public LoopPass { + Loop *CurLoop; + const TargetData *TD; + DominatorTree *DT; + ScalarEvolution *SE; + TargetLibraryInfo *TLI; + public: + static char ID; + explicit LoopIdiomRecognize() : LoopPass(ID) { + initializeLoopIdiomRecognizePass(*PassRegistry::getPassRegistry()); + } + + bool runOnLoop(Loop *L, LPPassManager &LPM); + bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, + SmallVectorImpl<BasicBlock*> &ExitBlocks); + + bool processLoopStore(StoreInst *SI, const SCEV *BECount); + bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount); + + bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize, + unsigned StoreAlignment, + Value *SplatValue, Instruction *TheStore, + const SCEVAddRecExpr *Ev, + const SCEV *BECount); + bool processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, + const SCEVAddRecExpr *StoreEv, + const SCEVAddRecExpr *LoadEv, + const SCEV *BECount); + + /// This transformation requires natural loop information & requires that + /// loop preheaders be inserted into the CFG. + /// + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.addRequired<LoopInfo>(); + AU.addPreserved<LoopInfo>(); + AU.addRequiredID(LoopSimplifyID); + AU.addPreservedID(LoopSimplifyID); + AU.addRequiredID(LCSSAID); + AU.addPreservedID(LCSSAID); + AU.addRequired<AliasAnalysis>(); + AU.addPreserved<AliasAnalysis>(); + AU.addRequired<ScalarEvolution>(); + AU.addPreserved<ScalarEvolution>(); + AU.addPreserved<DominatorTree>(); + AU.addRequired<DominatorTree>(); + AU.addRequired<TargetLibraryInfo>(); + } + }; +} + +char LoopIdiomRecognize::ID = 0; +INITIALIZE_PASS_BEGIN(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", + false, false) +INITIALIZE_PASS_DEPENDENCY(LoopInfo) +INITIALIZE_PASS_DEPENDENCY(DominatorTree) +INITIALIZE_PASS_DEPENDENCY(LoopSimplify) +INITIALIZE_PASS_DEPENDENCY(LCSSA) +INITIALIZE_PASS_DEPENDENCY(ScalarEvolution) +INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) +INITIALIZE_AG_DEPENDENCY(AliasAnalysis) +INITIALIZE_PASS_END(LoopIdiomRecognize, "loop-idiom", "Recognize loop idioms", + false, false) + +Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognize(); } + +/// DeleteDeadInstruction - Delete this instruction. Before we do, go through +/// and zero out all the operands of this instruction. If any of them become +/// dead, delete them and the computation tree that feeds them. +/// +static void DeleteDeadInstruction(Instruction *I, ScalarEvolution &SE) { + SmallVector<Instruction*, 32> NowDeadInsts; + + NowDeadInsts.push_back(I); + + // Before we touch this instruction, remove it from SE! + do { + Instruction *DeadInst = NowDeadInsts.pop_back_val(); + + // This instruction is dead, zap it, in stages. Start by removing it from + // SCEV. + SE.forgetValue(DeadInst); + + for (unsigned op = 0, e = DeadInst->getNumOperands(); op != e; ++op) { + Value *Op = DeadInst->getOperand(op); + DeadInst->setOperand(op, 0); + + // If this operand just became dead, add it to the NowDeadInsts list. + if (!Op->use_empty()) continue; + + if (Instruction *OpI = dyn_cast<Instruction>(Op)) + if (isInstructionTriviallyDead(OpI)) + NowDeadInsts.push_back(OpI); + } + + DeadInst->eraseFromParent(); + + } while (!NowDeadInsts.empty()); +} + +bool LoopIdiomRecognize::runOnLoop(Loop *L, LPPassManager &LPM) { + CurLoop = L; + + // The trip count of the loop must be analyzable. + SE = &getAnalysis<ScalarEvolution>(); + if (!SE->hasLoopInvariantBackedgeTakenCount(L)) + return false; + const SCEV *BECount = SE->getBackedgeTakenCount(L); + if (isa<SCEVCouldNotCompute>(BECount)) return false; + + // If this loop executes exactly one time, then it should be peeled, not + // optimized by this pass. + if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) + if (BECst->getValue()->getValue() == 0) + return false; + + // We require target data for now. + TD = getAnalysisIfAvailable<TargetData>(); + if (TD == 0) return false; + + DT = &getAnalysis<DominatorTree>(); + LoopInfo &LI = getAnalysis<LoopInfo>(); + TLI = &getAnalysis<TargetLibraryInfo>(); + + SmallVector<BasicBlock*, 8> ExitBlocks; + CurLoop->getUniqueExitBlocks(ExitBlocks); + + DEBUG(dbgs() << "loop-idiom Scanning: F[" + << L->getHeader()->getParent()->getName() + << "] Loop %" << L->getHeader()->getName() << "\n"); + + bool MadeChange = false; + // Scan all the blocks in the loop that are not in subloops. + for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; + ++BI) { + // Ignore blocks in subloops. + if (LI.getLoopFor(*BI) != CurLoop) + continue; + + MadeChange |= runOnLoopBlock(*BI, BECount, ExitBlocks); + } + return MadeChange; +} + +/// runOnLoopBlock - Process the specified block, which lives in a counted loop +/// with the specified backedge count. This block is known to be in the current +/// loop and not in any subloops. +bool LoopIdiomRecognize::runOnLoopBlock(BasicBlock *BB, const SCEV *BECount, + SmallVectorImpl<BasicBlock*> &ExitBlocks) { + // We can only promote stores in this block if they are unconditionally + // executed in the loop. For a block to be unconditionally executed, it has + // to dominate all the exit blocks of the loop. Verify this now. + for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i) + if (!DT->dominates(BB, ExitBlocks[i])) + return false; + + bool MadeChange = false; + for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) { + Instruction *Inst = I++; + // Look for store instructions, which may be optimized to memset/memcpy. + if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { + WeakVH InstPtr(I); + if (!processLoopStore(SI, BECount)) continue; + MadeChange = true; + + // If processing the store invalidated our iterator, start over from the + // top of the block. + if (InstPtr == 0) + I = BB->begin(); + continue; + } + + // Look for memset instructions, which may be optimized to a larger memset. + if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) { + WeakVH InstPtr(I); + if (!processLoopMemSet(MSI, BECount)) continue; + MadeChange = true; + + // If processing the memset invalidated our iterator, start over from the + // top of the block. + if (InstPtr == 0) + I = BB->begin(); + continue; + } + } + + return MadeChange; +} + + +/// processLoopStore - See if this store can be promoted to a memset or memcpy. +bool LoopIdiomRecognize::processLoopStore(StoreInst *SI, const SCEV *BECount) { + if (SI->isVolatile()) return false; + + Value *StoredVal = SI->getValueOperand(); + Value *StorePtr = SI->getPointerOperand(); + + // Reject stores that are so large that they overflow an unsigned. + uint64_t SizeInBits = TD->getTypeSizeInBits(StoredVal->getType()); + if ((SizeInBits & 7) || (SizeInBits >> 32) != 0) + return false; + + // See if the pointer expression is an AddRec like {base,+,1} on the current + // loop, which indicates a strided store. If we have something else, it's a + // random store we can't handle. + const SCEVAddRecExpr *StoreEv = + dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr)); + if (StoreEv == 0 || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine()) + return false; + + // Check to see if the stride matches the size of the store. If so, then we + // know that every byte is touched in the loop. + unsigned StoreSize = (unsigned)SizeInBits >> 3; + const SCEVConstant *Stride = dyn_cast<SCEVConstant>(StoreEv->getOperand(1)); + + // TODO: Could also handle negative stride here someday, that will require the + // validity check in mayLoopAccessLocation to be updated though. + if (Stride == 0 || StoreSize != Stride->getValue()->getValue()) + return false; + + // See if we can optimize just this store in isolation. + if (processLoopStridedStore(StorePtr, StoreSize, SI->getAlignment(), + StoredVal, SI, StoreEv, BECount)) + return true; + + // If the stored value is a strided load in the same loop with the same stride + // this this may be transformable into a memcpy. This kicks in for stuff like + // for (i) A[i] = B[i]; + if (LoadInst *LI = dyn_cast<LoadInst>(StoredVal)) { + const SCEVAddRecExpr *LoadEv = + dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getOperand(0))); + if (LoadEv && LoadEv->getLoop() == CurLoop && LoadEv->isAffine() && + StoreEv->getOperand(1) == LoadEv->getOperand(1) && !LI->isVolatile()) + if (processLoopStoreOfLoopLoad(SI, StoreSize, StoreEv, LoadEv, BECount)) + return true; + } + //errs() << "UNHANDLED strided store: " << *StoreEv << " - " << *SI << "\n"; + + return false; +} + +/// processLoopMemSet - See if this memset can be promoted to a large memset. +bool LoopIdiomRecognize:: +processLoopMemSet(MemSetInst *MSI, const SCEV *BECount) { + // We can only handle non-volatile memsets with a constant size. + if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength())) return false; + + // If we're not allowed to hack on memset, we fail. + if (!TLI->has(LibFunc::memset)) + return false; + + Value *Pointer = MSI->getDest(); + + // See if the pointer expression is an AddRec like {base,+,1} on the current + // loop, which indicates a strided store. If we have something else, it's a + // random store we can't handle. + const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer)); + if (Ev == 0 || Ev->getLoop() != CurLoop || !Ev->isAffine()) + return false; + + // Reject memsets that are so large that they overflow an unsigned. + uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue(); + if ((SizeInBytes >> 32) != 0) + return false; + + // Check to see if the stride matches the size of the memset. If so, then we + // know that every byte is touched in the loop. + const SCEVConstant *Stride = dyn_cast<SCEVConstant>(Ev->getOperand(1)); + + // TODO: Could also handle negative stride here someday, that will require the + // validity check in mayLoopAccessLocation to be updated though. + if (Stride == 0 || MSI->getLength() != Stride->getValue()) + return false; + + return processLoopStridedStore(Pointer, (unsigned)SizeInBytes, + MSI->getAlignment(), MSI->getValue(), + MSI, Ev, BECount); +} + + +/// mayLoopAccessLocation - Return true if the specified loop might access the +/// specified pointer location, which is a loop-strided access. The 'Access' +/// argument specifies what the verboten forms of access are (read or write). +static bool mayLoopAccessLocation(Value *Ptr,AliasAnalysis::ModRefResult Access, + Loop *L, const SCEV *BECount, + unsigned StoreSize, AliasAnalysis &AA, + Instruction *IgnoredStore) { + // Get the location that may be stored across the loop. Since the access is + // strided positively through memory, we say that the modified location starts + // at the pointer and has infinite size. + uint64_t AccessSize = AliasAnalysis::UnknownSize; + + // If the loop iterates a fixed number of times, we can refine the access size + // to be exactly the size of the memset, which is (BECount+1)*StoreSize + if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount)) + AccessSize = (BECst->getValue()->getZExtValue()+1)*StoreSize; + + // TODO: For this to be really effective, we have to dive into the pointer + // operand in the store. Store to &A[i] of 100 will always return may alias + // with store of &A[100], we need to StoreLoc to be "A" with size of 100, + // which will then no-alias a store to &A[100]. + AliasAnalysis::Location StoreLoc(Ptr, AccessSize); + + for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E; + ++BI) + for (BasicBlock::iterator I = (*BI)->begin(), E = (*BI)->end(); I != E; ++I) + if (&*I != IgnoredStore && + (AA.getModRefInfo(I, StoreLoc) & Access)) + return true; + + return false; +} + +/// getMemSetPatternValue - If a strided store of the specified value is safe to +/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should +/// be passed in. Otherwise, return null. +/// +/// Note that we don't ever attempt to use memset_pattern8 or 4, because these +/// just replicate their input array and then pass on to memset_pattern16. +static Constant *getMemSetPatternValue(Value *V, const TargetData &TD) { + // If the value isn't a constant, we can't promote it to being in a constant + // array. We could theoretically do a store to an alloca or something, but + // that doesn't seem worthwhile. + Constant *C = dyn_cast<Constant>(V); + if (C == 0) return 0; + + // Only handle simple values that are a power of two bytes in size. + uint64_t Size = TD.getTypeSizeInBits(V->getType()); + if (Size == 0 || (Size & 7) || (Size & (Size-1))) + return 0; + + // Don't care enough about darwin/ppc to implement this. + if (TD.isBigEndian()) + return 0; + + // Convert to size in bytes. + Size /= 8; + + // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see + // if the top and bottom are the same (e.g. for vectors and large integers). + if (Size > 16) return 0; + + // If the constant is exactly 16 bytes, just use it. + if (Size == 16) return C; + + // Otherwise, we'll use an array of the constants. + unsigned ArraySize = 16/Size; + ArrayType *AT = ArrayType::get(V->getType(), ArraySize); + return ConstantArray::get(AT, std::vector<Constant*>(ArraySize, C)); +} + + +/// processLoopStridedStore - We see a strided store of some value. If we can +/// transform this into a memset or memset_pattern in the loop preheader, do so. +bool LoopIdiomRecognize:: +processLoopStridedStore(Value *DestPtr, unsigned StoreSize, + unsigned StoreAlignment, Value *StoredVal, + Instruction *TheStore, const SCEVAddRecExpr *Ev, + const SCEV *BECount) { + + // If the stored value is a byte-wise value (like i32 -1), then it may be + // turned into a memset of i8 -1, assuming that all the consecutive bytes + // are stored. A store of i32 0x01020304 can never be turned into a memset, + // but it can be turned into memset_pattern if the target supports it. + Value *SplatValue = isBytewiseValue(StoredVal); + Constant *PatternValue = 0; + + // If we're allowed to form a memset, and the stored value would be acceptable + // for memset, use it. + if (SplatValue && TLI->has(LibFunc::memset) && + // Verify that the stored value is loop invariant. If not, we can't + // promote the memset. + CurLoop->isLoopInvariant(SplatValue)) { + // Keep and use SplatValue. + PatternValue = 0; + } else if (TLI->has(LibFunc::memset_pattern16) && + (PatternValue = getMemSetPatternValue(StoredVal, *TD))) { + // It looks like we can use PatternValue! + SplatValue = 0; + } else { + // Otherwise, this isn't an idiom we can transform. For example, we can't + // do anything with a 3-byte store, for example. + return false; + } + + + // Okay, we have a strided store "p[i]" of a splattable value. We can turn + // this into a memset in the loop preheader now if we want. However, this + // would be unsafe to do if there is anything else in the loop that may read + // or write to the aliased location. Check for an alias. + if (mayLoopAccessLocation(DestPtr, AliasAnalysis::ModRef, + CurLoop, BECount, + StoreSize, getAnalysis<AliasAnalysis>(), TheStore)) + return false; + + // Okay, everything looks good, insert the memset. + BasicBlock *Preheader = CurLoop->getLoopPreheader(); + + IRBuilder<> Builder(Preheader->getTerminator()); + + // The trip count of the loop and the base pointer of the addrec SCEV is + // guaranteed to be loop invariant, which means that it should dominate the + // header. Just insert code for it in the preheader. + SCEVExpander Expander(*SE); + + unsigned AddrSpace = cast<PointerType>(DestPtr->getType())->getAddressSpace(); + Value *BasePtr = + Expander.expandCodeFor(Ev->getStart(), Builder.getInt8PtrTy(AddrSpace), + Preheader->getTerminator()); + + // The # stored bytes is (BECount+1)*Size. Expand the trip count out to + // pointer size if it isn't already. + const Type *IntPtr = TD->getIntPtrType(DestPtr->getContext()); + BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); + + const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), + true /*no unsigned overflow*/); + if (StoreSize != 1) + NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), + true /*no unsigned overflow*/); + + Value *NumBytes = + Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); + + Value *NewCall; + if (SplatValue) + NewCall = Builder.CreateMemSet(BasePtr, SplatValue,NumBytes,StoreAlignment); + else { + Module *M = TheStore->getParent()->getParent()->getParent(); + Value *MSP = M->getOrInsertFunction("memset_pattern16", + Builder.getVoidTy(), + Builder.getInt8PtrTy(), + Builder.getInt8PtrTy(), IntPtr, + (void*)0); + + // Otherwise we should form a memset_pattern16. PatternValue is known to be + // an constant array of 16-bytes. Plop the value into a mergable global. + GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true, + GlobalValue::InternalLinkage, + PatternValue, ".memset_pattern"); + GV->setUnnamedAddr(true); // Ok to merge these. + GV->setAlignment(16); + Value *PatternPtr = ConstantExpr::getBitCast(GV, Builder.getInt8PtrTy()); + NewCall = Builder.CreateCall3(MSP, BasePtr, PatternPtr, NumBytes); + } + + DEBUG(dbgs() << " Formed memset: " << *NewCall << "\n" + << " from store to: " << *Ev << " at: " << *TheStore << "\n"); + (void)NewCall; + + // Okay, the memset has been formed. Zap the original store and anything that + // feeds into it. + DeleteDeadInstruction(TheStore, *SE); + ++NumMemSet; + return true; +} + +/// processLoopStoreOfLoopLoad - We see a strided store whose value is a +/// same-strided load. +bool LoopIdiomRecognize:: +processLoopStoreOfLoopLoad(StoreInst *SI, unsigned StoreSize, + const SCEVAddRecExpr *StoreEv, + const SCEVAddRecExpr *LoadEv, + const SCEV *BECount) { + // If we're not allowed to form memcpy, we fail. + if (!TLI->has(LibFunc::memcpy)) + return false; + + LoadInst *LI = cast<LoadInst>(SI->getValueOperand()); + + // Okay, we have a strided store "p[i]" of a loaded value. We can turn + // this into a memcpy in the loop preheader now if we want. However, this + // would be unsafe to do if there is anything else in the loop that may read + // or write to the stored location (including the load feeding the stores). + // Check for an alias. + if (mayLoopAccessLocation(SI->getPointerOperand(), AliasAnalysis::ModRef, + CurLoop, BECount, StoreSize, + getAnalysis<AliasAnalysis>(), SI)) + return false; + + // For a memcpy, we have to make sure that the input array is not being + // mutated by the loop. + if (mayLoopAccessLocation(LI->getPointerOperand(), AliasAnalysis::Mod, + CurLoop, BECount, StoreSize, + getAnalysis<AliasAnalysis>(), SI)) + return false; + + // Okay, everything looks good, insert the memcpy. + BasicBlock *Preheader = CurLoop->getLoopPreheader(); + + IRBuilder<> Builder(Preheader->getTerminator()); + + // The trip count of the loop and the base pointer of the addrec SCEV is + // guaranteed to be loop invariant, which means that it should dominate the + // header. Just insert code for it in the preheader. + SCEVExpander Expander(*SE); + + Value *LoadBasePtr = + Expander.expandCodeFor(LoadEv->getStart(), + Builder.getInt8PtrTy(LI->getPointerAddressSpace()), + Preheader->getTerminator()); + Value *StoreBasePtr = + Expander.expandCodeFor(StoreEv->getStart(), + Builder.getInt8PtrTy(SI->getPointerAddressSpace()), + Preheader->getTerminator()); + + // The # stored bytes is (BECount+1)*Size. Expand the trip count out to + // pointer size if it isn't already. + const Type *IntPtr = TD->getIntPtrType(SI->getContext()); + BECount = SE->getTruncateOrZeroExtend(BECount, IntPtr); + + const SCEV *NumBytesS = SE->getAddExpr(BECount, SE->getConstant(IntPtr, 1), + true /*no unsigned overflow*/); + if (StoreSize != 1) + NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize), + true /*no unsigned overflow*/); + + Value *NumBytes = + Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator()); + + Value *NewCall = + Builder.CreateMemCpy(StoreBasePtr, LoadBasePtr, NumBytes, + std::min(SI->getAlignment(), LI->getAlignment())); + + DEBUG(dbgs() << " Formed memcpy: " << *NewCall << "\n" + << " from load ptr=" << *LoadEv << " at: " << *LI << "\n" + << " from store ptr=" << *StoreEv << " at: " << *SI << "\n"); + (void)NewCall; + + // Okay, the memset has been formed. Zap the original store and anything that + // feeds into it. + DeleteDeadInstruction(SI, *SE); + ++NumMemCpy; + return true; +} |