aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/tools/lld/COFF/ICF.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/lld/COFF/ICF.cpp')
-rw-r--r--contrib/llvm/tools/lld/COFF/ICF.cpp318
1 files changed, 318 insertions, 0 deletions
diff --git a/contrib/llvm/tools/lld/COFF/ICF.cpp b/contrib/llvm/tools/lld/COFF/ICF.cpp
new file mode 100644
index 000000000000..f6904eb7d24f
--- /dev/null
+++ b/contrib/llvm/tools/lld/COFF/ICF.cpp
@@ -0,0 +1,318 @@
+//===- ICF.cpp ------------------------------------------------------------===//
+//
+// The LLVM Linker
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// ICF is short for Identical Code Folding. That is a size optimization to
+// identify and merge two or more read-only sections (typically functions)
+// that happened to have the same contents. It usually reduces output size
+// by a few percent.
+//
+// On Windows, ICF is enabled by default.
+//
+// See ELF/ICF.cpp for the details about the algortihm.
+//
+//===----------------------------------------------------------------------===//
+
+#include "ICF.h"
+#include "Chunks.h"
+#include "Symbols.h"
+#include "lld/Common/ErrorHandler.h"
+#include "lld/Common/Threads.h"
+#include "lld/Common/Timer.h"
+#include "llvm/ADT/Hashing.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/Parallel.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Support/xxhash.h"
+#include <algorithm>
+#include <atomic>
+#include <vector>
+
+using namespace llvm;
+
+namespace lld {
+namespace coff {
+
+static Timer ICFTimer("ICF", Timer::root());
+
+class ICF {
+public:
+ void run(ArrayRef<Chunk *> V);
+
+private:
+ void segregate(size_t Begin, size_t End, bool Constant);
+
+ bool assocEquals(const SectionChunk *A, const SectionChunk *B);
+
+ bool equalsConstant(const SectionChunk *A, const SectionChunk *B);
+ bool equalsVariable(const SectionChunk *A, const SectionChunk *B);
+
+ uint32_t getHash(SectionChunk *C);
+ bool isEligible(SectionChunk *C);
+
+ size_t findBoundary(size_t Begin, size_t End);
+
+ void forEachClassRange(size_t Begin, size_t End,
+ std::function<void(size_t, size_t)> Fn);
+
+ void forEachClass(std::function<void(size_t, size_t)> Fn);
+
+ std::vector<SectionChunk *> Chunks;
+ int Cnt = 0;
+ std::atomic<bool> Repeat = {false};
+};
+
+// Returns true if section S is subject of ICF.
+//
+// Microsoft's documentation
+// (https://msdn.microsoft.com/en-us/library/bxwfs976.aspx; visited April
+// 2017) says that /opt:icf folds both functions and read-only data.
+// Despite that, the MSVC linker folds only functions. We found
+// a few instances of programs that are not safe for data merging.
+// Therefore, we merge only functions just like the MSVC tool. However, we also
+// merge read-only sections in a couple of cases where the address of the
+// section is insignificant to the user program and the behaviour matches that
+// of the Visual C++ linker.
+bool ICF::isEligible(SectionChunk *C) {
+ // Non-comdat chunks, dead chunks, and writable chunks are not elegible.
+ bool Writable = C->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_WRITE;
+ if (!C->isCOMDAT() || !C->Live || Writable)
+ return false;
+
+ // Code sections are eligible.
+ if (C->getOutputCharacteristics() & llvm::COFF::IMAGE_SCN_MEM_EXECUTE)
+ return true;
+
+ // .pdata and .xdata unwind info sections are eligible.
+ StringRef OutSecName = C->getSectionName().split('$').first;
+ if (OutSecName == ".pdata" || OutSecName == ".xdata")
+ return true;
+
+ // So are vtables.
+ if (C->Sym && C->Sym->getName().startswith("??_7"))
+ return true;
+
+ // Anything else not in an address-significance table is eligible.
+ return !C->KeepUnique;
+}
+
+// Split an equivalence class into smaller classes.
+void ICF::segregate(size_t Begin, size_t End, bool Constant) {
+ while (Begin < End) {
+ // Divide [Begin, End) into two. Let Mid be the start index of the
+ // second group.
+ auto Bound = std::stable_partition(
+ Chunks.begin() + Begin + 1, Chunks.begin() + End, [&](SectionChunk *S) {
+ if (Constant)
+ return equalsConstant(Chunks[Begin], S);
+ return equalsVariable(Chunks[Begin], S);
+ });
+ size_t Mid = Bound - Chunks.begin();
+
+ // Split [Begin, End) into [Begin, Mid) and [Mid, End). We use Mid as an
+ // equivalence class ID because every group ends with a unique index.
+ for (size_t I = Begin; I < Mid; ++I)
+ Chunks[I]->Class[(Cnt + 1) % 2] = Mid;
+
+ // If we created a group, we need to iterate the main loop again.
+ if (Mid != End)
+ Repeat = true;
+
+ Begin = Mid;
+ }
+}
+
+// Returns true if two sections' associative children are equal.
+bool ICF::assocEquals(const SectionChunk *A, const SectionChunk *B) {
+ auto ChildClasses = [&](const SectionChunk *SC) {
+ std::vector<uint32_t> Classes;
+ for (const SectionChunk *C : SC->children())
+ if (!C->SectionName.startswith(".debug") &&
+ C->SectionName != ".gfids$y" && C->SectionName != ".gljmp$y")
+ Classes.push_back(C->Class[Cnt % 2]);
+ return Classes;
+ };
+ return ChildClasses(A) == ChildClasses(B);
+}
+
+// Compare "non-moving" part of two sections, namely everything
+// except relocation targets.
+bool ICF::equalsConstant(const SectionChunk *A, const SectionChunk *B) {
+ if (A->Relocs.size() != B->Relocs.size())
+ return false;
+
+ // Compare relocations.
+ auto Eq = [&](const coff_relocation &R1, const coff_relocation &R2) {
+ if (R1.Type != R2.Type ||
+ R1.VirtualAddress != R2.VirtualAddress) {
+ return false;
+ }
+ Symbol *B1 = A->File->getSymbol(R1.SymbolTableIndex);
+ Symbol *B2 = B->File->getSymbol(R2.SymbolTableIndex);
+ if (B1 == B2)
+ return true;
+ if (auto *D1 = dyn_cast<DefinedRegular>(B1))
+ if (auto *D2 = dyn_cast<DefinedRegular>(B2))
+ return D1->getValue() == D2->getValue() &&
+ D1->getChunk()->Class[Cnt % 2] == D2->getChunk()->Class[Cnt % 2];
+ return false;
+ };
+ if (!std::equal(A->Relocs.begin(), A->Relocs.end(), B->Relocs.begin(), Eq))
+ return false;
+
+ // Compare section attributes and contents.
+ return A->getOutputCharacteristics() == B->getOutputCharacteristics() &&
+ A->SectionName == B->SectionName &&
+ A->Header->SizeOfRawData == B->Header->SizeOfRawData &&
+ A->Checksum == B->Checksum && A->getContents() == B->getContents() &&
+ assocEquals(A, B);
+}
+
+// Compare "moving" part of two sections, namely relocation targets.
+bool ICF::equalsVariable(const SectionChunk *A, const SectionChunk *B) {
+ // Compare relocations.
+ auto Eq = [&](const coff_relocation &R1, const coff_relocation &R2) {
+ Symbol *B1 = A->File->getSymbol(R1.SymbolTableIndex);
+ Symbol *B2 = B->File->getSymbol(R2.SymbolTableIndex);
+ if (B1 == B2)
+ return true;
+ if (auto *D1 = dyn_cast<DefinedRegular>(B1))
+ if (auto *D2 = dyn_cast<DefinedRegular>(B2))
+ return D1->getChunk()->Class[Cnt % 2] == D2->getChunk()->Class[Cnt % 2];
+ return false;
+ };
+ return std::equal(A->Relocs.begin(), A->Relocs.end(), B->Relocs.begin(),
+ Eq) &&
+ assocEquals(A, B);
+}
+
+// Find the first Chunk after Begin that has a different class from Begin.
+size_t ICF::findBoundary(size_t Begin, size_t End) {
+ for (size_t I = Begin + 1; I < End; ++I)
+ if (Chunks[Begin]->Class[Cnt % 2] != Chunks[I]->Class[Cnt % 2])
+ return I;
+ return End;
+}
+
+void ICF::forEachClassRange(size_t Begin, size_t End,
+ std::function<void(size_t, size_t)> Fn) {
+ while (Begin < End) {
+ size_t Mid = findBoundary(Begin, End);
+ Fn(Begin, Mid);
+ Begin = Mid;
+ }
+}
+
+// Call Fn on each class group.
+void ICF::forEachClass(std::function<void(size_t, size_t)> Fn) {
+ // If the number of sections are too small to use threading,
+ // call Fn sequentially.
+ if (Chunks.size() < 1024) {
+ forEachClassRange(0, Chunks.size(), Fn);
+ ++Cnt;
+ return;
+ }
+
+ // Shard into non-overlapping intervals, and call Fn in parallel.
+ // The sharding must be completed before any calls to Fn are made
+ // so that Fn can modify the Chunks in its shard without causing data
+ // races.
+ const size_t NumShards = 256;
+ size_t Step = Chunks.size() / NumShards;
+ size_t Boundaries[NumShards + 1];
+ Boundaries[0] = 0;
+ Boundaries[NumShards] = Chunks.size();
+ parallelForEachN(1, NumShards, [&](size_t I) {
+ Boundaries[I] = findBoundary((I - 1) * Step, Chunks.size());
+ });
+ parallelForEachN(1, NumShards + 1, [&](size_t I) {
+ if (Boundaries[I - 1] < Boundaries[I]) {
+ forEachClassRange(Boundaries[I - 1], Boundaries[I], Fn);
+ }
+ });
+ ++Cnt;
+}
+
+// Merge identical COMDAT sections.
+// Two sections are considered the same if their section headers,
+// contents and relocations are all the same.
+void ICF::run(ArrayRef<Chunk *> Vec) {
+ ScopedTimer T(ICFTimer);
+
+ // Collect only mergeable sections and group by hash value.
+ uint32_t NextId = 1;
+ for (Chunk *C : Vec) {
+ if (auto *SC = dyn_cast<SectionChunk>(C)) {
+ if (isEligible(SC))
+ Chunks.push_back(SC);
+ else
+ SC->Class[0] = NextId++;
+ }
+ }
+
+ // Make sure that ICF doesn't merge sections that are being handled by string
+ // tail merging.
+ for (auto &P : MergeChunk::Instances)
+ for (SectionChunk *SC : P.second->Sections)
+ SC->Class[0] = NextId++;
+
+ // Initially, we use hash values to partition sections.
+ parallelForEach(Chunks, [&](SectionChunk *SC) {
+ SC->Class[0] = xxHash64(SC->getContents());
+ });
+
+ // Combine the hashes of the sections referenced by each section into its
+ // hash.
+ for (unsigned Cnt = 0; Cnt != 2; ++Cnt) {
+ parallelForEach(Chunks, [&](SectionChunk *SC) {
+ uint32_t Hash = SC->Class[Cnt % 2];
+ for (Symbol *B : SC->symbols())
+ if (auto *Sym = dyn_cast_or_null<DefinedRegular>(B))
+ Hash += Sym->getChunk()->Class[Cnt % 2];
+ // Set MSB to 1 to avoid collisions with non-hash classs.
+ SC->Class[(Cnt + 1) % 2] = Hash | (1U << 31);
+ });
+ }
+
+ // From now on, sections in Chunks are ordered so that sections in
+ // the same group are consecutive in the vector.
+ std::stable_sort(Chunks.begin(), Chunks.end(),
+ [](SectionChunk *A, SectionChunk *B) {
+ return A->Class[0] < B->Class[0];
+ });
+
+ // Compare static contents and assign unique IDs for each static content.
+ forEachClass([&](size_t Begin, size_t End) { segregate(Begin, End, true); });
+
+ // Split groups by comparing relocations until convergence is obtained.
+ do {
+ Repeat = false;
+ forEachClass(
+ [&](size_t Begin, size_t End) { segregate(Begin, End, false); });
+ } while (Repeat);
+
+ log("ICF needed " + Twine(Cnt) + " iterations");
+
+ // Merge sections in the same classs.
+ forEachClass([&](size_t Begin, size_t End) {
+ if (End - Begin == 1)
+ return;
+
+ log("Selected " + Chunks[Begin]->getDebugName());
+ for (size_t I = Begin + 1; I < End; ++I) {
+ log(" Removed " + Chunks[I]->getDebugName());
+ Chunks[Begin]->replace(Chunks[I]);
+ }
+ });
+}
+
+// Entry point to ICF.
+void doICF(ArrayRef<Chunk *> Chunks) { ICF().run(Chunks); }
+
+} // namespace coff
+} // namespace lld