aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/tools/lld/ELF/Writer.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/lld/ELF/Writer.cpp')
-rw-r--r--contrib/llvm/tools/lld/ELF/Writer.cpp2654
1 files changed, 1400 insertions, 1254 deletions
diff --git a/contrib/llvm/tools/lld/ELF/Writer.cpp b/contrib/llvm/tools/lld/ELF/Writer.cpp
index 5c64bedb15ac..b8c8891648a4 100644
--- a/contrib/llvm/tools/lld/ELF/Writer.cpp
+++ b/contrib/llvm/tools/lld/ELF/Writer.cpp
@@ -1,9 +1,8 @@
//===- Writer.cpp ---------------------------------------------------------===//
//
-// The LLVM Linker
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
+// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
+// See https://llvm.org/LICENSE.txt for license information.
+// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
@@ -11,7 +10,6 @@
#include "AArch64ErrataFix.h"
#include "CallGraphSort.h"
#include "Config.h"
-#include "Filesystem.h"
#include "LinkerScript.h"
#include "MapFile.h"
#include "OutputSections.h"
@@ -20,11 +18,15 @@
#include "Symbols.h"
#include "SyntheticSections.h"
#include "Target.h"
+#include "lld/Common/Filesystem.h"
#include "lld/Common/Memory.h"
#include "lld/Common/Strings.h"
#include "lld/Common/Threads.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringSwitch.h"
+#include "llvm/Support/RandomNumberGenerator.h"
+#include "llvm/Support/SHA1.h"
+#include "llvm/Support/xxhash.h"
#include <climits>
using namespace llvm;
@@ -40,31 +42,32 @@ namespace {
// The writer writes a SymbolTable result to a file.
template <class ELFT> class Writer {
public:
- Writer() : Buffer(errorHandler().OutputBuffer) {}
- typedef typename ELFT::Shdr Elf_Shdr;
- typedef typename ELFT::Ehdr Elf_Ehdr;
- typedef typename ELFT::Phdr Elf_Phdr;
+ Writer() : buffer(errorHandler().outputBuffer) {}
+ using Elf_Shdr = typename ELFT::Shdr;
+ using Elf_Ehdr = typename ELFT::Ehdr;
+ using Elf_Phdr = typename ELFT::Phdr;
void run();
private:
void copyLocalSymbols();
void addSectionSymbols();
- void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> Fn);
+ void forEachRelSec(llvm::function_ref<void(InputSectionBase &)> fn);
void sortSections();
void resolveShfLinkOrder();
- void maybeAddThunks();
+ void finalizeAddressDependentContent();
void sortInputSections();
void finalizeSections();
void checkExecuteOnly();
void setReservedSymbolSections();
- std::vector<PhdrEntry *> createPhdrs();
- void removeEmptyPTLoad();
- void addPtArmExid(std::vector<PhdrEntry *> &Phdrs);
+ std::vector<PhdrEntry *> createPhdrs(Partition &part);
+ void removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrEntry);
+ void addPhdrForSection(Partition &part, unsigned shType, unsigned pType,
+ unsigned pFlags);
void assignFileOffsets();
void assignFileOffsetsBinary();
- void setPhdrs();
+ void setPhdrs(Partition &part);
void checkSections();
void fixSectionAlignments();
void openFile();
@@ -74,36 +77,34 @@ private:
void writeSectionsBinary();
void writeBuildId();
- std::unique_ptr<FileOutputBuffer> &Buffer;
+ std::unique_ptr<FileOutputBuffer> &buffer;
void addRelIpltSymbols();
void addStartEndSymbols();
- void addStartStopSymbols(OutputSection *Sec);
-
- std::vector<PhdrEntry *> Phdrs;
+ void addStartStopSymbols(OutputSection *sec);
- uint64_t FileSize;
- uint64_t SectionHeaderOff;
+ uint64_t fileSize;
+ uint64_t sectionHeaderOff;
};
} // anonymous namespace
-static bool isSectionPrefix(StringRef Prefix, StringRef Name) {
- return Name.startswith(Prefix) || Name == Prefix.drop_back();
+static bool isSectionPrefix(StringRef prefix, StringRef name) {
+ return name.startswith(prefix) || name == prefix.drop_back();
}
-StringRef elf::getOutputSectionName(const InputSectionBase *S) {
- if (Config->Relocatable)
- return S->Name;
+StringRef elf::getOutputSectionName(const InputSectionBase *s) {
+ if (config->relocatable)
+ return s->name;
// This is for --emit-relocs. If .text.foo is emitted as .text.bar, we want
// to emit .rela.text.foo as .rela.text.bar for consistency (this is not
// technically required, but not doing it is odd). This code guarantees that.
- if (auto *IS = dyn_cast<InputSection>(S)) {
- if (InputSectionBase *Rel = IS->getRelocatedSection()) {
- OutputSection *Out = Rel->getOutputSection();
- if (S->Type == SHT_RELA)
- return Saver.save(".rela" + Out->Name);
- return Saver.save(".rel" + Out->Name);
+ if (auto *isec = dyn_cast<InputSection>(s)) {
+ if (InputSectionBase *rel = isec->getRelocatedSection()) {
+ OutputSection *out = rel->getOutputSection();
+ if (s->type == SHT_RELA)
+ return saver.save(".rela" + out->name);
+ return saver.save(".rel" + out->name);
}
}
@@ -113,97 +114,133 @@ StringRef elf::getOutputSectionName(const InputSectionBase *S) {
// When enabled, this allows identifying the hot code region (.text.hot) in
// the final binary which can be selectively mapped to huge pages or mlocked,
// for instance.
- if (Config->ZKeepTextSectionPrefix)
- for (StringRef V :
+ if (config->zKeepTextSectionPrefix)
+ for (StringRef v :
{".text.hot.", ".text.unlikely.", ".text.startup.", ".text.exit."})
- if (isSectionPrefix(V, S->Name))
- return V.drop_back();
+ if (isSectionPrefix(v, s->name))
+ return v.drop_back();
- for (StringRef V :
+ for (StringRef v :
{".text.", ".rodata.", ".data.rel.ro.", ".data.", ".bss.rel.ro.",
".bss.", ".init_array.", ".fini_array.", ".ctors.", ".dtors.", ".tbss.",
".gcc_except_table.", ".tdata.", ".ARM.exidx.", ".ARM.extab."})
- if (isSectionPrefix(V, S->Name))
- return V.drop_back();
+ if (isSectionPrefix(v, s->name))
+ return v.drop_back();
// CommonSection is identified as "COMMON" in linker scripts.
// By default, it should go to .bss section.
- if (S->Name == "COMMON")
+ if (s->name == "COMMON")
return ".bss";
- return S->Name;
+ return s->name;
}
static bool needsInterpSection() {
- return !SharedFiles.empty() && !Config->DynamicLinker.empty() &&
- Script->needsInterpSection();
+ return !sharedFiles.empty() && !config->dynamicLinker.empty() &&
+ script->needsInterpSection();
}
template <class ELFT> void elf::writeResult() { Writer<ELFT>().run(); }
-template <class ELFT> void Writer<ELFT>::removeEmptyPTLoad() {
- llvm::erase_if(Phdrs, [&](const PhdrEntry *P) {
- if (P->p_type != PT_LOAD)
+template <class ELFT>
+void Writer<ELFT>::removeEmptyPTLoad(std::vector<PhdrEntry *> &phdrs) {
+ llvm::erase_if(phdrs, [&](const PhdrEntry *p) {
+ if (p->p_type != PT_LOAD)
return false;
- if (!P->FirstSec)
+ if (!p->firstSec)
return true;
- uint64_t Size = P->LastSec->Addr + P->LastSec->Size - P->FirstSec->Addr;
- return Size == 0;
+ uint64_t size = p->lastSec->addr + p->lastSec->size - p->firstSec->addr;
+ return size == 0;
});
}
-template <class ELFT> static void combineEhFrameSections() {
- for (InputSectionBase *&S : InputSections) {
- EhInputSection *ES = dyn_cast<EhInputSection>(S);
- if (!ES || !ES->Live)
+template <class ELFT> static void copySectionsIntoPartitions() {
+ std::vector<InputSectionBase *> newSections;
+ for (unsigned part = 2; part != partitions.size() + 1; ++part) {
+ for (InputSectionBase *s : inputSections) {
+ if (!(s->flags & SHF_ALLOC) || !s->isLive())
+ continue;
+ InputSectionBase *copy;
+ if (s->type == SHT_NOTE)
+ copy = make<InputSection>(cast<InputSection>(*s));
+ else if (auto *es = dyn_cast<EhInputSection>(s))
+ copy = make<EhInputSection>(*es);
+ else
+ continue;
+ copy->partition = part;
+ newSections.push_back(copy);
+ }
+ }
+
+ inputSections.insert(inputSections.end(), newSections.begin(),
+ newSections.end());
+}
+
+template <class ELFT> static void combineEhSections() {
+ for (InputSectionBase *&s : inputSections) {
+ // Ignore dead sections and the partition end marker (.part.end),
+ // whose partition number is out of bounds.
+ if (!s->isLive() || s->partition == 255)
continue;
- In.EhFrame->addSection<ELFT>(ES);
- S = nullptr;
+ Partition &part = s->getPartition();
+ if (auto *es = dyn_cast<EhInputSection>(s)) {
+ part.ehFrame->addSection<ELFT>(es);
+ s = nullptr;
+ } else if (s->kind() == SectionBase::Regular && part.armExidx &&
+ part.armExidx->addSection(cast<InputSection>(s))) {
+ s = nullptr;
+ }
}
- std::vector<InputSectionBase *> &V = InputSections;
- V.erase(std::remove(V.begin(), V.end(), nullptr), V.end());
+ std::vector<InputSectionBase *> &v = inputSections;
+ v.erase(std::remove(v.begin(), v.end(), nullptr), v.end());
}
-static Defined *addOptionalRegular(StringRef Name, SectionBase *Sec,
- uint64_t Val, uint8_t StOther = STV_HIDDEN,
- uint8_t Binding = STB_GLOBAL) {
- Symbol *S = Symtab->find(Name);
- if (!S || S->isDefined())
+static Defined *addOptionalRegular(StringRef name, SectionBase *sec,
+ uint64_t val, uint8_t stOther = STV_HIDDEN,
+ uint8_t binding = STB_GLOBAL) {
+ Symbol *s = symtab->find(name);
+ if (!s || s->isDefined())
return nullptr;
- return Symtab->addDefined(Name, StOther, STT_NOTYPE, Val,
- /*Size=*/0, Binding, Sec,
- /*File=*/nullptr);
+
+ s->resolve(Defined{/*file=*/nullptr, name, binding, stOther, STT_NOTYPE, val,
+ /*size=*/0, sec});
+ return cast<Defined>(s);
}
-static Defined *addAbsolute(StringRef Name) {
- return Symtab->addDefined(Name, STV_HIDDEN, STT_NOTYPE, 0, 0, STB_GLOBAL,
- nullptr, nullptr);
+static Defined *addAbsolute(StringRef name) {
+ Symbol *sym = symtab->addSymbol(Defined{nullptr, name, STB_GLOBAL, STV_HIDDEN,
+ STT_NOTYPE, 0, 0, nullptr});
+ return cast<Defined>(sym);
}
// The linker is expected to define some symbols depending on
// the linking result. This function defines such symbols.
void elf::addReservedSymbols() {
- if (Config->EMachine == EM_MIPS) {
+ if (config->emachine == EM_MIPS) {
// Define _gp for MIPS. st_value of _gp symbol will be updated by Writer
// so that it points to an absolute address which by default is relative
// to GOT. Default offset is 0x7ff0.
// See "Global Data Symbols" in Chapter 6 in the following document:
// ftp://www.linux-mips.org/pub/linux/mips/doc/ABI/mipsabi.pdf
- ElfSym::MipsGp = addAbsolute("_gp");
+ ElfSym::mipsGp = addAbsolute("_gp");
// On MIPS O32 ABI, _gp_disp is a magic symbol designates offset between
// start of function and 'gp' pointer into GOT.
- if (Symtab->find("_gp_disp"))
- ElfSym::MipsGpDisp = addAbsolute("_gp_disp");
+ if (symtab->find("_gp_disp"))
+ ElfSym::mipsGpDisp = addAbsolute("_gp_disp");
// The __gnu_local_gp is a magic symbol equal to the current value of 'gp'
// pointer. This symbol is used in the code generated by .cpload pseudo-op
// in case of using -mno-shared option.
// https://sourceware.org/ml/binutils/2004-12/msg00094.html
- if (Symtab->find("__gnu_local_gp"))
- ElfSym::MipsLocalGp = addAbsolute("__gnu_local_gp");
+ if (symtab->find("__gnu_local_gp"))
+ ElfSym::mipsLocalGp = addAbsolute("__gnu_local_gp");
+ } else if (config->emachine == EM_PPC) {
+ // glibc *crt1.o has a undefined reference to _SDA_BASE_. Since we don't
+ // support Small Data Area, define it arbitrarily as 0.
+ addOptionalRegular("_SDA_BASE_", nullptr, 0, STV_HIDDEN);
}
// The Power Architecture 64-bit v2 ABI defines a TableOfContents (TOC) which
@@ -214,56 +251,62 @@ void elf::addReservedSymbols() {
// the .got section.
// We do not allow _GLOBAL_OFFSET_TABLE_ to be defined by input objects as the
// correctness of some relocations depends on its value.
- StringRef GotTableSymName =
- (Config->EMachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
- if (Symbol *S = Symtab->find(GotTableSymName)) {
- if (S->isDefined())
- error(toString(S->File) + " cannot redefine linker defined symbol '" +
- GotTableSymName + "'");
- else
- ElfSym::GlobalOffsetTable = Symtab->addDefined(
- GotTableSymName, STV_HIDDEN, STT_NOTYPE, Target->GotBaseSymOff,
- /*Size=*/0, STB_GLOBAL, Out::ElfHeader,
- /*File=*/nullptr);
+ StringRef gotSymName =
+ (config->emachine == EM_PPC64) ? ".TOC." : "_GLOBAL_OFFSET_TABLE_";
+
+ if (Symbol *s = symtab->find(gotSymName)) {
+ if (s->isDefined()) {
+ error(toString(s->file) + " cannot redefine linker defined symbol '" +
+ gotSymName + "'");
+ return;
+ }
+
+ uint64_t gotOff = 0;
+ if (config->emachine == EM_PPC64)
+ gotOff = 0x8000;
+
+ s->resolve(Defined{/*file=*/nullptr, gotSymName, STB_GLOBAL, STV_HIDDEN,
+ STT_NOTYPE, gotOff, /*size=*/0, Out::elfHeader});
+ ElfSym::globalOffsetTable = cast<Defined>(s);
}
// __ehdr_start is the location of ELF file headers. Note that we define
// this symbol unconditionally even when using a linker script, which
// differs from the behavior implemented by GNU linker which only define
// this symbol if ELF headers are in the memory mapped segment.
- addOptionalRegular("__ehdr_start", Out::ElfHeader, 0, STV_HIDDEN);
+ addOptionalRegular("__ehdr_start", Out::elfHeader, 0, STV_HIDDEN);
// __executable_start is not documented, but the expectation of at
// least the Android libc is that it points to the ELF header.
- addOptionalRegular("__executable_start", Out::ElfHeader, 0, STV_HIDDEN);
+ addOptionalRegular("__executable_start", Out::elfHeader, 0, STV_HIDDEN);
// __dso_handle symbol is passed to cxa_finalize as a marker to identify
// each DSO. The address of the symbol doesn't matter as long as they are
// different in different DSOs, so we chose the start address of the DSO.
- addOptionalRegular("__dso_handle", Out::ElfHeader, 0, STV_HIDDEN);
+ addOptionalRegular("__dso_handle", Out::elfHeader, 0, STV_HIDDEN);
// If linker script do layout we do not need to create any standart symbols.
- if (Script->HasSectionsCommand)
+ if (script->hasSectionsCommand)
return;
- auto Add = [](StringRef S, int64_t Pos) {
- return addOptionalRegular(S, Out::ElfHeader, Pos, STV_DEFAULT);
+ auto add = [](StringRef s, int64_t pos) {
+ return addOptionalRegular(s, Out::elfHeader, pos, STV_DEFAULT);
};
- ElfSym::Bss = Add("__bss_start", 0);
- ElfSym::End1 = Add("end", -1);
- ElfSym::End2 = Add("_end", -1);
- ElfSym::Etext1 = Add("etext", -1);
- ElfSym::Etext2 = Add("_etext", -1);
- ElfSym::Edata1 = Add("edata", -1);
- ElfSym::Edata2 = Add("_edata", -1);
+ ElfSym::bss = add("__bss_start", 0);
+ ElfSym::end1 = add("end", -1);
+ ElfSym::end2 = add("_end", -1);
+ ElfSym::etext1 = add("etext", -1);
+ ElfSym::etext2 = add("_etext", -1);
+ ElfSym::edata1 = add("edata", -1);
+ ElfSym::edata2 = add("_edata", -1);
}
-static OutputSection *findSection(StringRef Name) {
- for (BaseCommand *Base : Script->SectionCommands)
- if (auto *Sec = dyn_cast<OutputSection>(Base))
- if (Sec->Name == Name)
- return Sec;
+static OutputSection *findSection(StringRef name, unsigned partition = 1) {
+ for (BaseCommand *base : script->sectionCommands)
+ if (auto *sec = dyn_cast<OutputSection>(base))
+ if (sec->name == name && sec->partition == partition)
+ return sec;
return nullptr;
}
@@ -271,202 +314,263 @@ static OutputSection *findSection(StringRef Name) {
template <class ELFT> static void createSyntheticSections() {
// Initialize all pointers with NULL. This is needed because
// you can call lld::elf::main more than once as a library.
- memset(&Out::First, 0, sizeof(Out));
+ memset(&Out::first, 0, sizeof(Out));
- auto Add = [](InputSectionBase *Sec) { InputSections.push_back(Sec); };
+ auto add = [](InputSectionBase *sec) { inputSections.push_back(sec); };
- In.DynStrTab = make<StringTableSection>(".dynstr", true);
- In.Dynamic = make<DynamicSection<ELFT>>();
- if (Config->AndroidPackDynRelocs) {
- In.RelaDyn = make<AndroidPackedRelocationSection<ELFT>>(
- Config->IsRela ? ".rela.dyn" : ".rel.dyn");
- } else {
- In.RelaDyn = make<RelocationSection<ELFT>>(
- Config->IsRela ? ".rela.dyn" : ".rel.dyn", Config->ZCombreloc);
- }
- In.ShStrTab = make<StringTableSection>(".shstrtab", false);
+ in.shStrTab = make<StringTableSection>(".shstrtab", false);
- Out::ProgramHeaders = make<OutputSection>("", 0, SHF_ALLOC);
- Out::ProgramHeaders->Alignment = Config->Wordsize;
+ Out::programHeaders = make<OutputSection>("", 0, SHF_ALLOC);
+ Out::programHeaders->alignment = config->wordsize;
- if (needsInterpSection()) {
- In.Interp = createInterpSection();
- Add(In.Interp);
+ if (config->strip != StripPolicy::All) {
+ in.strTab = make<StringTableSection>(".strtab", false);
+ in.symTab = make<SymbolTableSection<ELFT>>(*in.strTab);
+ in.symTabShndx = make<SymtabShndxSection>();
}
- if (Config->Strip != StripPolicy::All) {
- In.StrTab = make<StringTableSection>(".strtab", false);
- In.SymTab = make<SymbolTableSection<ELFT>>(*In.StrTab);
- In.SymTabShndx = make<SymtabShndxSection>();
- }
-
- if (Config->BuildId != BuildIdKind::None) {
- In.BuildId = make<BuildIdSection>();
- Add(In.BuildId);
- }
-
- In.Bss = make<BssSection>(".bss", 0, 1);
- Add(In.Bss);
+ in.bss = make<BssSection>(".bss", 0, 1);
+ add(in.bss);
// If there is a SECTIONS command and a .data.rel.ro section name use name
// .data.rel.ro.bss so that we match in the .data.rel.ro output section.
// This makes sure our relro is contiguous.
- bool HasDataRelRo = Script->HasSectionsCommand && findSection(".data.rel.ro");
- In.BssRelRo =
- make<BssSection>(HasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
- Add(In.BssRelRo);
+ bool hasDataRelRo =
+ script->hasSectionsCommand && findSection(".data.rel.ro", 0);
+ in.bssRelRo =
+ make<BssSection>(hasDataRelRo ? ".data.rel.ro.bss" : ".bss.rel.ro", 0, 1);
+ add(in.bssRelRo);
// Add MIPS-specific sections.
- if (Config->EMachine == EM_MIPS) {
- if (!Config->Shared && Config->HasDynSymTab) {
- In.MipsRldMap = make<MipsRldMapSection>();
- Add(In.MipsRldMap);
+ if (config->emachine == EM_MIPS) {
+ if (!config->shared && config->hasDynSymTab) {
+ in.mipsRldMap = make<MipsRldMapSection>();
+ add(in.mipsRldMap);
}
- if (auto *Sec = MipsAbiFlagsSection<ELFT>::create())
- Add(Sec);
- if (auto *Sec = MipsOptionsSection<ELFT>::create())
- Add(Sec);
- if (auto *Sec = MipsReginfoSection<ELFT>::create())
- Add(Sec);
+ if (auto *sec = MipsAbiFlagsSection<ELFT>::create())
+ add(sec);
+ if (auto *sec = MipsOptionsSection<ELFT>::create())
+ add(sec);
+ if (auto *sec = MipsReginfoSection<ELFT>::create())
+ add(sec);
}
- if (Config->HasDynSymTab) {
- In.DynSymTab = make<SymbolTableSection<ELFT>>(*In.DynStrTab);
- Add(In.DynSymTab);
+ for (Partition &part : partitions) {
+ auto add = [&](InputSectionBase *sec) {
+ sec->partition = part.getNumber();
+ inputSections.push_back(sec);
+ };
+
+ if (!part.name.empty()) {
+ part.elfHeader = make<PartitionElfHeaderSection<ELFT>>();
+ part.elfHeader->name = part.name;
+ add(part.elfHeader);
- InX<ELFT>::VerSym = make<VersionTableSection<ELFT>>();
- Add(InX<ELFT>::VerSym);
+ part.programHeaders = make<PartitionProgramHeadersSection<ELFT>>();
+ add(part.programHeaders);
+ }
- if (!Config->VersionDefinitions.empty()) {
- In.VerDef = make<VersionDefinitionSection>();
- Add(In.VerDef);
+ if (config->buildId != BuildIdKind::None) {
+ part.buildId = make<BuildIdSection>();
+ add(part.buildId);
}
- InX<ELFT>::VerNeed = make<VersionNeedSection<ELFT>>();
- Add(InX<ELFT>::VerNeed);
+ part.dynStrTab = make<StringTableSection>(".dynstr", true);
+ part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
+ part.dynamic = make<DynamicSection<ELFT>>();
+ if (config->androidPackDynRelocs) {
+ part.relaDyn = make<AndroidPackedRelocationSection<ELFT>>(
+ config->isRela ? ".rela.dyn" : ".rel.dyn");
+ } else {
+ part.relaDyn = make<RelocationSection<ELFT>>(
+ config->isRela ? ".rela.dyn" : ".rel.dyn", config->zCombreloc);
+ }
+
+ if (needsInterpSection())
+ add(createInterpSection());
+
+ if (config->hasDynSymTab) {
+ part.dynSymTab = make<SymbolTableSection<ELFT>>(*part.dynStrTab);
+ add(part.dynSymTab);
+
+ part.verSym = make<VersionTableSection>();
+ add(part.verSym);
+
+ if (!config->versionDefinitions.empty()) {
+ part.verDef = make<VersionDefinitionSection>();
+ add(part.verDef);
+ }
+
+ part.verNeed = make<VersionNeedSection<ELFT>>();
+ add(part.verNeed);
+
+ if (config->gnuHash) {
+ part.gnuHashTab = make<GnuHashTableSection>();
+ add(part.gnuHashTab);
+ }
+
+ if (config->sysvHash) {
+ part.hashTab = make<HashTableSection>();
+ add(part.hashTab);
+ }
- if (Config->GnuHash) {
- In.GnuHashTab = make<GnuHashTableSection>();
- Add(In.GnuHashTab);
+ add(part.dynamic);
+ add(part.dynStrTab);
+ add(part.relaDyn);
}
- if (Config->SysvHash) {
- In.HashTab = make<HashTableSection>();
- Add(In.HashTab);
+ if (config->relrPackDynRelocs) {
+ part.relrDyn = make<RelrSection<ELFT>>();
+ add(part.relrDyn);
}
- Add(In.Dynamic);
- Add(In.DynStrTab);
- Add(In.RelaDyn);
+ if (!config->relocatable) {
+ if (config->ehFrameHdr) {
+ part.ehFrameHdr = make<EhFrameHeader>();
+ add(part.ehFrameHdr);
+ }
+ part.ehFrame = make<EhFrameSection>();
+ add(part.ehFrame);
+ }
+
+ if (config->emachine == EM_ARM && !config->relocatable) {
+ // The ARMExidxsyntheticsection replaces all the individual .ARM.exidx
+ // InputSections.
+ part.armExidx = make<ARMExidxSyntheticSection>();
+ add(part.armExidx);
+ }
}
- if (Config->RelrPackDynRelocs) {
- In.RelrDyn = make<RelrSection<ELFT>>();
- Add(In.RelrDyn);
+ if (partitions.size() != 1) {
+ // Create the partition end marker. This needs to be in partition number 255
+ // so that it is sorted after all other partitions. It also has other
+ // special handling (see createPhdrs() and combineEhSections()).
+ in.partEnd = make<BssSection>(".part.end", config->maxPageSize, 1);
+ in.partEnd->partition = 255;
+ add(in.partEnd);
+
+ in.partIndex = make<PartitionIndexSection>();
+ addOptionalRegular("__part_index_begin", in.partIndex, 0);
+ addOptionalRegular("__part_index_end", in.partIndex,
+ in.partIndex->getSize());
+ add(in.partIndex);
}
// Add .got. MIPS' .got is so different from the other archs,
// it has its own class.
- if (Config->EMachine == EM_MIPS) {
- In.MipsGot = make<MipsGotSection>();
- Add(In.MipsGot);
+ if (config->emachine == EM_MIPS) {
+ in.mipsGot = make<MipsGotSection>();
+ add(in.mipsGot);
} else {
- In.Got = make<GotSection>();
- Add(In.Got);
+ in.got = make<GotSection>();
+ add(in.got);
}
- if (Config->EMachine == EM_PPC64) {
- In.PPC64LongBranchTarget = make<PPC64LongBranchTargetSection>();
- Add(In.PPC64LongBranchTarget);
+ if (config->emachine == EM_PPC) {
+ in.ppc32Got2 = make<PPC32Got2Section>();
+ add(in.ppc32Got2);
}
- In.GotPlt = make<GotPltSection>();
- Add(In.GotPlt);
- In.IgotPlt = make<IgotPltSection>();
- Add(In.IgotPlt);
+ if (config->emachine == EM_PPC64) {
+ in.ppc64LongBranchTarget = make<PPC64LongBranchTargetSection>();
+ add(in.ppc64LongBranchTarget);
+ }
- if (Config->GdbIndex) {
- In.GdbIndex = GdbIndexSection::create<ELFT>();
- Add(In.GdbIndex);
+ if (config->emachine == EM_RISCV) {
+ in.riscvSdata = make<RISCVSdataSection>();
+ add(in.riscvSdata);
}
+ in.gotPlt = make<GotPltSection>();
+ add(in.gotPlt);
+ in.igotPlt = make<IgotPltSection>();
+ add(in.igotPlt);
+
+ // _GLOBAL_OFFSET_TABLE_ is defined relative to either .got.plt or .got. Treat
+ // it as a relocation and ensure the referenced section is created.
+ if (ElfSym::globalOffsetTable && config->emachine != EM_MIPS) {
+ if (target->gotBaseSymInGotPlt)
+ in.gotPlt->hasGotPltOffRel = true;
+ else
+ in.got->hasGotOffRel = true;
+ }
+
+ if (config->gdbIndex)
+ add(GdbIndexSection::create<ELFT>());
+
// We always need to add rel[a].plt to output if it has entries.
// Even for static linking it can contain R_[*]_IRELATIVE relocations.
- In.RelaPlt = make<RelocationSection<ELFT>>(
- Config->IsRela ? ".rela.plt" : ".rel.plt", false /*Sort*/);
- Add(In.RelaPlt);
+ in.relaPlt = make<RelocationSection<ELFT>>(
+ config->isRela ? ".rela.plt" : ".rel.plt", /*sort=*/false);
+ add(in.relaPlt);
- // The RelaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure
+ // The relaIplt immediately follows .rel.plt (.rel.dyn for ARM) to ensure
// that the IRelative relocations are processed last by the dynamic loader.
// We cannot place the iplt section in .rel.dyn when Android relocation
// packing is enabled because that would cause a section type mismatch.
// However, because the Android dynamic loader reads .rel.plt after .rel.dyn,
// we can get the desired behaviour by placing the iplt section in .rel.plt.
- In.RelaIplt = make<RelocationSection<ELFT>>(
- (Config->EMachine == EM_ARM && !Config->AndroidPackDynRelocs)
+ in.relaIplt = make<RelocationSection<ELFT>>(
+ (config->emachine == EM_ARM && !config->androidPackDynRelocs)
? ".rel.dyn"
- : In.RelaPlt->Name,
- false /*Sort*/);
- Add(In.RelaIplt);
+ : in.relaPlt->name,
+ /*sort=*/false);
+ add(in.relaIplt);
+
+ in.plt = make<PltSection>(false);
+ add(in.plt);
+ in.iplt = make<PltSection>(true);
+ add(in.iplt);
- In.Plt = make<PltSection>(false);
- Add(In.Plt);
- In.Iplt = make<PltSection>(true);
- Add(In.Iplt);
+ if (config->andFeatures)
+ add(make<GnuPropertySection>());
// .note.GNU-stack is always added when we are creating a re-linkable
// object file. Other linkers are using the presence of this marker
// section to control the executable-ness of the stack area, but that
// is irrelevant these days. Stack area should always be non-executable
// by default. So we emit this section unconditionally.
- if (Config->Relocatable)
- Add(make<GnuStackSection>());
+ if (config->relocatable)
+ add(make<GnuStackSection>());
- if (!Config->Relocatable) {
- if (Config->EhFrameHdr) {
- In.EhFrameHdr = make<EhFrameHeader>();
- Add(In.EhFrameHdr);
- }
- In.EhFrame = make<EhFrameSection>();
- Add(In.EhFrame);
- }
-
- if (In.SymTab)
- Add(In.SymTab);
- if (In.SymTabShndx)
- Add(In.SymTabShndx);
- Add(In.ShStrTab);
- if (In.StrTab)
- Add(In.StrTab);
-
- if (Config->EMachine == EM_ARM && !Config->Relocatable)
- // Add a sentinel to terminate .ARM.exidx. It helps an unwinder
- // to find the exact address range of the last entry.
- Add(make<ARMExidxSentinelSection>());
+ if (in.symTab)
+ add(in.symTab);
+ if (in.symTabShndx)
+ add(in.symTabShndx);
+ add(in.shStrTab);
+ if (in.strTab)
+ add(in.strTab);
}
// The main function of the writer.
template <class ELFT> void Writer<ELFT>::run() {
+ // Make copies of any input sections that need to be copied into each
+ // partition.
+ copySectionsIntoPartitions<ELFT>();
+
// Create linker-synthesized sections such as .got or .plt.
// Such sections are of type input section.
createSyntheticSections<ELFT>();
- if (!Config->Relocatable)
- combineEhFrameSections<ELFT>();
+ // Some input sections that are used for exception handling need to be moved
+ // into synthetic sections. Do that now so that they aren't assigned to
+ // output sections in the usual way.
+ if (!config->relocatable)
+ combineEhSections<ELFT>();
// We want to process linker script commands. When SECTIONS command
// is given we let it create sections.
- Script->processSectionCommands();
+ script->processSectionCommands();
// Linker scripts controls how input sections are assigned to output sections.
// Input sections that were not handled by scripts are called "orphans", and
// they are assigned to output sections by the default rule. Process that.
- Script->addOrphanSections();
+ script->addOrphanSections();
- if (Config->Discard != DiscardPolicy::All)
+ if (config->discard != DiscardPolicy::All)
copyLocalSymbols();
- if (Config->CopyRelocs)
+ if (config->copyRelocs)
addSectionSymbols();
// Now that we have a complete set of output sections. This function
@@ -478,33 +582,35 @@ template <class ELFT> void Writer<ELFT>::run() {
if (errorCount())
return;
- Script->assignAddresses();
+ script->assignAddresses();
// If -compressed-debug-sections is specified, we need to compress
// .debug_* sections. Do it right now because it changes the size of
// output sections.
- for (OutputSection *Sec : OutputSections)
- Sec->maybeCompress<ELFT>();
+ for (OutputSection *sec : outputSections)
+ sec->maybeCompress<ELFT>();
- Script->allocateHeaders(Phdrs);
+ script->allocateHeaders(mainPart->phdrs);
// Remove empty PT_LOAD to avoid causing the dynamic linker to try to mmap a
// 0 sized region. This has to be done late since only after assignAddresses
// we know the size of the sections.
- removeEmptyPTLoad();
+ for (Partition &part : partitions)
+ removeEmptyPTLoad(part.phdrs);
- if (!Config->OFormatBinary)
+ if (!config->oFormatBinary)
assignFileOffsets();
else
assignFileOffsetsBinary();
- setPhdrs();
+ for (Partition &part : partitions)
+ setPhdrs(part);
- if (Config->Relocatable)
- for (OutputSection *Sec : OutputSections)
- Sec->Addr = 0;
+ if (config->relocatable)
+ for (OutputSection *sec : outputSections)
+ sec->addr = 0;
- if (Config->CheckSections)
+ if (config->checkSections)
checkSections();
// It does not make sense try to open the file if we have error already.
@@ -515,7 +621,7 @@ template <class ELFT> void Writer<ELFT>::run() {
if (errorCount())
return;
- if (!Config->OFormatBinary) {
+ if (!config->oFormatBinary) {
writeTrapInstr();
writeHeader();
writeSections();
@@ -535,21 +641,20 @@ template <class ELFT> void Writer<ELFT>::run() {
if (errorCount())
return;
- if (auto E = Buffer->commit())
- error("failed to write to the output file: " + toString(std::move(E)));
+ if (auto e = buffer->commit())
+ error("failed to write to the output file: " + toString(std::move(e)));
}
-static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName,
- const Symbol &B) {
- if (B.isSection())
+static bool shouldKeepInSymtab(const Defined &sym) {
+ if (sym.isSection())
return false;
- if (Config->Discard == DiscardPolicy::None)
+ if (config->discard == DiscardPolicy::None)
return true;
// If -emit-reloc is given, all symbols including local ones need to be
// copied because they may be referenced by relocations.
- if (Config->EmitRelocs)
+ if (config->emitRelocs)
return true;
// In ELF assembly .L symbols are normally discarded by the assembler.
@@ -557,61 +662,62 @@ static bool shouldKeepInSymtab(SectionBase *Sec, StringRef SymName,
// * --discard-locals is used.
// * The symbol is in a SHF_MERGE section, which is normally the reason for
// the assembler keeping the .L symbol.
- if (!SymName.startswith(".L") && !SymName.empty())
+ StringRef name = sym.getName();
+ bool isLocal = name.startswith(".L") || name.empty();
+ if (!isLocal)
return true;
- if (Config->Discard == DiscardPolicy::Locals)
+ if (config->discard == DiscardPolicy::Locals)
return false;
- return !Sec || !(Sec->Flags & SHF_MERGE);
+ SectionBase *sec = sym.section;
+ return !sec || !(sec->flags & SHF_MERGE);
}
-static bool includeInSymtab(const Symbol &B) {
- if (!B.isLocal() && !B.IsUsedInRegularObj)
+static bool includeInSymtab(const Symbol &b) {
+ if (!b.isLocal() && !b.isUsedInRegularObj)
return false;
- if (auto *D = dyn_cast<Defined>(&B)) {
+ if (auto *d = dyn_cast<Defined>(&b)) {
// Always include absolute symbols.
- SectionBase *Sec = D->Section;
- if (!Sec)
+ SectionBase *sec = d->section;
+ if (!sec)
return true;
- Sec = Sec->Repl;
+ sec = sec->repl;
// Exclude symbols pointing to garbage-collected sections.
- if (isa<InputSectionBase>(Sec) && !Sec->Live)
+ if (isa<InputSectionBase>(sec) && !sec->isLive())
return false;
- if (auto *S = dyn_cast<MergeInputSection>(Sec))
- if (!S->getSectionPiece(D->Value)->Live)
+ if (auto *s = dyn_cast<MergeInputSection>(sec))
+ if (!s->getSectionPiece(d->value)->live)
return false;
return true;
}
- return B.Used;
+ return b.used;
}
// Local symbols are not in the linker's symbol table. This function scans
// each object file's symbol table to copy local symbols to the output.
template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
- if (!In.SymTab)
+ if (!in.symTab)
return;
- for (InputFile *File : ObjectFiles) {
- ObjFile<ELFT> *F = cast<ObjFile<ELFT>>(File);
- for (Symbol *B : F->getLocalSymbols()) {
- if (!B->isLocal())
- fatal(toString(F) +
+ for (InputFile *file : objectFiles) {
+ ObjFile<ELFT> *f = cast<ObjFile<ELFT>>(file);
+ for (Symbol *b : f->getLocalSymbols()) {
+ if (!b->isLocal())
+ fatal(toString(f) +
": broken object: getLocalSymbols returns a non-local symbol");
- auto *DR = dyn_cast<Defined>(B);
+ auto *dr = dyn_cast<Defined>(b);
// No reason to keep local undefined symbol in symtab.
- if (!DR)
+ if (!dr)
continue;
- if (!includeInSymtab(*B))
+ if (!includeInSymtab(*b))
continue;
-
- SectionBase *Sec = DR->Section;
- if (!shouldKeepInSymtab(Sec, B->getName(), *B))
+ if (!shouldKeepInSymtab(*dr))
continue;
- In.SymTab->addSymbol(B);
+ in.symTab->addSymbol(b);
}
}
}
@@ -621,33 +727,33 @@ template <class ELFT> void Writer<ELFT>::copyLocalSymbols() {
// referring to a section (that happens if the section is a synthetic one), we
// don't create a section symbol for that section.
template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
- for (BaseCommand *Base : Script->SectionCommands) {
- auto *Sec = dyn_cast<OutputSection>(Base);
- if (!Sec)
+ for (BaseCommand *base : script->sectionCommands) {
+ auto *sec = dyn_cast<OutputSection>(base);
+ if (!sec)
continue;
- auto I = llvm::find_if(Sec->SectionCommands, [](BaseCommand *Base) {
- if (auto *ISD = dyn_cast<InputSectionDescription>(Base))
- return !ISD->Sections.empty();
+ auto i = llvm::find_if(sec->sectionCommands, [](BaseCommand *base) {
+ if (auto *isd = dyn_cast<InputSectionDescription>(base))
+ return !isd->sections.empty();
return false;
});
- if (I == Sec->SectionCommands.end())
+ if (i == sec->sectionCommands.end())
continue;
- InputSection *IS = cast<InputSectionDescription>(*I)->Sections[0];
+ InputSection *isec = cast<InputSectionDescription>(*i)->sections[0];
// Relocations are not using REL[A] section symbols.
- if (IS->Type == SHT_REL || IS->Type == SHT_RELA)
+ if (isec->type == SHT_REL || isec->type == SHT_RELA)
continue;
// Unlike other synthetic sections, mergeable output sections contain data
// copied from input sections, and there may be a relocation pointing to its
// contents if -r or -emit-reloc are given.
- if (isa<SyntheticSection>(IS) && !(IS->Flags & SHF_MERGE))
+ if (isa<SyntheticSection>(isec) && !(isec->flags & SHF_MERGE))
continue;
- auto *Sym =
- make<Defined>(IS->File, "", STB_LOCAL, /*StOther=*/0, STT_SECTION,
- /*Value=*/0, /*Size=*/0, IS);
- In.SymTab->addSymbol(Sym);
+ auto *sym =
+ make<Defined>(isec->file, "", STB_LOCAL, /*stOther=*/0, STT_SECTION,
+ /*value=*/0, /*size=*/0, isec);
+ in.symTab->addSymbol(sym);
}
}
@@ -657,25 +763,25 @@ template <class ELFT> void Writer<ELFT>::addSectionSymbols() {
//
// This function returns true if a section needs to be put into a
// PT_GNU_RELRO segment.
-static bool isRelroSection(const OutputSection *Sec) {
- if (!Config->ZRelro)
+static bool isRelroSection(const OutputSection *sec) {
+ if (!config->zRelro)
return false;
- uint64_t Flags = Sec->Flags;
+ uint64_t flags = sec->flags;
// Non-allocatable or non-writable sections don't need RELRO because
// they are not writable or not even mapped to memory in the first place.
// RELRO is for sections that are essentially read-only but need to
// be writable only at process startup to allow dynamic linker to
// apply relocations.
- if (!(Flags & SHF_ALLOC) || !(Flags & SHF_WRITE))
+ if (!(flags & SHF_ALLOC) || !(flags & SHF_WRITE))
return false;
// Once initialized, TLS data segments are used as data templates
// for a thread-local storage. For each new thread, runtime
// allocates memory for a TLS and copy templates there. No thread
// are supposed to use templates directly. Thus, it can be in RELRO.
- if (Flags & SHF_TLS)
+ if (flags & SHF_TLS)
return true;
// .init_array, .preinit_array and .fini_array contain pointers to
@@ -684,15 +790,15 @@ static bool isRelroSection(const OutputSection *Sec) {
// to change at runtime. But if you are an attacker, you could do
// interesting things by manipulating pointers in .fini_array, for
// example. So they are put into RELRO.
- uint32_t Type = Sec->Type;
- if (Type == SHT_INIT_ARRAY || Type == SHT_FINI_ARRAY ||
- Type == SHT_PREINIT_ARRAY)
+ uint32_t type = sec->type;
+ if (type == SHT_INIT_ARRAY || type == SHT_FINI_ARRAY ||
+ type == SHT_PREINIT_ARRAY)
return true;
// .got contains pointers to external symbols. They are resolved by
// the dynamic linker when a module is loaded into memory, and after
// that they are not expected to change. So, it can be in RELRO.
- if (In.Got && Sec == In.Got->getParent())
+ if (in.got && sec == in.got->getParent())
return true;
// .toc is a GOT-ish section for PowerPC64. Their contents are accessed
@@ -700,30 +806,30 @@ static bool isRelroSection(const OutputSection *Sec) {
// for accessing .got as well, .got and .toc need to be close enough in the
// virtual address space. Usually, .toc comes just after .got. Since we place
// .got into RELRO, .toc needs to be placed into RELRO too.
- if (Sec->Name.equals(".toc"))
+ if (sec->name.equals(".toc"))
return true;
// .got.plt contains pointers to external function symbols. They are
// by default resolved lazily, so we usually cannot put it into RELRO.
// However, if "-z now" is given, the lazy symbol resolution is
// disabled, which enables us to put it into RELRO.
- if (Sec == In.GotPlt->getParent())
- return Config->ZNow;
+ if (sec == in.gotPlt->getParent())
+ return config->zNow;
// .dynamic section contains data for the dynamic linker, and
// there's no need to write to it at runtime, so it's better to put
// it into RELRO.
- if (Sec == In.Dynamic->getParent())
+ if (sec->name == ".dynamic")
return true;
// Sections with some special names are put into RELRO. This is a
// bit unfortunate because section names shouldn't be significant in
// ELF in spirit. But in reality many linker features depend on
// magic section names.
- StringRef S = Sec->Name;
- return S == ".data.rel.ro" || S == ".bss.rel.ro" || S == ".ctors" ||
- S == ".dtors" || S == ".jcr" || S == ".eh_frame" ||
- S == ".openbsd.randomdata";
+ StringRef s = sec->name;
+ return s == ".data.rel.ro" || s == ".bss.rel.ro" || s == ".ctors" ||
+ s == ".dtors" || s == ".jcr" || s == ".eh_frame" ||
+ s == ".openbsd.randomdata";
}
// We compute a rank for each section. The rank indicates where the
@@ -734,16 +840,18 @@ static bool isRelroSection(const OutputSection *Sec) {
// * It is easy to check if a give branch was taken.
// * It is easy two see how similar two ranks are (see getRankProximity).
enum RankFlags {
- RF_NOT_ADDR_SET = 1 << 18,
- RF_NOT_ALLOC = 1 << 17,
- RF_NOT_INTERP = 1 << 16,
- RF_NOT_NOTE = 1 << 15,
- RF_WRITE = 1 << 14,
- RF_EXEC_WRITE = 1 << 13,
- RF_EXEC = 1 << 12,
- RF_RODATA = 1 << 11,
- RF_NON_TLS_BSS = 1 << 10,
- RF_NON_TLS_BSS_RO = 1 << 9,
+ RF_NOT_ADDR_SET = 1 << 27,
+ RF_NOT_ALLOC = 1 << 26,
+ RF_PARTITION = 1 << 18, // Partition number (8 bits)
+ RF_NOT_PART_EHDR = 1 << 17,
+ RF_NOT_PART_PHDR = 1 << 16,
+ RF_NOT_INTERP = 1 << 15,
+ RF_NOT_NOTE = 1 << 14,
+ RF_WRITE = 1 << 13,
+ RF_EXEC_WRITE = 1 << 12,
+ RF_EXEC = 1 << 11,
+ RF_RODATA = 1 << 10,
+ RF_NOT_RELRO = 1 << 9,
RF_NOT_TLS = 1 << 8,
RF_BSS = 1 << 7,
RF_PPC_NOT_TOCBSS = 1 << 6,
@@ -755,33 +863,41 @@ enum RankFlags {
RF_MIPS_NOT_GOT = 1 << 0
};
-static unsigned getSectionRank(const OutputSection *Sec) {
- unsigned Rank = 0;
+static unsigned getSectionRank(const OutputSection *sec) {
+ unsigned rank = sec->partition * RF_PARTITION;
// We want to put section specified by -T option first, so we
// can start assigning VA starting from them later.
- if (Config->SectionStartMap.count(Sec->Name))
- return Rank;
- Rank |= RF_NOT_ADDR_SET;
+ if (config->sectionStartMap.count(sec->name))
+ return rank;
+ rank |= RF_NOT_ADDR_SET;
// Allocatable sections go first to reduce the total PT_LOAD size and
// so debug info doesn't change addresses in actual code.
- if (!(Sec->Flags & SHF_ALLOC))
- return Rank | RF_NOT_ALLOC;
+ if (!(sec->flags & SHF_ALLOC))
+ return rank | RF_NOT_ALLOC;
+
+ if (sec->type == SHT_LLVM_PART_EHDR)
+ return rank;
+ rank |= RF_NOT_PART_EHDR;
+
+ if (sec->type == SHT_LLVM_PART_PHDR)
+ return rank;
+ rank |= RF_NOT_PART_PHDR;
// Put .interp first because some loaders want to see that section
// on the first page of the executable file when loaded into memory.
- if (Sec->Name == ".interp")
- return Rank;
- Rank |= RF_NOT_INTERP;
+ if (sec->name == ".interp")
+ return rank;
+ rank |= RF_NOT_INTERP;
// Put .note sections (which make up one PT_NOTE) at the beginning so that
// they are likely to be included in a core file even if core file size is
// limited. In particular, we want a .note.gnu.build-id and a .note.tag to be
// included in a core to match core files with executables.
- if (Sec->Type == SHT_NOTE)
- return Rank;
- Rank |= RF_NOT_NOTE;
+ if (sec->type == SHT_NOTE)
+ return rank;
+ rank |= RF_NOT_NOTE;
// Sort sections based on their access permission in the following
// order: R, RX, RWX, RW. This order is based on the following
@@ -794,116 +910,105 @@ static unsigned getSectionRank(const OutputSection *Sec) {
// between .text and .data.
// * Writable sections come last, such that .bss lands at the very
// end of the last PT_LOAD.
- bool IsExec = Sec->Flags & SHF_EXECINSTR;
- bool IsWrite = Sec->Flags & SHF_WRITE;
+ bool isExec = sec->flags & SHF_EXECINSTR;
+ bool isWrite = sec->flags & SHF_WRITE;
- if (IsExec) {
- if (IsWrite)
- Rank |= RF_EXEC_WRITE;
+ if (isExec) {
+ if (isWrite)
+ rank |= RF_EXEC_WRITE;
else
- Rank |= RF_EXEC;
- } else if (IsWrite) {
- Rank |= RF_WRITE;
- } else if (Sec->Type == SHT_PROGBITS) {
+ rank |= RF_EXEC;
+ } else if (isWrite) {
+ rank |= RF_WRITE;
+ } else if (sec->type == SHT_PROGBITS) {
// Make non-executable and non-writable PROGBITS sections (e.g .rodata
// .eh_frame) closer to .text. They likely contain PC or GOT relative
// relocations and there could be relocation overflow if other huge sections
// (.dynstr .dynsym) were placed in between.
- Rank |= RF_RODATA;
+ rank |= RF_RODATA;
}
- // If we got here we know that both A and B are in the same PT_LOAD.
+ // Place RelRo sections first. After considering SHT_NOBITS below, the
+ // ordering is PT_LOAD(PT_GNU_RELRO(.data.rel.ro .bss.rel.ro) | .data .bss),
+ // where | marks where page alignment happens. An alternative ordering is
+ // PT_LOAD(.data | PT_GNU_RELRO( .data.rel.ro .bss.rel.ro) | .bss), but it may
+ // waste more bytes due to 2 alignment places.
+ if (!isRelroSection(sec))
+ rank |= RF_NOT_RELRO;
- bool IsTls = Sec->Flags & SHF_TLS;
- bool IsNoBits = Sec->Type == SHT_NOBITS;
-
- // The first requirement we have is to put (non-TLS) nobits sections last. The
- // reason is that the only thing the dynamic linker will see about them is a
- // p_memsz that is larger than p_filesz. Seeing that it zeros the end of the
- // PT_LOAD, so that has to correspond to the nobits sections.
- bool IsNonTlsNoBits = IsNoBits && !IsTls;
- if (IsNonTlsNoBits)
- Rank |= RF_NON_TLS_BSS;
-
- // We place nobits RelRo sections before plain r/w ones, and non-nobits RelRo
- // sections after r/w ones, so that the RelRo sections are contiguous.
- bool IsRelRo = isRelroSection(Sec);
- if (IsNonTlsNoBits && !IsRelRo)
- Rank |= RF_NON_TLS_BSS_RO;
- if (!IsNonTlsNoBits && IsRelRo)
- Rank |= RF_NON_TLS_BSS_RO;
+ // If we got here we know that both A and B are in the same PT_LOAD.
// The TLS initialization block needs to be a single contiguous block in a R/W
// PT_LOAD, so stick TLS sections directly before the other RelRo R/W
- // sections. The TLS NOBITS sections are placed here as they don't take up
- // virtual address space in the PT_LOAD.
- if (!IsTls)
- Rank |= RF_NOT_TLS;
+ // sections. Since p_filesz can be less than p_memsz, place NOBITS sections
+ // after PROGBITS.
+ if (!(sec->flags & SHF_TLS))
+ rank |= RF_NOT_TLS;
- // Within the TLS initialization block, the non-nobits sections need to appear
- // first.
- if (IsNoBits)
- Rank |= RF_BSS;
+ // Within TLS sections, or within other RelRo sections, or within non-RelRo
+ // sections, place non-NOBITS sections first.
+ if (sec->type == SHT_NOBITS)
+ rank |= RF_BSS;
// Some architectures have additional ordering restrictions for sections
// within the same PT_LOAD.
- if (Config->EMachine == EM_PPC64) {
+ if (config->emachine == EM_PPC64) {
// PPC64 has a number of special SHT_PROGBITS+SHF_ALLOC+SHF_WRITE sections
// that we would like to make sure appear is a specific order to maximize
// their coverage by a single signed 16-bit offset from the TOC base
// pointer. Conversely, the special .tocbss section should be first among
// all SHT_NOBITS sections. This will put it next to the loaded special
// PPC64 sections (and, thus, within reach of the TOC base pointer).
- StringRef Name = Sec->Name;
- if (Name != ".tocbss")
- Rank |= RF_PPC_NOT_TOCBSS;
+ StringRef name = sec->name;
+ if (name != ".tocbss")
+ rank |= RF_PPC_NOT_TOCBSS;
- if (Name == ".toc1")
- Rank |= RF_PPC_TOCL;
+ if (name == ".toc1")
+ rank |= RF_PPC_TOCL;
- if (Name == ".toc")
- Rank |= RF_PPC_TOC;
+ if (name == ".toc")
+ rank |= RF_PPC_TOC;
- if (Name == ".got")
- Rank |= RF_PPC_GOT;
+ if (name == ".got")
+ rank |= RF_PPC_GOT;
- if (Name == ".branch_lt")
- Rank |= RF_PPC_BRANCH_LT;
+ if (name == ".branch_lt")
+ rank |= RF_PPC_BRANCH_LT;
}
- if (Config->EMachine == EM_MIPS) {
+ if (config->emachine == EM_MIPS) {
// All sections with SHF_MIPS_GPREL flag should be grouped together
// because data in these sections is addressable with a gp relative address.
- if (Sec->Flags & SHF_MIPS_GPREL)
- Rank |= RF_MIPS_GPREL;
+ if (sec->flags & SHF_MIPS_GPREL)
+ rank |= RF_MIPS_GPREL;
- if (Sec->Name != ".got")
- Rank |= RF_MIPS_NOT_GOT;
+ if (sec->name != ".got")
+ rank |= RF_MIPS_NOT_GOT;
}
- return Rank;
+ return rank;
}
-static bool compareSections(const BaseCommand *ACmd, const BaseCommand *BCmd) {
- const OutputSection *A = cast<OutputSection>(ACmd);
- const OutputSection *B = cast<OutputSection>(BCmd);
+static bool compareSections(const BaseCommand *aCmd, const BaseCommand *bCmd) {
+ const OutputSection *a = cast<OutputSection>(aCmd);
+ const OutputSection *b = cast<OutputSection>(bCmd);
- if (A->SortRank != B->SortRank)
- return A->SortRank < B->SortRank;
+ if (a->sortRank != b->sortRank)
+ return a->sortRank < b->sortRank;
- if (!(A->SortRank & RF_NOT_ADDR_SET))
- return Config->SectionStartMap.lookup(A->Name) <
- Config->SectionStartMap.lookup(B->Name);
+ if (!(a->sortRank & RF_NOT_ADDR_SET))
+ return config->sectionStartMap.lookup(a->name) <
+ config->sectionStartMap.lookup(b->name);
return false;
}
-void PhdrEntry::add(OutputSection *Sec) {
- LastSec = Sec;
- if (!FirstSec)
- FirstSec = Sec;
- p_align = std::max(p_align, Sec->Alignment);
+void PhdrEntry::add(OutputSection *sec) {
+ lastSec = sec;
+ if (!firstSec)
+ firstSec = sec;
+ p_align = std::max(p_align, sec->alignment);
if (p_type == PT_LOAD)
- Sec->PtLoad = this;
+ sec->ptLoad = this;
}
// The beginning and the ending of .rel[a].plt section are marked
@@ -913,35 +1018,40 @@ void PhdrEntry::add(OutputSection *Sec) {
// need these symbols, since IRELATIVE relocs are resolved through GOT
// and PLT. For details, see http://www.airs.com/blog/archives/403.
template <class ELFT> void Writer<ELFT>::addRelIpltSymbols() {
- if (Config->Relocatable || needsInterpSection())
+ if (config->relocatable || needsInterpSection())
return;
// By default, __rela_iplt_{start,end} belong to a dummy section 0
// because .rela.plt might be empty and thus removed from output.
- // We'll override Out::ElfHeader with In.RelaIplt later when we are
+ // We'll override Out::elfHeader with In.relaIplt later when we are
// sure that .rela.plt exists in output.
- ElfSym::RelaIpltStart = addOptionalRegular(
- Config->IsRela ? "__rela_iplt_start" : "__rel_iplt_start",
- Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK);
+ ElfSym::relaIpltStart = addOptionalRegular(
+ config->isRela ? "__rela_iplt_start" : "__rel_iplt_start",
+ Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
- ElfSym::RelaIpltEnd = addOptionalRegular(
- Config->IsRela ? "__rela_iplt_end" : "__rel_iplt_end",
- Out::ElfHeader, 0, STV_HIDDEN, STB_WEAK);
+ ElfSym::relaIpltEnd = addOptionalRegular(
+ config->isRela ? "__rela_iplt_end" : "__rel_iplt_end",
+ Out::elfHeader, 0, STV_HIDDEN, STB_WEAK);
}
template <class ELFT>
void Writer<ELFT>::forEachRelSec(
- llvm::function_ref<void(InputSectionBase &)> Fn) {
+ llvm::function_ref<void(InputSectionBase &)> fn) {
// Scan all relocations. Each relocation goes through a series
// of tests to determine if it needs special treatment, such as
// creating GOT, PLT, copy relocations, etc.
// Note that relocations for non-alloc sections are directly
// processed by InputSection::relocateNonAlloc.
- for (InputSectionBase *IS : InputSections)
- if (IS->Live && isa<InputSection>(IS) && (IS->Flags & SHF_ALLOC))
- Fn(*IS);
- for (EhInputSection *ES : In.EhFrame->Sections)
- Fn(*ES);
+ for (InputSectionBase *isec : inputSections)
+ if (isec->isLive() && isa<InputSection>(isec) && (isec->flags & SHF_ALLOC))
+ fn(*isec);
+ for (Partition &part : partitions) {
+ for (EhInputSection *es : part.ehFrame->sections)
+ fn(*es);
+ if (part.armExidx && part.armExidx->isLive())
+ for (InputSection *ex : part.armExidx->exidxSections)
+ fn(*ex);
+ }
}
// This function generates assignments for predefined symbols (e.g. _end or
@@ -950,76 +1060,78 @@ void Writer<ELFT>::forEachRelSec(
// time any references to these symbols are processed and is equivalent to
// defining these symbols explicitly in the linker script.
template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
- if (ElfSym::GlobalOffsetTable) {
+ if (ElfSym::globalOffsetTable) {
// The _GLOBAL_OFFSET_TABLE_ symbol is defined by target convention usually
// to the start of the .got or .got.plt section.
- InputSection *GotSection = In.GotPlt;
- if (!Target->GotBaseSymInGotPlt)
- GotSection = In.MipsGot ? cast<InputSection>(In.MipsGot)
- : cast<InputSection>(In.Got);
- ElfSym::GlobalOffsetTable->Section = GotSection;
+ InputSection *gotSection = in.gotPlt;
+ if (!target->gotBaseSymInGotPlt)
+ gotSection = in.mipsGot ? cast<InputSection>(in.mipsGot)
+ : cast<InputSection>(in.got);
+ ElfSym::globalOffsetTable->section = gotSection;
}
// .rela_iplt_{start,end} mark the start and the end of .rela.plt section.
- if (ElfSym::RelaIpltStart && !In.RelaIplt->empty()) {
- ElfSym::RelaIpltStart->Section = In.RelaIplt;
- ElfSym::RelaIpltEnd->Section = In.RelaIplt;
- ElfSym::RelaIpltEnd->Value = In.RelaIplt->getSize();
+ if (ElfSym::relaIpltStart && in.relaIplt->isNeeded()) {
+ ElfSym::relaIpltStart->section = in.relaIplt;
+ ElfSym::relaIpltEnd->section = in.relaIplt;
+ ElfSym::relaIpltEnd->value = in.relaIplt->getSize();
}
- PhdrEntry *Last = nullptr;
- PhdrEntry *LastRO = nullptr;
+ PhdrEntry *last = nullptr;
+ PhdrEntry *lastRO = nullptr;
- for (PhdrEntry *P : Phdrs) {
- if (P->p_type != PT_LOAD)
- continue;
- Last = P;
- if (!(P->p_flags & PF_W))
- LastRO = P;
+ for (Partition &part : partitions) {
+ for (PhdrEntry *p : part.phdrs) {
+ if (p->p_type != PT_LOAD)
+ continue;
+ last = p;
+ if (!(p->p_flags & PF_W))
+ lastRO = p;
+ }
}
- if (LastRO) {
+ if (lastRO) {
// _etext is the first location after the last read-only loadable segment.
- if (ElfSym::Etext1)
- ElfSym::Etext1->Section = LastRO->LastSec;
- if (ElfSym::Etext2)
- ElfSym::Etext2->Section = LastRO->LastSec;
+ if (ElfSym::etext1)
+ ElfSym::etext1->section = lastRO->lastSec;
+ if (ElfSym::etext2)
+ ElfSym::etext2->section = lastRO->lastSec;
}
- if (Last) {
+ if (last) {
// _edata points to the end of the last mapped initialized section.
- OutputSection *Edata = nullptr;
- for (OutputSection *OS : OutputSections) {
- if (OS->Type != SHT_NOBITS)
- Edata = OS;
- if (OS == Last->LastSec)
+ OutputSection *edata = nullptr;
+ for (OutputSection *os : outputSections) {
+ if (os->type != SHT_NOBITS)
+ edata = os;
+ if (os == last->lastSec)
break;
}
- if (ElfSym::Edata1)
- ElfSym::Edata1->Section = Edata;
- if (ElfSym::Edata2)
- ElfSym::Edata2->Section = Edata;
+ if (ElfSym::edata1)
+ ElfSym::edata1->section = edata;
+ if (ElfSym::edata2)
+ ElfSym::edata2->section = edata;
// _end is the first location after the uninitialized data region.
- if (ElfSym::End1)
- ElfSym::End1->Section = Last->LastSec;
- if (ElfSym::End2)
- ElfSym::End2->Section = Last->LastSec;
+ if (ElfSym::end1)
+ ElfSym::end1->section = last->lastSec;
+ if (ElfSym::end2)
+ ElfSym::end2->section = last->lastSec;
}
- if (ElfSym::Bss)
- ElfSym::Bss->Section = findSection(".bss");
+ if (ElfSym::bss)
+ ElfSym::bss->section = findSection(".bss");
// Setup MIPS _gp_disp/__gnu_local_gp symbols which should
// be equal to the _gp symbol's value.
- if (ElfSym::MipsGp) {
+ if (ElfSym::mipsGp) {
// Find GP-relative section with the lowest address
// and use this address to calculate default _gp value.
- for (OutputSection *OS : OutputSections) {
- if (OS->Flags & SHF_MIPS_GPREL) {
- ElfSym::MipsGp->Section = OS;
- ElfSym::MipsGp->Value = 0x7ff0;
+ for (OutputSection *os : outputSections) {
+ if (os->flags & SHF_MIPS_GPREL) {
+ ElfSym::mipsGp->section = os;
+ ElfSym::mipsGp->value = 0x7ff0;
break;
}
}
@@ -1030,14 +1142,13 @@ template <class ELFT> void Writer<ELFT>::setReservedSymbolSections() {
// The more branches in getSectionRank that match, the more similar they are.
// Since each branch corresponds to a bit flag, we can just use
// countLeadingZeros.
-static int getRankProximityAux(OutputSection *A, OutputSection *B) {
- return countLeadingZeros(A->SortRank ^ B->SortRank);
+static int getRankProximityAux(OutputSection *a, OutputSection *b) {
+ return countLeadingZeros(a->sortRank ^ b->sortRank);
}
-static int getRankProximity(OutputSection *A, BaseCommand *B) {
- if (auto *Sec = dyn_cast<OutputSection>(B))
- return getRankProximityAux(A, Sec);
- return -1;
+static int getRankProximity(OutputSection *a, BaseCommand *b) {
+ auto *sec = dyn_cast<OutputSection>(b);
+ return (sec && sec->hasInputSections) ? getRankProximityAux(a, sec) : -1;
}
// When placing orphan sections, we want to place them after symbol assignments
@@ -1054,137 +1165,142 @@ static int getRankProximity(OutputSection *A, BaseCommand *B) {
// /* The RW PT_LOAD starts here*/
// rw_sec : { *(rw_sec) }
// would mean that the RW PT_LOAD would become unaligned.
-static bool shouldSkip(BaseCommand *Cmd) {
- if (auto *Assign = dyn_cast<SymbolAssignment>(Cmd))
- return Assign->Name != ".";
+static bool shouldSkip(BaseCommand *cmd) {
+ if (auto *assign = dyn_cast<SymbolAssignment>(cmd))
+ return assign->name != ".";
return false;
}
// We want to place orphan sections so that they share as much
// characteristics with their neighbors as possible. For example, if
// both are rw, or both are tls.
-template <typename ELFT>
static std::vector<BaseCommand *>::iterator
-findOrphanPos(std::vector<BaseCommand *>::iterator B,
- std::vector<BaseCommand *>::iterator E) {
- OutputSection *Sec = cast<OutputSection>(*E);
+findOrphanPos(std::vector<BaseCommand *>::iterator b,
+ std::vector<BaseCommand *>::iterator e) {
+ OutputSection *sec = cast<OutputSection>(*e);
// Find the first element that has as close a rank as possible.
- auto I = std::max_element(B, E, [=](BaseCommand *A, BaseCommand *B) {
- return getRankProximity(Sec, A) < getRankProximity(Sec, B);
+ auto i = std::max_element(b, e, [=](BaseCommand *a, BaseCommand *b) {
+ return getRankProximity(sec, a) < getRankProximity(sec, b);
});
- if (I == E)
- return E;
+ if (i == e)
+ return e;
// Consider all existing sections with the same proximity.
- int Proximity = getRankProximity(Sec, *I);
- for (; I != E; ++I) {
- auto *CurSec = dyn_cast<OutputSection>(*I);
- if (!CurSec)
+ int proximity = getRankProximity(sec, *i);
+ for (; i != e; ++i) {
+ auto *curSec = dyn_cast<OutputSection>(*i);
+ if (!curSec || !curSec->hasInputSections)
continue;
- if (getRankProximity(Sec, CurSec) != Proximity ||
- Sec->SortRank < CurSec->SortRank)
+ if (getRankProximity(sec, curSec) != proximity ||
+ sec->sortRank < curSec->sortRank)
break;
}
- auto IsOutputSec = [](BaseCommand *Cmd) { return isa<OutputSection>(Cmd); };
- auto J = std::find_if(llvm::make_reverse_iterator(I),
- llvm::make_reverse_iterator(B), IsOutputSec);
- I = J.base();
+ auto isOutputSecWithInputSections = [](BaseCommand *cmd) {
+ auto *os = dyn_cast<OutputSection>(cmd);
+ return os && os->hasInputSections;
+ };
+ auto j = std::find_if(llvm::make_reverse_iterator(i),
+ llvm::make_reverse_iterator(b),
+ isOutputSecWithInputSections);
+ i = j.base();
// As a special case, if the orphan section is the last section, put
// it at the very end, past any other commands.
// This matches bfd's behavior and is convenient when the linker script fully
// specifies the start of the file, but doesn't care about the end (the non
// alloc sections for example).
- auto NextSec = std::find_if(I, E, IsOutputSec);
- if (NextSec == E)
- return E;
+ auto nextSec = std::find_if(i, e, isOutputSecWithInputSections);
+ if (nextSec == e)
+ return e;
- while (I != E && shouldSkip(*I))
- ++I;
- return I;
+ while (i != e && shouldSkip(*i))
+ ++i;
+ return i;
}
// Builds section order for handling --symbol-ordering-file.
static DenseMap<const InputSectionBase *, int> buildSectionOrder() {
- DenseMap<const InputSectionBase *, int> SectionOrder;
+ DenseMap<const InputSectionBase *, int> sectionOrder;
// Use the rarely used option -call-graph-ordering-file to sort sections.
- if (!Config->CallGraphProfile.empty())
+ if (!config->callGraphProfile.empty())
return computeCallGraphProfileOrder();
- if (Config->SymbolOrderingFile.empty())
- return SectionOrder;
+ if (config->symbolOrderingFile.empty())
+ return sectionOrder;
struct SymbolOrderEntry {
- int Priority;
- bool Present;
+ int priority;
+ bool present;
};
// Build a map from symbols to their priorities. Symbols that didn't
// appear in the symbol ordering file have the lowest priority 0.
// All explicitly mentioned symbols have negative (higher) priorities.
- DenseMap<StringRef, SymbolOrderEntry> SymbolOrder;
- int Priority = -Config->SymbolOrderingFile.size();
- for (StringRef S : Config->SymbolOrderingFile)
- SymbolOrder.insert({S, {Priority++, false}});
+ DenseMap<StringRef, SymbolOrderEntry> symbolOrder;
+ int priority = -config->symbolOrderingFile.size();
+ for (StringRef s : config->symbolOrderingFile)
+ symbolOrder.insert({s, {priority++, false}});
// Build a map from sections to their priorities.
- auto AddSym = [&](Symbol &Sym) {
- auto It = SymbolOrder.find(Sym.getName());
- if (It == SymbolOrder.end())
+ auto addSym = [&](Symbol &sym) {
+ auto it = symbolOrder.find(sym.getName());
+ if (it == symbolOrder.end())
return;
- SymbolOrderEntry &Ent = It->second;
- Ent.Present = true;
+ SymbolOrderEntry &ent = it->second;
+ ent.present = true;
- maybeWarnUnorderableSymbol(&Sym);
+ maybeWarnUnorderableSymbol(&sym);
- if (auto *D = dyn_cast<Defined>(&Sym)) {
- if (auto *Sec = dyn_cast_or_null<InputSectionBase>(D->Section)) {
- int &Priority = SectionOrder[cast<InputSectionBase>(Sec->Repl)];
- Priority = std::min(Priority, Ent.Priority);
+ if (auto *d = dyn_cast<Defined>(&sym)) {
+ if (auto *sec = dyn_cast_or_null<InputSectionBase>(d->section)) {
+ int &priority = sectionOrder[cast<InputSectionBase>(sec->repl)];
+ priority = std::min(priority, ent.priority);
}
}
};
// We want both global and local symbols. We get the global ones from the
// symbol table and iterate the object files for the local ones.
- for (Symbol *Sym : Symtab->getSymbols())
- if (!Sym->isLazy())
- AddSym(*Sym);
- for (InputFile *File : ObjectFiles)
- for (Symbol *Sym : File->getSymbols())
- if (Sym->isLocal())
- AddSym(*Sym);
+ symtab->forEachSymbol([&](Symbol *sym) {
+ if (!sym->isLazy())
+ addSym(*sym);
+ });
+
+ for (InputFile *file : objectFiles)
+ for (Symbol *sym : file->getSymbols())
+ if (sym->isLocal())
+ addSym(*sym);
- if (Config->WarnSymbolOrdering)
- for (auto OrderEntry : SymbolOrder)
- if (!OrderEntry.second.Present)
- warn("symbol ordering file: no such symbol: " + OrderEntry.first);
+ if (config->warnSymbolOrdering)
+ for (auto orderEntry : symbolOrder)
+ if (!orderEntry.second.present)
+ warn("symbol ordering file: no such symbol: " + orderEntry.first);
- return SectionOrder;
+ return sectionOrder;
}
// Sorts the sections in ISD according to the provided section order.
static void
-sortISDBySectionOrder(InputSectionDescription *ISD,
- const DenseMap<const InputSectionBase *, int> &Order) {
- std::vector<InputSection *> UnorderedSections;
- std::vector<std::pair<InputSection *, int>> OrderedSections;
- uint64_t UnorderedSize = 0;
-
- for (InputSection *IS : ISD->Sections) {
- auto I = Order.find(IS);
- if (I == Order.end()) {
- UnorderedSections.push_back(IS);
- UnorderedSize += IS->getSize();
+sortISDBySectionOrder(InputSectionDescription *isd,
+ const DenseMap<const InputSectionBase *, int> &order) {
+ std::vector<InputSection *> unorderedSections;
+ std::vector<std::pair<InputSection *, int>> orderedSections;
+ uint64_t unorderedSize = 0;
+
+ for (InputSection *isec : isd->sections) {
+ auto i = order.find(isec);
+ if (i == order.end()) {
+ unorderedSections.push_back(isec);
+ unorderedSize += isec->getSize();
continue;
}
- OrderedSections.push_back({IS, I->second});
+ orderedSections.push_back({isec, i->second});
}
- llvm::sort(OrderedSections, [&](std::pair<InputSection *, int> A,
- std::pair<InputSection *, int> B) {
- return A.second < B.second;
+ llvm::sort(orderedSections, [&](std::pair<InputSection *, int> a,
+ std::pair<InputSection *, int> b) {
+ return a.second < b.second;
});
// Find an insertion point for the ordered section list in the unordered
@@ -1214,96 +1330,114 @@ sortISDBySectionOrder(InputSectionDescription *ISD,
// of the second block of cold code can call the hot code without a thunk. So
// we effectively double the amount of code that could potentially call into
// the hot code without a thunk.
- size_t InsPt = 0;
- if (Target->getThunkSectionSpacing() && !OrderedSections.empty()) {
- uint64_t UnorderedPos = 0;
- for (; InsPt != UnorderedSections.size(); ++InsPt) {
- UnorderedPos += UnorderedSections[InsPt]->getSize();
- if (UnorderedPos > UnorderedSize / 2)
+ size_t insPt = 0;
+ if (target->getThunkSectionSpacing() && !orderedSections.empty()) {
+ uint64_t unorderedPos = 0;
+ for (; insPt != unorderedSections.size(); ++insPt) {
+ unorderedPos += unorderedSections[insPt]->getSize();
+ if (unorderedPos > unorderedSize / 2)
break;
}
}
- ISD->Sections.clear();
- for (InputSection *IS : makeArrayRef(UnorderedSections).slice(0, InsPt))
- ISD->Sections.push_back(IS);
- for (std::pair<InputSection *, int> P : OrderedSections)
- ISD->Sections.push_back(P.first);
- for (InputSection *IS : makeArrayRef(UnorderedSections).slice(InsPt))
- ISD->Sections.push_back(IS);
+ isd->sections.clear();
+ for (InputSection *isec : makeArrayRef(unorderedSections).slice(0, insPt))
+ isd->sections.push_back(isec);
+ for (std::pair<InputSection *, int> p : orderedSections)
+ isd->sections.push_back(p.first);
+ for (InputSection *isec : makeArrayRef(unorderedSections).slice(insPt))
+ isd->sections.push_back(isec);
}
-static void sortSection(OutputSection *Sec,
- const DenseMap<const InputSectionBase *, int> &Order) {
- StringRef Name = Sec->Name;
+static void sortSection(OutputSection *sec,
+ const DenseMap<const InputSectionBase *, int> &order) {
+ StringRef name = sec->name;
// Sort input sections by section name suffixes for
// __attribute__((init_priority(N))).
- if (Name == ".init_array" || Name == ".fini_array") {
- if (!Script->HasSectionsCommand)
- Sec->sortInitFini();
+ if (name == ".init_array" || name == ".fini_array") {
+ if (!script->hasSectionsCommand)
+ sec->sortInitFini();
return;
}
// Sort input sections by the special rule for .ctors and .dtors.
- if (Name == ".ctors" || Name == ".dtors") {
- if (!Script->HasSectionsCommand)
- Sec->sortCtorsDtors();
+ if (name == ".ctors" || name == ".dtors") {
+ if (!script->hasSectionsCommand)
+ sec->sortCtorsDtors();
return;
}
// Never sort these.
- if (Name == ".init" || Name == ".fini")
+ if (name == ".init" || name == ".fini")
return;
+ // .toc is allocated just after .got and is accessed using GOT-relative
+ // relocations. Object files compiled with small code model have an
+ // addressable range of [.got, .got + 0xFFFC] for GOT-relative relocations.
+ // To reduce the risk of relocation overflow, .toc contents are sorted so that
+ // sections having smaller relocation offsets are at beginning of .toc
+ if (config->emachine == EM_PPC64 && name == ".toc") {
+ if (script->hasSectionsCommand)
+ return;
+ assert(sec->sectionCommands.size() == 1);
+ auto *isd = cast<InputSectionDescription>(sec->sectionCommands[0]);
+ llvm::stable_sort(isd->sections,
+ [](const InputSection *a, const InputSection *b) -> bool {
+ return a->file->ppc64SmallCodeModelTocRelocs &&
+ !b->file->ppc64SmallCodeModelTocRelocs;
+ });
+ return;
+ }
+
// Sort input sections by priority using the list provided
// by --symbol-ordering-file.
- if (!Order.empty())
- for (BaseCommand *B : Sec->SectionCommands)
- if (auto *ISD = dyn_cast<InputSectionDescription>(B))
- sortISDBySectionOrder(ISD, Order);
+ if (!order.empty())
+ for (BaseCommand *b : sec->sectionCommands)
+ if (auto *isd = dyn_cast<InputSectionDescription>(b))
+ sortISDBySectionOrder(isd, order);
}
// If no layout was provided by linker script, we want to apply default
// sorting for special input sections. This also handles --symbol-ordering-file.
template <class ELFT> void Writer<ELFT>::sortInputSections() {
// Build the order once since it is expensive.
- DenseMap<const InputSectionBase *, int> Order = buildSectionOrder();
- for (BaseCommand *Base : Script->SectionCommands)
- if (auto *Sec = dyn_cast<OutputSection>(Base))
- sortSection(Sec, Order);
+ DenseMap<const InputSectionBase *, int> order = buildSectionOrder();
+ for (BaseCommand *base : script->sectionCommands)
+ if (auto *sec = dyn_cast<OutputSection>(base))
+ sortSection(sec, order);
}
template <class ELFT> void Writer<ELFT>::sortSections() {
- Script->adjustSectionsBeforeSorting();
+ script->adjustSectionsBeforeSorting();
// Don't sort if using -r. It is not necessary and we want to preserve the
// relative order for SHF_LINK_ORDER sections.
- if (Config->Relocatable)
+ if (config->relocatable)
return;
sortInputSections();
- for (BaseCommand *Base : Script->SectionCommands) {
- auto *OS = dyn_cast<OutputSection>(Base);
- if (!OS)
+ for (BaseCommand *base : script->sectionCommands) {
+ auto *os = dyn_cast<OutputSection>(base);
+ if (!os)
continue;
- OS->SortRank = getSectionRank(OS);
+ os->sortRank = getSectionRank(os);
- // We want to assign rude approximation values to OutSecOff fields
+ // We want to assign rude approximation values to outSecOff fields
// to know the relative order of the input sections. We use it for
// sorting SHF_LINK_ORDER sections. See resolveShfLinkOrder().
- uint64_t I = 0;
- for (InputSection *Sec : getInputSections(OS))
- Sec->OutSecOff = I++;
+ uint64_t i = 0;
+ for (InputSection *sec : getInputSections(os))
+ sec->outSecOff = i++;
}
- if (!Script->HasSectionsCommand) {
+ if (!script->hasSectionsCommand) {
// We know that all the OutputSections are contiguous in this case.
- auto IsSection = [](BaseCommand *Base) { return isa<OutputSection>(Base); };
+ auto isSection = [](BaseCommand *base) { return isa<OutputSection>(base); };
std::stable_sort(
- llvm::find_if(Script->SectionCommands, IsSection),
- llvm::find_if(llvm::reverse(Script->SectionCommands), IsSection).base(),
+ llvm::find_if(script->sectionCommands, isSection),
+ llvm::find_if(llvm::reverse(script->sectionCommands), isSection).base(),
compareSections);
return;
}
@@ -1347,211 +1481,127 @@ template <class ELFT> void Writer<ELFT>::sortSections() {
// after another commands. For the details, look at shouldSkip
// function.
- auto I = Script->SectionCommands.begin();
- auto E = Script->SectionCommands.end();
- auto NonScriptI = std::find_if(I, E, [](BaseCommand *Base) {
- if (auto *Sec = dyn_cast<OutputSection>(Base))
- return Sec->SectionIndex == UINT32_MAX;
+ auto i = script->sectionCommands.begin();
+ auto e = script->sectionCommands.end();
+ auto nonScriptI = std::find_if(i, e, [](BaseCommand *base) {
+ if (auto *sec = dyn_cast<OutputSection>(base))
+ return sec->sectionIndex == UINT32_MAX;
return false;
});
// Sort the orphan sections.
- std::stable_sort(NonScriptI, E, compareSections);
+ std::stable_sort(nonScriptI, e, compareSections);
// As a horrible special case, skip the first . assignment if it is before any
// section. We do this because it is common to set a load address by starting
// the script with ". = 0xabcd" and the expectation is that every section is
// after that.
- auto FirstSectionOrDotAssignment =
- std::find_if(I, E, [](BaseCommand *Cmd) { return !shouldSkip(Cmd); });
- if (FirstSectionOrDotAssignment != E &&
- isa<SymbolAssignment>(**FirstSectionOrDotAssignment))
- ++FirstSectionOrDotAssignment;
- I = FirstSectionOrDotAssignment;
+ auto firstSectionOrDotAssignment =
+ std::find_if(i, e, [](BaseCommand *cmd) { return !shouldSkip(cmd); });
+ if (firstSectionOrDotAssignment != e &&
+ isa<SymbolAssignment>(**firstSectionOrDotAssignment))
+ ++firstSectionOrDotAssignment;
+ i = firstSectionOrDotAssignment;
- while (NonScriptI != E) {
- auto Pos = findOrphanPos<ELFT>(I, NonScriptI);
- OutputSection *Orphan = cast<OutputSection>(*NonScriptI);
+ while (nonScriptI != e) {
+ auto pos = findOrphanPos(i, nonScriptI);
+ OutputSection *orphan = cast<OutputSection>(*nonScriptI);
// As an optimization, find all sections with the same sort rank
// and insert them with one rotate.
- unsigned Rank = Orphan->SortRank;
- auto End = std::find_if(NonScriptI + 1, E, [=](BaseCommand *Cmd) {
- return cast<OutputSection>(Cmd)->SortRank != Rank;
+ unsigned rank = orphan->sortRank;
+ auto end = std::find_if(nonScriptI + 1, e, [=](BaseCommand *cmd) {
+ return cast<OutputSection>(cmd)->sortRank != rank;
});
- std::rotate(Pos, NonScriptI, End);
- NonScriptI = End;
+ std::rotate(pos, nonScriptI, end);
+ nonScriptI = end;
}
- Script->adjustSectionsAfterSorting();
+ script->adjustSectionsAfterSorting();
}
-static bool compareByFilePosition(InputSection *A, InputSection *B) {
- // Synthetic, i. e. a sentinel section, should go last.
- if (A->kind() == InputSectionBase::Synthetic ||
- B->kind() == InputSectionBase::Synthetic)
- return A->kind() != InputSectionBase::Synthetic;
-
- InputSection *LA = A->getLinkOrderDep();
- InputSection *LB = B->getLinkOrderDep();
- OutputSection *AOut = LA->getParent();
- OutputSection *BOut = LB->getParent();
-
- if (AOut != BOut)
- return AOut->SectionIndex < BOut->SectionIndex;
- return LA->OutSecOff < LB->OutSecOff;
-}
-
-// This function is used by the --merge-exidx-entries to detect duplicate
-// .ARM.exidx sections. It is Arm only.
-//
-// The .ARM.exidx section is of the form:
-// | PREL31 offset to function | Unwind instructions for function |
-// where the unwind instructions are either a small number of unwind
-// instructions inlined into the table entry, the special CANT_UNWIND value of
-// 0x1 or a PREL31 offset into a .ARM.extab Section that contains unwind
-// instructions.
-//
-// We return true if all the unwind instructions in the .ARM.exidx entries of
-// Cur can be merged into the last entry of Prev.
-static bool isDuplicateArmExidxSec(InputSection *Prev, InputSection *Cur) {
-
- // References to .ARM.Extab Sections have bit 31 clear and are not the
- // special EXIDX_CANTUNWIND bit-pattern.
- auto IsExtabRef = [](uint32_t Unwind) {
- return (Unwind & 0x80000000) == 0 && Unwind != 0x1;
- };
-
- struct ExidxEntry {
- ulittle32_t Fn;
- ulittle32_t Unwind;
- };
-
- // Get the last table Entry from the previous .ARM.exidx section.
- const ExidxEntry &PrevEntry = Prev->getDataAs<ExidxEntry>().back();
- if (IsExtabRef(PrevEntry.Unwind))
- return false;
-
- // We consider the unwind instructions of an .ARM.exidx table entry
- // a duplicate if the previous unwind instructions if:
- // - Both are the special EXIDX_CANTUNWIND.
- // - Both are the same inline unwind instructions.
- // We do not attempt to follow and check links into .ARM.extab tables as
- // consecutive identical entries are rare and the effort to check that they
- // are identical is high.
+static bool compareByFilePosition(InputSection *a, InputSection *b) {
+ InputSection *la = a->getLinkOrderDep();
+ InputSection *lb = b->getLinkOrderDep();
+ OutputSection *aOut = la->getParent();
+ OutputSection *bOut = lb->getParent();
- for (const ExidxEntry Entry : Cur->getDataAs<ExidxEntry>())
- if (IsExtabRef(Entry.Unwind) || Entry.Unwind != PrevEntry.Unwind)
- return false;
-
- // All table entries in this .ARM.exidx Section can be merged into the
- // previous Section.
- return true;
+ if (aOut != bOut)
+ return aOut->sectionIndex < bOut->sectionIndex;
+ return la->outSecOff < lb->outSecOff;
}
template <class ELFT> void Writer<ELFT>::resolveShfLinkOrder() {
- for (OutputSection *Sec : OutputSections) {
- if (!(Sec->Flags & SHF_LINK_ORDER))
+ for (OutputSection *sec : outputSections) {
+ if (!(sec->flags & SHF_LINK_ORDER))
continue;
// Link order may be distributed across several InputSectionDescriptions
// but sort must consider them all at once.
- std::vector<InputSection **> ScriptSections;
- std::vector<InputSection *> Sections;
- for (BaseCommand *Base : Sec->SectionCommands) {
- if (auto *ISD = dyn_cast<InputSectionDescription>(Base)) {
- for (InputSection *&IS : ISD->Sections) {
- ScriptSections.push_back(&IS);
- Sections.push_back(IS);
+ std::vector<InputSection **> scriptSections;
+ std::vector<InputSection *> sections;
+ for (BaseCommand *base : sec->sectionCommands) {
+ if (auto *isd = dyn_cast<InputSectionDescription>(base)) {
+ for (InputSection *&isec : isd->sections) {
+ scriptSections.push_back(&isec);
+ sections.push_back(isec);
}
}
}
- std::stable_sort(Sections.begin(), Sections.end(), compareByFilePosition);
-
- if (!Config->Relocatable && Config->EMachine == EM_ARM &&
- Sec->Type == SHT_ARM_EXIDX) {
-
- if (auto *Sentinel = dyn_cast<ARMExidxSentinelSection>(Sections.back())) {
- assert(Sections.size() >= 2 &&
- "We should create a sentinel section only if there are "
- "alive regular exidx sections.");
-
- // The last executable section is required to fill the sentinel.
- // Remember it here so that we don't have to find it again.
- Sentinel->Highest = Sections[Sections.size() - 2]->getLinkOrderDep();
- }
- // The EHABI for the Arm Architecture permits consecutive identical
- // table entries to be merged. We use a simple implementation that
- // removes a .ARM.exidx Input Section if it can be merged into the
- // previous one. This does not require any rewriting of InputSection
- // contents but misses opportunities for fine grained deduplication
- // where only a subset of the InputSection contents can be merged.
- if (Config->MergeArmExidx) {
- size_t Prev = 0;
- // The last one is a sentinel entry which should not be removed.
- for (size_t I = 1; I < Sections.size() - 1; ++I) {
- if (isDuplicateArmExidxSec(Sections[Prev], Sections[I]))
- Sections[I] = nullptr;
- else
- Prev = I;
- }
- }
- }
+ // The ARM.exidx section use SHF_LINK_ORDER, but we have consolidated
+ // this processing inside the ARMExidxsyntheticsection::finalizeContents().
+ if (!config->relocatable && config->emachine == EM_ARM &&
+ sec->type == SHT_ARM_EXIDX)
+ continue;
- for (int I = 0, N = Sections.size(); I < N; ++I)
- *ScriptSections[I] = Sections[I];
+ llvm::stable_sort(sections, compareByFilePosition);
- // Remove the Sections we marked as duplicate earlier.
- for (BaseCommand *Base : Sec->SectionCommands)
- if (auto *ISD = dyn_cast<InputSectionDescription>(Base))
- llvm::erase_if(ISD->Sections, [](InputSection *IS) { return !IS; });
+ for (int i = 0, n = sections.size(); i < n; ++i)
+ *scriptSections[i] = sections[i];
}
}
-// For most RISC ISAs, we need to generate content that depends on the address
-// of InputSections. For example some architectures such as AArch64 use small
-// displacements for jump instructions that is the linker's responsibility for
-// creating range extension thunks for. As the generation of the content may
-// also alter InputSection addresses we must converge to a fixed point.
-template <class ELFT> void Writer<ELFT>::maybeAddThunks() {
- if (!Target->NeedsThunks && !Config->AndroidPackDynRelocs &&
- !Config->RelrPackDynRelocs)
- return;
-
- ThunkCreator TC;
- AArch64Err843419Patcher A64P;
+// We need to generate and finalize the content that depends on the address of
+// InputSections. As the generation of the content may also alter InputSection
+// addresses we must converge to a fixed point. We do that here. See the comment
+// in Writer<ELFT>::finalizeSections().
+template <class ELFT> void Writer<ELFT>::finalizeAddressDependentContent() {
+ ThunkCreator tc;
+ AArch64Err843419Patcher a64p;
+ // For some targets, like x86, this loop iterates only once.
for (;;) {
- bool Changed = false;
+ bool changed = false;
- Script->assignAddresses();
+ script->assignAddresses();
- if (Target->NeedsThunks)
- Changed |= TC.createThunks(OutputSections);
+ if (target->needsThunks)
+ changed |= tc.createThunks(outputSections);
- if (Config->FixCortexA53Errata843419) {
- if (Changed)
- Script->assignAddresses();
- Changed |= A64P.createFixes();
+ if (config->fixCortexA53Errata843419) {
+ if (changed)
+ script->assignAddresses();
+ changed |= a64p.createFixes();
}
- if (In.MipsGot)
- In.MipsGot->updateAllocSize();
-
- Changed |= In.RelaDyn->updateAllocSize();
+ if (in.mipsGot)
+ in.mipsGot->updateAllocSize();
- if (In.RelrDyn)
- Changed |= In.RelrDyn->updateAllocSize();
+ for (Partition &part : partitions) {
+ changed |= part.relaDyn->updateAllocSize();
+ if (part.relrDyn)
+ changed |= part.relrDyn->updateAllocSize();
+ }
- if (!Changed)
+ if (!changed)
return;
}
}
-static void finalizeSynthetic(SyntheticSection *Sec) {
- if (Sec && !Sec->empty() && Sec->getParent())
- Sec->finalizeContents();
+static void finalizeSynthetic(SyntheticSection *sec) {
+ if (sec && sec->isNeeded() && sec->getParent())
+ sec->finalizeContents();
}
// In order to allow users to manipulate linker-synthesized sections,
@@ -1570,108 +1620,136 @@ static void removeUnusedSyntheticSections() {
// All input synthetic sections that can be empty are placed after
// all regular ones. We iterate over them all and exit at first
// non-synthetic.
- for (InputSectionBase *S : llvm::reverse(InputSections)) {
- SyntheticSection *SS = dyn_cast<SyntheticSection>(S);
- if (!SS)
+ for (InputSectionBase *s : llvm::reverse(inputSections)) {
+ SyntheticSection *ss = dyn_cast<SyntheticSection>(s);
+ if (!ss)
return;
- OutputSection *OS = SS->getParent();
- if (!OS || !SS->empty())
+ OutputSection *os = ss->getParent();
+ if (!os || ss->isNeeded())
continue;
// If we reach here, then SS is an unused synthetic section and we want to
// remove it from corresponding input section description of output section.
- for (BaseCommand *B : OS->SectionCommands)
- if (auto *ISD = dyn_cast<InputSectionDescription>(B))
- llvm::erase_if(ISD->Sections,
- [=](InputSection *IS) { return IS == SS; });
+ for (BaseCommand *b : os->sectionCommands)
+ if (auto *isd = dyn_cast<InputSectionDescription>(b))
+ llvm::erase_if(isd->sections,
+ [=](InputSection *isec) { return isec == ss; });
}
}
// Returns true if a symbol can be replaced at load-time by a symbol
// with the same name defined in other ELF executable or DSO.
-static bool computeIsPreemptible(const Symbol &B) {
- assert(!B.isLocal());
+static bool computeIsPreemptible(const Symbol &b) {
+ assert(!b.isLocal());
// Only symbols that appear in dynsym can be preempted.
- if (!B.includeInDynsym())
+ if (!b.includeInDynsym())
return false;
// Only default visibility symbols can be preempted.
- if (B.Visibility != STV_DEFAULT)
+ if (b.visibility != STV_DEFAULT)
return false;
// At this point copy relocations have not been created yet, so any
// symbol that is not defined locally is preemptible.
- if (!B.isDefined())
+ if (!b.isDefined())
return true;
// If we have a dynamic list it specifies which local symbols are preemptible.
- if (Config->HasDynamicList)
+ if (config->hasDynamicList)
return false;
- if (!Config->Shared)
+ if (!config->shared)
return false;
// -Bsymbolic means that definitions are not preempted.
- if (Config->Bsymbolic || (Config->BsymbolicFunctions && B.isFunc()))
+ if (config->bsymbolic || (config->bsymbolicFunctions && b.isFunc()))
return false;
return true;
}
// Create output section objects and add them to OutputSections.
template <class ELFT> void Writer<ELFT>::finalizeSections() {
- Out::PreinitArray = findSection(".preinit_array");
- Out::InitArray = findSection(".init_array");
- Out::FiniArray = findSection(".fini_array");
+ Out::preinitArray = findSection(".preinit_array");
+ Out::initArray = findSection(".init_array");
+ Out::finiArray = findSection(".fini_array");
// The linker needs to define SECNAME_start, SECNAME_end and SECNAME_stop
// symbols for sections, so that the runtime can get the start and end
// addresses of each section by section name. Add such symbols.
- if (!Config->Relocatable) {
+ if (!config->relocatable) {
addStartEndSymbols();
- for (BaseCommand *Base : Script->SectionCommands)
- if (auto *Sec = dyn_cast<OutputSection>(Base))
- addStartStopSymbols(Sec);
+ for (BaseCommand *base : script->sectionCommands)
+ if (auto *sec = dyn_cast<OutputSection>(base))
+ addStartStopSymbols(sec);
}
// Add _DYNAMIC symbol. Unlike GNU gold, our _DYNAMIC symbol has no type.
// It should be okay as no one seems to care about the type.
// Even the author of gold doesn't remember why gold behaves that way.
// https://sourceware.org/ml/binutils/2002-03/msg00360.html
- if (In.Dynamic->Parent)
- Symtab->addDefined("_DYNAMIC", STV_HIDDEN, STT_NOTYPE, 0 /*Value*/,
- /*Size=*/0, STB_WEAK, In.Dynamic,
- /*File=*/nullptr);
+ if (mainPart->dynamic->parent)
+ symtab->addSymbol(Defined{/*file=*/nullptr, "_DYNAMIC", STB_WEAK,
+ STV_HIDDEN, STT_NOTYPE,
+ /*value=*/0, /*size=*/0, mainPart->dynamic});
// Define __rel[a]_iplt_{start,end} symbols if needed.
addRelIpltSymbols();
// RISC-V's gp can address +/- 2 KiB, set it to .sdata + 0x800 if not defined.
- if (Config->EMachine == EM_RISCV)
- if (!dyn_cast_or_null<Defined>(Symtab->find("__global_pointer$")))
- addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800);
+ // This symbol should only be defined in an executable.
+ if (config->emachine == EM_RISCV && !config->shared)
+ ElfSym::riscvGlobalPointer =
+ addOptionalRegular("__global_pointer$", findSection(".sdata"), 0x800,
+ STV_DEFAULT, STB_GLOBAL);
+
+ if (config->emachine == EM_X86_64) {
+ // On targets that support TLSDESC, _TLS_MODULE_BASE_ is defined in such a
+ // way that:
+ //
+ // 1) Without relaxation: it produces a dynamic TLSDESC relocation that
+ // computes 0.
+ // 2) With LD->LE relaxation: _TLS_MODULE_BASE_@tpoff = 0 (lowest address in
+ // the TLS block).
+ //
+ // 2) is special cased in @tpoff computation. To satisfy 1), we define it as
+ // an absolute symbol of zero. This is different from GNU linkers which
+ // define _TLS_MODULE_BASE_ relative to the first TLS section.
+ Symbol *s = symtab->find("_TLS_MODULE_BASE_");
+ if (s && s->isUndefined()) {
+ s->resolve(Defined{/*file=*/nullptr, s->getName(), STB_GLOBAL, STV_HIDDEN,
+ STT_TLS, /*value=*/0, 0,
+ /*section=*/nullptr});
+ ElfSym::tlsModuleBase = cast<Defined>(s);
+ }
+ }
// This responsible for splitting up .eh_frame section into
// pieces. The relocation scan uses those pieces, so this has to be
// earlier.
- finalizeSynthetic(In.EhFrame);
+ for (Partition &part : partitions)
+ finalizeSynthetic(part.ehFrame);
- for (Symbol *S : Symtab->getSymbols())
- S->IsPreemptible |= computeIsPreemptible(*S);
+ symtab->forEachSymbol([](Symbol *s) {
+ if (!s->isPreemptible)
+ s->isPreemptible = computeIsPreemptible(*s);
+ });
// Scan relocations. This must be done after every symbol is declared so that
// we can correctly decide if a dynamic relocation is needed.
- if (!Config->Relocatable)
+ if (!config->relocatable) {
forEachRelSec(scanRelocations<ELFT>);
+ reportUndefinedSymbols<ELFT>();
+ }
addIRelativeRelocs();
- if (In.Plt && !In.Plt->empty())
- In.Plt->addSymbols();
- if (In.Iplt && !In.Iplt->empty())
- In.Iplt->addSymbols();
+ if (in.plt && in.plt->isNeeded())
+ in.plt->addSymbols();
+ if (in.iplt && in.iplt->isNeeded())
+ in.iplt->addSymbols();
- if (!Config->AllowShlibUndefined) {
+ if (!config->allowShlibUndefined) {
// Error on undefined symbols in a shared object, if all of its DT_NEEDED
// entires are seen. These cases would otherwise lead to runtime errors
// reported by the dynamic linker.
@@ -1679,41 +1757,53 @@ template <class ELFT> void Writer<ELFT>::finalizeSections() {
// ld.bfd traces all DT_NEEDED to emulate the logic of the dynamic linker to
// catch more cases. That is too much for us. Our approach resembles the one
// used in ld.gold, achieves a good balance to be useful but not too smart.
- for (InputFile *File : SharedFiles) {
- SharedFile<ELFT> *F = cast<SharedFile<ELFT>>(File);
- F->AllNeededIsKnown = llvm::all_of(F->DtNeeded, [&](StringRef Needed) {
- return Symtab->SoNames.count(Needed);
- });
- }
- for (Symbol *Sym : Symtab->getSymbols())
- if (Sym->isUndefined() && !Sym->isWeak())
- if (auto *F = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File))
- if (F->AllNeededIsKnown)
- error(toString(F) + ": undefined reference to " + toString(*Sym));
+ for (SharedFile *file : sharedFiles)
+ file->allNeededIsKnown =
+ llvm::all_of(file->dtNeeded, [&](StringRef needed) {
+ return symtab->soNames.count(needed);
+ });
+
+ symtab->forEachSymbol([](Symbol *sym) {
+ if (sym->isUndefined() && !sym->isWeak())
+ if (auto *f = dyn_cast_or_null<SharedFile>(sym->file))
+ if (f->allNeededIsKnown)
+ error(toString(f) + ": undefined reference to " + toString(*sym));
+ });
}
// Now that we have defined all possible global symbols including linker-
// synthesized ones. Visit all symbols to give the finishing touches.
- for (Symbol *Sym : Symtab->getSymbols()) {
- if (!includeInSymtab(*Sym))
- continue;
- if (In.SymTab)
- In.SymTab->addSymbol(Sym);
-
- if (Sym->includeInDynsym()) {
- In.DynSymTab->addSymbol(Sym);
- if (auto *File = dyn_cast_or_null<SharedFile<ELFT>>(Sym->File))
- if (File->IsNeeded && !Sym->isUndefined())
- InX<ELFT>::VerNeed->addSymbol(Sym);
+ symtab->forEachSymbol([](Symbol *sym) {
+ if (!includeInSymtab(*sym))
+ return;
+ if (in.symTab)
+ in.symTab->addSymbol(sym);
+
+ if (sym->includeInDynsym()) {
+ partitions[sym->partition - 1].dynSymTab->addSymbol(sym);
+ if (auto *file = dyn_cast_or_null<SharedFile>(sym->file))
+ if (file->isNeeded && !sym->isUndefined())
+ addVerneed(sym);
}
+ });
+
+ // We also need to scan the dynamic relocation tables of the other partitions
+ // and add any referenced symbols to the partition's dynsym.
+ for (Partition &part : MutableArrayRef<Partition>(partitions).slice(1)) {
+ DenseSet<Symbol *> syms;
+ for (const SymbolTableEntry &e : part.dynSymTab->getSymbols())
+ syms.insert(e.sym);
+ for (DynamicReloc &reloc : part.relaDyn->relocs)
+ if (reloc.sym && !reloc.useSymVA && syms.insert(reloc.sym).second)
+ part.dynSymTab->addSymbol(reloc.sym);
}
// Do not proceed if there was an undefined symbol.
if (errorCount())
return;
- if (In.MipsGot)
- In.MipsGot->build<ELFT>();
+ if (in.mipsGot)
+ in.mipsGot->build();
removeUnusedSyntheticSections();
@@ -1721,116 +1811,147 @@ template <class ELFT> void Writer<ELFT>::finalizeSections() {
// Now that we have the final list, create a list of all the
// OutputSections for convenience.
- for (BaseCommand *Base : Script->SectionCommands)
- if (auto *Sec = dyn_cast<OutputSection>(Base))
- OutputSections.push_back(Sec);
+ for (BaseCommand *base : script->sectionCommands)
+ if (auto *sec = dyn_cast<OutputSection>(base))
+ outputSections.push_back(sec);
// Prefer command line supplied address over other constraints.
- for (OutputSection *Sec : OutputSections) {
- auto I = Config->SectionStartMap.find(Sec->Name);
- if (I != Config->SectionStartMap.end())
- Sec->AddrExpr = [=] { return I->second; };
+ for (OutputSection *sec : outputSections) {
+ auto i = config->sectionStartMap.find(sec->name);
+ if (i != config->sectionStartMap.end())
+ sec->addrExpr = [=] { return i->second; };
}
// This is a bit of a hack. A value of 0 means undef, so we set it
// to 1 to make __ehdr_start defined. The section number is not
// particularly relevant.
- Out::ElfHeader->SectionIndex = 1;
+ Out::elfHeader->sectionIndex = 1;
- for (size_t I = 0, E = OutputSections.size(); I != E; ++I) {
- OutputSection *Sec = OutputSections[I];
- Sec->SectionIndex = I + 1;
- Sec->ShName = In.ShStrTab->addString(Sec->Name);
+ for (size_t i = 0, e = outputSections.size(); i != e; ++i) {
+ OutputSection *sec = outputSections[i];
+ sec->sectionIndex = i + 1;
+ sec->shName = in.shStrTab->addString(sec->name);
}
// Binary and relocatable output does not have PHDRS.
// The headers have to be created before finalize as that can influence the
// image base and the dynamic section on mips includes the image base.
- if (!Config->Relocatable && !Config->OFormatBinary) {
- Phdrs = Script->hasPhdrsCommands() ? Script->createPhdrs() : createPhdrs();
- addPtArmExid(Phdrs);
- Out::ProgramHeaders->Size = sizeof(Elf_Phdr) * Phdrs.size();
+ if (!config->relocatable && !config->oFormatBinary) {
+ for (Partition &part : partitions) {
+ part.phdrs = script->hasPhdrsCommands() ? script->createPhdrs()
+ : createPhdrs(part);
+ if (config->emachine == EM_ARM) {
+ // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
+ addPhdrForSection(part, SHT_ARM_EXIDX, PT_ARM_EXIDX, PF_R);
+ }
+ if (config->emachine == EM_MIPS) {
+ // Add separate segments for MIPS-specific sections.
+ addPhdrForSection(part, SHT_MIPS_REGINFO, PT_MIPS_REGINFO, PF_R);
+ addPhdrForSection(part, SHT_MIPS_OPTIONS, PT_MIPS_OPTIONS, PF_R);
+ addPhdrForSection(part, SHT_MIPS_ABIFLAGS, PT_MIPS_ABIFLAGS, PF_R);
+ }
+ }
+ Out::programHeaders->size = sizeof(Elf_Phdr) * mainPart->phdrs.size();
// Find the TLS segment. This happens before the section layout loop so that
- // Android relocation packing can look up TLS symbol addresses.
- for (PhdrEntry *P : Phdrs)
- if (P->p_type == PT_TLS)
- Out::TlsPhdr = P;
+ // Android relocation packing can look up TLS symbol addresses. We only need
+ // to care about the main partition here because all TLS symbols were moved
+ // to the main partition (see MarkLive.cpp).
+ for (PhdrEntry *p : mainPart->phdrs)
+ if (p->p_type == PT_TLS)
+ Out::tlsPhdr = p;
}
// Some symbols are defined in term of program headers. Now that we
// have the headers, we can find out which sections they point to.
setReservedSymbolSections();
+ finalizeSynthetic(in.bss);
+ finalizeSynthetic(in.bssRelRo);
+ finalizeSynthetic(in.symTabShndx);
+ finalizeSynthetic(in.shStrTab);
+ finalizeSynthetic(in.strTab);
+ finalizeSynthetic(in.got);
+ finalizeSynthetic(in.mipsGot);
+ finalizeSynthetic(in.igotPlt);
+ finalizeSynthetic(in.gotPlt);
+ finalizeSynthetic(in.relaIplt);
+ finalizeSynthetic(in.relaPlt);
+ finalizeSynthetic(in.plt);
+ finalizeSynthetic(in.iplt);
+ finalizeSynthetic(in.ppc32Got2);
+ finalizeSynthetic(in.riscvSdata);
+ finalizeSynthetic(in.partIndex);
+
// Dynamic section must be the last one in this list and dynamic
- // symbol table section (DynSymTab) must be the first one.
- finalizeSynthetic(In.DynSymTab);
- finalizeSynthetic(In.Bss);
- finalizeSynthetic(In.BssRelRo);
- finalizeSynthetic(In.GnuHashTab);
- finalizeSynthetic(In.HashTab);
- finalizeSynthetic(In.SymTabShndx);
- finalizeSynthetic(In.ShStrTab);
- finalizeSynthetic(In.StrTab);
- finalizeSynthetic(In.VerDef);
- finalizeSynthetic(In.DynStrTab);
- finalizeSynthetic(In.Got);
- finalizeSynthetic(In.MipsGot);
- finalizeSynthetic(In.IgotPlt);
- finalizeSynthetic(In.GotPlt);
- finalizeSynthetic(In.RelaDyn);
- finalizeSynthetic(In.RelrDyn);
- finalizeSynthetic(In.RelaIplt);
- finalizeSynthetic(In.RelaPlt);
- finalizeSynthetic(In.Plt);
- finalizeSynthetic(In.Iplt);
- finalizeSynthetic(In.EhFrameHdr);
- finalizeSynthetic(InX<ELFT>::VerSym);
- finalizeSynthetic(InX<ELFT>::VerNeed);
- finalizeSynthetic(In.Dynamic);
-
- if (!Script->HasSectionsCommand && !Config->Relocatable)
+ // symbol table section (dynSymTab) must be the first one.
+ for (Partition &part : partitions) {
+ finalizeSynthetic(part.armExidx);
+ finalizeSynthetic(part.dynSymTab);
+ finalizeSynthetic(part.gnuHashTab);
+ finalizeSynthetic(part.hashTab);
+ finalizeSynthetic(part.verDef);
+ finalizeSynthetic(part.relaDyn);
+ finalizeSynthetic(part.relrDyn);
+ finalizeSynthetic(part.ehFrameHdr);
+ finalizeSynthetic(part.verSym);
+ finalizeSynthetic(part.verNeed);
+ finalizeSynthetic(part.dynamic);
+ }
+
+ if (!script->hasSectionsCommand && !config->relocatable)
fixSectionAlignments();
- // After link order processing .ARM.exidx sections can be deduplicated, which
- // needs to be resolved before any other address dependent operation.
+ // SHFLinkOrder processing must be processed after relative section placements are
+ // known but before addresses are allocated.
resolveShfLinkOrder();
- // Jump instructions in many ISAs have small displacements, and therefore they
- // cannot jump to arbitrary addresses in memory. For example, RISC-V JAL
- // instruction can target only +-1 MiB from PC. It is a linker's
- // responsibility to create and insert small pieces of code between sections
- // to extend the ranges if jump targets are out of range. Such code pieces are
- // called "thunks".
+ // This is used to:
+ // 1) Create "thunks":
+ // Jump instructions in many ISAs have small displacements, and therefore
+ // they cannot jump to arbitrary addresses in memory. For example, RISC-V
+ // JAL instruction can target only +-1 MiB from PC. It is a linker's
+ // responsibility to create and insert small pieces of code between
+ // sections to extend the ranges if jump targets are out of range. Such
+ // code pieces are called "thunks".
+ //
+ // We add thunks at this stage. We couldn't do this before this point
+ // because this is the earliest point where we know sizes of sections and
+ // their layouts (that are needed to determine if jump targets are in
+ // range).
+ //
+ // 2) Update the sections. We need to generate content that depends on the
+ // address of InputSections. For example, MIPS GOT section content or
+ // android packed relocations sections content.
//
- // We add thunks at this stage. We couldn't do this before this point because
- // this is the earliest point where we know sizes of sections and their
- // layouts (that are needed to determine if jump targets are in range).
- maybeAddThunks();
+ // 3) Assign the final values for the linker script symbols. Linker scripts
+ // sometimes using forward symbol declarations. We want to set the correct
+ // values. They also might change after adding the thunks.
+ finalizeAddressDependentContent();
- // maybeAddThunks may have added local symbols to the static symbol table.
- finalizeSynthetic(In.SymTab);
- finalizeSynthetic(In.PPC64LongBranchTarget);
+ // finalizeAddressDependentContent may have added local symbols to the static symbol table.
+ finalizeSynthetic(in.symTab);
+ finalizeSynthetic(in.ppc64LongBranchTarget);
// Fill other section headers. The dynamic table is finalized
// at the end because some tags like RELSZ depend on result
// of finalizing other sections.
- for (OutputSection *Sec : OutputSections)
- Sec->finalize<ELFT>();
+ for (OutputSection *sec : outputSections)
+ sec->finalize();
}
// Ensure data sections are not mixed with executable sections when
// -execute-only is used. -execute-only is a feature to make pages executable
// but not readable, and the feature is currently supported only on AArch64.
template <class ELFT> void Writer<ELFT>::checkExecuteOnly() {
- if (!Config->ExecuteOnly)
+ if (!config->executeOnly)
return;
- for (OutputSection *OS : OutputSections)
- if (OS->Flags & SHF_EXECINSTR)
- for (InputSection *IS : getInputSections(OS))
- if (!(IS->Flags & SHF_EXECINSTR))
- error("cannot place " + toString(IS) + " into " + toString(OS->Name) +
+ for (OutputSection *os : outputSections)
+ if (os->flags & SHF_EXECINSTR)
+ for (InputSection *isec : getInputSections(os))
+ if (!(isec->flags & SHF_EXECINSTR))
+ error("cannot place " + toString(isec) + " into " + toString(os->name) +
": -execute-only does not support intermingling data and code");
}
@@ -1855,24 +1976,24 @@ template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
// case, use the image base address as a last resort.
OutputSection *Default = findSection(".text");
if (!Default)
- Default = Out::ElfHeader;
+ Default = Out::elfHeader;
- auto Define = [=](StringRef Start, StringRef End, OutputSection *OS) {
- if (OS) {
- addOptionalRegular(Start, OS, 0);
- addOptionalRegular(End, OS, -1);
+ auto define = [=](StringRef start, StringRef end, OutputSection *os) {
+ if (os) {
+ addOptionalRegular(start, os, 0);
+ addOptionalRegular(end, os, -1);
} else {
- addOptionalRegular(Start, Default, 0);
- addOptionalRegular(End, Default, 0);
+ addOptionalRegular(start, Default, 0);
+ addOptionalRegular(end, Default, 0);
}
};
- Define("__preinit_array_start", "__preinit_array_end", Out::PreinitArray);
- Define("__init_array_start", "__init_array_end", Out::InitArray);
- Define("__fini_array_start", "__fini_array_end", Out::FiniArray);
+ define("__preinit_array_start", "__preinit_array_end", Out::preinitArray);
+ define("__init_array_start", "__init_array_end", Out::initArray);
+ define("__fini_array_start", "__fini_array_end", Out::finiArray);
- if (OutputSection *Sec = findSection(".ARM.exidx"))
- Define("__exidx_start", "__exidx_end", Sec);
+ if (OutputSection *sec = findSection(".ARM.exidx"))
+ define("__exidx_start", "__exidx_end", sec);
}
// If a section name is valid as a C identifier (which is rare because of
@@ -1881,22 +2002,22 @@ template <class ELFT> void Writer<ELFT>::addStartEndSymbols() {
// respectively. This is not requested by the ELF standard, but GNU ld and
// gold provide the feature, and used by many programs.
template <class ELFT>
-void Writer<ELFT>::addStartStopSymbols(OutputSection *Sec) {
- StringRef S = Sec->Name;
- if (!isValidCIdentifier(S))
+void Writer<ELFT>::addStartStopSymbols(OutputSection *sec) {
+ StringRef s = sec->name;
+ if (!isValidCIdentifier(s))
return;
- addOptionalRegular(Saver.save("__start_" + S), Sec, 0, STV_PROTECTED);
- addOptionalRegular(Saver.save("__stop_" + S), Sec, -1, STV_PROTECTED);
+ addOptionalRegular(saver.save("__start_" + s), sec, 0, STV_PROTECTED);
+ addOptionalRegular(saver.save("__stop_" + s), sec, -1, STV_PROTECTED);
}
-static bool needsPtLoad(OutputSection *Sec) {
- if (!(Sec->Flags & SHF_ALLOC) || Sec->Noload)
+static bool needsPtLoad(OutputSection *sec) {
+ if (!(sec->flags & SHF_ALLOC) || sec->noload)
return false;
// Don't allocate VA space for TLS NOBITS sections. The PT_TLS PHDR is
// responsible for allocating space for them, not the PT_LOAD that
// contains the TLS initialization image.
- if ((Sec->Flags & SHF_TLS) && Sec->Type == SHT_NOBITS)
+ if ((sec->flags & SHF_TLS) && sec->type == SHT_NOBITS)
return false;
return true;
}
@@ -1905,46 +2026,93 @@ static bool needsPtLoad(OutputSection *Sec) {
// linker scripts are designed for creating two PT_LOADs only, one RX and one
// RW. This means that there is no alignment in the RO to RX transition and we
// cannot create a PT_LOAD there.
-static uint64_t computeFlags(uint64_t Flags) {
- if (Config->Omagic)
+static uint64_t computeFlags(uint64_t flags) {
+ if (config->omagic)
return PF_R | PF_W | PF_X;
- if (Config->ExecuteOnly && (Flags & PF_X))
- return Flags & ~PF_R;
- if (Config->SingleRoRx && !(Flags & PF_W))
- return Flags | PF_X;
- return Flags;
+ if (config->executeOnly && (flags & PF_X))
+ return flags & ~PF_R;
+ if (config->singleRoRx && !(flags & PF_W))
+ return flags | PF_X;
+ return flags;
}
// Decide which program headers to create and which sections to include in each
// one.
-template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() {
- std::vector<PhdrEntry *> Ret;
- auto AddHdr = [&](unsigned Type, unsigned Flags) -> PhdrEntry * {
- Ret.push_back(make<PhdrEntry>(Type, Flags));
- return Ret.back();
+template <class ELFT>
+std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs(Partition &part) {
+ std::vector<PhdrEntry *> ret;
+ auto addHdr = [&](unsigned type, unsigned flags) -> PhdrEntry * {
+ ret.push_back(make<PhdrEntry>(type, flags));
+ return ret.back();
};
+ unsigned partNo = part.getNumber();
+ bool isMain = partNo == 1;
+
// The first phdr entry is PT_PHDR which describes the program header itself.
- AddHdr(PT_PHDR, PF_R)->add(Out::ProgramHeaders);
+ if (isMain)
+ addHdr(PT_PHDR, PF_R)->add(Out::programHeaders);
+ else
+ addHdr(PT_PHDR, PF_R)->add(part.programHeaders->getParent());
// PT_INTERP must be the second entry if exists.
- if (OutputSection *Cmd = findSection(".interp"))
- AddHdr(PT_INTERP, Cmd->getPhdrFlags())->add(Cmd);
+ if (OutputSection *cmd = findSection(".interp", partNo))
+ addHdr(PT_INTERP, cmd->getPhdrFlags())->add(cmd);
// Add the first PT_LOAD segment for regular output sections.
- uint64_t Flags = computeFlags(PF_R);
- PhdrEntry *Load = AddHdr(PT_LOAD, Flags);
+ uint64_t flags = computeFlags(PF_R);
+ PhdrEntry *load = nullptr;
// Add the headers. We will remove them if they don't fit.
- Load->add(Out::ElfHeader);
- Load->add(Out::ProgramHeaders);
+ // In the other partitions the headers are ordinary sections, so they don't
+ // need to be added here.
+ if (isMain) {
+ load = addHdr(PT_LOAD, flags);
+ load->add(Out::elfHeader);
+ load->add(Out::programHeaders);
+ }
+
+ // PT_GNU_RELRO includes all sections that should be marked as
+ // read-only by dynamic linker after proccessing relocations.
+ // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
+ // an error message if more than one PT_GNU_RELRO PHDR is required.
+ PhdrEntry *relRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
+ bool inRelroPhdr = false;
+ OutputSection *relroEnd = nullptr;
+ for (OutputSection *sec : outputSections) {
+ if (sec->partition != partNo || !needsPtLoad(sec))
+ continue;
+ if (isRelroSection(sec)) {
+ inRelroPhdr = true;
+ if (!relroEnd)
+ relRo->add(sec);
+ else
+ error("section: " + sec->name + " is not contiguous with other relro" +
+ " sections");
+ } else if (inRelroPhdr) {
+ inRelroPhdr = false;
+ relroEnd = sec;
+ }
+ }
- for (OutputSection *Sec : OutputSections) {
- if (!(Sec->Flags & SHF_ALLOC))
+ for (OutputSection *sec : outputSections) {
+ if (!(sec->flags & SHF_ALLOC))
break;
- if (!needsPtLoad(Sec))
+ if (!needsPtLoad(sec))
continue;
+ // Normally, sections in partitions other than the current partition are
+ // ignored. But partition number 255 is a special case: it contains the
+ // partition end marker (.part.end). It needs to be added to the main
+ // partition so that a segment is created for it in the main partition,
+ // which will cause the dynamic loader to reserve space for the other
+ // partitions.
+ if (sec->partition != partNo) {
+ if (isMain && sec->partition == 255)
+ addHdr(PT_LOAD, computeFlags(sec->getPhdrFlags()))->add(sec);
+ continue;
+ }
+
// Segments are contiguous memory regions that has the same attributes
// (e.g. executable or writable). There is one phdr for each segment.
// Therefore, we need to create a new phdr when the next section has
@@ -1952,222 +2120,187 @@ template <class ELFT> std::vector<PhdrEntry *> Writer<ELFT>::createPhdrs() {
// region using AT or AT> linker script command, respectively. At the same
// time, we don't want to create a separate load segment for the headers,
// even if the first output section has an AT or AT> attribute.
- uint64_t NewFlags = computeFlags(Sec->getPhdrFlags());
- if (((Sec->LMAExpr ||
- (Sec->LMARegion && (Sec->LMARegion != Load->FirstSec->LMARegion))) &&
- Load->LastSec != Out::ProgramHeaders) ||
- Sec->MemRegion != Load->FirstSec->MemRegion || Flags != NewFlags) {
-
- Load = AddHdr(PT_LOAD, NewFlags);
- Flags = NewFlags;
+ uint64_t newFlags = computeFlags(sec->getPhdrFlags());
+ if (!load ||
+ ((sec->lmaExpr ||
+ (sec->lmaRegion && (sec->lmaRegion != load->firstSec->lmaRegion))) &&
+ load->lastSec != Out::programHeaders) ||
+ sec->memRegion != load->firstSec->memRegion || flags != newFlags ||
+ sec == relroEnd) {
+ load = addHdr(PT_LOAD, newFlags);
+ flags = newFlags;
}
- Load->add(Sec);
+ load->add(sec);
}
// Add a TLS segment if any.
- PhdrEntry *TlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
- for (OutputSection *Sec : OutputSections)
- if (Sec->Flags & SHF_TLS)
- TlsHdr->add(Sec);
- if (TlsHdr->FirstSec)
- Ret.push_back(TlsHdr);
+ PhdrEntry *tlsHdr = make<PhdrEntry>(PT_TLS, PF_R);
+ for (OutputSection *sec : outputSections)
+ if (sec->partition == partNo && sec->flags & SHF_TLS)
+ tlsHdr->add(sec);
+ if (tlsHdr->firstSec)
+ ret.push_back(tlsHdr);
// Add an entry for .dynamic.
- if (OutputSection *Sec = In.Dynamic->getParent())
- AddHdr(PT_DYNAMIC, Sec->getPhdrFlags())->add(Sec);
+ if (OutputSection *sec = part.dynamic->getParent())
+ addHdr(PT_DYNAMIC, sec->getPhdrFlags())->add(sec);
- // PT_GNU_RELRO includes all sections that should be marked as
- // read-only by dynamic linker after proccessing relocations.
- // Current dynamic loaders only support one PT_GNU_RELRO PHDR, give
- // an error message if more than one PT_GNU_RELRO PHDR is required.
- PhdrEntry *RelRo = make<PhdrEntry>(PT_GNU_RELRO, PF_R);
- bool InRelroPhdr = false;
- bool IsRelroFinished = false;
- for (OutputSection *Sec : OutputSections) {
- if (!needsPtLoad(Sec))
- continue;
- if (isRelroSection(Sec)) {
- InRelroPhdr = true;
- if (!IsRelroFinished)
- RelRo->add(Sec);
- else
- error("section: " + Sec->Name + " is not contiguous with other relro" +
- " sections");
- } else if (InRelroPhdr) {
- InRelroPhdr = false;
- IsRelroFinished = true;
- }
- }
- if (RelRo->FirstSec)
- Ret.push_back(RelRo);
+ if (relRo->firstSec)
+ ret.push_back(relRo);
// PT_GNU_EH_FRAME is a special section pointing on .eh_frame_hdr.
- if (!In.EhFrame->empty() && In.EhFrameHdr && In.EhFrame->getParent() &&
- In.EhFrameHdr->getParent())
- AddHdr(PT_GNU_EH_FRAME, In.EhFrameHdr->getParent()->getPhdrFlags())
- ->add(In.EhFrameHdr->getParent());
+ if (part.ehFrame->isNeeded() && part.ehFrameHdr &&
+ part.ehFrame->getParent() && part.ehFrameHdr->getParent())
+ addHdr(PT_GNU_EH_FRAME, part.ehFrameHdr->getParent()->getPhdrFlags())
+ ->add(part.ehFrameHdr->getParent());
// PT_OPENBSD_RANDOMIZE is an OpenBSD-specific feature. That makes
// the dynamic linker fill the segment with random data.
- if (OutputSection *Cmd = findSection(".openbsd.randomdata"))
- AddHdr(PT_OPENBSD_RANDOMIZE, Cmd->getPhdrFlags())->add(Cmd);
+ if (OutputSection *cmd = findSection(".openbsd.randomdata", partNo))
+ addHdr(PT_OPENBSD_RANDOMIZE, cmd->getPhdrFlags())->add(cmd);
// PT_GNU_STACK is a special section to tell the loader to make the
// pages for the stack non-executable. If you really want an executable
// stack, you can pass -z execstack, but that's not recommended for
// security reasons.
- unsigned Perm = PF_R | PF_W;
- if (Config->ZExecstack)
- Perm |= PF_X;
- AddHdr(PT_GNU_STACK, Perm)->p_memsz = Config->ZStackSize;
+ unsigned perm = PF_R | PF_W;
+ if (config->zExecstack)
+ perm |= PF_X;
+ addHdr(PT_GNU_STACK, perm)->p_memsz = config->zStackSize;
// PT_OPENBSD_WXNEEDED is a OpenBSD-specific header to mark the executable
// is expected to perform W^X violations, such as calling mprotect(2) or
// mmap(2) with PROT_WRITE | PROT_EXEC, which is prohibited by default on
// OpenBSD.
- if (Config->ZWxneeded)
- AddHdr(PT_OPENBSD_WXNEEDED, PF_X);
-
- // Create one PT_NOTE per a group of contiguous .note sections.
- PhdrEntry *Note = nullptr;
- for (OutputSection *Sec : OutputSections) {
- if (Sec->Type == SHT_NOTE && (Sec->Flags & SHF_ALLOC)) {
- if (!Note || Sec->LMAExpr)
- Note = AddHdr(PT_NOTE, PF_R);
- Note->add(Sec);
+ if (config->zWxneeded)
+ addHdr(PT_OPENBSD_WXNEEDED, PF_X);
+
+ // Create one PT_NOTE per a group of contiguous SHT_NOTE sections with the
+ // same alignment.
+ PhdrEntry *note = nullptr;
+ for (OutputSection *sec : outputSections) {
+ if (sec->partition != partNo)
+ continue;
+ if (sec->type == SHT_NOTE && (sec->flags & SHF_ALLOC)) {
+ if (!note || sec->lmaExpr || note->lastSec->alignment != sec->alignment)
+ note = addHdr(PT_NOTE, PF_R);
+ note->add(sec);
} else {
- Note = nullptr;
+ note = nullptr;
}
}
- return Ret;
+ return ret;
}
template <class ELFT>
-void Writer<ELFT>::addPtArmExid(std::vector<PhdrEntry *> &Phdrs) {
- if (Config->EMachine != EM_ARM)
- return;
- auto I = llvm::find_if(OutputSections, [](OutputSection *Cmd) {
- return Cmd->Type == SHT_ARM_EXIDX;
+void Writer<ELFT>::addPhdrForSection(Partition &part, unsigned shType,
+ unsigned pType, unsigned pFlags) {
+ unsigned partNo = part.getNumber();
+ auto i = llvm::find_if(outputSections, [=](OutputSection *cmd) {
+ return cmd->partition == partNo && cmd->type == shType;
});
- if (I == OutputSections.end())
+ if (i == outputSections.end())
return;
- // PT_ARM_EXIDX is the ARM EHABI equivalent of PT_GNU_EH_FRAME
- PhdrEntry *ARMExidx = make<PhdrEntry>(PT_ARM_EXIDX, PF_R);
- ARMExidx->add(*I);
- Phdrs.push_back(ARMExidx);
+ PhdrEntry *entry = make<PhdrEntry>(pType, pFlags);
+ entry->add(*i);
+ part.phdrs.push_back(entry);
}
// The first section of each PT_LOAD, the first section in PT_GNU_RELRO and the
// first section after PT_GNU_RELRO have to be page aligned so that the dynamic
// linker can set the permissions.
template <class ELFT> void Writer<ELFT>::fixSectionAlignments() {
- auto PageAlign = [](OutputSection *Cmd) {
- if (Cmd && !Cmd->AddrExpr)
- Cmd->AddrExpr = [=] {
- return alignTo(Script->getDot(), Config->MaxPageSize);
+ auto pageAlign = [](OutputSection *cmd) {
+ if (cmd && !cmd->addrExpr)
+ cmd->addrExpr = [=] {
+ return alignTo(script->getDot(), config->maxPageSize);
};
};
- for (const PhdrEntry *P : Phdrs)
- if (P->p_type == PT_LOAD && P->FirstSec)
- PageAlign(P->FirstSec);
-
- for (const PhdrEntry *P : Phdrs) {
- if (P->p_type != PT_GNU_RELRO)
- continue;
-
- if (P->FirstSec)
- PageAlign(P->FirstSec);
-
- // Find the first section after PT_GNU_RELRO. If it is in a PT_LOAD we
- // have to align it to a page.
- auto End = OutputSections.end();
- auto I = std::find(OutputSections.begin(), End, P->LastSec);
- if (I == End || (I + 1) == End)
- continue;
-
- OutputSection *Cmd = (*(I + 1));
- if (needsPtLoad(Cmd))
- PageAlign(Cmd);
+ for (Partition &part : partitions) {
+ for (const PhdrEntry *p : part.phdrs)
+ if (p->p_type == PT_LOAD && p->firstSec)
+ pageAlign(p->firstSec);
}
}
// Compute an in-file position for a given section. The file offset must be the
// same with its virtual address modulo the page size, so that the loader can
// load executables without any address adjustment.
-static uint64_t computeFileOffset(OutputSection *OS, uint64_t Off) {
+static uint64_t computeFileOffset(OutputSection *os, uint64_t off) {
// File offsets are not significant for .bss sections. By convention, we keep
// section offsets monotonically increasing rather than setting to zero.
- if (OS->Type == SHT_NOBITS)
- return Off;
+ if (os->type == SHT_NOBITS)
+ return off;
// If the section is not in a PT_LOAD, we just have to align it.
- if (!OS->PtLoad)
- return alignTo(Off, OS->Alignment);
+ if (!os->ptLoad)
+ return alignTo(off, os->alignment);
// The first section in a PT_LOAD has to have congruent offset and address
// module the page size.
- OutputSection *First = OS->PtLoad->FirstSec;
- if (OS == First) {
- uint64_t Alignment = std::max<uint64_t>(OS->Alignment, Config->MaxPageSize);
- return alignTo(Off, Alignment, OS->Addr);
+ OutputSection *first = os->ptLoad->firstSec;
+ if (os == first) {
+ uint64_t alignment = std::max<uint64_t>(os->alignment, config->maxPageSize);
+ return alignTo(off, alignment, os->addr);
}
// If two sections share the same PT_LOAD the file offset is calculated
// using this formula: Off2 = Off1 + (VA2 - VA1).
- return First->Offset + OS->Addr - First->Addr;
+ return first->offset + os->addr - first->addr;
}
// Set an in-file position to a given section and returns the end position of
// the section.
-static uint64_t setFileOffset(OutputSection *OS, uint64_t Off) {
- Off = computeFileOffset(OS, Off);
- OS->Offset = Off;
+static uint64_t setFileOffset(OutputSection *os, uint64_t off) {
+ off = computeFileOffset(os, off);
+ os->offset = off;
- if (OS->Type == SHT_NOBITS)
- return Off;
- return Off + OS->Size;
+ if (os->type == SHT_NOBITS)
+ return off;
+ return off + os->size;
}
template <class ELFT> void Writer<ELFT>::assignFileOffsetsBinary() {
- uint64_t Off = 0;
- for (OutputSection *Sec : OutputSections)
- if (Sec->Flags & SHF_ALLOC)
- Off = setFileOffset(Sec, Off);
- FileSize = alignTo(Off, Config->Wordsize);
+ uint64_t off = 0;
+ for (OutputSection *sec : outputSections)
+ if (sec->flags & SHF_ALLOC)
+ off = setFileOffset(sec, off);
+ fileSize = alignTo(off, config->wordsize);
}
-static std::string rangeToString(uint64_t Addr, uint64_t Len) {
- return "[0x" + utohexstr(Addr) + ", 0x" + utohexstr(Addr + Len - 1) + "]";
+static std::string rangeToString(uint64_t addr, uint64_t len) {
+ return "[0x" + utohexstr(addr) + ", 0x" + utohexstr(addr + len - 1) + "]";
}
// Assign file offsets to output sections.
template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
- uint64_t Off = 0;
- Off = setFileOffset(Out::ElfHeader, Off);
- Off = setFileOffset(Out::ProgramHeaders, Off);
-
- PhdrEntry *LastRX = nullptr;
- for (PhdrEntry *P : Phdrs)
- if (P->p_type == PT_LOAD && (P->p_flags & PF_X))
- LastRX = P;
-
- for (OutputSection *Sec : OutputSections) {
- Off = setFileOffset(Sec, Off);
- if (Script->HasSectionsCommand)
+ uint64_t off = 0;
+ off = setFileOffset(Out::elfHeader, off);
+ off = setFileOffset(Out::programHeaders, off);
+
+ PhdrEntry *lastRX = nullptr;
+ for (Partition &part : partitions)
+ for (PhdrEntry *p : part.phdrs)
+ if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
+ lastRX = p;
+
+ for (OutputSection *sec : outputSections) {
+ off = setFileOffset(sec, off);
+ if (script->hasSectionsCommand)
continue;
// If this is a last section of the last executable segment and that
// segment is the last loadable segment, align the offset of the
// following section to avoid loading non-segments parts of the file.
- if (LastRX && LastRX->LastSec == Sec)
- Off = alignTo(Off, Target->PageSize);
+ if (lastRX && lastRX->lastSec == sec)
+ off = alignTo(off, config->commonPageSize);
}
- SectionHeaderOff = alignTo(Off, Config->Wordsize);
- FileSize = SectionHeaderOff + (OutputSections.size() + 1) * sizeof(Elf_Shdr);
+ sectionHeaderOff = alignTo(off, config->wordsize);
+ fileSize = sectionHeaderOff + (outputSections.size() + 1) * sizeof(Elf_Shdr);
// Our logic assumes that sections have rising VA within the same segment.
// With use of linker scripts it is possible to violate this rule and get file
@@ -2178,51 +2311,49 @@ template <class ELFT> void Writer<ELFT>::assignFileOffsets() {
// backwards, so we have to allow doing that to support linking them. We
// perform non-critical checks for overlaps in checkSectionOverlap(), but here
// we want to prevent file size overflows because it would crash the linker.
- for (OutputSection *Sec : OutputSections) {
- if (Sec->Type == SHT_NOBITS)
+ for (OutputSection *sec : outputSections) {
+ if (sec->type == SHT_NOBITS)
continue;
- if ((Sec->Offset > FileSize) || (Sec->Offset + Sec->Size > FileSize))
- error("unable to place section " + Sec->Name + " at file offset " +
- rangeToString(Sec->Offset, Sec->Size) +
+ if ((sec->offset > fileSize) || (sec->offset + sec->size > fileSize))
+ error("unable to place section " + sec->name + " at file offset " +
+ rangeToString(sec->offset, sec->size) +
"; check your linker script for overflows");
}
}
// Finalize the program headers. We call this function after we assign
// file offsets and VAs to all sections.
-template <class ELFT> void Writer<ELFT>::setPhdrs() {
- for (PhdrEntry *P : Phdrs) {
- OutputSection *First = P->FirstSec;
- OutputSection *Last = P->LastSec;
-
- if (First) {
- P->p_filesz = Last->Offset - First->Offset;
- if (Last->Type != SHT_NOBITS)
- P->p_filesz += Last->Size;
-
- P->p_memsz = Last->Addr + Last->Size - First->Addr;
- P->p_offset = First->Offset;
- P->p_vaddr = First->Addr;
-
- if (!P->HasLMA)
- P->p_paddr = First->getLMA();
+template <class ELFT> void Writer<ELFT>::setPhdrs(Partition &part) {
+ for (PhdrEntry *p : part.phdrs) {
+ OutputSection *first = p->firstSec;
+ OutputSection *last = p->lastSec;
+
+ if (first) {
+ p->p_filesz = last->offset - first->offset;
+ if (last->type != SHT_NOBITS)
+ p->p_filesz += last->size;
+
+ p->p_memsz = last->addr + last->size - first->addr;
+ p->p_offset = first->offset;
+ p->p_vaddr = first->addr;
+
+ // File offsets in partitions other than the main partition are relative
+ // to the offset of the ELF headers. Perform that adjustment now.
+ if (part.elfHeader)
+ p->p_offset -= part.elfHeader->getParent()->offset;
+
+ if (!p->hasLMA)
+ p->p_paddr = first->getLMA();
}
- if (P->p_type == PT_LOAD) {
- P->p_align = std::max<uint64_t>(P->p_align, Config->MaxPageSize);
- } else if (P->p_type == PT_GNU_RELRO) {
- P->p_align = 1;
+ if (p->p_type == PT_LOAD) {
+ p->p_align = std::max<uint64_t>(p->p_align, config->maxPageSize);
+ } else if (p->p_type == PT_GNU_RELRO) {
+ p->p_align = 1;
// The glibc dynamic loader rounds the size down, so we need to round up
// to protect the last page. This is a no-op on FreeBSD which always
// rounds up.
- P->p_memsz = alignTo(P->p_memsz, Target->PageSize);
- }
-
- if (P->p_type == PT_TLS && P->p_memsz) {
- // The TLS pointer goes after PT_TLS for variant 2 targets. At least glibc
- // will align it, so round up the size to make sure the offsets are
- // correct.
- P->p_memsz = alignTo(P->p_memsz, P->p_align);
+ p->p_memsz = alignTo(p->p_memsz, config->commonPageSize);
}
}
}
@@ -2230,37 +2361,37 @@ template <class ELFT> void Writer<ELFT>::setPhdrs() {
// A helper struct for checkSectionOverlap.
namespace {
struct SectionOffset {
- OutputSection *Sec;
- uint64_t Offset;
+ OutputSection *sec;
+ uint64_t offset;
};
} // namespace
// Check whether sections overlap for a specific address range (file offsets,
// load and virtual adresses).
-static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections,
- bool IsVirtualAddr) {
- llvm::sort(Sections, [=](const SectionOffset &A, const SectionOffset &B) {
- return A.Offset < B.Offset;
+static void checkOverlap(StringRef name, std::vector<SectionOffset> &sections,
+ bool isVirtualAddr) {
+ llvm::sort(sections, [=](const SectionOffset &a, const SectionOffset &b) {
+ return a.offset < b.offset;
});
// Finding overlap is easy given a vector is sorted by start position.
// If an element starts before the end of the previous element, they overlap.
- for (size_t I = 1, End = Sections.size(); I < End; ++I) {
- SectionOffset A = Sections[I - 1];
- SectionOffset B = Sections[I];
- if (B.Offset >= A.Offset + A.Sec->Size)
+ for (size_t i = 1, end = sections.size(); i < end; ++i) {
+ SectionOffset a = sections[i - 1];
+ SectionOffset b = sections[i];
+ if (b.offset >= a.offset + a.sec->size)
continue;
// If both sections are in OVERLAY we allow the overlapping of virtual
// addresses, because it is what OVERLAY was designed for.
- if (IsVirtualAddr && A.Sec->InOverlay && B.Sec->InOverlay)
+ if (isVirtualAddr && a.sec->inOverlay && b.sec->inOverlay)
continue;
- errorOrWarn("section " + A.Sec->Name + " " + Name +
- " range overlaps with " + B.Sec->Name + "\n>>> " + A.Sec->Name +
- " range is " + rangeToString(A.Offset, A.Sec->Size) + "\n>>> " +
- B.Sec->Name + " range is " +
- rangeToString(B.Offset, B.Sec->Size));
+ errorOrWarn("section " + a.sec->name + " " + name +
+ " range overlaps with " + b.sec->name + "\n>>> " + a.sec->name +
+ " range is " + rangeToString(a.offset, a.sec->size) + "\n>>> " +
+ b.sec->name + " range is " +
+ rangeToString(b.offset, b.sec->size));
}
}
@@ -2271,11 +2402,11 @@ static void checkOverlap(StringRef Name, std::vector<SectionOffset> &Sections,
// ranges and the virtual address ranges don't overlap
template <class ELFT> void Writer<ELFT>::checkSections() {
// First, check that section's VAs fit in available address space for target.
- for (OutputSection *OS : OutputSections)
- if ((OS->Addr + OS->Size < OS->Addr) ||
- (!ELFT::Is64Bits && OS->Addr + OS->Size > UINT32_MAX))
- errorOrWarn("section " + OS->Name + " at 0x" + utohexstr(OS->Addr) +
- " of size 0x" + utohexstr(OS->Size) +
+ for (OutputSection *os : outputSections)
+ if ((os->addr + os->size < os->addr) ||
+ (!ELFT::Is64Bits && os->addr + os->size > UINT32_MAX))
+ errorOrWarn("section " + os->name + " at 0x" + utohexstr(os->addr) +
+ " of size 0x" + utohexstr(os->size) +
" exceeds available address space");
// Check for overlapping file offsets. In this case we need to skip any
@@ -2283,17 +2414,17 @@ template <class ELFT> void Writer<ELFT>::checkSections() {
// the file so Sec->Offset + Sec->Size can overlap with others. If --oformat
// binary is specified only add SHF_ALLOC sections are added to the output
// file so we skip any non-allocated sections in that case.
- std::vector<SectionOffset> FileOffs;
- for (OutputSection *Sec : OutputSections)
- if (Sec->Size > 0 && Sec->Type != SHT_NOBITS &&
- (!Config->OFormatBinary || (Sec->Flags & SHF_ALLOC)))
- FileOffs.push_back({Sec, Sec->Offset});
- checkOverlap("file", FileOffs, false);
+ std::vector<SectionOffset> fileOffs;
+ for (OutputSection *sec : outputSections)
+ if (sec->size > 0 && sec->type != SHT_NOBITS &&
+ (!config->oFormatBinary || (sec->flags & SHF_ALLOC)))
+ fileOffs.push_back({sec, sec->offset});
+ checkOverlap("file", fileOffs, false);
// When linking with -r there is no need to check for overlapping virtual/load
// addresses since those addresses will only be assigned when the final
// executable/shared object is created.
- if (Config->Relocatable)
+ if (config->relocatable)
return;
// Checking for overlapping virtual and load addresses only needs to take
@@ -2301,20 +2432,20 @@ template <class ELFT> void Writer<ELFT>::checkSections() {
// Furthermore, we also need to skip SHF_TLS sections since these will be
// mapped to other addresses at runtime and can therefore have overlapping
// ranges in the file.
- std::vector<SectionOffset> VMAs;
- for (OutputSection *Sec : OutputSections)
- if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS))
- VMAs.push_back({Sec, Sec->Addr});
- checkOverlap("virtual address", VMAs, true);
+ std::vector<SectionOffset> vmas;
+ for (OutputSection *sec : outputSections)
+ if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
+ vmas.push_back({sec, sec->addr});
+ checkOverlap("virtual address", vmas, true);
// Finally, check that the load addresses don't overlap. This will usually be
// the same as the virtual addresses but can be different when using a linker
// script with AT().
- std::vector<SectionOffset> LMAs;
- for (OutputSection *Sec : OutputSections)
- if (Sec->Size > 0 && (Sec->Flags & SHF_ALLOC) && !(Sec->Flags & SHF_TLS))
- LMAs.push_back({Sec, Sec->getLMA()});
- checkOverlap("load address", LMAs, false);
+ std::vector<SectionOffset> lmas;
+ for (OutputSection *sec : outputSections)
+ if (sec->size > 0 && (sec->flags & SHF_ALLOC) && !(sec->flags & SHF_TLS))
+ lmas.push_back({sec, sec->getLMA()});
+ checkOverlap("load address", lmas, false);
}
// The entry point address is chosen in the following ways.
@@ -2327,89 +2458,45 @@ template <class ELFT> void Writer<ELFT>::checkSections() {
// 6. the address 0.
static uint64_t getEntryAddr() {
// Case 1, 2 or 3
- if (Symbol *B = Symtab->find(Config->Entry))
- return B->getVA();
+ if (Symbol *b = symtab->find(config->entry))
+ return b->getVA();
// Case 4
- uint64_t Addr;
- if (to_integer(Config->Entry, Addr))
- return Addr;
+ uint64_t addr;
+ if (to_integer(config->entry, addr))
+ return addr;
// Case 5
- if (OutputSection *Sec = findSection(".text")) {
- if (Config->WarnMissingEntry)
- warn("cannot find entry symbol " + Config->Entry + "; defaulting to 0x" +
- utohexstr(Sec->Addr));
- return Sec->Addr;
+ if (OutputSection *sec = findSection(".text")) {
+ if (config->warnMissingEntry)
+ warn("cannot find entry symbol " + config->entry + "; defaulting to 0x" +
+ utohexstr(sec->addr));
+ return sec->addr;
}
// Case 6
- if (Config->WarnMissingEntry)
- warn("cannot find entry symbol " + Config->Entry +
+ if (config->warnMissingEntry)
+ warn("cannot find entry symbol " + config->entry +
"; not setting start address");
return 0;
}
static uint16_t getELFType() {
- if (Config->Pic)
+ if (config->isPic)
return ET_DYN;
- if (Config->Relocatable)
+ if (config->relocatable)
return ET_REL;
return ET_EXEC;
}
-static uint8_t getAbiVersion() {
- // MIPS non-PIC executable gets ABI version 1.
- if (Config->EMachine == EM_MIPS && getELFType() == ET_EXEC &&
- (Config->EFlags & (EF_MIPS_PIC | EF_MIPS_CPIC)) == EF_MIPS_CPIC)
- return 1;
- return 0;
-}
-
template <class ELFT> void Writer<ELFT>::writeHeader() {
- uint8_t *Buf = Buffer->getBufferStart();
-
- // For executable segments, the trap instructions are written before writing
- // the header. Setting Elf header bytes to zero ensures that any unused bytes
- // in header are zero-cleared, instead of having trap instructions.
- memset(Buf, 0, sizeof(Elf_Ehdr));
- memcpy(Buf, "\177ELF", 4);
-
- // Write the ELF header.
- auto *EHdr = reinterpret_cast<Elf_Ehdr *>(Buf);
- EHdr->e_ident[EI_CLASS] = Config->Is64 ? ELFCLASS64 : ELFCLASS32;
- EHdr->e_ident[EI_DATA] = Config->IsLE ? ELFDATA2LSB : ELFDATA2MSB;
- EHdr->e_ident[EI_VERSION] = EV_CURRENT;
- EHdr->e_ident[EI_OSABI] = Config->OSABI;
- EHdr->e_ident[EI_ABIVERSION] = getAbiVersion();
- EHdr->e_type = getELFType();
- EHdr->e_machine = Config->EMachine;
- EHdr->e_version = EV_CURRENT;
- EHdr->e_entry = getEntryAddr();
- EHdr->e_shoff = SectionHeaderOff;
- EHdr->e_flags = Config->EFlags;
- EHdr->e_ehsize = sizeof(Elf_Ehdr);
- EHdr->e_phnum = Phdrs.size();
- EHdr->e_shentsize = sizeof(Elf_Shdr);
-
- if (!Config->Relocatable) {
- EHdr->e_phoff = sizeof(Elf_Ehdr);
- EHdr->e_phentsize = sizeof(Elf_Phdr);
- }
-
- // Write the program header table.
- auto *HBuf = reinterpret_cast<Elf_Phdr *>(Buf + EHdr->e_phoff);
- for (PhdrEntry *P : Phdrs) {
- HBuf->p_type = P->p_type;
- HBuf->p_flags = P->p_flags;
- HBuf->p_offset = P->p_offset;
- HBuf->p_vaddr = P->p_vaddr;
- HBuf->p_paddr = P->p_paddr;
- HBuf->p_filesz = P->p_filesz;
- HBuf->p_memsz = P->p_memsz;
- HBuf->p_align = P->p_align;
- ++HBuf;
- }
+ writeEhdr<ELFT>(Out::bufferStart, *mainPart);
+ writePhdrs<ELFT>(Out::bufferStart + sizeof(Elf_Ehdr), *mainPart);
+
+ auto *eHdr = reinterpret_cast<Elf_Ehdr *>(Out::bufferStart);
+ eHdr->e_type = getELFType();
+ eHdr->e_entry = getEntryAddr();
+ eHdr->e_shoff = sectionHeaderOff;
// Write the section header table.
//
@@ -2420,57 +2507,58 @@ template <class ELFT> void Writer<ELFT>::writeHeader() {
// the value. The sentinel values and fields are:
// e_shnum = 0, SHdrs[0].sh_size = number of sections.
// e_shstrndx = SHN_XINDEX, SHdrs[0].sh_link = .shstrtab section index.
- auto *SHdrs = reinterpret_cast<Elf_Shdr *>(Buf + EHdr->e_shoff);
- size_t Num = OutputSections.size() + 1;
- if (Num >= SHN_LORESERVE)
- SHdrs->sh_size = Num;
+ auto *sHdrs = reinterpret_cast<Elf_Shdr *>(Out::bufferStart + eHdr->e_shoff);
+ size_t num = outputSections.size() + 1;
+ if (num >= SHN_LORESERVE)
+ sHdrs->sh_size = num;
else
- EHdr->e_shnum = Num;
+ eHdr->e_shnum = num;
- uint32_t StrTabIndex = In.ShStrTab->getParent()->SectionIndex;
- if (StrTabIndex >= SHN_LORESERVE) {
- SHdrs->sh_link = StrTabIndex;
- EHdr->e_shstrndx = SHN_XINDEX;
+ uint32_t strTabIndex = in.shStrTab->getParent()->sectionIndex;
+ if (strTabIndex >= SHN_LORESERVE) {
+ sHdrs->sh_link = strTabIndex;
+ eHdr->e_shstrndx = SHN_XINDEX;
} else {
- EHdr->e_shstrndx = StrTabIndex;
+ eHdr->e_shstrndx = strTabIndex;
}
- for (OutputSection *Sec : OutputSections)
- Sec->writeHeaderTo<ELFT>(++SHdrs);
+ for (OutputSection *sec : outputSections)
+ sec->writeHeaderTo<ELFT>(++sHdrs);
}
// Open a result file.
template <class ELFT> void Writer<ELFT>::openFile() {
- uint64_t MaxSize = Config->Is64 ? INT64_MAX : UINT32_MAX;
- if (MaxSize < FileSize) {
- error("output file too large: " + Twine(FileSize) + " bytes");
+ uint64_t maxSize = config->is64 ? INT64_MAX : UINT32_MAX;
+ if (fileSize != size_t(fileSize) || maxSize < fileSize) {
+ error("output file too large: " + Twine(fileSize) + " bytes");
return;
}
- unlinkAsync(Config->OutputFile);
- unsigned Flags = 0;
- if (!Config->Relocatable)
- Flags = FileOutputBuffer::F_executable;
- Expected<std::unique_ptr<FileOutputBuffer>> BufferOrErr =
- FileOutputBuffer::create(Config->OutputFile, FileSize, Flags);
+ unlinkAsync(config->outputFile);
+ unsigned flags = 0;
+ if (!config->relocatable)
+ flags = FileOutputBuffer::F_executable;
+ Expected<std::unique_ptr<FileOutputBuffer>> bufferOrErr =
+ FileOutputBuffer::create(config->outputFile, fileSize, flags);
- if (!BufferOrErr)
- error("failed to open " + Config->OutputFile + ": " +
- llvm::toString(BufferOrErr.takeError()));
- else
- Buffer = std::move(*BufferOrErr);
+ if (!bufferOrErr) {
+ error("failed to open " + config->outputFile + ": " +
+ llvm::toString(bufferOrErr.takeError()));
+ return;
+ }
+ buffer = std::move(*bufferOrErr);
+ Out::bufferStart = buffer->getBufferStart();
}
template <class ELFT> void Writer<ELFT>::writeSectionsBinary() {
- uint8_t *Buf = Buffer->getBufferStart();
- for (OutputSection *Sec : OutputSections)
- if (Sec->Flags & SHF_ALLOC)
- Sec->writeTo<ELFT>(Buf + Sec->Offset);
+ for (OutputSection *sec : outputSections)
+ if (sec->flags & SHF_ALLOC)
+ sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
}
-static void fillTrap(uint8_t *I, uint8_t *End) {
- for (; I + 4 <= End; I += 4)
- memcpy(I, &Target->TrapInstr, 4);
+static void fillTrap(uint8_t *i, uint8_t *end) {
+ for (; i + 4 <= end; i += 4)
+ memcpy(i, &target->trapInstr, 4);
}
// Fill the last page of executable segments with trap instructions
@@ -2480,61 +2568,119 @@ static void fillTrap(uint8_t *I, uint8_t *End) {
// We'll leave other pages in segments as-is because the rest will be
// overwritten by output sections.
template <class ELFT> void Writer<ELFT>::writeTrapInstr() {
- if (Script->HasSectionsCommand)
+ if (script->hasSectionsCommand)
return;
- // Fill the last page.
- uint8_t *Buf = Buffer->getBufferStart();
- for (PhdrEntry *P : Phdrs)
- if (P->p_type == PT_LOAD && (P->p_flags & PF_X))
- fillTrap(Buf + alignDown(P->p_offset + P->p_filesz, Target->PageSize),
- Buf + alignTo(P->p_offset + P->p_filesz, Target->PageSize));
-
- // Round up the file size of the last segment to the page boundary iff it is
- // an executable segment to ensure that other tools don't accidentally
- // trim the instruction padding (e.g. when stripping the file).
- PhdrEntry *Last = nullptr;
- for (PhdrEntry *P : Phdrs)
- if (P->p_type == PT_LOAD)
- Last = P;
-
- if (Last && (Last->p_flags & PF_X))
- Last->p_memsz = Last->p_filesz = alignTo(Last->p_filesz, Target->PageSize);
+ for (Partition &part : partitions) {
+ // Fill the last page.
+ for (PhdrEntry *p : part.phdrs)
+ if (p->p_type == PT_LOAD && (p->p_flags & PF_X))
+ fillTrap(Out::bufferStart + alignDown(p->firstSec->offset + p->p_filesz,
+ config->commonPageSize),
+ Out::bufferStart + alignTo(p->firstSec->offset + p->p_filesz,
+ config->commonPageSize));
+
+ // Round up the file size of the last segment to the page boundary iff it is
+ // an executable segment to ensure that other tools don't accidentally
+ // trim the instruction padding (e.g. when stripping the file).
+ PhdrEntry *last = nullptr;
+ for (PhdrEntry *p : part.phdrs)
+ if (p->p_type == PT_LOAD)
+ last = p;
+
+ if (last && (last->p_flags & PF_X))
+ last->p_memsz = last->p_filesz =
+ alignTo(last->p_filesz, config->commonPageSize);
+ }
}
// Write section contents to a mmap'ed file.
template <class ELFT> void Writer<ELFT>::writeSections() {
- uint8_t *Buf = Buffer->getBufferStart();
-
- OutputSection *EhFrameHdr = nullptr;
- if (In.EhFrameHdr && !In.EhFrameHdr->empty())
- EhFrameHdr = In.EhFrameHdr->getParent();
-
// In -r or -emit-relocs mode, write the relocation sections first as in
// ELf_Rel targets we might find out that we need to modify the relocated
// section while doing it.
- for (OutputSection *Sec : OutputSections)
- if (Sec->Type == SHT_REL || Sec->Type == SHT_RELA)
- Sec->writeTo<ELFT>(Buf + Sec->Offset);
+ for (OutputSection *sec : outputSections)
+ if (sec->type == SHT_REL || sec->type == SHT_RELA)
+ sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
+
+ for (OutputSection *sec : outputSections)
+ if (sec->type != SHT_REL && sec->type != SHT_RELA)
+ sec->writeTo<ELFT>(Out::bufferStart + sec->offset);
+}
+
+// Split one uint8 array into small pieces of uint8 arrays.
+static std::vector<ArrayRef<uint8_t>> split(ArrayRef<uint8_t> arr,
+ size_t chunkSize) {
+ std::vector<ArrayRef<uint8_t>> ret;
+ while (arr.size() > chunkSize) {
+ ret.push_back(arr.take_front(chunkSize));
+ arr = arr.drop_front(chunkSize);
+ }
+ if (!arr.empty())
+ ret.push_back(arr);
+ return ret;
+}
- for (OutputSection *Sec : OutputSections)
- if (Sec != EhFrameHdr && Sec->Type != SHT_REL && Sec->Type != SHT_RELA)
- Sec->writeTo<ELFT>(Buf + Sec->Offset);
+// Computes a hash value of Data using a given hash function.
+// In order to utilize multiple cores, we first split data into 1MB
+// chunks, compute a hash for each chunk, and then compute a hash value
+// of the hash values.
+static void
+computeHash(llvm::MutableArrayRef<uint8_t> hashBuf,
+ llvm::ArrayRef<uint8_t> data,
+ std::function<void(uint8_t *dest, ArrayRef<uint8_t> arr)> hashFn) {
+ std::vector<ArrayRef<uint8_t>> chunks = split(data, 1024 * 1024);
+ std::vector<uint8_t> hashes(chunks.size() * hashBuf.size());
+
+ // Compute hash values.
+ parallelForEachN(0, chunks.size(), [&](size_t i) {
+ hashFn(hashes.data() + i * hashBuf.size(), chunks[i]);
+ });
- // The .eh_frame_hdr depends on .eh_frame section contents, therefore
- // it should be written after .eh_frame is written.
- if (EhFrameHdr)
- EhFrameHdr->writeTo<ELFT>(Buf + EhFrameHdr->Offset);
+ // Write to the final output buffer.
+ hashFn(hashBuf.data(), hashes);
}
template <class ELFT> void Writer<ELFT>::writeBuildId() {
- if (!In.BuildId || !In.BuildId->getParent())
+ if (!mainPart->buildId || !mainPart->buildId->getParent())
return;
+ if (config->buildId == BuildIdKind::Hexstring) {
+ for (Partition &part : partitions)
+ part.buildId->writeBuildId(config->buildIdVector);
+ return;
+ }
+
// Compute a hash of all sections of the output file.
- uint8_t *Start = Buffer->getBufferStart();
- uint8_t *End = Start + FileSize;
- In.BuildId->writeBuildId({Start, End});
+ size_t hashSize = mainPart->buildId->hashSize;
+ std::vector<uint8_t> buildId(hashSize);
+ llvm::ArrayRef<uint8_t> buf{Out::bufferStart, size_t(fileSize)};
+
+ switch (config->buildId) {
+ case BuildIdKind::Fast:
+ computeHash(buildId, buf, [](uint8_t *dest, ArrayRef<uint8_t> arr) {
+ write64le(dest, xxHash64(arr));
+ });
+ break;
+ case BuildIdKind::Md5:
+ computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
+ memcpy(dest, MD5::hash(arr).data(), hashSize);
+ });
+ break;
+ case BuildIdKind::Sha1:
+ computeHash(buildId, buf, [&](uint8_t *dest, ArrayRef<uint8_t> arr) {
+ memcpy(dest, SHA1::hash(arr).data(), hashSize);
+ });
+ break;
+ case BuildIdKind::Uuid:
+ if (auto ec = llvm::getRandomBytes(buildId.data(), hashSize))
+ error("entropy source failure: " + ec.message());
+ break;
+ default:
+ llvm_unreachable("unknown BuildIdKind");
+ }
+ for (Partition &part : partitions)
+ part.buildId->writeBuildId(buildId);
}
template void elf::writeResult<ELF32LE>();