diff options
Diffstat (limited to 'lib/Analysis/Lint.cpp')
-rw-r--r-- | lib/Analysis/Lint.cpp | 495 |
1 files changed, 495 insertions, 0 deletions
diff --git a/lib/Analysis/Lint.cpp b/lib/Analysis/Lint.cpp new file mode 100644 index 000000000000..25d4f9571dab --- /dev/null +++ b/lib/Analysis/Lint.cpp @@ -0,0 +1,495 @@ +//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This pass statically checks for common and easily-identified constructs +// which produce undefined or likely unintended behavior in LLVM IR. +// +// It is not a guarantee of correctness, in two ways. First, it isn't +// comprehensive. There are checks which could be done statically which are +// not yet implemented. Some of these are indicated by TODO comments, but +// those aren't comprehensive either. Second, many conditions cannot be +// checked statically. This pass does no dynamic instrumentation, so it +// can't check for all possible problems. +// +// Another limitation is that it assumes all code will be executed. A store +// through a null pointer in a basic block which is never reached is harmless, +// but this pass will warn about it anyway. +// +// Optimization passes may make conditions that this pass checks for more or +// less obvious. If an optimization pass appears to be introducing a warning, +// it may be that the optimization pass is merely exposing an existing +// condition in the code. +// +// This code may be run before instcombine. In many cases, instcombine checks +// for the same kinds of things and turns instructions with undefined behavior +// into unreachable (or equivalent). Because of this, this pass makes some +// effort to look through bitcasts and so on. +// +//===----------------------------------------------------------------------===// + +#include "llvm/Analysis/Passes.h" +#include "llvm/Analysis/AliasAnalysis.h" +#include "llvm/Analysis/Lint.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/Assembly/Writer.h" +#include "llvm/Target/TargetData.h" +#include "llvm/Pass.h" +#include "llvm/PassManager.h" +#include "llvm/IntrinsicInst.h" +#include "llvm/Function.h" +#include "llvm/Support/CallSite.h" +#include "llvm/Support/Debug.h" +#include "llvm/Support/InstVisitor.h" +#include "llvm/Support/raw_ostream.h" +#include "llvm/ADT/STLExtras.h" +using namespace llvm; + +namespace { + namespace MemRef { + static unsigned Read = 1; + static unsigned Write = 2; + static unsigned Callee = 4; + static unsigned Branchee = 8; + } + + class Lint : public FunctionPass, public InstVisitor<Lint> { + friend class InstVisitor<Lint>; + + void visitFunction(Function &F); + + void visitCallSite(CallSite CS); + void visitMemoryReference(Instruction &I, Value *Ptr, unsigned Align, + const Type *Ty, unsigned Flags); + + void visitCallInst(CallInst &I); + void visitInvokeInst(InvokeInst &I); + void visitReturnInst(ReturnInst &I); + void visitLoadInst(LoadInst &I); + void visitStoreInst(StoreInst &I); + void visitXor(BinaryOperator &I); + void visitSub(BinaryOperator &I); + void visitLShr(BinaryOperator &I); + void visitAShr(BinaryOperator &I); + void visitShl(BinaryOperator &I); + void visitSDiv(BinaryOperator &I); + void visitUDiv(BinaryOperator &I); + void visitSRem(BinaryOperator &I); + void visitURem(BinaryOperator &I); + void visitAllocaInst(AllocaInst &I); + void visitVAArgInst(VAArgInst &I); + void visitIndirectBrInst(IndirectBrInst &I); + void visitExtractElementInst(ExtractElementInst &I); + void visitInsertElementInst(InsertElementInst &I); + void visitUnreachableInst(UnreachableInst &I); + + public: + Module *Mod; + AliasAnalysis *AA; + TargetData *TD; + + std::string Messages; + raw_string_ostream MessagesStr; + + static char ID; // Pass identification, replacement for typeid + Lint() : FunctionPass(&ID), MessagesStr(Messages) {} + + virtual bool runOnFunction(Function &F); + + virtual void getAnalysisUsage(AnalysisUsage &AU) const { + AU.setPreservesAll(); + AU.addRequired<AliasAnalysis>(); + } + virtual void print(raw_ostream &O, const Module *M) const {} + + void WriteValue(const Value *V) { + if (!V) return; + if (isa<Instruction>(V)) { + MessagesStr << *V << '\n'; + } else { + WriteAsOperand(MessagesStr, V, true, Mod); + MessagesStr << '\n'; + } + } + + void WriteType(const Type *T) { + if (!T) return; + MessagesStr << ' '; + WriteTypeSymbolic(MessagesStr, T, Mod); + } + + // CheckFailed - A check failed, so print out the condition and the message + // that failed. This provides a nice place to put a breakpoint if you want + // to see why something is not correct. + void CheckFailed(const Twine &Message, + const Value *V1 = 0, const Value *V2 = 0, + const Value *V3 = 0, const Value *V4 = 0) { + MessagesStr << Message.str() << "\n"; + WriteValue(V1); + WriteValue(V2); + WriteValue(V3); + WriteValue(V4); + } + + void CheckFailed(const Twine &Message, const Value *V1, + const Type *T2, const Value *V3 = 0) { + MessagesStr << Message.str() << "\n"; + WriteValue(V1); + WriteType(T2); + WriteValue(V3); + } + + void CheckFailed(const Twine &Message, const Type *T1, + const Type *T2 = 0, const Type *T3 = 0) { + MessagesStr << Message.str() << "\n"; + WriteType(T1); + WriteType(T2); + WriteType(T3); + } + }; +} + +char Lint::ID = 0; +static RegisterPass<Lint> +X("lint", "Statically lint-checks LLVM IR", false, true); + +// Assert - We know that cond should be true, if not print an error message. +#define Assert(C, M) \ + do { if (!(C)) { CheckFailed(M); return; } } while (0) +#define Assert1(C, M, V1) \ + do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) +#define Assert2(C, M, V1, V2) \ + do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) +#define Assert3(C, M, V1, V2, V3) \ + do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) +#define Assert4(C, M, V1, V2, V3, V4) \ + do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) + +// Lint::run - This is the main Analysis entry point for a +// function. +// +bool Lint::runOnFunction(Function &F) { + Mod = F.getParent(); + AA = &getAnalysis<AliasAnalysis>(); + TD = getAnalysisIfAvailable<TargetData>(); + visit(F); + dbgs() << MessagesStr.str(); + return false; +} + +void Lint::visitFunction(Function &F) { + // This isn't undefined behavior, it's just a little unusual, and it's a + // fairly common mistake to neglect to name a function. + Assert1(F.hasName() || F.hasLocalLinkage(), + "Unusual: Unnamed function with non-local linkage", &F); +} + +void Lint::visitCallSite(CallSite CS) { + Instruction &I = *CS.getInstruction(); + Value *Callee = CS.getCalledValue(); + + // TODO: Check function alignment? + visitMemoryReference(I, Callee, 0, 0, MemRef::Callee); + + if (Function *F = dyn_cast<Function>(Callee->stripPointerCasts())) { + Assert1(CS.getCallingConv() == F->getCallingConv(), + "Undefined behavior: Caller and callee calling convention differ", + &I); + + const FunctionType *FT = F->getFunctionType(); + unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); + + Assert1(FT->isVarArg() ? + FT->getNumParams() <= NumActualArgs : + FT->getNumParams() == NumActualArgs, + "Undefined behavior: Call argument count mismatches callee " + "argument count", &I); + + // TODO: Check argument types (in case the callee was casted) + + // TODO: Check ABI-significant attributes. + + // TODO: Check noalias attribute. + + // TODO: Check sret attribute. + } + + // TODO: Check the "tail" keyword constraints. + + if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) + switch (II->getIntrinsicID()) { + default: break; + + // TODO: Check more intrinsics + + case Intrinsic::memcpy: { + MemCpyInst *MCI = cast<MemCpyInst>(&I); + visitMemoryReference(I, MCI->getSource(), MCI->getAlignment(), 0, + MemRef::Write); + visitMemoryReference(I, MCI->getDest(), MCI->getAlignment(), 0, + MemRef::Read); + + // Check that the memcpy arguments don't overlap. The AliasAnalysis API + // isn't expressive enough for what we really want to do. Known partial + // overlap is not distinguished from the case where nothing is known. + unsigned Size = 0; + if (const ConstantInt *Len = + dyn_cast<ConstantInt>(MCI->getLength()->stripPointerCasts())) + if (Len->getValue().isIntN(32)) + Size = Len->getValue().getZExtValue(); + Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != + AliasAnalysis::MustAlias, + "Undefined behavior: memcpy source and destination overlap", &I); + break; + } + case Intrinsic::memmove: { + MemMoveInst *MMI = cast<MemMoveInst>(&I); + visitMemoryReference(I, MMI->getSource(), MMI->getAlignment(), 0, + MemRef::Write); + visitMemoryReference(I, MMI->getDest(), MMI->getAlignment(), 0, + MemRef::Read); + break; + } + case Intrinsic::memset: { + MemSetInst *MSI = cast<MemSetInst>(&I); + visitMemoryReference(I, MSI->getDest(), MSI->getAlignment(), 0, + MemRef::Write); + break; + } + + case Intrinsic::vastart: + Assert1(I.getParent()->getParent()->isVarArg(), + "Undefined behavior: va_start called in a non-varargs function", + &I); + + visitMemoryReference(I, CS.getArgument(0), 0, 0, + MemRef::Read | MemRef::Write); + break; + case Intrinsic::vacopy: + visitMemoryReference(I, CS.getArgument(0), 0, 0, MemRef::Write); + visitMemoryReference(I, CS.getArgument(1), 0, 0, MemRef::Read); + break; + case Intrinsic::vaend: + visitMemoryReference(I, CS.getArgument(0), 0, 0, + MemRef::Read | MemRef::Write); + break; + + case Intrinsic::stackrestore: + visitMemoryReference(I, CS.getArgument(0), 0, 0, + MemRef::Read); + break; + } +} + +void Lint::visitCallInst(CallInst &I) { + return visitCallSite(&I); +} + +void Lint::visitInvokeInst(InvokeInst &I) { + return visitCallSite(&I); +} + +void Lint::visitReturnInst(ReturnInst &I) { + Function *F = I.getParent()->getParent(); + Assert1(!F->doesNotReturn(), + "Unusual: Return statement in function with noreturn attribute", + &I); +} + +// TODO: Add a length argument and check that the reference is in bounds +void Lint::visitMemoryReference(Instruction &I, + Value *Ptr, unsigned Align, const Type *Ty, + unsigned Flags) { + Value *UnderlyingObject = Ptr->getUnderlyingObject(); + Assert1(!isa<ConstantPointerNull>(UnderlyingObject), + "Undefined behavior: Null pointer dereference", &I); + Assert1(!isa<UndefValue>(UnderlyingObject), + "Undefined behavior: Undef pointer dereference", &I); + + if (Flags & MemRef::Write) { + if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject)) + Assert1(!GV->isConstant(), + "Undefined behavior: Write to read-only memory", &I); + Assert1(!isa<Function>(UnderlyingObject) && + !isa<BlockAddress>(UnderlyingObject), + "Undefined behavior: Write to text section", &I); + } + if (Flags & MemRef::Read) { + Assert1(!isa<Function>(UnderlyingObject), + "Unusual: Load from function body", &I); + Assert1(!isa<BlockAddress>(UnderlyingObject), + "Undefined behavior: Load from block address", &I); + } + if (Flags & MemRef::Callee) { + Assert1(!isa<BlockAddress>(UnderlyingObject), + "Undefined behavior: Call to block address", &I); + } + if (Flags & MemRef::Branchee) { + Assert1(!isa<Constant>(UnderlyingObject) || + isa<BlockAddress>(UnderlyingObject), + "Undefined behavior: Branch to non-blockaddress", &I); + } + + if (TD) { + if (Align == 0 && Ty) Align = TD->getABITypeAlignment(Ty); + + if (Align != 0) { + unsigned BitWidth = TD->getTypeSizeInBits(Ptr->getType()); + APInt Mask = APInt::getAllOnesValue(BitWidth), + KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); + ComputeMaskedBits(Ptr, Mask, KnownZero, KnownOne, TD); + Assert1(!(KnownOne & APInt::getLowBitsSet(BitWidth, Log2_32(Align))), + "Undefined behavior: Memory reference address is misaligned", &I); + } + } +} + +void Lint::visitLoadInst(LoadInst &I) { + visitMemoryReference(I, I.getPointerOperand(), I.getAlignment(), I.getType(), + MemRef::Read); +} + +void Lint::visitStoreInst(StoreInst &I) { + visitMemoryReference(I, I.getPointerOperand(), I.getAlignment(), + I.getOperand(0)->getType(), MemRef::Write); +} + +void Lint::visitXor(BinaryOperator &I) { + Assert1(!isa<UndefValue>(I.getOperand(0)) || + !isa<UndefValue>(I.getOperand(1)), + "Undefined result: xor(undef, undef)", &I); +} + +void Lint::visitSub(BinaryOperator &I) { + Assert1(!isa<UndefValue>(I.getOperand(0)) || + !isa<UndefValue>(I.getOperand(1)), + "Undefined result: sub(undef, undef)", &I); +} + +void Lint::visitLShr(BinaryOperator &I) { + if (ConstantInt *CI = + dyn_cast<ConstantInt>(I.getOperand(1)->stripPointerCasts())) + Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), + "Undefined result: Shift count out of range", &I); +} + +void Lint::visitAShr(BinaryOperator &I) { + if (ConstantInt *CI = + dyn_cast<ConstantInt>(I.getOperand(1)->stripPointerCasts())) + Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), + "Undefined result: Shift count out of range", &I); +} + +void Lint::visitShl(BinaryOperator &I) { + if (ConstantInt *CI = + dyn_cast<ConstantInt>(I.getOperand(1)->stripPointerCasts())) + Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), + "Undefined result: Shift count out of range", &I); +} + +static bool isZero(Value *V, TargetData *TD) { + // Assume undef could be zero. + if (isa<UndefValue>(V)) return true; + + unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); + APInt Mask = APInt::getAllOnesValue(BitWidth), + KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); + ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD); + return KnownZero.isAllOnesValue(); +} + +void Lint::visitSDiv(BinaryOperator &I) { + Assert1(!isZero(I.getOperand(1), TD), + "Undefined behavior: Division by zero", &I); +} + +void Lint::visitUDiv(BinaryOperator &I) { + Assert1(!isZero(I.getOperand(1), TD), + "Undefined behavior: Division by zero", &I); +} + +void Lint::visitSRem(BinaryOperator &I) { + Assert1(!isZero(I.getOperand(1), TD), + "Undefined behavior: Division by zero", &I); +} + +void Lint::visitURem(BinaryOperator &I) { + Assert1(!isZero(I.getOperand(1), TD), + "Undefined behavior: Division by zero", &I); +} + +void Lint::visitAllocaInst(AllocaInst &I) { + if (isa<ConstantInt>(I.getArraySize())) + // This isn't undefined behavior, it's just an obvious pessimization. + Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), + "Pessimization: Static alloca outside of entry block", &I); +} + +void Lint::visitVAArgInst(VAArgInst &I) { + visitMemoryReference(I, I.getOperand(0), 0, 0, + MemRef::Read | MemRef::Write); +} + +void Lint::visitIndirectBrInst(IndirectBrInst &I) { + visitMemoryReference(I, I.getAddress(), 0, 0, MemRef::Branchee); +} + +void Lint::visitExtractElementInst(ExtractElementInst &I) { + if (ConstantInt *CI = + dyn_cast<ConstantInt>(I.getIndexOperand()->stripPointerCasts())) + Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()), + "Undefined result: extractelement index out of range", &I); +} + +void Lint::visitInsertElementInst(InsertElementInst &I) { + if (ConstantInt *CI = + dyn_cast<ConstantInt>(I.getOperand(2)->stripPointerCasts())) + Assert1(CI->getValue().ult(I.getType()->getNumElements()), + "Undefined result: insertelement index out of range", &I); +} + +void Lint::visitUnreachableInst(UnreachableInst &I) { + // This isn't undefined behavior, it's merely suspicious. + Assert1(&I == I.getParent()->begin() || + prior(BasicBlock::iterator(&I))->mayHaveSideEffects(), + "Unusual: unreachable immediately preceded by instruction without " + "side effects", &I); +} + +//===----------------------------------------------------------------------===// +// Implement the public interfaces to this file... +//===----------------------------------------------------------------------===// + +FunctionPass *llvm::createLintPass() { + return new Lint(); +} + +/// lintFunction - Check a function for errors, printing messages on stderr. +/// +void llvm::lintFunction(const Function &f) { + Function &F = const_cast<Function&>(f); + assert(!F.isDeclaration() && "Cannot lint external functions"); + + FunctionPassManager FPM(F.getParent()); + Lint *V = new Lint(); + FPM.add(V); + FPM.run(F); +} + +/// lintModule - Check a module for errors, printing messages on stderr. +/// Return true if the module is corrupt. +/// +void llvm::lintModule(const Module &M, std::string *ErrorInfo) { + PassManager PM; + Lint *V = new Lint(); + PM.add(V); + PM.run(const_cast<Module&>(M)); + + if (ErrorInfo) + *ErrorInfo = V->MessagesStr.str(); +} |