diff options
Diffstat (limited to 'lib/IR/BasicBlock.cpp')
-rw-r--r-- | lib/IR/BasicBlock.cpp | 371 |
1 files changed, 371 insertions, 0 deletions
diff --git a/lib/IR/BasicBlock.cpp b/lib/IR/BasicBlock.cpp new file mode 100644 index 000000000000..41e58ec5da2d --- /dev/null +++ b/lib/IR/BasicBlock.cpp @@ -0,0 +1,371 @@ +//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This file implements the BasicBlock class for the IR library. +// +//===----------------------------------------------------------------------===// + +#include "llvm/IR/BasicBlock.h" +#include "SymbolTableListTraitsImpl.h" +#include "llvm/ADT/STLExtras.h" +#include "llvm/IR/Constants.h" +#include "llvm/IR/Instructions.h" +#include "llvm/IR/IntrinsicInst.h" +#include "llvm/IR/LLVMContext.h" +#include "llvm/IR/Type.h" +#include "llvm/Support/CFG.h" +#include "llvm/Support/LeakDetector.h" +#include <algorithm> +using namespace llvm; + +ValueSymbolTable *BasicBlock::getValueSymbolTable() { + if (Function *F = getParent()) + return &F->getValueSymbolTable(); + return 0; +} + +LLVMContext &BasicBlock::getContext() const { + return getType()->getContext(); +} + +// Explicit instantiation of SymbolTableListTraits since some of the methods +// are not in the public header file... +template class llvm::SymbolTableListTraits<Instruction, BasicBlock>; + + +BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent, + BasicBlock *InsertBefore) + : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(0) { + + // Make sure that we get added to a function + LeakDetector::addGarbageObject(this); + + if (InsertBefore) { + assert(NewParent && + "Cannot insert block before another block with no function!"); + NewParent->getBasicBlockList().insert(InsertBefore, this); + } else if (NewParent) { + NewParent->getBasicBlockList().push_back(this); + } + + setName(Name); +} + + +BasicBlock::~BasicBlock() { + // If the address of the block is taken and it is being deleted (e.g. because + // it is dead), this means that there is either a dangling constant expr + // hanging off the block, or an undefined use of the block (source code + // expecting the address of a label to keep the block alive even though there + // is no indirect branch). Handle these cases by zapping the BlockAddress + // nodes. There are no other possible uses at this point. + if (hasAddressTaken()) { + assert(!use_empty() && "There should be at least one blockaddress!"); + Constant *Replacement = + ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1); + while (!use_empty()) { + BlockAddress *BA = cast<BlockAddress>(use_back()); + BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement, + BA->getType())); + BA->destroyConstant(); + } + } + + assert(getParent() == 0 && "BasicBlock still linked into the program!"); + dropAllReferences(); + InstList.clear(); +} + +void BasicBlock::setParent(Function *parent) { + if (getParent()) + LeakDetector::addGarbageObject(this); + + // Set Parent=parent, updating instruction symtab entries as appropriate. + InstList.setSymTabObject(&Parent, parent); + + if (getParent()) + LeakDetector::removeGarbageObject(this); +} + +void BasicBlock::removeFromParent() { + getParent()->getBasicBlockList().remove(this); +} + +void BasicBlock::eraseFromParent() { + getParent()->getBasicBlockList().erase(this); +} + +/// moveBefore - Unlink this basic block from its current function and +/// insert it into the function that MovePos lives in, right before MovePos. +void BasicBlock::moveBefore(BasicBlock *MovePos) { + MovePos->getParent()->getBasicBlockList().splice(MovePos, + getParent()->getBasicBlockList(), this); +} + +/// moveAfter - Unlink this basic block from its current function and +/// insert it into the function that MovePos lives in, right after MovePos. +void BasicBlock::moveAfter(BasicBlock *MovePos) { + Function::iterator I = MovePos; + MovePos->getParent()->getBasicBlockList().splice(++I, + getParent()->getBasicBlockList(), this); +} + + +TerminatorInst *BasicBlock::getTerminator() { + if (InstList.empty()) return 0; + return dyn_cast<TerminatorInst>(&InstList.back()); +} + +const TerminatorInst *BasicBlock::getTerminator() const { + if (InstList.empty()) return 0; + return dyn_cast<TerminatorInst>(&InstList.back()); +} + +Instruction* BasicBlock::getFirstNonPHI() { + BasicBlock::iterator i = begin(); + // All valid basic blocks should have a terminator, + // which is not a PHINode. If we have an invalid basic + // block we'll get an assertion failure when dereferencing + // a past-the-end iterator. + while (isa<PHINode>(i)) ++i; + return &*i; +} + +Instruction* BasicBlock::getFirstNonPHIOrDbg() { + BasicBlock::iterator i = begin(); + // All valid basic blocks should have a terminator, + // which is not a PHINode. If we have an invalid basic + // block we'll get an assertion failure when dereferencing + // a past-the-end iterator. + while (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) ++i; + return &*i; +} + +Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() { + // All valid basic blocks should have a terminator, + // which is not a PHINode. If we have an invalid basic + // block we'll get an assertion failure when dereferencing + // a past-the-end iterator. + BasicBlock::iterator i = begin(); + for (;; ++i) { + if (isa<PHINode>(i) || isa<DbgInfoIntrinsic>(i)) + continue; + + const IntrinsicInst *II = dyn_cast<IntrinsicInst>(i); + if (!II) + break; + if (II->getIntrinsicID() != Intrinsic::lifetime_start && + II->getIntrinsicID() != Intrinsic::lifetime_end) + break; + } + return &*i; +} + +BasicBlock::iterator BasicBlock::getFirstInsertionPt() { + iterator InsertPt = getFirstNonPHI(); + if (isa<LandingPadInst>(InsertPt)) ++InsertPt; + return InsertPt; +} + +void BasicBlock::dropAllReferences() { + for(iterator I = begin(), E = end(); I != E; ++I) + I->dropAllReferences(); +} + +/// getSinglePredecessor - If this basic block has a single predecessor block, +/// return the block, otherwise return a null pointer. +BasicBlock *BasicBlock::getSinglePredecessor() { + pred_iterator PI = pred_begin(this), E = pred_end(this); + if (PI == E) return 0; // No preds. + BasicBlock *ThePred = *PI; + ++PI; + return (PI == E) ? ThePred : 0 /*multiple preds*/; +} + +/// getUniquePredecessor - If this basic block has a unique predecessor block, +/// return the block, otherwise return a null pointer. +/// Note that unique predecessor doesn't mean single edge, there can be +/// multiple edges from the unique predecessor to this block (for example +/// a switch statement with multiple cases having the same destination). +BasicBlock *BasicBlock::getUniquePredecessor() { + pred_iterator PI = pred_begin(this), E = pred_end(this); + if (PI == E) return 0; // No preds. + BasicBlock *PredBB = *PI; + ++PI; + for (;PI != E; ++PI) { + if (*PI != PredBB) + return 0; + // The same predecessor appears multiple times in the predecessor list. + // This is OK. + } + return PredBB; +} + +/// removePredecessor - This method is used to notify a BasicBlock that the +/// specified Predecessor of the block is no longer able to reach it. This is +/// actually not used to update the Predecessor list, but is actually used to +/// update the PHI nodes that reside in the block. Note that this should be +/// called while the predecessor still refers to this block. +/// +void BasicBlock::removePredecessor(BasicBlock *Pred, + bool DontDeleteUselessPHIs) { + assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs. + find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) && + "removePredecessor: BB is not a predecessor!"); + + if (InstList.empty()) return; + PHINode *APN = dyn_cast<PHINode>(&front()); + if (!APN) return; // Quick exit. + + // If there are exactly two predecessors, then we want to nuke the PHI nodes + // altogether. However, we cannot do this, if this in this case: + // + // Loop: + // %x = phi [X, Loop] + // %x2 = add %x, 1 ;; This would become %x2 = add %x2, 1 + // br Loop ;; %x2 does not dominate all uses + // + // This is because the PHI node input is actually taken from the predecessor + // basic block. The only case this can happen is with a self loop, so we + // check for this case explicitly now. + // + unsigned max_idx = APN->getNumIncomingValues(); + assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!"); + if (max_idx == 2) { + BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred); + + // Disable PHI elimination! + if (this == Other) max_idx = 3; + } + + // <= Two predecessors BEFORE I remove one? + if (max_idx <= 2 && !DontDeleteUselessPHIs) { + // Yup, loop through and nuke the PHI nodes + while (PHINode *PN = dyn_cast<PHINode>(&front())) { + // Remove the predecessor first. + PN->removeIncomingValue(Pred, !DontDeleteUselessPHIs); + + // If the PHI _HAD_ two uses, replace PHI node with its now *single* value + if (max_idx == 2) { + if (PN->getIncomingValue(0) != PN) + PN->replaceAllUsesWith(PN->getIncomingValue(0)); + else + // We are left with an infinite loop with no entries: kill the PHI. + PN->replaceAllUsesWith(UndefValue::get(PN->getType())); + getInstList().pop_front(); // Remove the PHI node + } + + // If the PHI node already only had one entry, it got deleted by + // removeIncomingValue. + } + } else { + // Okay, now we know that we need to remove predecessor #pred_idx from all + // PHI nodes. Iterate over each PHI node fixing them up + PHINode *PN; + for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) { + ++II; + PN->removeIncomingValue(Pred, false); + // If all incoming values to the Phi are the same, we can replace the Phi + // with that value. + Value* PNV = 0; + if (!DontDeleteUselessPHIs && (PNV = PN->hasConstantValue())) + if (PNV != PN) { + PN->replaceAllUsesWith(PNV); + PN->eraseFromParent(); + } + } + } +} + + +/// splitBasicBlock - This splits a basic block into two at the specified +/// instruction. Note that all instructions BEFORE the specified iterator stay +/// as part of the original basic block, an unconditional branch is added to +/// the new BB, and the rest of the instructions in the BB are moved to the new +/// BB, including the old terminator. This invalidates the iterator. +/// +/// Note that this only works on well formed basic blocks (must have a +/// terminator), and 'I' must not be the end of instruction list (which would +/// cause a degenerate basic block to be formed, having a terminator inside of +/// the basic block). +/// +BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) { + assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!"); + assert(I != InstList.end() && + "Trying to get me to create degenerate basic block!"); + + BasicBlock *InsertBefore = llvm::next(Function::iterator(this)) + .getNodePtrUnchecked(); + BasicBlock *New = BasicBlock::Create(getContext(), BBName, + getParent(), InsertBefore); + + // Move all of the specified instructions from the original basic block into + // the new basic block. + New->getInstList().splice(New->end(), this->getInstList(), I, end()); + + // Add a branch instruction to the newly formed basic block. + BranchInst::Create(New, this); + + // Now we must loop through all of the successors of the New block (which + // _were_ the successors of the 'this' block), and update any PHI nodes in + // successors. If there were PHI nodes in the successors, then they need to + // know that incoming branches will be from New, not from Old. + // + for (succ_iterator I = succ_begin(New), E = succ_end(New); I != E; ++I) { + // Loop over any phi nodes in the basic block, updating the BB field of + // incoming values... + BasicBlock *Successor = *I; + PHINode *PN; + for (BasicBlock::iterator II = Successor->begin(); + (PN = dyn_cast<PHINode>(II)); ++II) { + int IDX = PN->getBasicBlockIndex(this); + while (IDX != -1) { + PN->setIncomingBlock((unsigned)IDX, New); + IDX = PN->getBasicBlockIndex(this); + } + } + } + return New; +} + +void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) { + TerminatorInst *TI = getTerminator(); + if (!TI) + // Cope with being called on a BasicBlock that doesn't have a terminator + // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this. + return; + for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) { + BasicBlock *Succ = TI->getSuccessor(i); + // N.B. Succ might not be a complete BasicBlock, so don't assume + // that it ends with a non-phi instruction. + for (iterator II = Succ->begin(), IE = Succ->end(); II != IE; ++II) { + PHINode *PN = dyn_cast<PHINode>(II); + if (!PN) + break; + int i; + while ((i = PN->getBasicBlockIndex(this)) >= 0) + PN->setIncomingBlock(i, New); + } + } +} + +/// isLandingPad - Return true if this basic block is a landing pad. I.e., it's +/// the destination of the 'unwind' edge of an invoke instruction. +bool BasicBlock::isLandingPad() const { + return isa<LandingPadInst>(getFirstNonPHI()); +} + +/// getLandingPadInst() - Return the landingpad instruction associated with +/// the landing pad. +LandingPadInst *BasicBlock::getLandingPadInst() { + return dyn_cast<LandingPadInst>(getFirstNonPHI()); +} +const LandingPadInst *BasicBlock::getLandingPadInst() const { + return dyn_cast<LandingPadInst>(getFirstNonPHI()); +} |