aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/tools/clang/lib/Sema/SemaTemplateDeduction.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/Sema/SemaTemplateDeduction.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/Sema/SemaTemplateDeduction.cpp4989
1 files changed, 4989 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/Sema/SemaTemplateDeduction.cpp b/contrib/llvm/tools/clang/lib/Sema/SemaTemplateDeduction.cpp
new file mode 100644
index 000000000000..6f676ad7c55d
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/Sema/SemaTemplateDeduction.cpp
@@ -0,0 +1,4989 @@
+//===------- SemaTemplateDeduction.cpp - Template Argument Deduction ------===/
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//===----------------------------------------------------------------------===/
+//
+// This file implements C++ template argument deduction.
+//
+//===----------------------------------------------------------------------===/
+
+#include "clang/Sema/TemplateDeduction.h"
+#include "TreeTransform.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/ASTLambda.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclTemplate.h"
+#include "clang/AST/Expr.h"
+#include "clang/AST/ExprCXX.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Sema/DeclSpec.h"
+#include "clang/Sema/Sema.h"
+#include "clang/Sema/Template.h"
+#include "llvm/ADT/SmallBitVector.h"
+#include <algorithm>
+
+namespace clang {
+ using namespace sema;
+ /// \brief Various flags that control template argument deduction.
+ ///
+ /// These flags can be bitwise-OR'd together.
+ enum TemplateDeductionFlags {
+ /// \brief No template argument deduction flags, which indicates the
+ /// strictest results for template argument deduction (as used for, e.g.,
+ /// matching class template partial specializations).
+ TDF_None = 0,
+ /// \brief Within template argument deduction from a function call, we are
+ /// matching with a parameter type for which the original parameter was
+ /// a reference.
+ TDF_ParamWithReferenceType = 0x1,
+ /// \brief Within template argument deduction from a function call, we
+ /// are matching in a case where we ignore cv-qualifiers.
+ TDF_IgnoreQualifiers = 0x02,
+ /// \brief Within template argument deduction from a function call,
+ /// we are matching in a case where we can perform template argument
+ /// deduction from a template-id of a derived class of the argument type.
+ TDF_DerivedClass = 0x04,
+ /// \brief Allow non-dependent types to differ, e.g., when performing
+ /// template argument deduction from a function call where conversions
+ /// may apply.
+ TDF_SkipNonDependent = 0x08,
+ /// \brief Whether we are performing template argument deduction for
+ /// parameters and arguments in a top-level template argument
+ TDF_TopLevelParameterTypeList = 0x10,
+ /// \brief Within template argument deduction from overload resolution per
+ /// C++ [over.over] allow matching function types that are compatible in
+ /// terms of noreturn and default calling convention adjustments.
+ TDF_InOverloadResolution = 0x20
+ };
+}
+
+using namespace clang;
+
+/// \brief Compare two APSInts, extending and switching the sign as
+/// necessary to compare their values regardless of underlying type.
+static bool hasSameExtendedValue(llvm::APSInt X, llvm::APSInt Y) {
+ if (Y.getBitWidth() > X.getBitWidth())
+ X = X.extend(Y.getBitWidth());
+ else if (Y.getBitWidth() < X.getBitWidth())
+ Y = Y.extend(X.getBitWidth());
+
+ // If there is a signedness mismatch, correct it.
+ if (X.isSigned() != Y.isSigned()) {
+ // If the signed value is negative, then the values cannot be the same.
+ if ((Y.isSigned() && Y.isNegative()) || (X.isSigned() && X.isNegative()))
+ return false;
+
+ Y.setIsSigned(true);
+ X.setIsSigned(true);
+ }
+
+ return X == Y;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgument &Param,
+ TemplateArgument Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced);
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArgumentsByTypeMatch(Sema &S,
+ TemplateParameterList *TemplateParams,
+ QualType Param,
+ QualType Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &
+ Deduced,
+ unsigned TDF,
+ bool PartialOrdering = false);
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgument *Params, unsigned NumParams,
+ const TemplateArgument *Args, unsigned NumArgs,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced);
+
+/// \brief If the given expression is of a form that permits the deduction
+/// of a non-type template parameter, return the declaration of that
+/// non-type template parameter.
+static NonTypeTemplateParmDecl *getDeducedParameterFromExpr(Expr *E) {
+ // If we are within an alias template, the expression may have undergone
+ // any number of parameter substitutions already.
+ while (1) {
+ if (ImplicitCastExpr *IC = dyn_cast<ImplicitCastExpr>(E))
+ E = IC->getSubExpr();
+ else if (SubstNonTypeTemplateParmExpr *Subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(E))
+ E = Subst->getReplacement();
+ else
+ break;
+ }
+
+ if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
+ return dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
+
+ return nullptr;
+}
+
+/// \brief Determine whether two declaration pointers refer to the same
+/// declaration.
+static bool isSameDeclaration(Decl *X, Decl *Y) {
+ if (NamedDecl *NX = dyn_cast<NamedDecl>(X))
+ X = NX->getUnderlyingDecl();
+ if (NamedDecl *NY = dyn_cast<NamedDecl>(Y))
+ Y = NY->getUnderlyingDecl();
+
+ return X->getCanonicalDecl() == Y->getCanonicalDecl();
+}
+
+/// \brief Verify that the given, deduced template arguments are compatible.
+///
+/// \returns The deduced template argument, or a NULL template argument if
+/// the deduced template arguments were incompatible.
+static DeducedTemplateArgument
+checkDeducedTemplateArguments(ASTContext &Context,
+ const DeducedTemplateArgument &X,
+ const DeducedTemplateArgument &Y) {
+ // We have no deduction for one or both of the arguments; they're compatible.
+ if (X.isNull())
+ return Y;
+ if (Y.isNull())
+ return X;
+
+ switch (X.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Non-deduced template arguments handled above");
+
+ case TemplateArgument::Type:
+ // If two template type arguments have the same type, they're compatible.
+ if (Y.getKind() == TemplateArgument::Type &&
+ Context.hasSameType(X.getAsType(), Y.getAsType()))
+ return X;
+
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Integral:
+ // If we deduced a constant in one case and either a dependent expression or
+ // declaration in another case, keep the integral constant.
+ // If both are integral constants with the same value, keep that value.
+ if (Y.getKind() == TemplateArgument::Expression ||
+ Y.getKind() == TemplateArgument::Declaration ||
+ (Y.getKind() == TemplateArgument::Integral &&
+ hasSameExtendedValue(X.getAsIntegral(), Y.getAsIntegral())))
+ return DeducedTemplateArgument(X,
+ X.wasDeducedFromArrayBound() &&
+ Y.wasDeducedFromArrayBound());
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Template:
+ if (Y.getKind() == TemplateArgument::Template &&
+ Context.hasSameTemplateName(X.getAsTemplate(), Y.getAsTemplate()))
+ return X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::TemplateExpansion:
+ if (Y.getKind() == TemplateArgument::TemplateExpansion &&
+ Context.hasSameTemplateName(X.getAsTemplateOrTemplatePattern(),
+ Y.getAsTemplateOrTemplatePattern()))
+ return X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Expression:
+ // If we deduced a dependent expression in one case and either an integral
+ // constant or a declaration in another case, keep the integral constant
+ // or declaration.
+ if (Y.getKind() == TemplateArgument::Integral ||
+ Y.getKind() == TemplateArgument::Declaration)
+ return DeducedTemplateArgument(Y, X.wasDeducedFromArrayBound() &&
+ Y.wasDeducedFromArrayBound());
+
+ if (Y.getKind() == TemplateArgument::Expression) {
+ // Compare the expressions for equality
+ llvm::FoldingSetNodeID ID1, ID2;
+ X.getAsExpr()->Profile(ID1, Context, true);
+ Y.getAsExpr()->Profile(ID2, Context, true);
+ if (ID1 == ID2)
+ return X;
+ }
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Declaration:
+ // If we deduced a declaration and a dependent expression, keep the
+ // declaration.
+ if (Y.getKind() == TemplateArgument::Expression)
+ return X;
+
+ // If we deduced a declaration and an integral constant, keep the
+ // integral constant.
+ if (Y.getKind() == TemplateArgument::Integral)
+ return Y;
+
+ // If we deduced two declarations, make sure they they refer to the
+ // same declaration.
+ if (Y.getKind() == TemplateArgument::Declaration &&
+ isSameDeclaration(X.getAsDecl(), Y.getAsDecl()))
+ return X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::NullPtr:
+ // If we deduced a null pointer and a dependent expression, keep the
+ // null pointer.
+ if (Y.getKind() == TemplateArgument::Expression)
+ return X;
+
+ // If we deduced a null pointer and an integral constant, keep the
+ // integral constant.
+ if (Y.getKind() == TemplateArgument::Integral)
+ return Y;
+
+ // If we deduced two null pointers, make sure they have the same type.
+ if (Y.getKind() == TemplateArgument::NullPtr &&
+ Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType()))
+ return X;
+
+ // All other combinations are incompatible.
+ return DeducedTemplateArgument();
+
+ case TemplateArgument::Pack:
+ if (Y.getKind() != TemplateArgument::Pack ||
+ X.pack_size() != Y.pack_size())
+ return DeducedTemplateArgument();
+
+ for (TemplateArgument::pack_iterator XA = X.pack_begin(),
+ XAEnd = X.pack_end(),
+ YA = Y.pack_begin();
+ XA != XAEnd; ++XA, ++YA) {
+ // FIXME: Do we need to merge the results together here?
+ if (checkDeducedTemplateArguments(Context,
+ DeducedTemplateArgument(*XA, X.wasDeducedFromArrayBound()),
+ DeducedTemplateArgument(*YA, Y.wasDeducedFromArrayBound()))
+ .isNull())
+ return DeducedTemplateArgument();
+ }
+
+ return X;
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+/// \brief Deduce the value of the given non-type template parameter
+/// from the given constant.
+static Sema::TemplateDeductionResult
+DeduceNonTypeTemplateArgument(Sema &S,
+ NonTypeTemplateParmDecl *NTTP,
+ llvm::APSInt Value, QualType ValueType,
+ bool DeducedFromArrayBound,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ assert(NTTP->getDepth() == 0 &&
+ "Cannot deduce non-type template argument with depth > 0");
+
+ DeducedTemplateArgument NewDeduced(S.Context, Value, ValueType,
+ DeducedFromArrayBound);
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
+ Deduced[NTTP->getIndex()],
+ NewDeduced);
+ if (Result.isNull()) {
+ Info.Param = NTTP;
+ Info.FirstArg = Deduced[NTTP->getIndex()];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[NTTP->getIndex()] = Result;
+ return Sema::TDK_Success;
+}
+
+/// \brief Deduce the value of the given non-type template parameter
+/// from the given type- or value-dependent expression.
+///
+/// \returns true if deduction succeeded, false otherwise.
+static Sema::TemplateDeductionResult
+DeduceNonTypeTemplateArgument(Sema &S,
+ NonTypeTemplateParmDecl *NTTP,
+ Expr *Value,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ assert(NTTP->getDepth() == 0 &&
+ "Cannot deduce non-type template argument with depth > 0");
+ assert((Value->isTypeDependent() || Value->isValueDependent()) &&
+ "Expression template argument must be type- or value-dependent.");
+
+ DeducedTemplateArgument NewDeduced(Value);
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
+ Deduced[NTTP->getIndex()],
+ NewDeduced);
+
+ if (Result.isNull()) {
+ Info.Param = NTTP;
+ Info.FirstArg = Deduced[NTTP->getIndex()];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[NTTP->getIndex()] = Result;
+ return Sema::TDK_Success;
+}
+
+/// \brief Deduce the value of the given non-type template parameter
+/// from the given declaration.
+///
+/// \returns true if deduction succeeded, false otherwise.
+static Sema::TemplateDeductionResult
+DeduceNonTypeTemplateArgument(Sema &S,
+ NonTypeTemplateParmDecl *NTTP,
+ ValueDecl *D,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ assert(NTTP->getDepth() == 0 &&
+ "Cannot deduce non-type template argument with depth > 0");
+
+ D = D ? cast<ValueDecl>(D->getCanonicalDecl()) : nullptr;
+ TemplateArgument New(D, NTTP->getType());
+ DeducedTemplateArgument NewDeduced(New);
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
+ Deduced[NTTP->getIndex()],
+ NewDeduced);
+ if (Result.isNull()) {
+ Info.Param = NTTP;
+ Info.FirstArg = Deduced[NTTP->getIndex()];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[NTTP->getIndex()] = Result;
+ return Sema::TDK_Success;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ TemplateName Param,
+ TemplateName Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ TemplateDecl *ParamDecl = Param.getAsTemplateDecl();
+ if (!ParamDecl) {
+ // The parameter type is dependent and is not a template template parameter,
+ // so there is nothing that we can deduce.
+ return Sema::TDK_Success;
+ }
+
+ if (TemplateTemplateParmDecl *TempParam
+ = dyn_cast<TemplateTemplateParmDecl>(ParamDecl)) {
+ DeducedTemplateArgument NewDeduced(S.Context.getCanonicalTemplateName(Arg));
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
+ Deduced[TempParam->getIndex()],
+ NewDeduced);
+ if (Result.isNull()) {
+ Info.Param = TempParam;
+ Info.FirstArg = Deduced[TempParam->getIndex()];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[TempParam->getIndex()] = Result;
+ return Sema::TDK_Success;
+ }
+
+ // Verify that the two template names are equivalent.
+ if (S.Context.hasSameTemplateName(Param, Arg))
+ return Sema::TDK_Success;
+
+ // Mismatch of non-dependent template parameter to argument.
+ Info.FirstArg = TemplateArgument(Param);
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_NonDeducedMismatch;
+}
+
+/// \brief Deduce the template arguments by comparing the template parameter
+/// type (which is a template-id) with the template argument type.
+///
+/// \param S the Sema
+///
+/// \param TemplateParams the template parameters that we are deducing
+///
+/// \param Param the parameter type
+///
+/// \param Arg the argument type
+///
+/// \param Info information about the template argument deduction itself
+///
+/// \param Deduced the deduced template arguments
+///
+/// \returns the result of template argument deduction so far. Note that a
+/// "success" result means that template argument deduction has not yet failed,
+/// but it may still fail, later, for other reasons.
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateSpecializationType *Param,
+ QualType Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ assert(Arg.isCanonical() && "Argument type must be canonical");
+
+ // Check whether the template argument is a dependent template-id.
+ if (const TemplateSpecializationType *SpecArg
+ = dyn_cast<TemplateSpecializationType>(Arg)) {
+ // Perform template argument deduction for the template name.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S, TemplateParams,
+ Param->getTemplateName(),
+ SpecArg->getTemplateName(),
+ Info, Deduced))
+ return Result;
+
+
+ // Perform template argument deduction on each template
+ // argument. Ignore any missing/extra arguments, since they could be
+ // filled in by default arguments.
+ return DeduceTemplateArguments(S, TemplateParams,
+ Param->getArgs(), Param->getNumArgs(),
+ SpecArg->getArgs(), SpecArg->getNumArgs(),
+ Info, Deduced);
+ }
+
+ // If the argument type is a class template specialization, we
+ // perform template argument deduction using its template
+ // arguments.
+ const RecordType *RecordArg = dyn_cast<RecordType>(Arg);
+ if (!RecordArg) {
+ Info.FirstArg = TemplateArgument(QualType(Param, 0));
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ ClassTemplateSpecializationDecl *SpecArg
+ = dyn_cast<ClassTemplateSpecializationDecl>(RecordArg->getDecl());
+ if (!SpecArg) {
+ Info.FirstArg = TemplateArgument(QualType(Param, 0));
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // Perform template argument deduction for the template name.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S,
+ TemplateParams,
+ Param->getTemplateName(),
+ TemplateName(SpecArg->getSpecializedTemplate()),
+ Info, Deduced))
+ return Result;
+
+ // Perform template argument deduction for the template arguments.
+ return DeduceTemplateArguments(S, TemplateParams,
+ Param->getArgs(), Param->getNumArgs(),
+ SpecArg->getTemplateArgs().data(),
+ SpecArg->getTemplateArgs().size(),
+ Info, Deduced);
+}
+
+/// \brief Determines whether the given type is an opaque type that
+/// might be more qualified when instantiated.
+static bool IsPossiblyOpaquelyQualifiedType(QualType T) {
+ switch (T->getTypeClass()) {
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::DependentName:
+ case Type::Decltype:
+ case Type::UnresolvedUsing:
+ case Type::TemplateTypeParm:
+ return true;
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ case Type::VariableArray:
+ case Type::DependentSizedArray:
+ return IsPossiblyOpaquelyQualifiedType(
+ cast<ArrayType>(T)->getElementType());
+
+ default:
+ return false;
+ }
+}
+
+/// \brief Retrieve the depth and index of a template parameter.
+static std::pair<unsigned, unsigned>
+getDepthAndIndex(NamedDecl *ND) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(ND))
+ return std::make_pair(TTP->getDepth(), TTP->getIndex());
+
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(ND))
+ return std::make_pair(NTTP->getDepth(), NTTP->getIndex());
+
+ TemplateTemplateParmDecl *TTP = cast<TemplateTemplateParmDecl>(ND);
+ return std::make_pair(TTP->getDepth(), TTP->getIndex());
+}
+
+/// \brief Retrieve the depth and index of an unexpanded parameter pack.
+static std::pair<unsigned, unsigned>
+getDepthAndIndex(UnexpandedParameterPack UPP) {
+ if (const TemplateTypeParmType *TTP
+ = UPP.first.dyn_cast<const TemplateTypeParmType *>())
+ return std::make_pair(TTP->getDepth(), TTP->getIndex());
+
+ return getDepthAndIndex(UPP.first.get<NamedDecl *>());
+}
+
+/// \brief Helper function to build a TemplateParameter when we don't
+/// know its type statically.
+static TemplateParameter makeTemplateParameter(Decl *D) {
+ if (TemplateTypeParmDecl *TTP = dyn_cast<TemplateTypeParmDecl>(D))
+ return TemplateParameter(TTP);
+ if (NonTypeTemplateParmDecl *NTTP = dyn_cast<NonTypeTemplateParmDecl>(D))
+ return TemplateParameter(NTTP);
+
+ return TemplateParameter(cast<TemplateTemplateParmDecl>(D));
+}
+
+/// A pack that we're currently deducing.
+struct clang::DeducedPack {
+ DeducedPack(unsigned Index) : Index(Index), Outer(nullptr) {}
+
+ // The index of the pack.
+ unsigned Index;
+
+ // The old value of the pack before we started deducing it.
+ DeducedTemplateArgument Saved;
+
+ // A deferred value of this pack from an inner deduction, that couldn't be
+ // deduced because this deduction hadn't happened yet.
+ DeducedTemplateArgument DeferredDeduction;
+
+ // The new value of the pack.
+ SmallVector<DeducedTemplateArgument, 4> New;
+
+ // The outer deduction for this pack, if any.
+ DeducedPack *Outer;
+};
+
+namespace {
+/// A scope in which we're performing pack deduction.
+class PackDeductionScope {
+public:
+ PackDeductionScope(Sema &S, TemplateParameterList *TemplateParams,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ TemplateDeductionInfo &Info, TemplateArgument Pattern)
+ : S(S), TemplateParams(TemplateParams), Deduced(Deduced), Info(Info) {
+ // Compute the set of template parameter indices that correspond to
+ // parameter packs expanded by the pack expansion.
+ {
+ llvm::SmallBitVector SawIndices(TemplateParams->size());
+ SmallVector<UnexpandedParameterPack, 2> Unexpanded;
+ S.collectUnexpandedParameterPacks(Pattern, Unexpanded);
+ for (unsigned I = 0, N = Unexpanded.size(); I != N; ++I) {
+ unsigned Depth, Index;
+ std::tie(Depth, Index) = getDepthAndIndex(Unexpanded[I]);
+ if (Depth == 0 && !SawIndices[Index]) {
+ SawIndices[Index] = true;
+
+ // Save the deduced template argument for the parameter pack expanded
+ // by this pack expansion, then clear out the deduction.
+ DeducedPack Pack(Index);
+ Pack.Saved = Deduced[Index];
+ Deduced[Index] = TemplateArgument();
+
+ Packs.push_back(Pack);
+ }
+ }
+ }
+ assert(!Packs.empty() && "Pack expansion without unexpanded packs?");
+
+ for (auto &Pack : Packs) {
+ if (Info.PendingDeducedPacks.size() > Pack.Index)
+ Pack.Outer = Info.PendingDeducedPacks[Pack.Index];
+ else
+ Info.PendingDeducedPacks.resize(Pack.Index + 1);
+ Info.PendingDeducedPacks[Pack.Index] = &Pack;
+
+ if (S.CurrentInstantiationScope) {
+ // If the template argument pack was explicitly specified, add that to
+ // the set of deduced arguments.
+ const TemplateArgument *ExplicitArgs;
+ unsigned NumExplicitArgs;
+ NamedDecl *PartiallySubstitutedPack =
+ S.CurrentInstantiationScope->getPartiallySubstitutedPack(
+ &ExplicitArgs, &NumExplicitArgs);
+ if (PartiallySubstitutedPack &&
+ getDepthAndIndex(PartiallySubstitutedPack).second == Pack.Index)
+ Pack.New.append(ExplicitArgs, ExplicitArgs + NumExplicitArgs);
+ }
+ }
+ }
+
+ ~PackDeductionScope() {
+ for (auto &Pack : Packs)
+ Info.PendingDeducedPacks[Pack.Index] = Pack.Outer;
+ }
+
+ /// Move to deducing the next element in each pack that is being deduced.
+ void nextPackElement() {
+ // Capture the deduced template arguments for each parameter pack expanded
+ // by this pack expansion, add them to the list of arguments we've deduced
+ // for that pack, then clear out the deduced argument.
+ for (auto &Pack : Packs) {
+ DeducedTemplateArgument &DeducedArg = Deduced[Pack.Index];
+ if (!DeducedArg.isNull()) {
+ Pack.New.push_back(DeducedArg);
+ DeducedArg = DeducedTemplateArgument();
+ }
+ }
+ }
+
+ /// \brief Finish template argument deduction for a set of argument packs,
+ /// producing the argument packs and checking for consistency with prior
+ /// deductions.
+ Sema::TemplateDeductionResult finish(bool HasAnyArguments) {
+ // Build argument packs for each of the parameter packs expanded by this
+ // pack expansion.
+ for (auto &Pack : Packs) {
+ // Put back the old value for this pack.
+ Deduced[Pack.Index] = Pack.Saved;
+
+ // Build or find a new value for this pack.
+ DeducedTemplateArgument NewPack;
+ if (HasAnyArguments && Pack.New.empty()) {
+ if (Pack.DeferredDeduction.isNull()) {
+ // We were not able to deduce anything for this parameter pack
+ // (because it only appeared in non-deduced contexts), so just
+ // restore the saved argument pack.
+ continue;
+ }
+
+ NewPack = Pack.DeferredDeduction;
+ Pack.DeferredDeduction = TemplateArgument();
+ } else if (Pack.New.empty()) {
+ // If we deduced an empty argument pack, create it now.
+ NewPack = DeducedTemplateArgument(TemplateArgument::getEmptyPack());
+ } else {
+ TemplateArgument *ArgumentPack =
+ new (S.Context) TemplateArgument[Pack.New.size()];
+ std::copy(Pack.New.begin(), Pack.New.end(), ArgumentPack);
+ NewPack = DeducedTemplateArgument(
+ TemplateArgument(ArgumentPack, Pack.New.size()),
+ Pack.New[0].wasDeducedFromArrayBound());
+ }
+
+ // Pick where we're going to put the merged pack.
+ DeducedTemplateArgument *Loc;
+ if (Pack.Outer) {
+ if (Pack.Outer->DeferredDeduction.isNull()) {
+ // Defer checking this pack until we have a complete pack to compare
+ // it against.
+ Pack.Outer->DeferredDeduction = NewPack;
+ continue;
+ }
+ Loc = &Pack.Outer->DeferredDeduction;
+ } else {
+ Loc = &Deduced[Pack.Index];
+ }
+
+ // Check the new pack matches any previous value.
+ DeducedTemplateArgument OldPack = *Loc;
+ DeducedTemplateArgument Result =
+ checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
+
+ // If we deferred a deduction of this pack, check that one now too.
+ if (!Result.isNull() && !Pack.DeferredDeduction.isNull()) {
+ OldPack = Result;
+ NewPack = Pack.DeferredDeduction;
+ Result = checkDeducedTemplateArguments(S.Context, OldPack, NewPack);
+ }
+
+ if (Result.isNull()) {
+ Info.Param =
+ makeTemplateParameter(TemplateParams->getParam(Pack.Index));
+ Info.FirstArg = OldPack;
+ Info.SecondArg = NewPack;
+ return Sema::TDK_Inconsistent;
+ }
+
+ *Loc = Result;
+ }
+
+ return Sema::TDK_Success;
+ }
+
+private:
+ Sema &S;
+ TemplateParameterList *TemplateParams;
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced;
+ TemplateDeductionInfo &Info;
+
+ SmallVector<DeducedPack, 2> Packs;
+};
+} // namespace
+
+/// \brief Deduce the template arguments by comparing the list of parameter
+/// types to the list of argument types, as in the parameter-type-lists of
+/// function types (C++ [temp.deduct.type]p10).
+///
+/// \param S The semantic analysis object within which we are deducing
+///
+/// \param TemplateParams The template parameters that we are deducing
+///
+/// \param Params The list of parameter types
+///
+/// \param NumParams The number of types in \c Params
+///
+/// \param Args The list of argument types
+///
+/// \param NumArgs The number of types in \c Args
+///
+/// \param Info information about the template argument deduction itself
+///
+/// \param Deduced the deduced template arguments
+///
+/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
+/// how template argument deduction is performed.
+///
+/// \param PartialOrdering If true, we are performing template argument
+/// deduction for during partial ordering for a call
+/// (C++0x [temp.deduct.partial]).
+///
+/// \returns the result of template argument deduction so far. Note that a
+/// "success" result means that template argument deduction has not yet failed,
+/// but it may still fail, later, for other reasons.
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const QualType *Params, unsigned NumParams,
+ const QualType *Args, unsigned NumArgs,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ unsigned TDF,
+ bool PartialOrdering = false) {
+ // Fast-path check to see if we have too many/too few arguments.
+ if (NumParams != NumArgs &&
+ !(NumParams && isa<PackExpansionType>(Params[NumParams - 1])) &&
+ !(NumArgs && isa<PackExpansionType>(Args[NumArgs - 1])))
+ return Sema::TDK_MiscellaneousDeductionFailure;
+
+ // C++0x [temp.deduct.type]p10:
+ // Similarly, if P has a form that contains (T), then each parameter type
+ // Pi of the respective parameter-type- list of P is compared with the
+ // corresponding parameter type Ai of the corresponding parameter-type-list
+ // of A. [...]
+ unsigned ArgIdx = 0, ParamIdx = 0;
+ for (; ParamIdx != NumParams; ++ParamIdx) {
+ // Check argument types.
+ const PackExpansionType *Expansion
+ = dyn_cast<PackExpansionType>(Params[ParamIdx]);
+ if (!Expansion) {
+ // Simple case: compare the parameter and argument types at this point.
+
+ // Make sure we have an argument.
+ if (ArgIdx >= NumArgs)
+ return Sema::TDK_MiscellaneousDeductionFailure;
+
+ if (isa<PackExpansionType>(Args[ArgIdx])) {
+ // C++0x [temp.deduct.type]p22:
+ // If the original function parameter associated with A is a function
+ // parameter pack and the function parameter associated with P is not
+ // a function parameter pack, then template argument deduction fails.
+ return Sema::TDK_MiscellaneousDeductionFailure;
+ }
+
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ Params[ParamIdx], Args[ArgIdx],
+ Info, Deduced, TDF,
+ PartialOrdering))
+ return Result;
+
+ ++ArgIdx;
+ continue;
+ }
+
+ // C++0x [temp.deduct.type]p5:
+ // The non-deduced contexts are:
+ // - A function parameter pack that does not occur at the end of the
+ // parameter-declaration-clause.
+ if (ParamIdx + 1 < NumParams)
+ return Sema::TDK_Success;
+
+ // C++0x [temp.deduct.type]p10:
+ // If the parameter-declaration corresponding to Pi is a function
+ // parameter pack, then the type of its declarator- id is compared with
+ // each remaining parameter type in the parameter-type-list of A. Each
+ // comparison deduces template arguments for subsequent positions in the
+ // template parameter packs expanded by the function parameter pack.
+
+ QualType Pattern = Expansion->getPattern();
+ PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
+
+ bool HasAnyArguments = false;
+ for (; ArgIdx < NumArgs; ++ArgIdx) {
+ HasAnyArguments = true;
+
+ // Deduce template arguments from the pattern.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, Pattern,
+ Args[ArgIdx], Info, Deduced,
+ TDF, PartialOrdering))
+ return Result;
+
+ PackScope.nextPackElement();
+ }
+
+ // Build argument packs for each of the parameter packs expanded by this
+ // pack expansion.
+ if (auto Result = PackScope.finish(HasAnyArguments))
+ return Result;
+ }
+
+ // Make sure we don't have any extra arguments.
+ if (ArgIdx < NumArgs)
+ return Sema::TDK_MiscellaneousDeductionFailure;
+
+ return Sema::TDK_Success;
+}
+
+/// \brief Determine whether the parameter has qualifiers that are either
+/// inconsistent with or a superset of the argument's qualifiers.
+static bool hasInconsistentOrSupersetQualifiersOf(QualType ParamType,
+ QualType ArgType) {
+ Qualifiers ParamQs = ParamType.getQualifiers();
+ Qualifiers ArgQs = ArgType.getQualifiers();
+
+ if (ParamQs == ArgQs)
+ return false;
+
+ // Mismatched (but not missing) Objective-C GC attributes.
+ if (ParamQs.getObjCGCAttr() != ArgQs.getObjCGCAttr() &&
+ ParamQs.hasObjCGCAttr())
+ return true;
+
+ // Mismatched (but not missing) address spaces.
+ if (ParamQs.getAddressSpace() != ArgQs.getAddressSpace() &&
+ ParamQs.hasAddressSpace())
+ return true;
+
+ // Mismatched (but not missing) Objective-C lifetime qualifiers.
+ if (ParamQs.getObjCLifetime() != ArgQs.getObjCLifetime() &&
+ ParamQs.hasObjCLifetime())
+ return true;
+
+ // CVR qualifier superset.
+ return (ParamQs.getCVRQualifiers() != ArgQs.getCVRQualifiers()) &&
+ ((ParamQs.getCVRQualifiers() | ArgQs.getCVRQualifiers())
+ == ParamQs.getCVRQualifiers());
+}
+
+/// \brief Compare types for equality with respect to possibly compatible
+/// function types (noreturn adjustment, implicit calling conventions). If any
+/// of parameter and argument is not a function, just perform type comparison.
+///
+/// \param Param the template parameter type.
+///
+/// \param Arg the argument type.
+bool Sema::isSameOrCompatibleFunctionType(CanQualType Param,
+ CanQualType Arg) {
+ const FunctionType *ParamFunction = Param->getAs<FunctionType>(),
+ *ArgFunction = Arg->getAs<FunctionType>();
+
+ // Just compare if not functions.
+ if (!ParamFunction || !ArgFunction)
+ return Param == Arg;
+
+ // Noreturn adjustment.
+ QualType AdjustedParam;
+ if (IsNoReturnConversion(Param, Arg, AdjustedParam))
+ return Arg == Context.getCanonicalType(AdjustedParam);
+
+ // FIXME: Compatible calling conventions.
+
+ return Param == Arg;
+}
+
+/// \brief Deduce the template arguments by comparing the parameter type and
+/// the argument type (C++ [temp.deduct.type]).
+///
+/// \param S the semantic analysis object within which we are deducing
+///
+/// \param TemplateParams the template parameters that we are deducing
+///
+/// \param ParamIn the parameter type
+///
+/// \param ArgIn the argument type
+///
+/// \param Info information about the template argument deduction itself
+///
+/// \param Deduced the deduced template arguments
+///
+/// \param TDF bitwise OR of the TemplateDeductionFlags bits that describe
+/// how template argument deduction is performed.
+///
+/// \param PartialOrdering Whether we're performing template argument deduction
+/// in the context of partial ordering (C++0x [temp.deduct.partial]).
+///
+/// \returns the result of template argument deduction so far. Note that a
+/// "success" result means that template argument deduction has not yet failed,
+/// but it may still fail, later, for other reasons.
+static Sema::TemplateDeductionResult
+DeduceTemplateArgumentsByTypeMatch(Sema &S,
+ TemplateParameterList *TemplateParams,
+ QualType ParamIn, QualType ArgIn,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ unsigned TDF,
+ bool PartialOrdering) {
+ // We only want to look at the canonical types, since typedefs and
+ // sugar are not part of template argument deduction.
+ QualType Param = S.Context.getCanonicalType(ParamIn);
+ QualType Arg = S.Context.getCanonicalType(ArgIn);
+
+ // If the argument type is a pack expansion, look at its pattern.
+ // This isn't explicitly called out
+ if (const PackExpansionType *ArgExpansion
+ = dyn_cast<PackExpansionType>(Arg))
+ Arg = ArgExpansion->getPattern();
+
+ if (PartialOrdering) {
+ // C++11 [temp.deduct.partial]p5:
+ // Before the partial ordering is done, certain transformations are
+ // performed on the types used for partial ordering:
+ // - If P is a reference type, P is replaced by the type referred to.
+ const ReferenceType *ParamRef = Param->getAs<ReferenceType>();
+ if (ParamRef)
+ Param = ParamRef->getPointeeType();
+
+ // - If A is a reference type, A is replaced by the type referred to.
+ const ReferenceType *ArgRef = Arg->getAs<ReferenceType>();
+ if (ArgRef)
+ Arg = ArgRef->getPointeeType();
+
+ if (ParamRef && ArgRef && S.Context.hasSameUnqualifiedType(Param, Arg)) {
+ // C++11 [temp.deduct.partial]p9:
+ // If, for a given type, deduction succeeds in both directions (i.e.,
+ // the types are identical after the transformations above) and both
+ // P and A were reference types [...]:
+ // - if [one type] was an lvalue reference and [the other type] was
+ // not, [the other type] is not considered to be at least as
+ // specialized as [the first type]
+ // - if [one type] is more cv-qualified than [the other type],
+ // [the other type] is not considered to be at least as specialized
+ // as [the first type]
+ // Objective-C ARC adds:
+ // - [one type] has non-trivial lifetime, [the other type] has
+ // __unsafe_unretained lifetime, and the types are otherwise
+ // identical
+ //
+ // A is "considered to be at least as specialized" as P iff deduction
+ // succeeds, so we model this as a deduction failure. Note that
+ // [the first type] is P and [the other type] is A here; the standard
+ // gets this backwards.
+ Qualifiers ParamQuals = Param.getQualifiers();
+ Qualifiers ArgQuals = Arg.getQualifiers();
+ if ((ParamRef->isLValueReferenceType() &&
+ !ArgRef->isLValueReferenceType()) ||
+ ParamQuals.isStrictSupersetOf(ArgQuals) ||
+ (ParamQuals.hasNonTrivialObjCLifetime() &&
+ ArgQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone &&
+ ParamQuals.withoutObjCLifetime() ==
+ ArgQuals.withoutObjCLifetime())) {
+ Info.FirstArg = TemplateArgument(ParamIn);
+ Info.SecondArg = TemplateArgument(ArgIn);
+ return Sema::TDK_NonDeducedMismatch;
+ }
+ }
+
+ // C++11 [temp.deduct.partial]p7:
+ // Remove any top-level cv-qualifiers:
+ // - If P is a cv-qualified type, P is replaced by the cv-unqualified
+ // version of P.
+ Param = Param.getUnqualifiedType();
+ // - If A is a cv-qualified type, A is replaced by the cv-unqualified
+ // version of A.
+ Arg = Arg.getUnqualifiedType();
+ } else {
+ // C++0x [temp.deduct.call]p4 bullet 1:
+ // - If the original P is a reference type, the deduced A (i.e., the type
+ // referred to by the reference) can be more cv-qualified than the
+ // transformed A.
+ if (TDF & TDF_ParamWithReferenceType) {
+ Qualifiers Quals;
+ QualType UnqualParam = S.Context.getUnqualifiedArrayType(Param, Quals);
+ Quals.setCVRQualifiers(Quals.getCVRQualifiers() &
+ Arg.getCVRQualifiers());
+ Param = S.Context.getQualifiedType(UnqualParam, Quals);
+ }
+
+ if ((TDF & TDF_TopLevelParameterTypeList) && !Param->isFunctionType()) {
+ // C++0x [temp.deduct.type]p10:
+ // If P and A are function types that originated from deduction when
+ // taking the address of a function template (14.8.2.2) or when deducing
+ // template arguments from a function declaration (14.8.2.6) and Pi and
+ // Ai are parameters of the top-level parameter-type-list of P and A,
+ // respectively, Pi is adjusted if it is an rvalue reference to a
+ // cv-unqualified template parameter and Ai is an lvalue reference, in
+ // which case the type of Pi is changed to be the template parameter
+ // type (i.e., T&& is changed to simply T). [ Note: As a result, when
+ // Pi is T&& and Ai is X&, the adjusted Pi will be T, causing T to be
+ // deduced as X&. - end note ]
+ TDF &= ~TDF_TopLevelParameterTypeList;
+
+ if (const RValueReferenceType *ParamRef
+ = Param->getAs<RValueReferenceType>()) {
+ if (isa<TemplateTypeParmType>(ParamRef->getPointeeType()) &&
+ !ParamRef->getPointeeType().getQualifiers())
+ if (Arg->isLValueReferenceType())
+ Param = ParamRef->getPointeeType();
+ }
+ }
+ }
+
+ // C++ [temp.deduct.type]p9:
+ // A template type argument T, a template template argument TT or a
+ // template non-type argument i can be deduced if P and A have one of
+ // the following forms:
+ //
+ // T
+ // cv-list T
+ if (const TemplateTypeParmType *TemplateTypeParm
+ = Param->getAs<TemplateTypeParmType>()) {
+ // Just skip any attempts to deduce from a placeholder type.
+ if (Arg->isPlaceholderType())
+ return Sema::TDK_Success;
+
+ unsigned Index = TemplateTypeParm->getIndex();
+ bool RecanonicalizeArg = false;
+
+ // If the argument type is an array type, move the qualifiers up to the
+ // top level, so they can be matched with the qualifiers on the parameter.
+ if (isa<ArrayType>(Arg)) {
+ Qualifiers Quals;
+ Arg = S.Context.getUnqualifiedArrayType(Arg, Quals);
+ if (Quals) {
+ Arg = S.Context.getQualifiedType(Arg, Quals);
+ RecanonicalizeArg = true;
+ }
+ }
+
+ // The argument type can not be less qualified than the parameter
+ // type.
+ if (!(TDF & TDF_IgnoreQualifiers) &&
+ hasInconsistentOrSupersetQualifiersOf(Param, Arg)) {
+ Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
+ Info.FirstArg = TemplateArgument(Param);
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_Underqualified;
+ }
+
+ assert(TemplateTypeParm->getDepth() == 0 && "Can't deduce with depth > 0");
+ assert(Arg != S.Context.OverloadTy && "Unresolved overloaded function");
+ QualType DeducedType = Arg;
+
+ // Remove any qualifiers on the parameter from the deduced type.
+ // We checked the qualifiers for consistency above.
+ Qualifiers DeducedQs = DeducedType.getQualifiers();
+ Qualifiers ParamQs = Param.getQualifiers();
+ DeducedQs.removeCVRQualifiers(ParamQs.getCVRQualifiers());
+ if (ParamQs.hasObjCGCAttr())
+ DeducedQs.removeObjCGCAttr();
+ if (ParamQs.hasAddressSpace())
+ DeducedQs.removeAddressSpace();
+ if (ParamQs.hasObjCLifetime())
+ DeducedQs.removeObjCLifetime();
+
+ // Objective-C ARC:
+ // If template deduction would produce a lifetime qualifier on a type
+ // that is not a lifetime type, template argument deduction fails.
+ if (ParamQs.hasObjCLifetime() && !DeducedType->isObjCLifetimeType() &&
+ !DeducedType->isDependentType()) {
+ Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
+ Info.FirstArg = TemplateArgument(Param);
+ Info.SecondArg = TemplateArgument(Arg);
+ return Sema::TDK_Underqualified;
+ }
+
+ // Objective-C ARC:
+ // If template deduction would produce an argument type with lifetime type
+ // but no lifetime qualifier, the __strong lifetime qualifier is inferred.
+ if (S.getLangOpts().ObjCAutoRefCount &&
+ DeducedType->isObjCLifetimeType() &&
+ !DeducedQs.hasObjCLifetime())
+ DeducedQs.setObjCLifetime(Qualifiers::OCL_Strong);
+
+ DeducedType = S.Context.getQualifiedType(DeducedType.getUnqualifiedType(),
+ DeducedQs);
+
+ if (RecanonicalizeArg)
+ DeducedType = S.Context.getCanonicalType(DeducedType);
+
+ DeducedTemplateArgument NewDeduced(DeducedType);
+ DeducedTemplateArgument Result = checkDeducedTemplateArguments(S.Context,
+ Deduced[Index],
+ NewDeduced);
+ if (Result.isNull()) {
+ Info.Param = cast<TemplateTypeParmDecl>(TemplateParams->getParam(Index));
+ Info.FirstArg = Deduced[Index];
+ Info.SecondArg = NewDeduced;
+ return Sema::TDK_Inconsistent;
+ }
+
+ Deduced[Index] = Result;
+ return Sema::TDK_Success;
+ }
+
+ // Set up the template argument deduction information for a failure.
+ Info.FirstArg = TemplateArgument(ParamIn);
+ Info.SecondArg = TemplateArgument(ArgIn);
+
+ // If the parameter is an already-substituted template parameter
+ // pack, do nothing: we don't know which of its arguments to look
+ // at, so we have to wait until all of the parameter packs in this
+ // expansion have arguments.
+ if (isa<SubstTemplateTypeParmPackType>(Param))
+ return Sema::TDK_Success;
+
+ // Check the cv-qualifiers on the parameter and argument types.
+ CanQualType CanParam = S.Context.getCanonicalType(Param);
+ CanQualType CanArg = S.Context.getCanonicalType(Arg);
+ if (!(TDF & TDF_IgnoreQualifiers)) {
+ if (TDF & TDF_ParamWithReferenceType) {
+ if (hasInconsistentOrSupersetQualifiersOf(Param, Arg))
+ return Sema::TDK_NonDeducedMismatch;
+ } else if (!IsPossiblyOpaquelyQualifiedType(Param)) {
+ if (Param.getCVRQualifiers() != Arg.getCVRQualifiers())
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // If the parameter type is not dependent, there is nothing to deduce.
+ if (!Param->isDependentType()) {
+ if (!(TDF & TDF_SkipNonDependent)) {
+ bool NonDeduced = (TDF & TDF_InOverloadResolution)?
+ !S.isSameOrCompatibleFunctionType(CanParam, CanArg) :
+ Param != Arg;
+ if (NonDeduced) {
+ return Sema::TDK_NonDeducedMismatch;
+ }
+ }
+ return Sema::TDK_Success;
+ }
+ } else if (!Param->isDependentType()) {
+ CanQualType ParamUnqualType = CanParam.getUnqualifiedType(),
+ ArgUnqualType = CanArg.getUnqualifiedType();
+ bool Success = (TDF & TDF_InOverloadResolution)?
+ S.isSameOrCompatibleFunctionType(ParamUnqualType,
+ ArgUnqualType) :
+ ParamUnqualType == ArgUnqualType;
+ if (Success)
+ return Sema::TDK_Success;
+ }
+
+ switch (Param->getTypeClass()) {
+ // Non-canonical types cannot appear here.
+#define NON_CANONICAL_TYPE(Class, Base) \
+ case Type::Class: llvm_unreachable("deducing non-canonical type: " #Class);
+#define TYPE(Class, Base)
+#include "clang/AST/TypeNodes.def"
+
+ case Type::TemplateTypeParm:
+ case Type::SubstTemplateTypeParmPack:
+ llvm_unreachable("Type nodes handled above");
+
+ // These types cannot be dependent, so simply check whether the types are
+ // the same.
+ case Type::Builtin:
+ case Type::VariableArray:
+ case Type::Vector:
+ case Type::FunctionNoProto:
+ case Type::Record:
+ case Type::Enum:
+ case Type::ObjCObject:
+ case Type::ObjCInterface:
+ case Type::ObjCObjectPointer: {
+ if (TDF & TDF_SkipNonDependent)
+ return Sema::TDK_Success;
+
+ if (TDF & TDF_IgnoreQualifiers) {
+ Param = Param.getUnqualifiedType();
+ Arg = Arg.getUnqualifiedType();
+ }
+
+ return Param == Arg? Sema::TDK_Success : Sema::TDK_NonDeducedMismatch;
+ }
+
+ // _Complex T [placeholder extension]
+ case Type::Complex:
+ if (const ComplexType *ComplexArg = Arg->getAs<ComplexType>())
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<ComplexType>(Param)->getElementType(),
+ ComplexArg->getElementType(),
+ Info, Deduced, TDF);
+
+ return Sema::TDK_NonDeducedMismatch;
+
+ // _Atomic T [extension]
+ case Type::Atomic:
+ if (const AtomicType *AtomicArg = Arg->getAs<AtomicType>())
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<AtomicType>(Param)->getValueType(),
+ AtomicArg->getValueType(),
+ Info, Deduced, TDF);
+
+ return Sema::TDK_NonDeducedMismatch;
+
+ // T *
+ case Type::Pointer: {
+ QualType PointeeType;
+ if (const PointerType *PointerArg = Arg->getAs<PointerType>()) {
+ PointeeType = PointerArg->getPointeeType();
+ } else if (const ObjCObjectPointerType *PointerArg
+ = Arg->getAs<ObjCObjectPointerType>()) {
+ PointeeType = PointerArg->getPointeeType();
+ } else {
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ unsigned SubTDF = TDF & (TDF_IgnoreQualifiers | TDF_DerivedClass);
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<PointerType>(Param)->getPointeeType(),
+ PointeeType,
+ Info, Deduced, SubTDF);
+ }
+
+ // T &
+ case Type::LValueReference: {
+ const LValueReferenceType *ReferenceArg =
+ Arg->getAs<LValueReferenceType>();
+ if (!ReferenceArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<LValueReferenceType>(Param)->getPointeeType(),
+ ReferenceArg->getPointeeType(), Info, Deduced, 0);
+ }
+
+ // T && [C++0x]
+ case Type::RValueReference: {
+ const RValueReferenceType *ReferenceArg =
+ Arg->getAs<RValueReferenceType>();
+ if (!ReferenceArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ cast<RValueReferenceType>(Param)->getPointeeType(),
+ ReferenceArg->getPointeeType(),
+ Info, Deduced, 0);
+ }
+
+ // T [] (implied, but not stated explicitly)
+ case Type::IncompleteArray: {
+ const IncompleteArrayType *IncompleteArrayArg =
+ S.Context.getAsIncompleteArrayType(Arg);
+ if (!IncompleteArrayArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ S.Context.getAsIncompleteArrayType(Param)->getElementType(),
+ IncompleteArrayArg->getElementType(),
+ Info, Deduced, SubTDF);
+ }
+
+ // T [integer-constant]
+ case Type::ConstantArray: {
+ const ConstantArrayType *ConstantArrayArg =
+ S.Context.getAsConstantArrayType(Arg);
+ if (!ConstantArrayArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ const ConstantArrayType *ConstantArrayParm =
+ S.Context.getAsConstantArrayType(Param);
+ if (ConstantArrayArg->getSize() != ConstantArrayParm->getSize())
+ return Sema::TDK_NonDeducedMismatch;
+
+ unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ ConstantArrayParm->getElementType(),
+ ConstantArrayArg->getElementType(),
+ Info, Deduced, SubTDF);
+ }
+
+ // type [i]
+ case Type::DependentSizedArray: {
+ const ArrayType *ArrayArg = S.Context.getAsArrayType(Arg);
+ if (!ArrayArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ unsigned SubTDF = TDF & TDF_IgnoreQualifiers;
+
+ // Check the element type of the arrays
+ const DependentSizedArrayType *DependentArrayParm
+ = S.Context.getAsDependentSizedArrayType(Param);
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ DependentArrayParm->getElementType(),
+ ArrayArg->getElementType(),
+ Info, Deduced, SubTDF))
+ return Result;
+
+ // Determine the array bound is something we can deduce.
+ NonTypeTemplateParmDecl *NTTP
+ = getDeducedParameterFromExpr(DependentArrayParm->getSizeExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ // We can perform template argument deduction for the given non-type
+ // template parameter.
+ assert(NTTP->getDepth() == 0 &&
+ "Cannot deduce non-type template argument at depth > 0");
+ if (const ConstantArrayType *ConstantArrayArg
+ = dyn_cast<ConstantArrayType>(ArrayArg)) {
+ llvm::APSInt Size(ConstantArrayArg->getSize());
+ return DeduceNonTypeTemplateArgument(S, NTTP, Size,
+ S.Context.getSizeType(),
+ /*ArrayBound=*/true,
+ Info, Deduced);
+ }
+ if (const DependentSizedArrayType *DependentArrayArg
+ = dyn_cast<DependentSizedArrayType>(ArrayArg))
+ if (DependentArrayArg->getSizeExpr())
+ return DeduceNonTypeTemplateArgument(S, NTTP,
+ DependentArrayArg->getSizeExpr(),
+ Info, Deduced);
+
+ // Incomplete type does not match a dependently-sized array type
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // type(*)(T)
+ // T(*)()
+ // T(*)(T)
+ case Type::FunctionProto: {
+ unsigned SubTDF = TDF & TDF_TopLevelParameterTypeList;
+ const FunctionProtoType *FunctionProtoArg =
+ dyn_cast<FunctionProtoType>(Arg);
+ if (!FunctionProtoArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ const FunctionProtoType *FunctionProtoParam =
+ cast<FunctionProtoType>(Param);
+
+ if (FunctionProtoParam->getTypeQuals()
+ != FunctionProtoArg->getTypeQuals() ||
+ FunctionProtoParam->getRefQualifier()
+ != FunctionProtoArg->getRefQualifier() ||
+ FunctionProtoParam->isVariadic() != FunctionProtoArg->isVariadic())
+ return Sema::TDK_NonDeducedMismatch;
+
+ // Check return types.
+ if (Sema::TemplateDeductionResult Result =
+ DeduceTemplateArgumentsByTypeMatch(
+ S, TemplateParams, FunctionProtoParam->getReturnType(),
+ FunctionProtoArg->getReturnType(), Info, Deduced, 0))
+ return Result;
+
+ return DeduceTemplateArguments(
+ S, TemplateParams, FunctionProtoParam->param_type_begin(),
+ FunctionProtoParam->getNumParams(),
+ FunctionProtoArg->param_type_begin(),
+ FunctionProtoArg->getNumParams(), Info, Deduced, SubTDF);
+ }
+
+ case Type::InjectedClassName: {
+ // Treat a template's injected-class-name as if the template
+ // specialization type had been used.
+ Param = cast<InjectedClassNameType>(Param)
+ ->getInjectedSpecializationType();
+ assert(isa<TemplateSpecializationType>(Param) &&
+ "injected class name is not a template specialization type");
+ // fall through
+ }
+
+ // template-name<T> (where template-name refers to a class template)
+ // template-name<i>
+ // TT<T>
+ // TT<i>
+ // TT<>
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *SpecParam
+ = cast<TemplateSpecializationType>(Param);
+
+ // Try to deduce template arguments from the template-id.
+ Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S, TemplateParams, SpecParam, Arg,
+ Info, Deduced);
+
+ if (Result && (TDF & TDF_DerivedClass)) {
+ // C++ [temp.deduct.call]p3b3:
+ // If P is a class, and P has the form template-id, then A can be a
+ // derived class of the deduced A. Likewise, if P is a pointer to a
+ // class of the form template-id, A can be a pointer to a derived
+ // class pointed to by the deduced A.
+ //
+ // More importantly:
+ // These alternatives are considered only if type deduction would
+ // otherwise fail.
+ if (const RecordType *RecordT = Arg->getAs<RecordType>()) {
+ // We cannot inspect base classes as part of deduction when the type
+ // is incomplete, so either instantiate any templates necessary to
+ // complete the type, or skip over it if it cannot be completed.
+ if (S.RequireCompleteType(Info.getLocation(), Arg, 0))
+ return Result;
+
+ // Use data recursion to crawl through the list of base classes.
+ // Visited contains the set of nodes we have already visited, while
+ // ToVisit is our stack of records that we still need to visit.
+ llvm::SmallPtrSet<const RecordType *, 8> Visited;
+ SmallVector<const RecordType *, 8> ToVisit;
+ ToVisit.push_back(RecordT);
+ bool Successful = false;
+ SmallVector<DeducedTemplateArgument, 8> DeducedOrig(Deduced.begin(),
+ Deduced.end());
+ while (!ToVisit.empty()) {
+ // Retrieve the next class in the inheritance hierarchy.
+ const RecordType *NextT = ToVisit.pop_back_val();
+
+ // If we have already seen this type, skip it.
+ if (!Visited.insert(NextT).second)
+ continue;
+
+ // If this is a base class, try to perform template argument
+ // deduction from it.
+ if (NextT != RecordT) {
+ TemplateDeductionInfo BaseInfo(Info.getLocation());
+ Sema::TemplateDeductionResult BaseResult
+ = DeduceTemplateArguments(S, TemplateParams, SpecParam,
+ QualType(NextT, 0), BaseInfo,
+ Deduced);
+
+ // If template argument deduction for this base was successful,
+ // note that we had some success. Otherwise, ignore any deductions
+ // from this base class.
+ if (BaseResult == Sema::TDK_Success) {
+ Successful = true;
+ DeducedOrig.clear();
+ DeducedOrig.append(Deduced.begin(), Deduced.end());
+ Info.Param = BaseInfo.Param;
+ Info.FirstArg = BaseInfo.FirstArg;
+ Info.SecondArg = BaseInfo.SecondArg;
+ }
+ else
+ Deduced = DeducedOrig;
+ }
+
+ // Visit base classes
+ CXXRecordDecl *Next = cast<CXXRecordDecl>(NextT->getDecl());
+ for (const auto &Base : Next->bases()) {
+ assert(Base.getType()->isRecordType() &&
+ "Base class that isn't a record?");
+ ToVisit.push_back(Base.getType()->getAs<RecordType>());
+ }
+ }
+
+ if (Successful)
+ return Sema::TDK_Success;
+ }
+
+ }
+
+ return Result;
+ }
+
+ // T type::*
+ // T T::*
+ // T (type::*)()
+ // type (T::*)()
+ // type (type::*)(T)
+ // type (T::*)(T)
+ // T (type::*)(T)
+ // T (T::*)()
+ // T (T::*)(T)
+ case Type::MemberPointer: {
+ const MemberPointerType *MemPtrParam = cast<MemberPointerType>(Param);
+ const MemberPointerType *MemPtrArg = dyn_cast<MemberPointerType>(Arg);
+ if (!MemPtrArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ MemPtrParam->getPointeeType(),
+ MemPtrArg->getPointeeType(),
+ Info, Deduced,
+ TDF & TDF_IgnoreQualifiers))
+ return Result;
+
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ QualType(MemPtrParam->getClass(), 0),
+ QualType(MemPtrArg->getClass(), 0),
+ Info, Deduced,
+ TDF & TDF_IgnoreQualifiers);
+ }
+
+ // (clang extension)
+ //
+ // type(^)(T)
+ // T(^)()
+ // T(^)(T)
+ case Type::BlockPointer: {
+ const BlockPointerType *BlockPtrParam = cast<BlockPointerType>(Param);
+ const BlockPointerType *BlockPtrArg = dyn_cast<BlockPointerType>(Arg);
+
+ if (!BlockPtrArg)
+ return Sema::TDK_NonDeducedMismatch;
+
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ BlockPtrParam->getPointeeType(),
+ BlockPtrArg->getPointeeType(),
+ Info, Deduced, 0);
+ }
+
+ // (clang extension)
+ //
+ // T __attribute__(((ext_vector_type(<integral constant>))))
+ case Type::ExtVector: {
+ const ExtVectorType *VectorParam = cast<ExtVectorType>(Param);
+ if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
+ // Make sure that the vectors have the same number of elements.
+ if (VectorParam->getNumElements() != VectorArg->getNumElements())
+ return Sema::TDK_NonDeducedMismatch;
+
+ // Perform deduction on the element types.
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ VectorParam->getElementType(),
+ VectorArg->getElementType(),
+ Info, Deduced, TDF);
+ }
+
+ if (const DependentSizedExtVectorType *VectorArg
+ = dyn_cast<DependentSizedExtVectorType>(Arg)) {
+ // We can't check the number of elements, since the argument has a
+ // dependent number of elements. This can only occur during partial
+ // ordering.
+
+ // Perform deduction on the element types.
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ VectorParam->getElementType(),
+ VectorArg->getElementType(),
+ Info, Deduced, TDF);
+ }
+
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // (clang extension)
+ //
+ // T __attribute__(((ext_vector_type(N))))
+ case Type::DependentSizedExtVector: {
+ const DependentSizedExtVectorType *VectorParam
+ = cast<DependentSizedExtVectorType>(Param);
+
+ if (const ExtVectorType *VectorArg = dyn_cast<ExtVectorType>(Arg)) {
+ // Perform deduction on the element types.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ VectorParam->getElementType(),
+ VectorArg->getElementType(),
+ Info, Deduced, TDF))
+ return Result;
+
+ // Perform deduction on the vector size, if we can.
+ NonTypeTemplateParmDecl *NTTP
+ = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ llvm::APSInt ArgSize(S.Context.getTypeSize(S.Context.IntTy), false);
+ ArgSize = VectorArg->getNumElements();
+ return DeduceNonTypeTemplateArgument(S, NTTP, ArgSize, S.Context.IntTy,
+ false, Info, Deduced);
+ }
+
+ if (const DependentSizedExtVectorType *VectorArg
+ = dyn_cast<DependentSizedExtVectorType>(Arg)) {
+ // Perform deduction on the element types.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ VectorParam->getElementType(),
+ VectorArg->getElementType(),
+ Info, Deduced, TDF))
+ return Result;
+
+ // Perform deduction on the vector size, if we can.
+ NonTypeTemplateParmDecl *NTTP
+ = getDeducedParameterFromExpr(VectorParam->getSizeExpr());
+ if (!NTTP)
+ return Sema::TDK_Success;
+
+ return DeduceNonTypeTemplateArgument(S, NTTP, VectorArg->getSizeExpr(),
+ Info, Deduced);
+ }
+
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ case Type::TypeOfExpr:
+ case Type::TypeOf:
+ case Type::DependentName:
+ case Type::UnresolvedUsing:
+ case Type::Decltype:
+ case Type::UnaryTransform:
+ case Type::Auto:
+ case Type::DependentTemplateSpecialization:
+ case Type::PackExpansion:
+ // No template argument deduction for these types
+ return Sema::TDK_Success;
+ }
+
+ llvm_unreachable("Invalid Type Class!");
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgument &Param,
+ TemplateArgument Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ // If the template argument is a pack expansion, perform template argument
+ // deduction against the pattern of that expansion. This only occurs during
+ // partial ordering.
+ if (Arg.isPackExpansion())
+ Arg = Arg.getPackExpansionPattern();
+
+ switch (Param.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Null template argument in parameter list");
+
+ case TemplateArgument::Type:
+ if (Arg.getKind() == TemplateArgument::Type)
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ Param.getAsType(),
+ Arg.getAsType(),
+ Info, Deduced, 0);
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::Template:
+ if (Arg.getKind() == TemplateArgument::Template)
+ return DeduceTemplateArguments(S, TemplateParams,
+ Param.getAsTemplate(),
+ Arg.getAsTemplate(), Info, Deduced);
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::TemplateExpansion:
+ llvm_unreachable("caller should handle pack expansions");
+
+ case TemplateArgument::Declaration:
+ if (Arg.getKind() == TemplateArgument::Declaration &&
+ isSameDeclaration(Param.getAsDecl(), Arg.getAsDecl()))
+ return Sema::TDK_Success;
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::NullPtr:
+ if (Arg.getKind() == TemplateArgument::NullPtr &&
+ S.Context.hasSameType(Param.getNullPtrType(), Arg.getNullPtrType()))
+ return Sema::TDK_Success;
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::Integral:
+ if (Arg.getKind() == TemplateArgument::Integral) {
+ if (hasSameExtendedValue(Param.getAsIntegral(), Arg.getAsIntegral()))
+ return Sema::TDK_Success;
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ if (Arg.getKind() == TemplateArgument::Expression) {
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+
+ case TemplateArgument::Expression: {
+ if (NonTypeTemplateParmDecl *NTTP
+ = getDeducedParameterFromExpr(Param.getAsExpr())) {
+ if (Arg.getKind() == TemplateArgument::Integral)
+ return DeduceNonTypeTemplateArgument(S, NTTP,
+ Arg.getAsIntegral(),
+ Arg.getIntegralType(),
+ /*ArrayBound=*/false,
+ Info, Deduced);
+ if (Arg.getKind() == TemplateArgument::Expression)
+ return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsExpr(),
+ Info, Deduced);
+ if (Arg.getKind() == TemplateArgument::Declaration)
+ return DeduceNonTypeTemplateArgument(S, NTTP, Arg.getAsDecl(),
+ Info, Deduced);
+
+ Info.FirstArg = Param;
+ Info.SecondArg = Arg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+
+ // Can't deduce anything, but that's okay.
+ return Sema::TDK_Success;
+ }
+ case TemplateArgument::Pack:
+ llvm_unreachable("Argument packs should be expanded by the caller!");
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+/// \brief Determine whether there is a template argument to be used for
+/// deduction.
+///
+/// This routine "expands" argument packs in-place, overriding its input
+/// parameters so that \c Args[ArgIdx] will be the available template argument.
+///
+/// \returns true if there is another template argument (which will be at
+/// \c Args[ArgIdx]), false otherwise.
+static bool hasTemplateArgumentForDeduction(const TemplateArgument *&Args,
+ unsigned &ArgIdx,
+ unsigned &NumArgs) {
+ if (ArgIdx == NumArgs)
+ return false;
+
+ const TemplateArgument &Arg = Args[ArgIdx];
+ if (Arg.getKind() != TemplateArgument::Pack)
+ return true;
+
+ assert(ArgIdx == NumArgs - 1 && "Pack not at the end of argument list?");
+ Args = Arg.pack_begin();
+ NumArgs = Arg.pack_size();
+ ArgIdx = 0;
+ return ArgIdx < NumArgs;
+}
+
+/// \brief Determine whether the given set of template arguments has a pack
+/// expansion that is not the last template argument.
+static bool hasPackExpansionBeforeEnd(const TemplateArgument *Args,
+ unsigned NumArgs) {
+ unsigned ArgIdx = 0;
+ while (ArgIdx < NumArgs) {
+ const TemplateArgument &Arg = Args[ArgIdx];
+
+ // Unwrap argument packs.
+ if (Args[ArgIdx].getKind() == TemplateArgument::Pack) {
+ Args = Arg.pack_begin();
+ NumArgs = Arg.pack_size();
+ ArgIdx = 0;
+ continue;
+ }
+
+ ++ArgIdx;
+ if (ArgIdx == NumArgs)
+ return false;
+
+ if (Arg.isPackExpansion())
+ return true;
+ }
+
+ return false;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgument *Params, unsigned NumParams,
+ const TemplateArgument *Args, unsigned NumArgs,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ // C++0x [temp.deduct.type]p9:
+ // If the template argument list of P contains a pack expansion that is not
+ // the last template argument, the entire template argument list is a
+ // non-deduced context.
+ if (hasPackExpansionBeforeEnd(Params, NumParams))
+ return Sema::TDK_Success;
+
+ // C++0x [temp.deduct.type]p9:
+ // If P has a form that contains <T> or <i>, then each argument Pi of the
+ // respective template argument list P is compared with the corresponding
+ // argument Ai of the corresponding template argument list of A.
+ unsigned ArgIdx = 0, ParamIdx = 0;
+ for (; hasTemplateArgumentForDeduction(Params, ParamIdx, NumParams);
+ ++ParamIdx) {
+ if (!Params[ParamIdx].isPackExpansion()) {
+ // The simple case: deduce template arguments by matching Pi and Ai.
+
+ // Check whether we have enough arguments.
+ if (!hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs))
+ return Sema::TDK_Success;
+
+ if (Args[ArgIdx].isPackExpansion()) {
+ // FIXME: We follow the logic of C++0x [temp.deduct.type]p22 here,
+ // but applied to pack expansions that are template arguments.
+ return Sema::TDK_MiscellaneousDeductionFailure;
+ }
+
+ // Perform deduction for this Pi/Ai pair.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S, TemplateParams,
+ Params[ParamIdx], Args[ArgIdx],
+ Info, Deduced))
+ return Result;
+
+ // Move to the next argument.
+ ++ArgIdx;
+ continue;
+ }
+
+ // The parameter is a pack expansion.
+
+ // C++0x [temp.deduct.type]p9:
+ // If Pi is a pack expansion, then the pattern of Pi is compared with
+ // each remaining argument in the template argument list of A. Each
+ // comparison deduces template arguments for subsequent positions in the
+ // template parameter packs expanded by Pi.
+ TemplateArgument Pattern = Params[ParamIdx].getPackExpansionPattern();
+
+ // FIXME: If there are no remaining arguments, we can bail out early
+ // and set any deduced parameter packs to an empty argument pack.
+ // The latter part of this is a (minor) correctness issue.
+
+ // Prepare to deduce the packs within the pattern.
+ PackDeductionScope PackScope(S, TemplateParams, Deduced, Info, Pattern);
+
+ // Keep track of the deduced template arguments for each parameter pack
+ // expanded by this pack expansion (the outer index) and for each
+ // template argument (the inner SmallVectors).
+ bool HasAnyArguments = false;
+ for (; hasTemplateArgumentForDeduction(Args, ArgIdx, NumArgs); ++ArgIdx) {
+ HasAnyArguments = true;
+
+ // Deduce template arguments from the pattern.
+ if (Sema::TemplateDeductionResult Result
+ = DeduceTemplateArguments(S, TemplateParams, Pattern, Args[ArgIdx],
+ Info, Deduced))
+ return Result;
+
+ PackScope.nextPackElement();
+ }
+
+ // Build argument packs for each of the parameter packs expanded by this
+ // pack expansion.
+ if (auto Result = PackScope.finish(HasAnyArguments))
+ return Result;
+ }
+
+ return Sema::TDK_Success;
+}
+
+static Sema::TemplateDeductionResult
+DeduceTemplateArguments(Sema &S,
+ TemplateParameterList *TemplateParams,
+ const TemplateArgumentList &ParamList,
+ const TemplateArgumentList &ArgList,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced) {
+ return DeduceTemplateArguments(S, TemplateParams,
+ ParamList.data(), ParamList.size(),
+ ArgList.data(), ArgList.size(),
+ Info, Deduced);
+}
+
+/// \brief Determine whether two template arguments are the same.
+static bool isSameTemplateArg(ASTContext &Context,
+ const TemplateArgument &X,
+ const TemplateArgument &Y) {
+ if (X.getKind() != Y.getKind())
+ return false;
+
+ switch (X.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Comparing NULL template argument");
+
+ case TemplateArgument::Type:
+ return Context.getCanonicalType(X.getAsType()) ==
+ Context.getCanonicalType(Y.getAsType());
+
+ case TemplateArgument::Declaration:
+ return isSameDeclaration(X.getAsDecl(), Y.getAsDecl());
+
+ case TemplateArgument::NullPtr:
+ return Context.hasSameType(X.getNullPtrType(), Y.getNullPtrType());
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ return Context.getCanonicalTemplateName(
+ X.getAsTemplateOrTemplatePattern()).getAsVoidPointer() ==
+ Context.getCanonicalTemplateName(
+ Y.getAsTemplateOrTemplatePattern()).getAsVoidPointer();
+
+ case TemplateArgument::Integral:
+ return X.getAsIntegral() == Y.getAsIntegral();
+
+ case TemplateArgument::Expression: {
+ llvm::FoldingSetNodeID XID, YID;
+ X.getAsExpr()->Profile(XID, Context, true);
+ Y.getAsExpr()->Profile(YID, Context, true);
+ return XID == YID;
+ }
+
+ case TemplateArgument::Pack:
+ if (X.pack_size() != Y.pack_size())
+ return false;
+
+ for (TemplateArgument::pack_iterator XP = X.pack_begin(),
+ XPEnd = X.pack_end(),
+ YP = Y.pack_begin();
+ XP != XPEnd; ++XP, ++YP)
+ if (!isSameTemplateArg(Context, *XP, *YP))
+ return false;
+
+ return true;
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+/// \brief Allocate a TemplateArgumentLoc where all locations have
+/// been initialized to the given location.
+///
+/// \param S The semantic analysis object.
+///
+/// \param Arg The template argument we are producing template argument
+/// location information for.
+///
+/// \param NTTPType For a declaration template argument, the type of
+/// the non-type template parameter that corresponds to this template
+/// argument.
+///
+/// \param Loc The source location to use for the resulting template
+/// argument.
+static TemplateArgumentLoc
+getTrivialTemplateArgumentLoc(Sema &S,
+ const TemplateArgument &Arg,
+ QualType NTTPType,
+ SourceLocation Loc) {
+ switch (Arg.getKind()) {
+ case TemplateArgument::Null:
+ llvm_unreachable("Can't get a NULL template argument here");
+
+ case TemplateArgument::Type:
+ return TemplateArgumentLoc(Arg,
+ S.Context.getTrivialTypeSourceInfo(Arg.getAsType(), Loc));
+
+ case TemplateArgument::Declaration: {
+ Expr *E
+ = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
+ .getAs<Expr>();
+ return TemplateArgumentLoc(TemplateArgument(E), E);
+ }
+
+ case TemplateArgument::NullPtr: {
+ Expr *E
+ = S.BuildExpressionFromDeclTemplateArgument(Arg, NTTPType, Loc)
+ .getAs<Expr>();
+ return TemplateArgumentLoc(TemplateArgument(NTTPType, /*isNullPtr*/true),
+ E);
+ }
+
+ case TemplateArgument::Integral: {
+ Expr *E
+ = S.BuildExpressionFromIntegralTemplateArgument(Arg, Loc).getAs<Expr>();
+ return TemplateArgumentLoc(TemplateArgument(E), E);
+ }
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion: {
+ NestedNameSpecifierLocBuilder Builder;
+ TemplateName Template = Arg.getAsTemplate();
+ if (DependentTemplateName *DTN = Template.getAsDependentTemplateName())
+ Builder.MakeTrivial(S.Context, DTN->getQualifier(), Loc);
+ else if (QualifiedTemplateName *QTN =
+ Template.getAsQualifiedTemplateName())
+ Builder.MakeTrivial(S.Context, QTN->getQualifier(), Loc);
+
+ if (Arg.getKind() == TemplateArgument::Template)
+ return TemplateArgumentLoc(Arg,
+ Builder.getWithLocInContext(S.Context),
+ Loc);
+
+
+ return TemplateArgumentLoc(Arg, Builder.getWithLocInContext(S.Context),
+ Loc, Loc);
+ }
+
+ case TemplateArgument::Expression:
+ return TemplateArgumentLoc(Arg, Arg.getAsExpr());
+
+ case TemplateArgument::Pack:
+ return TemplateArgumentLoc(Arg, TemplateArgumentLocInfo());
+ }
+
+ llvm_unreachable("Invalid TemplateArgument Kind!");
+}
+
+
+/// \brief Convert the given deduced template argument and add it to the set of
+/// fully-converted template arguments.
+static bool
+ConvertDeducedTemplateArgument(Sema &S, NamedDecl *Param,
+ DeducedTemplateArgument Arg,
+ NamedDecl *Template,
+ QualType NTTPType,
+ unsigned ArgumentPackIndex,
+ TemplateDeductionInfo &Info,
+ bool InFunctionTemplate,
+ SmallVectorImpl<TemplateArgument> &Output) {
+ if (Arg.getKind() == TemplateArgument::Pack) {
+ // This is a template argument pack, so check each of its arguments against
+ // the template parameter.
+ SmallVector<TemplateArgument, 2> PackedArgsBuilder;
+ for (const auto &P : Arg.pack_elements()) {
+ // When converting the deduced template argument, append it to the
+ // general output list. We need to do this so that the template argument
+ // checking logic has all of the prior template arguments available.
+ DeducedTemplateArgument InnerArg(P);
+ InnerArg.setDeducedFromArrayBound(Arg.wasDeducedFromArrayBound());
+ if (ConvertDeducedTemplateArgument(S, Param, InnerArg, Template,
+ NTTPType, PackedArgsBuilder.size(),
+ Info, InFunctionTemplate, Output))
+ return true;
+
+ // Move the converted template argument into our argument pack.
+ PackedArgsBuilder.push_back(Output.pop_back_val());
+ }
+
+ // Create the resulting argument pack.
+ Output.push_back(TemplateArgument::CreatePackCopy(S.Context,
+ PackedArgsBuilder.data(),
+ PackedArgsBuilder.size()));
+ return false;
+ }
+
+ // Convert the deduced template argument into a template
+ // argument that we can check, almost as if the user had written
+ // the template argument explicitly.
+ TemplateArgumentLoc ArgLoc = getTrivialTemplateArgumentLoc(S, Arg, NTTPType,
+ Info.getLocation());
+
+ // Check the template argument, converting it as necessary.
+ return S.CheckTemplateArgument(Param, ArgLoc,
+ Template,
+ Template->getLocation(),
+ Template->getSourceRange().getEnd(),
+ ArgumentPackIndex,
+ Output,
+ InFunctionTemplate
+ ? (Arg.wasDeducedFromArrayBound()
+ ? Sema::CTAK_DeducedFromArrayBound
+ : Sema::CTAK_Deduced)
+ : Sema::CTAK_Specified);
+}
+
+/// Complete template argument deduction for a class template partial
+/// specialization.
+static Sema::TemplateDeductionResult
+FinishTemplateArgumentDeduction(Sema &S,
+ ClassTemplatePartialSpecializationDecl *Partial,
+ const TemplateArgumentList &TemplateArgs,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ TemplateDeductionInfo &Info) {
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
+ Sema::SFINAETrap Trap(S);
+
+ Sema::ContextRAII SavedContext(S, Partial);
+
+ // C++ [temp.deduct.type]p2:
+ // [...] or if any template argument remains neither deduced nor
+ // explicitly specified, template argument deduction fails.
+ SmallVector<TemplateArgument, 4> Builder;
+ TemplateParameterList *PartialParams = Partial->getTemplateParameters();
+ for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
+ NamedDecl *Param = PartialParams->getParam(I);
+ if (Deduced[I].isNull()) {
+ Info.Param = makeTemplateParameter(Param);
+ return Sema::TDK_Incomplete;
+ }
+
+ // We have deduced this argument, so it still needs to be
+ // checked and converted.
+
+ // First, for a non-type template parameter type that is
+ // initialized by a declaration, we need the type of the
+ // corresponding non-type template parameter.
+ QualType NTTPType;
+ if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ NTTPType = NTTP->getType();
+ if (NTTPType->isDependentType()) {
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Builder.data(), Builder.size());
+ NTTPType = S.SubstType(NTTPType,
+ MultiLevelTemplateArgumentList(TemplateArgs),
+ NTTP->getLocation(),
+ NTTP->getDeclName());
+ if (NTTPType.isNull()) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(S.Context,
+ Builder.data(),
+ Builder.size()));
+ return Sema::TDK_SubstitutionFailure;
+ }
+ }
+ }
+
+ if (ConvertDeducedTemplateArgument(S, Param, Deduced[I],
+ Partial, NTTPType, 0, Info, false,
+ Builder)) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
+ Builder.size()));
+ return Sema::TDK_SubstitutionFailure;
+ }
+ }
+
+ // Form the template argument list from the deduced template arguments.
+ TemplateArgumentList *DeducedArgumentList
+ = TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
+ Builder.size());
+
+ Info.reset(DeducedArgumentList);
+
+ // Substitute the deduced template arguments into the template
+ // arguments of the class template partial specialization, and
+ // verify that the instantiated template arguments are both valid
+ // and are equivalent to the template arguments originally provided
+ // to the class template.
+ LocalInstantiationScope InstScope(S);
+ ClassTemplateDecl *ClassTemplate = Partial->getSpecializedTemplate();
+ const ASTTemplateArgumentListInfo *PartialTemplArgInfo
+ = Partial->getTemplateArgsAsWritten();
+ const TemplateArgumentLoc *PartialTemplateArgs
+ = PartialTemplArgInfo->getTemplateArgs();
+
+ TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
+ PartialTemplArgInfo->RAngleLoc);
+
+ if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
+ InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
+ unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
+ if (ParamIdx >= Partial->getTemplateParameters()->size())
+ ParamIdx = Partial->getTemplateParameters()->size() - 1;
+
+ Decl *Param
+ = const_cast<NamedDecl *>(
+ Partial->getTemplateParameters()->getParam(ParamIdx));
+ Info.Param = makeTemplateParameter(Param);
+ Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
+ return Sema::TDK_SubstitutionFailure;
+ }
+
+ SmallVector<TemplateArgument, 4> ConvertedInstArgs;
+ if (S.CheckTemplateArgumentList(ClassTemplate, Partial->getLocation(),
+ InstArgs, false, ConvertedInstArgs))
+ return Sema::TDK_SubstitutionFailure;
+
+ TemplateParameterList *TemplateParams
+ = ClassTemplate->getTemplateParameters();
+ for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
+ TemplateArgument InstArg = ConvertedInstArgs.data()[I];
+ if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
+ Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
+ Info.FirstArg = TemplateArgs[I];
+ Info.SecondArg = InstArg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+ }
+
+ if (Trap.hasErrorOccurred())
+ return Sema::TDK_SubstitutionFailure;
+
+ return Sema::TDK_Success;
+}
+
+/// \brief Perform template argument deduction to determine whether
+/// the given template arguments match the given class template
+/// partial specialization per C++ [temp.class.spec.match].
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(ClassTemplatePartialSpecializationDecl *Partial,
+ const TemplateArgumentList &TemplateArgs,
+ TemplateDeductionInfo &Info) {
+ if (Partial->isInvalidDecl())
+ return TDK_Invalid;
+
+ // C++ [temp.class.spec.match]p2:
+ // A partial specialization matches a given actual template
+ // argument list if the template arguments of the partial
+ // specialization can be deduced from the actual template argument
+ // list (14.8.2).
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ Deduced.resize(Partial->getTemplateParameters()->size());
+ if (TemplateDeductionResult Result
+ = ::DeduceTemplateArguments(*this,
+ Partial->getTemplateParameters(),
+ Partial->getTemplateArgs(),
+ TemplateArgs, Info, Deduced))
+ return Result;
+
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
+ InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
+ Info);
+ if (Inst.isInvalid())
+ return TDK_InstantiationDepth;
+
+ if (Trap.hasErrorOccurred())
+ return Sema::TDK_SubstitutionFailure;
+
+ return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
+ Deduced, Info);
+}
+
+/// Complete template argument deduction for a variable template partial
+/// specialization.
+/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
+/// May require unifying ClassTemplate(Partial)SpecializationDecl and
+/// VarTemplate(Partial)SpecializationDecl with a new data
+/// structure Template(Partial)SpecializationDecl, and
+/// using Template(Partial)SpecializationDecl as input type.
+static Sema::TemplateDeductionResult FinishTemplateArgumentDeduction(
+ Sema &S, VarTemplatePartialSpecializationDecl *Partial,
+ const TemplateArgumentList &TemplateArgs,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ TemplateDeductionInfo &Info) {
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(S, Sema::Unevaluated);
+ Sema::SFINAETrap Trap(S);
+
+ // C++ [temp.deduct.type]p2:
+ // [...] or if any template argument remains neither deduced nor
+ // explicitly specified, template argument deduction fails.
+ SmallVector<TemplateArgument, 4> Builder;
+ TemplateParameterList *PartialParams = Partial->getTemplateParameters();
+ for (unsigned I = 0, N = PartialParams->size(); I != N; ++I) {
+ NamedDecl *Param = PartialParams->getParam(I);
+ if (Deduced[I].isNull()) {
+ Info.Param = makeTemplateParameter(Param);
+ return Sema::TDK_Incomplete;
+ }
+
+ // We have deduced this argument, so it still needs to be
+ // checked and converted.
+
+ // First, for a non-type template parameter type that is
+ // initialized by a declaration, we need the type of the
+ // corresponding non-type template parameter.
+ QualType NTTPType;
+ if (NonTypeTemplateParmDecl *NTTP =
+ dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ NTTPType = NTTP->getType();
+ if (NTTPType->isDependentType()) {
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Builder.data(), Builder.size());
+ NTTPType =
+ S.SubstType(NTTPType, MultiLevelTemplateArgumentList(TemplateArgs),
+ NTTP->getLocation(), NTTP->getDeclName());
+ if (NTTPType.isNull()) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
+ Builder.size()));
+ return Sema::TDK_SubstitutionFailure;
+ }
+ }
+ }
+
+ if (ConvertDeducedTemplateArgument(S, Param, Deduced[I], Partial, NTTPType,
+ 0, Info, false, Builder)) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(S.Context, Builder.data(),
+ Builder.size()));
+ return Sema::TDK_SubstitutionFailure;
+ }
+ }
+
+ // Form the template argument list from the deduced template arguments.
+ TemplateArgumentList *DeducedArgumentList = TemplateArgumentList::CreateCopy(
+ S.Context, Builder.data(), Builder.size());
+
+ Info.reset(DeducedArgumentList);
+
+ // Substitute the deduced template arguments into the template
+ // arguments of the class template partial specialization, and
+ // verify that the instantiated template arguments are both valid
+ // and are equivalent to the template arguments originally provided
+ // to the class template.
+ LocalInstantiationScope InstScope(S);
+ VarTemplateDecl *VarTemplate = Partial->getSpecializedTemplate();
+ const ASTTemplateArgumentListInfo *PartialTemplArgInfo
+ = Partial->getTemplateArgsAsWritten();
+ const TemplateArgumentLoc *PartialTemplateArgs
+ = PartialTemplArgInfo->getTemplateArgs();
+
+ TemplateArgumentListInfo InstArgs(PartialTemplArgInfo->LAngleLoc,
+ PartialTemplArgInfo->RAngleLoc);
+
+ if (S.Subst(PartialTemplateArgs, PartialTemplArgInfo->NumTemplateArgs,
+ InstArgs, MultiLevelTemplateArgumentList(*DeducedArgumentList))) {
+ unsigned ArgIdx = InstArgs.size(), ParamIdx = ArgIdx;
+ if (ParamIdx >= Partial->getTemplateParameters()->size())
+ ParamIdx = Partial->getTemplateParameters()->size() - 1;
+
+ Decl *Param = const_cast<NamedDecl *>(
+ Partial->getTemplateParameters()->getParam(ParamIdx));
+ Info.Param = makeTemplateParameter(Param);
+ Info.FirstArg = PartialTemplateArgs[ArgIdx].getArgument();
+ return Sema::TDK_SubstitutionFailure;
+ }
+ SmallVector<TemplateArgument, 4> ConvertedInstArgs;
+ if (S.CheckTemplateArgumentList(VarTemplate, Partial->getLocation(), InstArgs,
+ false, ConvertedInstArgs))
+ return Sema::TDK_SubstitutionFailure;
+
+ TemplateParameterList *TemplateParams = VarTemplate->getTemplateParameters();
+ for (unsigned I = 0, E = TemplateParams->size(); I != E; ++I) {
+ TemplateArgument InstArg = ConvertedInstArgs.data()[I];
+ if (!isSameTemplateArg(S.Context, TemplateArgs[I], InstArg)) {
+ Info.Param = makeTemplateParameter(TemplateParams->getParam(I));
+ Info.FirstArg = TemplateArgs[I];
+ Info.SecondArg = InstArg;
+ return Sema::TDK_NonDeducedMismatch;
+ }
+ }
+
+ if (Trap.hasErrorOccurred())
+ return Sema::TDK_SubstitutionFailure;
+
+ return Sema::TDK_Success;
+}
+
+/// \brief Perform template argument deduction to determine whether
+/// the given template arguments match the given variable template
+/// partial specialization per C++ [temp.class.spec.match].
+/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
+/// May require unifying ClassTemplate(Partial)SpecializationDecl and
+/// VarTemplate(Partial)SpecializationDecl with a new data
+/// structure Template(Partial)SpecializationDecl, and
+/// using Template(Partial)SpecializationDecl as input type.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(VarTemplatePartialSpecializationDecl *Partial,
+ const TemplateArgumentList &TemplateArgs,
+ TemplateDeductionInfo &Info) {
+ if (Partial->isInvalidDecl())
+ return TDK_Invalid;
+
+ // C++ [temp.class.spec.match]p2:
+ // A partial specialization matches a given actual template
+ // argument list if the template arguments of the partial
+ // specialization can be deduced from the actual template argument
+ // list (14.8.2).
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ Deduced.resize(Partial->getTemplateParameters()->size());
+ if (TemplateDeductionResult Result = ::DeduceTemplateArguments(
+ *this, Partial->getTemplateParameters(), Partial->getTemplateArgs(),
+ TemplateArgs, Info, Deduced))
+ return Result;
+
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
+ InstantiatingTemplate Inst(*this, Info.getLocation(), Partial, DeducedArgs,
+ Info);
+ if (Inst.isInvalid())
+ return TDK_InstantiationDepth;
+
+ if (Trap.hasErrorOccurred())
+ return Sema::TDK_SubstitutionFailure;
+
+ return ::FinishTemplateArgumentDeduction(*this, Partial, TemplateArgs,
+ Deduced, Info);
+}
+
+/// \brief Determine whether the given type T is a simple-template-id type.
+static bool isSimpleTemplateIdType(QualType T) {
+ if (const TemplateSpecializationType *Spec
+ = T->getAs<TemplateSpecializationType>())
+ return Spec->getTemplateName().getAsTemplateDecl() != nullptr;
+
+ return false;
+}
+
+/// \brief Substitute the explicitly-provided template arguments into the
+/// given function template according to C++ [temp.arg.explicit].
+///
+/// \param FunctionTemplate the function template into which the explicit
+/// template arguments will be substituted.
+///
+/// \param ExplicitTemplateArgs the explicitly-specified template
+/// arguments.
+///
+/// \param Deduced the deduced template arguments, which will be populated
+/// with the converted and checked explicit template arguments.
+///
+/// \param ParamTypes will be populated with the instantiated function
+/// parameters.
+///
+/// \param FunctionType if non-NULL, the result type of the function template
+/// will also be instantiated and the pointed-to value will be updated with
+/// the instantiated function type.
+///
+/// \param Info if substitution fails for any reason, this object will be
+/// populated with more information about the failure.
+///
+/// \returns TDK_Success if substitution was successful, or some failure
+/// condition.
+Sema::TemplateDeductionResult
+Sema::SubstituteExplicitTemplateArguments(
+ FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo &ExplicitTemplateArgs,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ SmallVectorImpl<QualType> &ParamTypes,
+ QualType *FunctionType,
+ TemplateDeductionInfo &Info) {
+ FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+
+ if (ExplicitTemplateArgs.size() == 0) {
+ // No arguments to substitute; just copy over the parameter types and
+ // fill in the function type.
+ for (auto P : Function->params())
+ ParamTypes.push_back(P->getType());
+
+ if (FunctionType)
+ *FunctionType = Function->getType();
+ return TDK_Success;
+ }
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ // C++ [temp.arg.explicit]p3:
+ // Template arguments that are present shall be specified in the
+ // declaration order of their corresponding template-parameters. The
+ // template argument list shall not specify more template-arguments than
+ // there are corresponding template-parameters.
+ SmallVector<TemplateArgument, 4> Builder;
+
+ // Enter a new template instantiation context where we check the
+ // explicitly-specified template arguments against this function template,
+ // and then substitute them into the function parameter types.
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
+ InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
+ DeducedArgs,
+ ActiveTemplateInstantiation::ExplicitTemplateArgumentSubstitution,
+ Info);
+ if (Inst.isInvalid())
+ return TDK_InstantiationDepth;
+
+ if (CheckTemplateArgumentList(FunctionTemplate,
+ SourceLocation(),
+ ExplicitTemplateArgs,
+ true,
+ Builder) || Trap.hasErrorOccurred()) {
+ unsigned Index = Builder.size();
+ if (Index >= TemplateParams->size())
+ Index = TemplateParams->size() - 1;
+ Info.Param = makeTemplateParameter(TemplateParams->getParam(Index));
+ return TDK_InvalidExplicitArguments;
+ }
+
+ // Form the template argument list from the explicitly-specified
+ // template arguments.
+ TemplateArgumentList *ExplicitArgumentList
+ = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
+ Info.reset(ExplicitArgumentList);
+
+ // Template argument deduction and the final substitution should be
+ // done in the context of the templated declaration. Explicit
+ // argument substitution, on the other hand, needs to happen in the
+ // calling context.
+ ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
+
+ // If we deduced template arguments for a template parameter pack,
+ // note that the template argument pack is partially substituted and record
+ // the explicit template arguments. They'll be used as part of deduction
+ // for this template parameter pack.
+ for (unsigned I = 0, N = Builder.size(); I != N; ++I) {
+ const TemplateArgument &Arg = Builder[I];
+ if (Arg.getKind() == TemplateArgument::Pack) {
+ CurrentInstantiationScope->SetPartiallySubstitutedPack(
+ TemplateParams->getParam(I),
+ Arg.pack_begin(),
+ Arg.pack_size());
+ break;
+ }
+ }
+
+ const FunctionProtoType *Proto
+ = Function->getType()->getAs<FunctionProtoType>();
+ assert(Proto && "Function template does not have a prototype?");
+
+ // Isolate our substituted parameters from our caller.
+ LocalInstantiationScope InstScope(*this, /*MergeWithOuterScope*/true);
+
+ // Instantiate the types of each of the function parameters given the
+ // explicitly-specified template arguments. If the function has a trailing
+ // return type, substitute it after the arguments to ensure we substitute
+ // in lexical order.
+ if (Proto->hasTrailingReturn()) {
+ if (SubstParmTypes(Function->getLocation(),
+ Function->param_begin(), Function->getNumParams(),
+ MultiLevelTemplateArgumentList(*ExplicitArgumentList),
+ ParamTypes))
+ return TDK_SubstitutionFailure;
+ }
+
+ // Instantiate the return type.
+ QualType ResultType;
+ {
+ // C++11 [expr.prim.general]p3:
+ // If a declaration declares a member function or member function
+ // template of a class X, the expression this is a prvalue of type
+ // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
+ // and the end of the function-definition, member-declarator, or
+ // declarator.
+ unsigned ThisTypeQuals = 0;
+ CXXRecordDecl *ThisContext = nullptr;
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Function)) {
+ ThisContext = Method->getParent();
+ ThisTypeQuals = Method->getTypeQualifiers();
+ }
+
+ CXXThisScopeRAII ThisScope(*this, ThisContext, ThisTypeQuals,
+ getLangOpts().CPlusPlus11);
+
+ ResultType =
+ SubstType(Proto->getReturnType(),
+ MultiLevelTemplateArgumentList(*ExplicitArgumentList),
+ Function->getTypeSpecStartLoc(), Function->getDeclName());
+ if (ResultType.isNull() || Trap.hasErrorOccurred())
+ return TDK_SubstitutionFailure;
+ }
+
+ // Instantiate the types of each of the function parameters given the
+ // explicitly-specified template arguments if we didn't do so earlier.
+ if (!Proto->hasTrailingReturn() &&
+ SubstParmTypes(Function->getLocation(),
+ Function->param_begin(), Function->getNumParams(),
+ MultiLevelTemplateArgumentList(*ExplicitArgumentList),
+ ParamTypes))
+ return TDK_SubstitutionFailure;
+
+ if (FunctionType) {
+ *FunctionType = BuildFunctionType(ResultType, ParamTypes,
+ Function->getLocation(),
+ Function->getDeclName(),
+ Proto->getExtProtoInfo());
+ if (FunctionType->isNull() || Trap.hasErrorOccurred())
+ return TDK_SubstitutionFailure;
+ }
+
+ // C++ [temp.arg.explicit]p2:
+ // Trailing template arguments that can be deduced (14.8.2) may be
+ // omitted from the list of explicit template-arguments. If all of the
+ // template arguments can be deduced, they may all be omitted; in this
+ // case, the empty template argument list <> itself may also be omitted.
+ //
+ // Take all of the explicitly-specified arguments and put them into
+ // the set of deduced template arguments. Explicitly-specified
+ // parameter packs, however, will be set to NULL since the deduction
+ // mechanisms handle explicitly-specified argument packs directly.
+ Deduced.reserve(TemplateParams->size());
+ for (unsigned I = 0, N = ExplicitArgumentList->size(); I != N; ++I) {
+ const TemplateArgument &Arg = ExplicitArgumentList->get(I);
+ if (Arg.getKind() == TemplateArgument::Pack)
+ Deduced.push_back(DeducedTemplateArgument());
+ else
+ Deduced.push_back(Arg);
+ }
+
+ return TDK_Success;
+}
+
+/// \brief Check whether the deduced argument type for a call to a function
+/// template matches the actual argument type per C++ [temp.deduct.call]p4.
+static bool
+CheckOriginalCallArgDeduction(Sema &S, Sema::OriginalCallArg OriginalArg,
+ QualType DeducedA) {
+ ASTContext &Context = S.Context;
+
+ QualType A = OriginalArg.OriginalArgType;
+ QualType OriginalParamType = OriginalArg.OriginalParamType;
+
+ // Check for type equality (top-level cv-qualifiers are ignored).
+ if (Context.hasSameUnqualifiedType(A, DeducedA))
+ return false;
+
+ // Strip off references on the argument types; they aren't needed for
+ // the following checks.
+ if (const ReferenceType *DeducedARef = DeducedA->getAs<ReferenceType>())
+ DeducedA = DeducedARef->getPointeeType();
+ if (const ReferenceType *ARef = A->getAs<ReferenceType>())
+ A = ARef->getPointeeType();
+
+ // C++ [temp.deduct.call]p4:
+ // [...] However, there are three cases that allow a difference:
+ // - If the original P is a reference type, the deduced A (i.e., the
+ // type referred to by the reference) can be more cv-qualified than
+ // the transformed A.
+ if (const ReferenceType *OriginalParamRef
+ = OriginalParamType->getAs<ReferenceType>()) {
+ // We don't want to keep the reference around any more.
+ OriginalParamType = OriginalParamRef->getPointeeType();
+
+ Qualifiers AQuals = A.getQualifiers();
+ Qualifiers DeducedAQuals = DeducedA.getQualifiers();
+
+ // Under Objective-C++ ARC, the deduced type may have implicitly
+ // been given strong or (when dealing with a const reference)
+ // unsafe_unretained lifetime. If so, update the original
+ // qualifiers to include this lifetime.
+ if (S.getLangOpts().ObjCAutoRefCount &&
+ ((DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_Strong &&
+ AQuals.getObjCLifetime() == Qualifiers::OCL_None) ||
+ (DeducedAQuals.hasConst() &&
+ DeducedAQuals.getObjCLifetime() == Qualifiers::OCL_ExplicitNone))) {
+ AQuals.setObjCLifetime(DeducedAQuals.getObjCLifetime());
+ }
+
+ if (AQuals == DeducedAQuals) {
+ // Qualifiers match; there's nothing to do.
+ } else if (!DeducedAQuals.compatiblyIncludes(AQuals)) {
+ return true;
+ } else {
+ // Qualifiers are compatible, so have the argument type adopt the
+ // deduced argument type's qualifiers as if we had performed the
+ // qualification conversion.
+ A = Context.getQualifiedType(A.getUnqualifiedType(), DeducedAQuals);
+ }
+ }
+
+ // - The transformed A can be another pointer or pointer to member
+ // type that can be converted to the deduced A via a qualification
+ // conversion.
+ //
+ // Also allow conversions which merely strip [[noreturn]] from function types
+ // (recursively) as an extension.
+ // FIXME: Currently, this doesn't play nicely with qualification conversions.
+ bool ObjCLifetimeConversion = false;
+ QualType ResultTy;
+ if ((A->isAnyPointerType() || A->isMemberPointerType()) &&
+ (S.IsQualificationConversion(A, DeducedA, false,
+ ObjCLifetimeConversion) ||
+ S.IsNoReturnConversion(A, DeducedA, ResultTy)))
+ return false;
+
+
+ // - If P is a class and P has the form simple-template-id, then the
+ // transformed A can be a derived class of the deduced A. [...]
+ // [...] Likewise, if P is a pointer to a class of the form
+ // simple-template-id, the transformed A can be a pointer to a
+ // derived class pointed to by the deduced A.
+ if (const PointerType *OriginalParamPtr
+ = OriginalParamType->getAs<PointerType>()) {
+ if (const PointerType *DeducedAPtr = DeducedA->getAs<PointerType>()) {
+ if (const PointerType *APtr = A->getAs<PointerType>()) {
+ if (A->getPointeeType()->isRecordType()) {
+ OriginalParamType = OriginalParamPtr->getPointeeType();
+ DeducedA = DeducedAPtr->getPointeeType();
+ A = APtr->getPointeeType();
+ }
+ }
+ }
+ }
+
+ if (Context.hasSameUnqualifiedType(A, DeducedA))
+ return false;
+
+ if (A->isRecordType() && isSimpleTemplateIdType(OriginalParamType) &&
+ S.IsDerivedFrom(A, DeducedA))
+ return false;
+
+ return true;
+}
+
+/// \brief Finish template argument deduction for a function template,
+/// checking the deduced template arguments for completeness and forming
+/// the function template specialization.
+///
+/// \param OriginalCallArgs If non-NULL, the original call arguments against
+/// which the deduced argument types should be compared.
+Sema::TemplateDeductionResult
+Sema::FinishTemplateArgumentDeduction(FunctionTemplateDecl *FunctionTemplate,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ unsigned NumExplicitlySpecified,
+ FunctionDecl *&Specialization,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<OriginalCallArg> const *OriginalCallArgs,
+ bool PartialOverloading) {
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ // Enter a new template instantiation context while we instantiate the
+ // actual function declaration.
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(), Deduced.end());
+ InstantiatingTemplate Inst(*this, Info.getLocation(), FunctionTemplate,
+ DeducedArgs,
+ ActiveTemplateInstantiation::DeducedTemplateArgumentSubstitution,
+ Info);
+ if (Inst.isInvalid())
+ return TDK_InstantiationDepth;
+
+ ContextRAII SavedContext(*this, FunctionTemplate->getTemplatedDecl());
+
+ // C++ [temp.deduct.type]p2:
+ // [...] or if any template argument remains neither deduced nor
+ // explicitly specified, template argument deduction fails.
+ SmallVector<TemplateArgument, 4> Builder;
+ for (unsigned I = 0, N = TemplateParams->size(); I != N; ++I) {
+ NamedDecl *Param = TemplateParams->getParam(I);
+
+ if (!Deduced[I].isNull()) {
+ if (I < NumExplicitlySpecified) {
+ // We have already fully type-checked and converted this
+ // argument, because it was explicitly-specified. Just record the
+ // presence of this argument.
+ Builder.push_back(Deduced[I]);
+ // We may have had explicitly-specified template arguments for a
+ // template parameter pack (that may or may not have been extended
+ // via additional deduced arguments).
+ if (Param->isParameterPack() && CurrentInstantiationScope) {
+ if (CurrentInstantiationScope->getPartiallySubstitutedPack() ==
+ Param) {
+ // Forget the partially-substituted pack; its substitution is now
+ // complete.
+ CurrentInstantiationScope->ResetPartiallySubstitutedPack();
+ }
+ }
+ continue;
+ }
+ // We have deduced this argument, so it still needs to be
+ // checked and converted.
+
+ // First, for a non-type template parameter type that is
+ // initialized by a declaration, we need the type of the
+ // corresponding non-type template parameter.
+ QualType NTTPType;
+ if (NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(Param)) {
+ NTTPType = NTTP->getType();
+ if (NTTPType->isDependentType()) {
+ TemplateArgumentList TemplateArgs(TemplateArgumentList::OnStack,
+ Builder.data(), Builder.size());
+ NTTPType = SubstType(NTTPType,
+ MultiLevelTemplateArgumentList(TemplateArgs),
+ NTTP->getLocation(),
+ NTTP->getDeclName());
+ if (NTTPType.isNull()) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(Context,
+ Builder.data(),
+ Builder.size()));
+ return TDK_SubstitutionFailure;
+ }
+ }
+ }
+
+ if (ConvertDeducedTemplateArgument(*this, Param, Deduced[I],
+ FunctionTemplate, NTTPType, 0, Info,
+ true, Builder)) {
+ Info.Param = makeTemplateParameter(Param);
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
+ Builder.size()));
+ return TDK_SubstitutionFailure;
+ }
+
+ continue;
+ }
+
+ // C++0x [temp.arg.explicit]p3:
+ // A trailing template parameter pack (14.5.3) not otherwise deduced will
+ // be deduced to an empty sequence of template arguments.
+ // FIXME: Where did the word "trailing" come from?
+ if (Param->isTemplateParameterPack()) {
+ // We may have had explicitly-specified template arguments for this
+ // template parameter pack. If so, our empty deduction extends the
+ // explicitly-specified set (C++0x [temp.arg.explicit]p9).
+ const TemplateArgument *ExplicitArgs;
+ unsigned NumExplicitArgs;
+ if (CurrentInstantiationScope &&
+ CurrentInstantiationScope->getPartiallySubstitutedPack(&ExplicitArgs,
+ &NumExplicitArgs)
+ == Param) {
+ Builder.push_back(TemplateArgument(ExplicitArgs, NumExplicitArgs));
+
+ // Forget the partially-substituted pack; it's substitution is now
+ // complete.
+ CurrentInstantiationScope->ResetPartiallySubstitutedPack();
+ } else {
+ Builder.push_back(TemplateArgument::getEmptyPack());
+ }
+ continue;
+ }
+
+ // Substitute into the default template argument, if available.
+ bool HasDefaultArg = false;
+ TemplateArgumentLoc DefArg
+ = SubstDefaultTemplateArgumentIfAvailable(FunctionTemplate,
+ FunctionTemplate->getLocation(),
+ FunctionTemplate->getSourceRange().getEnd(),
+ Param,
+ Builder, HasDefaultArg);
+
+ // If there was no default argument, deduction is incomplete.
+ if (DefArg.getArgument().isNull()) {
+ Info.Param = makeTemplateParameter(
+ const_cast<NamedDecl *>(TemplateParams->getParam(I)));
+ Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
+ Builder.size()));
+ if (PartialOverloading) break;
+
+ return HasDefaultArg ? TDK_SubstitutionFailure : TDK_Incomplete;
+ }
+
+ // Check whether we can actually use the default argument.
+ if (CheckTemplateArgument(Param, DefArg,
+ FunctionTemplate,
+ FunctionTemplate->getLocation(),
+ FunctionTemplate->getSourceRange().getEnd(),
+ 0, Builder,
+ CTAK_Specified)) {
+ Info.Param = makeTemplateParameter(
+ const_cast<NamedDecl *>(TemplateParams->getParam(I)));
+ // FIXME: These template arguments are temporary. Free them!
+ Info.reset(TemplateArgumentList::CreateCopy(Context, Builder.data(),
+ Builder.size()));
+ return TDK_SubstitutionFailure;
+ }
+
+ // If we get here, we successfully used the default template argument.
+ }
+
+ // Form the template argument list from the deduced template arguments.
+ TemplateArgumentList *DeducedArgumentList
+ = TemplateArgumentList::CreateCopy(Context, Builder.data(), Builder.size());
+ Info.reset(DeducedArgumentList);
+
+ // Substitute the deduced template arguments into the function template
+ // declaration to produce the function template specialization.
+ DeclContext *Owner = FunctionTemplate->getDeclContext();
+ if (FunctionTemplate->getFriendObjectKind())
+ Owner = FunctionTemplate->getLexicalDeclContext();
+ Specialization = cast_or_null<FunctionDecl>(
+ SubstDecl(FunctionTemplate->getTemplatedDecl(), Owner,
+ MultiLevelTemplateArgumentList(*DeducedArgumentList)));
+ if (!Specialization || Specialization->isInvalidDecl())
+ return TDK_SubstitutionFailure;
+
+ assert(Specialization->getPrimaryTemplate()->getCanonicalDecl() ==
+ FunctionTemplate->getCanonicalDecl());
+
+ // If the template argument list is owned by the function template
+ // specialization, release it.
+ if (Specialization->getTemplateSpecializationArgs() == DeducedArgumentList &&
+ !Trap.hasErrorOccurred())
+ Info.take();
+
+ // There may have been an error that did not prevent us from constructing a
+ // declaration. Mark the declaration invalid and return with a substitution
+ // failure.
+ if (Trap.hasErrorOccurred()) {
+ Specialization->setInvalidDecl(true);
+ return TDK_SubstitutionFailure;
+ }
+
+ if (OriginalCallArgs) {
+ // C++ [temp.deduct.call]p4:
+ // In general, the deduction process attempts to find template argument
+ // values that will make the deduced A identical to A (after the type A
+ // is transformed as described above). [...]
+ for (unsigned I = 0, N = OriginalCallArgs->size(); I != N; ++I) {
+ OriginalCallArg OriginalArg = (*OriginalCallArgs)[I];
+ unsigned ParamIdx = OriginalArg.ArgIdx;
+
+ if (ParamIdx >= Specialization->getNumParams())
+ continue;
+
+ QualType DeducedA = Specialization->getParamDecl(ParamIdx)->getType();
+ if (CheckOriginalCallArgDeduction(*this, OriginalArg, DeducedA))
+ return Sema::TDK_SubstitutionFailure;
+ }
+ }
+
+ // If we suppressed any diagnostics while performing template argument
+ // deduction, and if we haven't already instantiated this declaration,
+ // keep track of these diagnostics. They'll be emitted if this specialization
+ // is actually used.
+ if (Info.diag_begin() != Info.diag_end()) {
+ SuppressedDiagnosticsMap::iterator
+ Pos = SuppressedDiagnostics.find(Specialization->getCanonicalDecl());
+ if (Pos == SuppressedDiagnostics.end())
+ SuppressedDiagnostics[Specialization->getCanonicalDecl()]
+ .append(Info.diag_begin(), Info.diag_end());
+ }
+
+ return TDK_Success;
+}
+
+/// Gets the type of a function for template-argument-deducton
+/// purposes when it's considered as part of an overload set.
+static QualType GetTypeOfFunction(Sema &S, const OverloadExpr::FindResult &R,
+ FunctionDecl *Fn) {
+ // We may need to deduce the return type of the function now.
+ if (S.getLangOpts().CPlusPlus14 && Fn->getReturnType()->isUndeducedType() &&
+ S.DeduceReturnType(Fn, R.Expression->getExprLoc(), /*Diagnose*/ false))
+ return QualType();
+
+ if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(Fn))
+ if (Method->isInstance()) {
+ // An instance method that's referenced in a form that doesn't
+ // look like a member pointer is just invalid.
+ if (!R.HasFormOfMemberPointer) return QualType();
+
+ return S.Context.getMemberPointerType(Fn->getType(),
+ S.Context.getTypeDeclType(Method->getParent()).getTypePtr());
+ }
+
+ if (!R.IsAddressOfOperand) return Fn->getType();
+ return S.Context.getPointerType(Fn->getType());
+}
+
+/// Apply the deduction rules for overload sets.
+///
+/// \return the null type if this argument should be treated as an
+/// undeduced context
+static QualType
+ResolveOverloadForDeduction(Sema &S, TemplateParameterList *TemplateParams,
+ Expr *Arg, QualType ParamType,
+ bool ParamWasReference) {
+
+ OverloadExpr::FindResult R = OverloadExpr::find(Arg);
+
+ OverloadExpr *Ovl = R.Expression;
+
+ // C++0x [temp.deduct.call]p4
+ unsigned TDF = 0;
+ if (ParamWasReference)
+ TDF |= TDF_ParamWithReferenceType;
+ if (R.IsAddressOfOperand)
+ TDF |= TDF_IgnoreQualifiers;
+
+ // C++0x [temp.deduct.call]p6:
+ // When P is a function type, pointer to function type, or pointer
+ // to member function type:
+
+ if (!ParamType->isFunctionType() &&
+ !ParamType->isFunctionPointerType() &&
+ !ParamType->isMemberFunctionPointerType()) {
+ if (Ovl->hasExplicitTemplateArgs()) {
+ // But we can still look for an explicit specialization.
+ if (FunctionDecl *ExplicitSpec
+ = S.ResolveSingleFunctionTemplateSpecialization(Ovl))
+ return GetTypeOfFunction(S, R, ExplicitSpec);
+ }
+
+ return QualType();
+ }
+
+ // Gather the explicit template arguments, if any.
+ TemplateArgumentListInfo ExplicitTemplateArgs;
+ if (Ovl->hasExplicitTemplateArgs())
+ Ovl->getExplicitTemplateArgs().copyInto(ExplicitTemplateArgs);
+ QualType Match;
+ for (UnresolvedSetIterator I = Ovl->decls_begin(),
+ E = Ovl->decls_end(); I != E; ++I) {
+ NamedDecl *D = (*I)->getUnderlyingDecl();
+
+ if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D)) {
+ // - If the argument is an overload set containing one or more
+ // function templates, the parameter is treated as a
+ // non-deduced context.
+ if (!Ovl->hasExplicitTemplateArgs())
+ return QualType();
+
+ // Otherwise, see if we can resolve a function type
+ FunctionDecl *Specialization = nullptr;
+ TemplateDeductionInfo Info(Ovl->getNameLoc());
+ if (S.DeduceTemplateArguments(FunTmpl, &ExplicitTemplateArgs,
+ Specialization, Info))
+ continue;
+
+ D = Specialization;
+ }
+
+ FunctionDecl *Fn = cast<FunctionDecl>(D);
+ QualType ArgType = GetTypeOfFunction(S, R, Fn);
+ if (ArgType.isNull()) continue;
+
+ // Function-to-pointer conversion.
+ if (!ParamWasReference && ParamType->isPointerType() &&
+ ArgType->isFunctionType())
+ ArgType = S.Context.getPointerType(ArgType);
+
+ // - If the argument is an overload set (not containing function
+ // templates), trial argument deduction is attempted using each
+ // of the members of the set. If deduction succeeds for only one
+ // of the overload set members, that member is used as the
+ // argument value for the deduction. If deduction succeeds for
+ // more than one member of the overload set the parameter is
+ // treated as a non-deduced context.
+
+ // We do all of this in a fresh context per C++0x [temp.deduct.type]p2:
+ // Type deduction is done independently for each P/A pair, and
+ // the deduced template argument values are then combined.
+ // So we do not reject deductions which were made elsewhere.
+ SmallVector<DeducedTemplateArgument, 8>
+ Deduced(TemplateParams->size());
+ TemplateDeductionInfo Info(Ovl->getNameLoc());
+ Sema::TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
+ ArgType, Info, Deduced, TDF);
+ if (Result) continue;
+ if (!Match.isNull()) return QualType();
+ Match = ArgType;
+ }
+
+ return Match;
+}
+
+/// \brief Perform the adjustments to the parameter and argument types
+/// described in C++ [temp.deduct.call].
+///
+/// \returns true if the caller should not attempt to perform any template
+/// argument deduction based on this P/A pair because the argument is an
+/// overloaded function set that could not be resolved.
+static bool AdjustFunctionParmAndArgTypesForDeduction(Sema &S,
+ TemplateParameterList *TemplateParams,
+ QualType &ParamType,
+ QualType &ArgType,
+ Expr *Arg,
+ unsigned &TDF) {
+ // C++0x [temp.deduct.call]p3:
+ // If P is a cv-qualified type, the top level cv-qualifiers of P's type
+ // are ignored for type deduction.
+ if (ParamType.hasQualifiers())
+ ParamType = ParamType.getUnqualifiedType();
+
+ // [...] If P is a reference type, the type referred to by P is
+ // used for type deduction.
+ const ReferenceType *ParamRefType = ParamType->getAs<ReferenceType>();
+ if (ParamRefType)
+ ParamType = ParamRefType->getPointeeType();
+
+ // Overload sets usually make this parameter an undeduced context,
+ // but there are sometimes special circumstances. Typically
+ // involving a template-id-expr.
+ if (ArgType == S.Context.OverloadTy) {
+ ArgType = ResolveOverloadForDeduction(S, TemplateParams,
+ Arg, ParamType,
+ ParamRefType != nullptr);
+ if (ArgType.isNull())
+ return true;
+ }
+
+ if (ParamRefType) {
+ // If the argument has incomplete array type, try to complete its type.
+ if (ArgType->isIncompleteArrayType() && !S.RequireCompleteExprType(Arg, 0))
+ ArgType = Arg->getType();
+
+ // C++0x [temp.deduct.call]p3:
+ // If P is an rvalue reference to a cv-unqualified template
+ // parameter and the argument is an lvalue, the type "lvalue
+ // reference to A" is used in place of A for type deduction.
+ if (ParamRefType->isRValueReferenceType() &&
+ !ParamType.getQualifiers() &&
+ isa<TemplateTypeParmType>(ParamType) &&
+ Arg->isLValue())
+ ArgType = S.Context.getLValueReferenceType(ArgType);
+ } else {
+ // C++ [temp.deduct.call]p2:
+ // If P is not a reference type:
+ // - If A is an array type, the pointer type produced by the
+ // array-to-pointer standard conversion (4.2) is used in place of
+ // A for type deduction; otherwise,
+ if (ArgType->isArrayType())
+ ArgType = S.Context.getArrayDecayedType(ArgType);
+ // - If A is a function type, the pointer type produced by the
+ // function-to-pointer standard conversion (4.3) is used in place
+ // of A for type deduction; otherwise,
+ else if (ArgType->isFunctionType())
+ ArgType = S.Context.getPointerType(ArgType);
+ else {
+ // - If A is a cv-qualified type, the top level cv-qualifiers of A's
+ // type are ignored for type deduction.
+ ArgType = ArgType.getUnqualifiedType();
+ }
+ }
+
+ // C++0x [temp.deduct.call]p4:
+ // In general, the deduction process attempts to find template argument
+ // values that will make the deduced A identical to A (after the type A
+ // is transformed as described above). [...]
+ TDF = TDF_SkipNonDependent;
+
+ // - If the original P is a reference type, the deduced A (i.e., the
+ // type referred to by the reference) can be more cv-qualified than
+ // the transformed A.
+ if (ParamRefType)
+ TDF |= TDF_ParamWithReferenceType;
+ // - The transformed A can be another pointer or pointer to member
+ // type that can be converted to the deduced A via a qualification
+ // conversion (4.4).
+ if (ArgType->isPointerType() || ArgType->isMemberPointerType() ||
+ ArgType->isObjCObjectPointerType())
+ TDF |= TDF_IgnoreQualifiers;
+ // - If P is a class and P has the form simple-template-id, then the
+ // transformed A can be a derived class of the deduced A. Likewise,
+ // if P is a pointer to a class of the form simple-template-id, the
+ // transformed A can be a pointer to a derived class pointed to by
+ // the deduced A.
+ if (isSimpleTemplateIdType(ParamType) ||
+ (isa<PointerType>(ParamType) &&
+ isSimpleTemplateIdType(
+ ParamType->getAs<PointerType>()->getPointeeType())))
+ TDF |= TDF_DerivedClass;
+
+ return false;
+}
+
+static bool
+hasDeducibleTemplateParameters(Sema &S, FunctionTemplateDecl *FunctionTemplate,
+ QualType T);
+
+/// \brief Perform template argument deduction by matching a parameter type
+/// against a single expression, where the expression is an element of
+/// an initializer list that was originally matched against a parameter
+/// of type \c initializer_list\<ParamType\>.
+static Sema::TemplateDeductionResult
+DeduceTemplateArgumentByListElement(Sema &S,
+ TemplateParameterList *TemplateParams,
+ QualType ParamType, Expr *Arg,
+ TemplateDeductionInfo &Info,
+ SmallVectorImpl<DeducedTemplateArgument> &Deduced,
+ unsigned TDF) {
+ // Handle the case where an init list contains another init list as the
+ // element.
+ if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
+ QualType X;
+ if (!S.isStdInitializerList(ParamType.getNonReferenceType(), &X))
+ return Sema::TDK_Success; // Just ignore this expression.
+
+ // Recurse down into the init list.
+ for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
+ if (Sema::TemplateDeductionResult Result =
+ DeduceTemplateArgumentByListElement(S, TemplateParams, X,
+ ILE->getInit(i),
+ Info, Deduced, TDF))
+ return Result;
+ }
+ return Sema::TDK_Success;
+ }
+
+ // For all other cases, just match by type.
+ QualType ArgType = Arg->getType();
+ if (AdjustFunctionParmAndArgTypesForDeduction(S, TemplateParams, ParamType,
+ ArgType, Arg, TDF)) {
+ Info.Expression = Arg;
+ return Sema::TDK_FailedOverloadResolution;
+ }
+ return DeduceTemplateArgumentsByTypeMatch(S, TemplateParams, ParamType,
+ ArgType, Info, Deduced, TDF);
+}
+
+/// \brief Perform template argument deduction from a function call
+/// (C++ [temp.deduct.call]).
+///
+/// \param FunctionTemplate the function template for which we are performing
+/// template argument deduction.
+///
+/// \param ExplicitTemplateArgs the explicit template arguments provided
+/// for this call.
+///
+/// \param Args the function call arguments
+///
+/// \param Specialization if template argument deduction was successful,
+/// this will be set to the function template specialization produced by
+/// template argument deduction.
+///
+/// \param Info the argument will be updated to provide additional information
+/// about template argument deduction.
+///
+/// \returns the result of template argument deduction.
+Sema::TemplateDeductionResult Sema::DeduceTemplateArguments(
+ FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo *ExplicitTemplateArgs, ArrayRef<Expr *> Args,
+ FunctionDecl *&Specialization, TemplateDeductionInfo &Info,
+ bool PartialOverloading) {
+ if (FunctionTemplate->isInvalidDecl())
+ return TDK_Invalid;
+
+ FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+ unsigned NumParams = Function->getNumParams();
+
+ // C++ [temp.deduct.call]p1:
+ // Template argument deduction is done by comparing each function template
+ // parameter type (call it P) with the type of the corresponding argument
+ // of the call (call it A) as described below.
+ unsigned CheckArgs = Args.size();
+ if (Args.size() < Function->getMinRequiredArguments() && !PartialOverloading)
+ return TDK_TooFewArguments;
+ else if (TooManyArguments(NumParams, Args.size(), PartialOverloading)) {
+ const FunctionProtoType *Proto
+ = Function->getType()->getAs<FunctionProtoType>();
+ if (Proto->isTemplateVariadic())
+ /* Do nothing */;
+ else if (Proto->isVariadic())
+ CheckArgs = NumParams;
+ else
+ return TDK_TooManyArguments;
+ }
+
+ // The types of the parameters from which we will perform template argument
+ // deduction.
+ LocalInstantiationScope InstScope(*this);
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ SmallVector<QualType, 4> ParamTypes;
+ unsigned NumExplicitlySpecified = 0;
+ if (ExplicitTemplateArgs) {
+ TemplateDeductionResult Result =
+ SubstituteExplicitTemplateArguments(FunctionTemplate,
+ *ExplicitTemplateArgs,
+ Deduced,
+ ParamTypes,
+ nullptr,
+ Info);
+ if (Result)
+ return Result;
+
+ NumExplicitlySpecified = Deduced.size();
+ } else {
+ // Just fill in the parameter types from the function declaration.
+ for (unsigned I = 0; I != NumParams; ++I)
+ ParamTypes.push_back(Function->getParamDecl(I)->getType());
+ }
+
+ // Deduce template arguments from the function parameters.
+ Deduced.resize(TemplateParams->size());
+ unsigned ArgIdx = 0;
+ SmallVector<OriginalCallArg, 4> OriginalCallArgs;
+ for (unsigned ParamIdx = 0, NumParamTypes = ParamTypes.size();
+ ParamIdx != NumParamTypes; ++ParamIdx) {
+ QualType OrigParamType = ParamTypes[ParamIdx];
+ QualType ParamType = OrigParamType;
+
+ const PackExpansionType *ParamExpansion
+ = dyn_cast<PackExpansionType>(ParamType);
+ if (!ParamExpansion) {
+ // Simple case: matching a function parameter to a function argument.
+ if (ArgIdx >= CheckArgs)
+ break;
+
+ Expr *Arg = Args[ArgIdx++];
+ QualType ArgType = Arg->getType();
+
+ unsigned TDF = 0;
+ if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
+ ParamType, ArgType, Arg,
+ TDF))
+ continue;
+
+ // If we have nothing to deduce, we're done.
+ if (!hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
+ continue;
+
+ // If the argument is an initializer list ...
+ if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
+ // ... then the parameter is an undeduced context, unless the parameter
+ // type is (reference to cv) std::initializer_list<P'>, in which case
+ // deduction is done for each element of the initializer list, and the
+ // result is the deduced type if it's the same for all elements.
+ QualType X;
+ // Removing references was already done.
+ if (!isStdInitializerList(ParamType, &X))
+ continue;
+
+ for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
+ if (TemplateDeductionResult Result =
+ DeduceTemplateArgumentByListElement(*this, TemplateParams, X,
+ ILE->getInit(i),
+ Info, Deduced, TDF))
+ return Result;
+ }
+ // Don't track the argument type, since an initializer list has none.
+ continue;
+ }
+
+ // Keep track of the argument type and corresponding parameter index,
+ // so we can check for compatibility between the deduced A and A.
+ OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx-1,
+ ArgType));
+
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
+ ParamType, ArgType,
+ Info, Deduced, TDF))
+ return Result;
+
+ continue;
+ }
+
+ // C++0x [temp.deduct.call]p1:
+ // For a function parameter pack that occurs at the end of the
+ // parameter-declaration-list, the type A of each remaining argument of
+ // the call is compared with the type P of the declarator-id of the
+ // function parameter pack. Each comparison deduces template arguments
+ // for subsequent positions in the template parameter packs expanded by
+ // the function parameter pack. For a function parameter pack that does
+ // not occur at the end of the parameter-declaration-list, the type of
+ // the parameter pack is a non-deduced context.
+ if (ParamIdx + 1 < NumParamTypes)
+ break;
+
+ QualType ParamPattern = ParamExpansion->getPattern();
+ PackDeductionScope PackScope(*this, TemplateParams, Deduced, Info,
+ ParamPattern);
+
+ bool HasAnyArguments = false;
+ for (; ArgIdx < Args.size(); ++ArgIdx) {
+ HasAnyArguments = true;
+
+ QualType OrigParamType = ParamPattern;
+ ParamType = OrigParamType;
+ Expr *Arg = Args[ArgIdx];
+ QualType ArgType = Arg->getType();
+
+ unsigned TDF = 0;
+ if (AdjustFunctionParmAndArgTypesForDeduction(*this, TemplateParams,
+ ParamType, ArgType, Arg,
+ TDF)) {
+ // We can't actually perform any deduction for this argument, so stop
+ // deduction at this point.
+ ++ArgIdx;
+ break;
+ }
+
+ // As above, initializer lists need special handling.
+ if (InitListExpr *ILE = dyn_cast<InitListExpr>(Arg)) {
+ QualType X;
+ if (!isStdInitializerList(ParamType, &X)) {
+ ++ArgIdx;
+ break;
+ }
+
+ for (unsigned i = 0, e = ILE->getNumInits(); i < e; ++i) {
+ if (TemplateDeductionResult Result =
+ DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams, X,
+ ILE->getInit(i)->getType(),
+ Info, Deduced, TDF))
+ return Result;
+ }
+ } else {
+
+ // Keep track of the argument type and corresponding argument index,
+ // so we can check for compatibility between the deduced A and A.
+ if (hasDeducibleTemplateParameters(*this, FunctionTemplate, ParamType))
+ OriginalCallArgs.push_back(OriginalCallArg(OrigParamType, ArgIdx,
+ ArgType));
+
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
+ ParamType, ArgType, Info,
+ Deduced, TDF))
+ return Result;
+ }
+
+ PackScope.nextPackElement();
+ }
+
+ // Build argument packs for each of the parameter packs expanded by this
+ // pack expansion.
+ if (auto Result = PackScope.finish(HasAnyArguments))
+ return Result;
+
+ // After we've matching against a parameter pack, we're done.
+ break;
+ }
+
+ return FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
+ NumExplicitlySpecified, Specialization,
+ Info, &OriginalCallArgs,
+ PartialOverloading);
+}
+
+QualType Sema::adjustCCAndNoReturn(QualType ArgFunctionType,
+ QualType FunctionType) {
+ if (ArgFunctionType.isNull())
+ return ArgFunctionType;
+
+ const FunctionProtoType *FunctionTypeP =
+ FunctionType->castAs<FunctionProtoType>();
+ CallingConv CC = FunctionTypeP->getCallConv();
+ bool NoReturn = FunctionTypeP->getNoReturnAttr();
+ const FunctionProtoType *ArgFunctionTypeP =
+ ArgFunctionType->getAs<FunctionProtoType>();
+ if (ArgFunctionTypeP->getCallConv() == CC &&
+ ArgFunctionTypeP->getNoReturnAttr() == NoReturn)
+ return ArgFunctionType;
+
+ FunctionType::ExtInfo EI = ArgFunctionTypeP->getExtInfo().withCallingConv(CC);
+ EI = EI.withNoReturn(NoReturn);
+ ArgFunctionTypeP =
+ cast<FunctionProtoType>(Context.adjustFunctionType(ArgFunctionTypeP, EI));
+ return QualType(ArgFunctionTypeP, 0);
+}
+
+/// \brief Deduce template arguments when taking the address of a function
+/// template (C++ [temp.deduct.funcaddr]) or matching a specialization to
+/// a template.
+///
+/// \param FunctionTemplate the function template for which we are performing
+/// template argument deduction.
+///
+/// \param ExplicitTemplateArgs the explicitly-specified template
+/// arguments.
+///
+/// \param ArgFunctionType the function type that will be used as the
+/// "argument" type (A) when performing template argument deduction from the
+/// function template's function type. This type may be NULL, if there is no
+/// argument type to compare against, in C++0x [temp.arg.explicit]p3.
+///
+/// \param Specialization if template argument deduction was successful,
+/// this will be set to the function template specialization produced by
+/// template argument deduction.
+///
+/// \param Info the argument will be updated to provide additional information
+/// about template argument deduction.
+///
+/// \returns the result of template argument deduction.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ QualType ArgFunctionType,
+ FunctionDecl *&Specialization,
+ TemplateDeductionInfo &Info,
+ bool InOverloadResolution) {
+ if (FunctionTemplate->isInvalidDecl())
+ return TDK_Invalid;
+
+ FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+ QualType FunctionType = Function->getType();
+ if (!InOverloadResolution)
+ ArgFunctionType = adjustCCAndNoReturn(ArgFunctionType, FunctionType);
+
+ // Substitute any explicit template arguments.
+ LocalInstantiationScope InstScope(*this);
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ unsigned NumExplicitlySpecified = 0;
+ SmallVector<QualType, 4> ParamTypes;
+ if (ExplicitTemplateArgs) {
+ if (TemplateDeductionResult Result
+ = SubstituteExplicitTemplateArguments(FunctionTemplate,
+ *ExplicitTemplateArgs,
+ Deduced, ParamTypes,
+ &FunctionType, Info))
+ return Result;
+
+ NumExplicitlySpecified = Deduced.size();
+ }
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ Deduced.resize(TemplateParams->size());
+
+ // If the function has a deduced return type, substitute it for a dependent
+ // type so that we treat it as a non-deduced context in what follows.
+ bool HasDeducedReturnType = false;
+ if (getLangOpts().CPlusPlus14 && InOverloadResolution &&
+ Function->getReturnType()->getContainedAutoType()) {
+ FunctionType = SubstAutoType(FunctionType, Context.DependentTy);
+ HasDeducedReturnType = true;
+ }
+
+ if (!ArgFunctionType.isNull()) {
+ unsigned TDF = TDF_TopLevelParameterTypeList;
+ if (InOverloadResolution) TDF |= TDF_InOverloadResolution;
+ // Deduce template arguments from the function type.
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
+ FunctionType, ArgFunctionType,
+ Info, Deduced, TDF))
+ return Result;
+ }
+
+ if (TemplateDeductionResult Result
+ = FinishTemplateArgumentDeduction(FunctionTemplate, Deduced,
+ NumExplicitlySpecified,
+ Specialization, Info))
+ return Result;
+
+ // If the function has a deduced return type, deduce it now, so we can check
+ // that the deduced function type matches the requested type.
+ if (HasDeducedReturnType &&
+ Specialization->getReturnType()->isUndeducedType() &&
+ DeduceReturnType(Specialization, Info.getLocation(), false))
+ return TDK_MiscellaneousDeductionFailure;
+
+ // If the requested function type does not match the actual type of the
+ // specialization with respect to arguments of compatible pointer to function
+ // types, template argument deduction fails.
+ if (!ArgFunctionType.isNull()) {
+ if (InOverloadResolution && !isSameOrCompatibleFunctionType(
+ Context.getCanonicalType(Specialization->getType()),
+ Context.getCanonicalType(ArgFunctionType)))
+ return TDK_MiscellaneousDeductionFailure;
+ else if(!InOverloadResolution &&
+ !Context.hasSameType(Specialization->getType(), ArgFunctionType))
+ return TDK_MiscellaneousDeductionFailure;
+ }
+
+ return TDK_Success;
+}
+
+/// \brief Given a function declaration (e.g. a generic lambda conversion
+/// function) that contains an 'auto' in its result type, substitute it
+/// with TypeToReplaceAutoWith. Be careful to pass in the type you want
+/// to replace 'auto' with and not the actual result type you want
+/// to set the function to.
+static inline void
+SubstAutoWithinFunctionReturnType(FunctionDecl *F,
+ QualType TypeToReplaceAutoWith, Sema &S) {
+ assert(!TypeToReplaceAutoWith->getContainedAutoType());
+ QualType AutoResultType = F->getReturnType();
+ assert(AutoResultType->getContainedAutoType());
+ QualType DeducedResultType = S.SubstAutoType(AutoResultType,
+ TypeToReplaceAutoWith);
+ S.Context.adjustDeducedFunctionResultType(F, DeducedResultType);
+}
+
+/// \brief Given a specialized conversion operator of a generic lambda
+/// create the corresponding specializations of the call operator and
+/// the static-invoker. If the return type of the call operator is auto,
+/// deduce its return type and check if that matches the
+/// return type of the destination function ptr.
+
+static inline Sema::TemplateDeductionResult
+SpecializeCorrespondingLambdaCallOperatorAndInvoker(
+ CXXConversionDecl *ConversionSpecialized,
+ SmallVectorImpl<DeducedTemplateArgument> &DeducedArguments,
+ QualType ReturnTypeOfDestFunctionPtr,
+ TemplateDeductionInfo &TDInfo,
+ Sema &S) {
+
+ CXXRecordDecl *LambdaClass = ConversionSpecialized->getParent();
+ assert(LambdaClass && LambdaClass->isGenericLambda());
+
+ CXXMethodDecl *CallOpGeneric = LambdaClass->getLambdaCallOperator();
+ QualType CallOpResultType = CallOpGeneric->getReturnType();
+ const bool GenericLambdaCallOperatorHasDeducedReturnType =
+ CallOpResultType->getContainedAutoType();
+
+ FunctionTemplateDecl *CallOpTemplate =
+ CallOpGeneric->getDescribedFunctionTemplate();
+
+ FunctionDecl *CallOpSpecialized = nullptr;
+ // Use the deduced arguments of the conversion function, to specialize our
+ // generic lambda's call operator.
+ if (Sema::TemplateDeductionResult Result
+ = S.FinishTemplateArgumentDeduction(CallOpTemplate,
+ DeducedArguments,
+ 0, CallOpSpecialized, TDInfo))
+ return Result;
+
+ // If we need to deduce the return type, do so (instantiates the callop).
+ if (GenericLambdaCallOperatorHasDeducedReturnType &&
+ CallOpSpecialized->getReturnType()->isUndeducedType())
+ S.DeduceReturnType(CallOpSpecialized,
+ CallOpSpecialized->getPointOfInstantiation(),
+ /*Diagnose*/ true);
+
+ // Check to see if the return type of the destination ptr-to-function
+ // matches the return type of the call operator.
+ if (!S.Context.hasSameType(CallOpSpecialized->getReturnType(),
+ ReturnTypeOfDestFunctionPtr))
+ return Sema::TDK_NonDeducedMismatch;
+ // Since we have succeeded in matching the source and destination
+ // ptr-to-functions (now including return type), and have successfully
+ // specialized our corresponding call operator, we are ready to
+ // specialize the static invoker with the deduced arguments of our
+ // ptr-to-function.
+ FunctionDecl *InvokerSpecialized = nullptr;
+ FunctionTemplateDecl *InvokerTemplate = LambdaClass->
+ getLambdaStaticInvoker()->getDescribedFunctionTemplate();
+
+#ifndef NDEBUG
+ Sema::TemplateDeductionResult LLVM_ATTRIBUTE_UNUSED Result =
+#endif
+ S.FinishTemplateArgumentDeduction(InvokerTemplate, DeducedArguments, 0,
+ InvokerSpecialized, TDInfo);
+ assert(Result == Sema::TDK_Success &&
+ "If the call operator succeeded so should the invoker!");
+ // Set the result type to match the corresponding call operator
+ // specialization's result type.
+ if (GenericLambdaCallOperatorHasDeducedReturnType &&
+ InvokerSpecialized->getReturnType()->isUndeducedType()) {
+ // Be sure to get the type to replace 'auto' with and not
+ // the full result type of the call op specialization
+ // to substitute into the 'auto' of the invoker and conversion
+ // function.
+ // For e.g.
+ // int* (*fp)(int*) = [](auto* a) -> auto* { return a; };
+ // We don't want to subst 'int*' into 'auto' to get int**.
+
+ QualType TypeToReplaceAutoWith = CallOpSpecialized->getReturnType()
+ ->getContainedAutoType()
+ ->getDeducedType();
+ SubstAutoWithinFunctionReturnType(InvokerSpecialized,
+ TypeToReplaceAutoWith, S);
+ SubstAutoWithinFunctionReturnType(ConversionSpecialized,
+ TypeToReplaceAutoWith, S);
+ }
+
+ // Ensure that static invoker doesn't have a const qualifier.
+ // FIXME: When creating the InvokerTemplate in SemaLambda.cpp
+ // do not use the CallOperator's TypeSourceInfo which allows
+ // the const qualifier to leak through.
+ const FunctionProtoType *InvokerFPT = InvokerSpecialized->
+ getType().getTypePtr()->castAs<FunctionProtoType>();
+ FunctionProtoType::ExtProtoInfo EPI = InvokerFPT->getExtProtoInfo();
+ EPI.TypeQuals = 0;
+ InvokerSpecialized->setType(S.Context.getFunctionType(
+ InvokerFPT->getReturnType(), InvokerFPT->getParamTypes(), EPI));
+ return Sema::TDK_Success;
+}
+/// \brief Deduce template arguments for a templated conversion
+/// function (C++ [temp.deduct.conv]) and, if successful, produce a
+/// conversion function template specialization.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(FunctionTemplateDecl *ConversionTemplate,
+ QualType ToType,
+ CXXConversionDecl *&Specialization,
+ TemplateDeductionInfo &Info) {
+ if (ConversionTemplate->isInvalidDecl())
+ return TDK_Invalid;
+
+ CXXConversionDecl *ConversionGeneric
+ = cast<CXXConversionDecl>(ConversionTemplate->getTemplatedDecl());
+
+ QualType FromType = ConversionGeneric->getConversionType();
+
+ // Canonicalize the types for deduction.
+ QualType P = Context.getCanonicalType(FromType);
+ QualType A = Context.getCanonicalType(ToType);
+
+ // C++0x [temp.deduct.conv]p2:
+ // If P is a reference type, the type referred to by P is used for
+ // type deduction.
+ if (const ReferenceType *PRef = P->getAs<ReferenceType>())
+ P = PRef->getPointeeType();
+
+ // C++0x [temp.deduct.conv]p4:
+ // [...] If A is a reference type, the type referred to by A is used
+ // for type deduction.
+ if (const ReferenceType *ARef = A->getAs<ReferenceType>())
+ A = ARef->getPointeeType().getUnqualifiedType();
+ // C++ [temp.deduct.conv]p3:
+ //
+ // If A is not a reference type:
+ else {
+ assert(!A->isReferenceType() && "Reference types were handled above");
+
+ // - If P is an array type, the pointer type produced by the
+ // array-to-pointer standard conversion (4.2) is used in place
+ // of P for type deduction; otherwise,
+ if (P->isArrayType())
+ P = Context.getArrayDecayedType(P);
+ // - If P is a function type, the pointer type produced by the
+ // function-to-pointer standard conversion (4.3) is used in
+ // place of P for type deduction; otherwise,
+ else if (P->isFunctionType())
+ P = Context.getPointerType(P);
+ // - If P is a cv-qualified type, the top level cv-qualifiers of
+ // P's type are ignored for type deduction.
+ else
+ P = P.getUnqualifiedType();
+
+ // C++0x [temp.deduct.conv]p4:
+ // If A is a cv-qualified type, the top level cv-qualifiers of A's
+ // type are ignored for type deduction. If A is a reference type, the type
+ // referred to by A is used for type deduction.
+ A = A.getUnqualifiedType();
+ }
+
+ // Unevaluated SFINAE context.
+ EnterExpressionEvaluationContext Unevaluated(*this, Sema::Unevaluated);
+ SFINAETrap Trap(*this);
+
+ // C++ [temp.deduct.conv]p1:
+ // Template argument deduction is done by comparing the return
+ // type of the template conversion function (call it P) with the
+ // type that is required as the result of the conversion (call it
+ // A) as described in 14.8.2.4.
+ TemplateParameterList *TemplateParams
+ = ConversionTemplate->getTemplateParameters();
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ Deduced.resize(TemplateParams->size());
+
+ // C++0x [temp.deduct.conv]p4:
+ // In general, the deduction process attempts to find template
+ // argument values that will make the deduced A identical to
+ // A. However, there are two cases that allow a difference:
+ unsigned TDF = 0;
+ // - If the original A is a reference type, A can be more
+ // cv-qualified than the deduced A (i.e., the type referred to
+ // by the reference)
+ if (ToType->isReferenceType())
+ TDF |= TDF_ParamWithReferenceType;
+ // - The deduced A can be another pointer or pointer to member
+ // type that can be converted to A via a qualification
+ // conversion.
+ //
+ // (C++0x [temp.deduct.conv]p6 clarifies that this only happens when
+ // both P and A are pointers or member pointers. In this case, we
+ // just ignore cv-qualifiers completely).
+ if ((P->isPointerType() && A->isPointerType()) ||
+ (P->isMemberPointerType() && A->isMemberPointerType()))
+ TDF |= TDF_IgnoreQualifiers;
+ if (TemplateDeductionResult Result
+ = DeduceTemplateArgumentsByTypeMatch(*this, TemplateParams,
+ P, A, Info, Deduced, TDF))
+ return Result;
+
+ // Create an Instantiation Scope for finalizing the operator.
+ LocalInstantiationScope InstScope(*this);
+ // Finish template argument deduction.
+ FunctionDecl *ConversionSpecialized = nullptr;
+ TemplateDeductionResult Result
+ = FinishTemplateArgumentDeduction(ConversionTemplate, Deduced, 0,
+ ConversionSpecialized, Info);
+ Specialization = cast_or_null<CXXConversionDecl>(ConversionSpecialized);
+
+ // If the conversion operator is being invoked on a lambda closure to convert
+ // to a ptr-to-function, use the deduced arguments from the conversion
+ // function to specialize the corresponding call operator.
+ // e.g., int (*fp)(int) = [](auto a) { return a; };
+ if (Result == TDK_Success && isLambdaConversionOperator(ConversionGeneric)) {
+
+ // Get the return type of the destination ptr-to-function we are converting
+ // to. This is necessary for matching the lambda call operator's return
+ // type to that of the destination ptr-to-function's return type.
+ assert(A->isPointerType() &&
+ "Can only convert from lambda to ptr-to-function");
+ const FunctionType *ToFunType =
+ A->getPointeeType().getTypePtr()->getAs<FunctionType>();
+ const QualType DestFunctionPtrReturnType = ToFunType->getReturnType();
+
+ // Create the corresponding specializations of the call operator and
+ // the static-invoker; and if the return type is auto,
+ // deduce the return type and check if it matches the
+ // DestFunctionPtrReturnType.
+ // For instance:
+ // auto L = [](auto a) { return f(a); };
+ // int (*fp)(int) = L;
+ // char (*fp2)(int) = L; <-- Not OK.
+
+ Result = SpecializeCorrespondingLambdaCallOperatorAndInvoker(
+ Specialization, Deduced, DestFunctionPtrReturnType,
+ Info, *this);
+ }
+ return Result;
+}
+
+/// \brief Deduce template arguments for a function template when there is
+/// nothing to deduce against (C++0x [temp.arg.explicit]p3).
+///
+/// \param FunctionTemplate the function template for which we are performing
+/// template argument deduction.
+///
+/// \param ExplicitTemplateArgs the explicitly-specified template
+/// arguments.
+///
+/// \param Specialization if template argument deduction was successful,
+/// this will be set to the function template specialization produced by
+/// template argument deduction.
+///
+/// \param Info the argument will be updated to provide additional information
+/// about template argument deduction.
+///
+/// \returns the result of template argument deduction.
+Sema::TemplateDeductionResult
+Sema::DeduceTemplateArguments(FunctionTemplateDecl *FunctionTemplate,
+ TemplateArgumentListInfo *ExplicitTemplateArgs,
+ FunctionDecl *&Specialization,
+ TemplateDeductionInfo &Info,
+ bool InOverloadResolution) {
+ return DeduceTemplateArguments(FunctionTemplate, ExplicitTemplateArgs,
+ QualType(), Specialization, Info,
+ InOverloadResolution);
+}
+
+namespace {
+ /// Substitute the 'auto' type specifier within a type for a given replacement
+ /// type.
+ class SubstituteAutoTransform :
+ public TreeTransform<SubstituteAutoTransform> {
+ QualType Replacement;
+ public:
+ SubstituteAutoTransform(Sema &SemaRef, QualType Replacement)
+ : TreeTransform<SubstituteAutoTransform>(SemaRef),
+ Replacement(Replacement) {}
+
+ QualType TransformAutoType(TypeLocBuilder &TLB, AutoTypeLoc TL) {
+ // If we're building the type pattern to deduce against, don't wrap the
+ // substituted type in an AutoType. Certain template deduction rules
+ // apply only when a template type parameter appears directly (and not if
+ // the parameter is found through desugaring). For instance:
+ // auto &&lref = lvalue;
+ // must transform into "rvalue reference to T" not "rvalue reference to
+ // auto type deduced as T" in order for [temp.deduct.call]p3 to apply.
+ if (!Replacement.isNull() && isa<TemplateTypeParmType>(Replacement)) {
+ QualType Result = Replacement;
+ TemplateTypeParmTypeLoc NewTL =
+ TLB.push<TemplateTypeParmTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ return Result;
+ } else {
+ bool Dependent =
+ !Replacement.isNull() && Replacement->isDependentType();
+ QualType Result =
+ SemaRef.Context.getAutoType(Dependent ? QualType() : Replacement,
+ TL.getTypePtr()->isDecltypeAuto(),
+ Dependent);
+ AutoTypeLoc NewTL = TLB.push<AutoTypeLoc>(Result);
+ NewTL.setNameLoc(TL.getNameLoc());
+ return Result;
+ }
+ }
+
+ ExprResult TransformLambdaExpr(LambdaExpr *E) {
+ // Lambdas never need to be transformed.
+ return E;
+ }
+
+ QualType Apply(TypeLoc TL) {
+ // Create some scratch storage for the transformed type locations.
+ // FIXME: We're just going to throw this information away. Don't build it.
+ TypeLocBuilder TLB;
+ TLB.reserve(TL.getFullDataSize());
+ return TransformType(TLB, TL);
+ }
+ };
+}
+
+Sema::DeduceAutoResult
+Sema::DeduceAutoType(TypeSourceInfo *Type, Expr *&Init, QualType &Result) {
+ return DeduceAutoType(Type->getTypeLoc(), Init, Result);
+}
+
+/// \brief Deduce the type for an auto type-specifier (C++11 [dcl.spec.auto]p6)
+///
+/// \param Type the type pattern using the auto type-specifier.
+/// \param Init the initializer for the variable whose type is to be deduced.
+/// \param Result if type deduction was successful, this will be set to the
+/// deduced type.
+Sema::DeduceAutoResult
+Sema::DeduceAutoType(TypeLoc Type, Expr *&Init, QualType &Result) {
+ if (Init->getType()->isNonOverloadPlaceholderType()) {
+ ExprResult NonPlaceholder = CheckPlaceholderExpr(Init);
+ if (NonPlaceholder.isInvalid())
+ return DAR_FailedAlreadyDiagnosed;
+ Init = NonPlaceholder.get();
+ }
+
+ if (Init->isTypeDependent() || Type.getType()->isDependentType()) {
+ Result = SubstituteAutoTransform(*this, Context.DependentTy).Apply(Type);
+ assert(!Result.isNull() && "substituting DependentTy can't fail");
+ return DAR_Succeeded;
+ }
+
+ // If this is a 'decltype(auto)' specifier, do the decltype dance.
+ // Since 'decltype(auto)' can only occur at the top of the type, we
+ // don't need to go digging for it.
+ if (const AutoType *AT = Type.getType()->getAs<AutoType>()) {
+ if (AT->isDecltypeAuto()) {
+ if (isa<InitListExpr>(Init)) {
+ Diag(Init->getLocStart(), diag::err_decltype_auto_initializer_list);
+ return DAR_FailedAlreadyDiagnosed;
+ }
+
+ QualType Deduced = BuildDecltypeType(Init, Init->getLocStart(), false);
+ // FIXME: Support a non-canonical deduced type for 'auto'.
+ Deduced = Context.getCanonicalType(Deduced);
+ Result = SubstituteAutoTransform(*this, Deduced).Apply(Type);
+ if (Result.isNull())
+ return DAR_FailedAlreadyDiagnosed;
+ return DAR_Succeeded;
+ }
+ }
+
+ SourceLocation Loc = Init->getExprLoc();
+
+ LocalInstantiationScope InstScope(*this);
+
+ // Build template<class TemplParam> void Func(FuncParam);
+ TemplateTypeParmDecl *TemplParam =
+ TemplateTypeParmDecl::Create(Context, nullptr, SourceLocation(), Loc, 0, 0,
+ nullptr, false, false);
+ QualType TemplArg = QualType(TemplParam->getTypeForDecl(), 0);
+ NamedDecl *TemplParamPtr = TemplParam;
+ FixedSizeTemplateParameterList<1> TemplateParams(Loc, Loc, &TemplParamPtr,
+ Loc);
+
+ QualType FuncParam = SubstituteAutoTransform(*this, TemplArg).Apply(Type);
+ assert(!FuncParam.isNull() &&
+ "substituting template parameter for 'auto' failed");
+
+ // Deduce type of TemplParam in Func(Init)
+ SmallVector<DeducedTemplateArgument, 1> Deduced;
+ Deduced.resize(1);
+ QualType InitType = Init->getType();
+ unsigned TDF = 0;
+
+ TemplateDeductionInfo Info(Loc);
+
+ InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
+ if (InitList) {
+ for (unsigned i = 0, e = InitList->getNumInits(); i < e; ++i) {
+ if (DeduceTemplateArgumentByListElement(*this, &TemplateParams,
+ TemplArg,
+ InitList->getInit(i),
+ Info, Deduced, TDF))
+ return DAR_Failed;
+ }
+ } else {
+ if (AdjustFunctionParmAndArgTypesForDeduction(*this, &TemplateParams,
+ FuncParam, InitType, Init,
+ TDF))
+ return DAR_Failed;
+
+ if (DeduceTemplateArgumentsByTypeMatch(*this, &TemplateParams, FuncParam,
+ InitType, Info, Deduced, TDF))
+ return DAR_Failed;
+ }
+
+ if (Deduced[0].getKind() != TemplateArgument::Type)
+ return DAR_Failed;
+
+ QualType DeducedType = Deduced[0].getAsType();
+
+ if (InitList) {
+ DeducedType = BuildStdInitializerList(DeducedType, Loc);
+ if (DeducedType.isNull())
+ return DAR_FailedAlreadyDiagnosed;
+ }
+
+ Result = SubstituteAutoTransform(*this, DeducedType).Apply(Type);
+ if (Result.isNull())
+ return DAR_FailedAlreadyDiagnosed;
+
+ // Check that the deduced argument type is compatible with the original
+ // argument type per C++ [temp.deduct.call]p4.
+ if (!InitList && !Result.isNull() &&
+ CheckOriginalCallArgDeduction(*this,
+ Sema::OriginalCallArg(FuncParam,0,InitType),
+ Result)) {
+ Result = QualType();
+ return DAR_Failed;
+ }
+
+ return DAR_Succeeded;
+}
+
+QualType Sema::SubstAutoType(QualType TypeWithAuto,
+ QualType TypeToReplaceAuto) {
+ return SubstituteAutoTransform(*this, TypeToReplaceAuto).
+ TransformType(TypeWithAuto);
+}
+
+TypeSourceInfo* Sema::SubstAutoTypeSourceInfo(TypeSourceInfo *TypeWithAuto,
+ QualType TypeToReplaceAuto) {
+ return SubstituteAutoTransform(*this, TypeToReplaceAuto).
+ TransformType(TypeWithAuto);
+}
+
+void Sema::DiagnoseAutoDeductionFailure(VarDecl *VDecl, Expr *Init) {
+ if (isa<InitListExpr>(Init))
+ Diag(VDecl->getLocation(),
+ VDecl->isInitCapture()
+ ? diag::err_init_capture_deduction_failure_from_init_list
+ : diag::err_auto_var_deduction_failure_from_init_list)
+ << VDecl->getDeclName() << VDecl->getType() << Init->getSourceRange();
+ else
+ Diag(VDecl->getLocation(),
+ VDecl->isInitCapture() ? diag::err_init_capture_deduction_failure
+ : diag::err_auto_var_deduction_failure)
+ << VDecl->getDeclName() << VDecl->getType() << Init->getType()
+ << Init->getSourceRange();
+}
+
+bool Sema::DeduceReturnType(FunctionDecl *FD, SourceLocation Loc,
+ bool Diagnose) {
+ assert(FD->getReturnType()->isUndeducedType());
+
+ if (FD->getTemplateInstantiationPattern())
+ InstantiateFunctionDefinition(Loc, FD);
+
+ bool StillUndeduced = FD->getReturnType()->isUndeducedType();
+ if (StillUndeduced && Diagnose && !FD->isInvalidDecl()) {
+ Diag(Loc, diag::err_auto_fn_used_before_defined) << FD;
+ Diag(FD->getLocation(), diag::note_callee_decl) << FD;
+ }
+
+ return StillUndeduced;
+}
+
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
+ bool OnlyDeduced,
+ unsigned Level,
+ llvm::SmallBitVector &Deduced);
+
+/// \brief If this is a non-static member function,
+static void
+AddImplicitObjectParameterType(ASTContext &Context,
+ CXXMethodDecl *Method,
+ SmallVectorImpl<QualType> &ArgTypes) {
+ // C++11 [temp.func.order]p3:
+ // [...] The new parameter is of type "reference to cv A," where cv are
+ // the cv-qualifiers of the function template (if any) and A is
+ // the class of which the function template is a member.
+ //
+ // The standard doesn't say explicitly, but we pick the appropriate kind of
+ // reference type based on [over.match.funcs]p4.
+ QualType ArgTy = Context.getTypeDeclType(Method->getParent());
+ ArgTy = Context.getQualifiedType(ArgTy,
+ Qualifiers::fromCVRMask(Method->getTypeQualifiers()));
+ if (Method->getRefQualifier() == RQ_RValue)
+ ArgTy = Context.getRValueReferenceType(ArgTy);
+ else
+ ArgTy = Context.getLValueReferenceType(ArgTy);
+ ArgTypes.push_back(ArgTy);
+}
+
+/// \brief Determine whether the function template \p FT1 is at least as
+/// specialized as \p FT2.
+static bool isAtLeastAsSpecializedAs(Sema &S,
+ SourceLocation Loc,
+ FunctionTemplateDecl *FT1,
+ FunctionTemplateDecl *FT2,
+ TemplatePartialOrderingContext TPOC,
+ unsigned NumCallArguments1) {
+ FunctionDecl *FD1 = FT1->getTemplatedDecl();
+ FunctionDecl *FD2 = FT2->getTemplatedDecl();
+ const FunctionProtoType *Proto1 = FD1->getType()->getAs<FunctionProtoType>();
+ const FunctionProtoType *Proto2 = FD2->getType()->getAs<FunctionProtoType>();
+
+ assert(Proto1 && Proto2 && "Function templates must have prototypes");
+ TemplateParameterList *TemplateParams = FT2->getTemplateParameters();
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ Deduced.resize(TemplateParams->size());
+
+ // C++0x [temp.deduct.partial]p3:
+ // The types used to determine the ordering depend on the context in which
+ // the partial ordering is done:
+ TemplateDeductionInfo Info(Loc);
+ SmallVector<QualType, 4> Args2;
+ switch (TPOC) {
+ case TPOC_Call: {
+ // - In the context of a function call, the function parameter types are
+ // used.
+ CXXMethodDecl *Method1 = dyn_cast<CXXMethodDecl>(FD1);
+ CXXMethodDecl *Method2 = dyn_cast<CXXMethodDecl>(FD2);
+
+ // C++11 [temp.func.order]p3:
+ // [...] If only one of the function templates is a non-static
+ // member, that function template is considered to have a new
+ // first parameter inserted in its function parameter list. The
+ // new parameter is of type "reference to cv A," where cv are
+ // the cv-qualifiers of the function template (if any) and A is
+ // the class of which the function template is a member.
+ //
+ // Note that we interpret this to mean "if one of the function
+ // templates is a non-static member and the other is a non-member";
+ // otherwise, the ordering rules for static functions against non-static
+ // functions don't make any sense.
+ //
+ // C++98/03 doesn't have this provision but we've extended DR532 to cover
+ // it as wording was broken prior to it.
+ SmallVector<QualType, 4> Args1;
+
+ unsigned NumComparedArguments = NumCallArguments1;
+
+ if (!Method2 && Method1 && !Method1->isStatic()) {
+ // Compare 'this' from Method1 against first parameter from Method2.
+ AddImplicitObjectParameterType(S.Context, Method1, Args1);
+ ++NumComparedArguments;
+ } else if (!Method1 && Method2 && !Method2->isStatic()) {
+ // Compare 'this' from Method2 against first parameter from Method1.
+ AddImplicitObjectParameterType(S.Context, Method2, Args2);
+ }
+
+ Args1.insert(Args1.end(), Proto1->param_type_begin(),
+ Proto1->param_type_end());
+ Args2.insert(Args2.end(), Proto2->param_type_begin(),
+ Proto2->param_type_end());
+
+ // C++ [temp.func.order]p5:
+ // The presence of unused ellipsis and default arguments has no effect on
+ // the partial ordering of function templates.
+ if (Args1.size() > NumComparedArguments)
+ Args1.resize(NumComparedArguments);
+ if (Args2.size() > NumComparedArguments)
+ Args2.resize(NumComparedArguments);
+ if (DeduceTemplateArguments(S, TemplateParams, Args2.data(), Args2.size(),
+ Args1.data(), Args1.size(), Info, Deduced,
+ TDF_None, /*PartialOrdering=*/true))
+ return false;
+
+ break;
+ }
+
+ case TPOC_Conversion:
+ // - In the context of a call to a conversion operator, the return types
+ // of the conversion function templates are used.
+ if (DeduceTemplateArgumentsByTypeMatch(
+ S, TemplateParams, Proto2->getReturnType(), Proto1->getReturnType(),
+ Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true))
+ return false;
+ break;
+
+ case TPOC_Other:
+ // - In other contexts (14.6.6.2) the function template's function type
+ // is used.
+ if (DeduceTemplateArgumentsByTypeMatch(S, TemplateParams,
+ FD2->getType(), FD1->getType(),
+ Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true))
+ return false;
+ break;
+ }
+
+ // C++0x [temp.deduct.partial]p11:
+ // In most cases, all template parameters must have values in order for
+ // deduction to succeed, but for partial ordering purposes a template
+ // parameter may remain without a value provided it is not used in the
+ // types being used for partial ordering. [ Note: a template parameter used
+ // in a non-deduced context is considered used. -end note]
+ unsigned ArgIdx = 0, NumArgs = Deduced.size();
+ for (; ArgIdx != NumArgs; ++ArgIdx)
+ if (Deduced[ArgIdx].isNull())
+ break;
+
+ if (ArgIdx == NumArgs) {
+ // All template arguments were deduced. FT1 is at least as specialized
+ // as FT2.
+ return true;
+ }
+
+ // Figure out which template parameters were used.
+ llvm::SmallBitVector UsedParameters(TemplateParams->size());
+ switch (TPOC) {
+ case TPOC_Call:
+ for (unsigned I = 0, N = Args2.size(); I != N; ++I)
+ ::MarkUsedTemplateParameters(S.Context, Args2[I], false,
+ TemplateParams->getDepth(),
+ UsedParameters);
+ break;
+
+ case TPOC_Conversion:
+ ::MarkUsedTemplateParameters(S.Context, Proto2->getReturnType(), false,
+ TemplateParams->getDepth(), UsedParameters);
+ break;
+
+ case TPOC_Other:
+ ::MarkUsedTemplateParameters(S.Context, FD2->getType(), false,
+ TemplateParams->getDepth(),
+ UsedParameters);
+ break;
+ }
+
+ for (; ArgIdx != NumArgs; ++ArgIdx)
+ // If this argument had no value deduced but was used in one of the types
+ // used for partial ordering, then deduction fails.
+ if (Deduced[ArgIdx].isNull() && UsedParameters[ArgIdx])
+ return false;
+
+ return true;
+}
+
+/// \brief Determine whether this a function template whose parameter-type-list
+/// ends with a function parameter pack.
+static bool isVariadicFunctionTemplate(FunctionTemplateDecl *FunTmpl) {
+ FunctionDecl *Function = FunTmpl->getTemplatedDecl();
+ unsigned NumParams = Function->getNumParams();
+ if (NumParams == 0)
+ return false;
+
+ ParmVarDecl *Last = Function->getParamDecl(NumParams - 1);
+ if (!Last->isParameterPack())
+ return false;
+
+ // Make sure that no previous parameter is a parameter pack.
+ while (--NumParams > 0) {
+ if (Function->getParamDecl(NumParams - 1)->isParameterPack())
+ return false;
+ }
+
+ return true;
+}
+
+/// \brief Returns the more specialized function template according
+/// to the rules of function template partial ordering (C++ [temp.func.order]).
+///
+/// \param FT1 the first function template
+///
+/// \param FT2 the second function template
+///
+/// \param TPOC the context in which we are performing partial ordering of
+/// function templates.
+///
+/// \param NumCallArguments1 The number of arguments in the call to FT1, used
+/// only when \c TPOC is \c TPOC_Call.
+///
+/// \param NumCallArguments2 The number of arguments in the call to FT2, used
+/// only when \c TPOC is \c TPOC_Call.
+///
+/// \returns the more specialized function template. If neither
+/// template is more specialized, returns NULL.
+FunctionTemplateDecl *
+Sema::getMoreSpecializedTemplate(FunctionTemplateDecl *FT1,
+ FunctionTemplateDecl *FT2,
+ SourceLocation Loc,
+ TemplatePartialOrderingContext TPOC,
+ unsigned NumCallArguments1,
+ unsigned NumCallArguments2) {
+ bool Better1 = isAtLeastAsSpecializedAs(*this, Loc, FT1, FT2, TPOC,
+ NumCallArguments1);
+ bool Better2 = isAtLeastAsSpecializedAs(*this, Loc, FT2, FT1, TPOC,
+ NumCallArguments2);
+
+ if (Better1 != Better2) // We have a clear winner
+ return Better1 ? FT1 : FT2;
+
+ if (!Better1 && !Better2) // Neither is better than the other
+ return nullptr;
+
+ // FIXME: This mimics what GCC implements, but doesn't match up with the
+ // proposed resolution for core issue 692. This area needs to be sorted out,
+ // but for now we attempt to maintain compatibility.
+ bool Variadic1 = isVariadicFunctionTemplate(FT1);
+ bool Variadic2 = isVariadicFunctionTemplate(FT2);
+ if (Variadic1 != Variadic2)
+ return Variadic1? FT2 : FT1;
+
+ return nullptr;
+}
+
+/// \brief Determine if the two templates are equivalent.
+static bool isSameTemplate(TemplateDecl *T1, TemplateDecl *T2) {
+ if (T1 == T2)
+ return true;
+
+ if (!T1 || !T2)
+ return false;
+
+ return T1->getCanonicalDecl() == T2->getCanonicalDecl();
+}
+
+/// \brief Retrieve the most specialized of the given function template
+/// specializations.
+///
+/// \param SpecBegin the start iterator of the function template
+/// specializations that we will be comparing.
+///
+/// \param SpecEnd the end iterator of the function template
+/// specializations, paired with \p SpecBegin.
+///
+/// \param Loc the location where the ambiguity or no-specializations
+/// diagnostic should occur.
+///
+/// \param NoneDiag partial diagnostic used to diagnose cases where there are
+/// no matching candidates.
+///
+/// \param AmbigDiag partial diagnostic used to diagnose an ambiguity, if one
+/// occurs.
+///
+/// \param CandidateDiag partial diagnostic used for each function template
+/// specialization that is a candidate in the ambiguous ordering. One parameter
+/// in this diagnostic should be unbound, which will correspond to the string
+/// describing the template arguments for the function template specialization.
+///
+/// \returns the most specialized function template specialization, if
+/// found. Otherwise, returns SpecEnd.
+UnresolvedSetIterator Sema::getMostSpecialized(
+ UnresolvedSetIterator SpecBegin, UnresolvedSetIterator SpecEnd,
+ TemplateSpecCandidateSet &FailedCandidates,
+ SourceLocation Loc, const PartialDiagnostic &NoneDiag,
+ const PartialDiagnostic &AmbigDiag, const PartialDiagnostic &CandidateDiag,
+ bool Complain, QualType TargetType) {
+ if (SpecBegin == SpecEnd) {
+ if (Complain) {
+ Diag(Loc, NoneDiag);
+ FailedCandidates.NoteCandidates(*this, Loc);
+ }
+ return SpecEnd;
+ }
+
+ if (SpecBegin + 1 == SpecEnd)
+ return SpecBegin;
+
+ // Find the function template that is better than all of the templates it
+ // has been compared to.
+ UnresolvedSetIterator Best = SpecBegin;
+ FunctionTemplateDecl *BestTemplate
+ = cast<FunctionDecl>(*Best)->getPrimaryTemplate();
+ assert(BestTemplate && "Not a function template specialization?");
+ for (UnresolvedSetIterator I = SpecBegin + 1; I != SpecEnd; ++I) {
+ FunctionTemplateDecl *Challenger
+ = cast<FunctionDecl>(*I)->getPrimaryTemplate();
+ assert(Challenger && "Not a function template specialization?");
+ if (isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
+ Loc, TPOC_Other, 0, 0),
+ Challenger)) {
+ Best = I;
+ BestTemplate = Challenger;
+ }
+ }
+
+ // Make sure that the "best" function template is more specialized than all
+ // of the others.
+ bool Ambiguous = false;
+ for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
+ FunctionTemplateDecl *Challenger
+ = cast<FunctionDecl>(*I)->getPrimaryTemplate();
+ if (I != Best &&
+ !isSameTemplate(getMoreSpecializedTemplate(BestTemplate, Challenger,
+ Loc, TPOC_Other, 0, 0),
+ BestTemplate)) {
+ Ambiguous = true;
+ break;
+ }
+ }
+
+ if (!Ambiguous) {
+ // We found an answer. Return it.
+ return Best;
+ }
+
+ // Diagnose the ambiguity.
+ if (Complain) {
+ Diag(Loc, AmbigDiag);
+
+ // FIXME: Can we order the candidates in some sane way?
+ for (UnresolvedSetIterator I = SpecBegin; I != SpecEnd; ++I) {
+ PartialDiagnostic PD = CandidateDiag;
+ PD << getTemplateArgumentBindingsText(
+ cast<FunctionDecl>(*I)->getPrimaryTemplate()->getTemplateParameters(),
+ *cast<FunctionDecl>(*I)->getTemplateSpecializationArgs());
+ if (!TargetType.isNull())
+ HandleFunctionTypeMismatch(PD, cast<FunctionDecl>(*I)->getType(),
+ TargetType);
+ Diag((*I)->getLocation(), PD);
+ }
+ }
+
+ return SpecEnd;
+}
+
+/// \brief Returns the more specialized class template partial specialization
+/// according to the rules of partial ordering of class template partial
+/// specializations (C++ [temp.class.order]).
+///
+/// \param PS1 the first class template partial specialization
+///
+/// \param PS2 the second class template partial specialization
+///
+/// \returns the more specialized class template partial specialization. If
+/// neither partial specialization is more specialized, returns NULL.
+ClassTemplatePartialSpecializationDecl *
+Sema::getMoreSpecializedPartialSpecialization(
+ ClassTemplatePartialSpecializationDecl *PS1,
+ ClassTemplatePartialSpecializationDecl *PS2,
+ SourceLocation Loc) {
+ // C++ [temp.class.order]p1:
+ // For two class template partial specializations, the first is at least as
+ // specialized as the second if, given the following rewrite to two
+ // function templates, the first function template is at least as
+ // specialized as the second according to the ordering rules for function
+ // templates (14.6.6.2):
+ // - the first function template has the same template parameters as the
+ // first partial specialization and has a single function parameter
+ // whose type is a class template specialization with the template
+ // arguments of the first partial specialization, and
+ // - the second function template has the same template parameters as the
+ // second partial specialization and has a single function parameter
+ // whose type is a class template specialization with the template
+ // arguments of the second partial specialization.
+ //
+ // Rather than synthesize function templates, we merely perform the
+ // equivalent partial ordering by performing deduction directly on
+ // the template arguments of the class template partial
+ // specializations. This computation is slightly simpler than the
+ // general problem of function template partial ordering, because
+ // class template partial specializations are more constrained. We
+ // know that every template parameter is deducible from the class
+ // template partial specialization's template arguments, for
+ // example.
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ TemplateDeductionInfo Info(Loc);
+
+ QualType PT1 = PS1->getInjectedSpecializationType();
+ QualType PT2 = PS2->getInjectedSpecializationType();
+
+ // Determine whether PS1 is at least as specialized as PS2
+ Deduced.resize(PS2->getTemplateParameters()->size());
+ bool Better1 = !DeduceTemplateArgumentsByTypeMatch(*this,
+ PS2->getTemplateParameters(),
+ PT2, PT1, Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true);
+ if (Better1) {
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
+ InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
+ Better1 = !::FinishTemplateArgumentDeduction(
+ *this, PS2, PS1->getTemplateArgs(), Deduced, Info);
+ }
+
+ // Determine whether PS2 is at least as specialized as PS1
+ Deduced.clear();
+ Deduced.resize(PS1->getTemplateParameters()->size());
+ bool Better2 = !DeduceTemplateArgumentsByTypeMatch(
+ *this, PS1->getTemplateParameters(), PT1, PT2, Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true);
+ if (Better2) {
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
+ Deduced.end());
+ InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
+ Better2 = !::FinishTemplateArgumentDeduction(
+ *this, PS1, PS2->getTemplateArgs(), Deduced, Info);
+ }
+
+ if (Better1 == Better2)
+ return nullptr;
+
+ return Better1 ? PS1 : PS2;
+}
+
+/// TODO: Unify with ClassTemplatePartialSpecializationDecl version?
+/// May require unifying ClassTemplate(Partial)SpecializationDecl and
+/// VarTemplate(Partial)SpecializationDecl with a new data
+/// structure Template(Partial)SpecializationDecl, and
+/// using Template(Partial)SpecializationDecl as input type.
+VarTemplatePartialSpecializationDecl *
+Sema::getMoreSpecializedPartialSpecialization(
+ VarTemplatePartialSpecializationDecl *PS1,
+ VarTemplatePartialSpecializationDecl *PS2, SourceLocation Loc) {
+ SmallVector<DeducedTemplateArgument, 4> Deduced;
+ TemplateDeductionInfo Info(Loc);
+
+ assert(PS1->getSpecializedTemplate() == PS2->getSpecializedTemplate() &&
+ "the partial specializations being compared should specialize"
+ " the same template.");
+ TemplateName Name(PS1->getSpecializedTemplate());
+ TemplateName CanonTemplate = Context.getCanonicalTemplateName(Name);
+ QualType PT1 = Context.getTemplateSpecializationType(
+ CanonTemplate, PS1->getTemplateArgs().data(),
+ PS1->getTemplateArgs().size());
+ QualType PT2 = Context.getTemplateSpecializationType(
+ CanonTemplate, PS2->getTemplateArgs().data(),
+ PS2->getTemplateArgs().size());
+
+ // Determine whether PS1 is at least as specialized as PS2
+ Deduced.resize(PS2->getTemplateParameters()->size());
+ bool Better1 = !DeduceTemplateArgumentsByTypeMatch(
+ *this, PS2->getTemplateParameters(), PT2, PT1, Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true);
+ if (Better1) {
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),
+ Deduced.end());
+ InstantiatingTemplate Inst(*this, Loc, PS2, DeducedArgs, Info);
+ Better1 = !::FinishTemplateArgumentDeduction(*this, PS2,
+ PS1->getTemplateArgs(),
+ Deduced, Info);
+ }
+
+ // Determine whether PS2 is at least as specialized as PS1
+ Deduced.clear();
+ Deduced.resize(PS1->getTemplateParameters()->size());
+ bool Better2 = !DeduceTemplateArgumentsByTypeMatch(*this,
+ PS1->getTemplateParameters(),
+ PT1, PT2, Info, Deduced, TDF_None,
+ /*PartialOrdering=*/true);
+ if (Better2) {
+ SmallVector<TemplateArgument, 4> DeducedArgs(Deduced.begin(),Deduced.end());
+ InstantiatingTemplate Inst(*this, Loc, PS1, DeducedArgs, Info);
+ Better2 = !::FinishTemplateArgumentDeduction(*this, PS1,
+ PS2->getTemplateArgs(),
+ Deduced, Info);
+ }
+
+ if (Better1 == Better2)
+ return nullptr;
+
+ return Better1? PS1 : PS2;
+}
+
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ const TemplateArgument &TemplateArg,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used);
+
+/// \brief Mark the template parameters that are used by the given
+/// expression.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ const Expr *E,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ // We can deduce from a pack expansion.
+ if (const PackExpansionExpr *Expansion = dyn_cast<PackExpansionExpr>(E))
+ E = Expansion->getPattern();
+
+ // Skip through any implicit casts we added while type-checking, and any
+ // substitutions performed by template alias expansion.
+ while (1) {
+ if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
+ E = ICE->getSubExpr();
+ else if (const SubstNonTypeTemplateParmExpr *Subst =
+ dyn_cast<SubstNonTypeTemplateParmExpr>(E))
+ E = Subst->getReplacement();
+ else
+ break;
+ }
+
+ // FIXME: if !OnlyDeduced, we have to walk the whole subexpression to
+ // find other occurrences of template parameters.
+ const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E);
+ if (!DRE)
+ return;
+
+ const NonTypeTemplateParmDecl *NTTP
+ = dyn_cast<NonTypeTemplateParmDecl>(DRE->getDecl());
+ if (!NTTP)
+ return;
+
+ if (NTTP->getDepth() == Depth)
+ Used[NTTP->getIndex()] = true;
+}
+
+/// \brief Mark the template parameters that are used by the given
+/// nested name specifier.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ NestedNameSpecifier *NNS,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ if (!NNS)
+ return;
+
+ MarkUsedTemplateParameters(Ctx, NNS->getPrefix(), OnlyDeduced, Depth,
+ Used);
+ MarkUsedTemplateParameters(Ctx, QualType(NNS->getAsType(), 0),
+ OnlyDeduced, Depth, Used);
+}
+
+/// \brief Mark the template parameters that are used by the given
+/// template name.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ TemplateName Name,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ if (TemplateDecl *Template = Name.getAsTemplateDecl()) {
+ if (TemplateTemplateParmDecl *TTP
+ = dyn_cast<TemplateTemplateParmDecl>(Template)) {
+ if (TTP->getDepth() == Depth)
+ Used[TTP->getIndex()] = true;
+ }
+ return;
+ }
+
+ if (QualifiedTemplateName *QTN = Name.getAsQualifiedTemplateName())
+ MarkUsedTemplateParameters(Ctx, QTN->getQualifier(), OnlyDeduced,
+ Depth, Used);
+ if (DependentTemplateName *DTN = Name.getAsDependentTemplateName())
+ MarkUsedTemplateParameters(Ctx, DTN->getQualifier(), OnlyDeduced,
+ Depth, Used);
+}
+
+/// \brief Mark the template parameters that are used by the given
+/// type.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx, QualType T,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ if (T.isNull())
+ return;
+
+ // Non-dependent types have nothing deducible
+ if (!T->isDependentType())
+ return;
+
+ T = Ctx.getCanonicalType(T);
+ switch (T->getTypeClass()) {
+ case Type::Pointer:
+ MarkUsedTemplateParameters(Ctx,
+ cast<PointerType>(T)->getPointeeType(),
+ OnlyDeduced,
+ Depth,
+ Used);
+ break;
+
+ case Type::BlockPointer:
+ MarkUsedTemplateParameters(Ctx,
+ cast<BlockPointerType>(T)->getPointeeType(),
+ OnlyDeduced,
+ Depth,
+ Used);
+ break;
+
+ case Type::LValueReference:
+ case Type::RValueReference:
+ MarkUsedTemplateParameters(Ctx,
+ cast<ReferenceType>(T)->getPointeeType(),
+ OnlyDeduced,
+ Depth,
+ Used);
+ break;
+
+ case Type::MemberPointer: {
+ const MemberPointerType *MemPtr = cast<MemberPointerType>(T.getTypePtr());
+ MarkUsedTemplateParameters(Ctx, MemPtr->getPointeeType(), OnlyDeduced,
+ Depth, Used);
+ MarkUsedTemplateParameters(Ctx, QualType(MemPtr->getClass(), 0),
+ OnlyDeduced, Depth, Used);
+ break;
+ }
+
+ case Type::DependentSizedArray:
+ MarkUsedTemplateParameters(Ctx,
+ cast<DependentSizedArrayType>(T)->getSizeExpr(),
+ OnlyDeduced, Depth, Used);
+ // Fall through to check the element type
+
+ case Type::ConstantArray:
+ case Type::IncompleteArray:
+ MarkUsedTemplateParameters(Ctx,
+ cast<ArrayType>(T)->getElementType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::Vector:
+ case Type::ExtVector:
+ MarkUsedTemplateParameters(Ctx,
+ cast<VectorType>(T)->getElementType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::DependentSizedExtVector: {
+ const DependentSizedExtVectorType *VecType
+ = cast<DependentSizedExtVectorType>(T);
+ MarkUsedTemplateParameters(Ctx, VecType->getElementType(), OnlyDeduced,
+ Depth, Used);
+ MarkUsedTemplateParameters(Ctx, VecType->getSizeExpr(), OnlyDeduced,
+ Depth, Used);
+ break;
+ }
+
+ case Type::FunctionProto: {
+ const FunctionProtoType *Proto = cast<FunctionProtoType>(T);
+ MarkUsedTemplateParameters(Ctx, Proto->getReturnType(), OnlyDeduced, Depth,
+ Used);
+ for (unsigned I = 0, N = Proto->getNumParams(); I != N; ++I)
+ MarkUsedTemplateParameters(Ctx, Proto->getParamType(I), OnlyDeduced,
+ Depth, Used);
+ break;
+ }
+
+ case Type::TemplateTypeParm: {
+ const TemplateTypeParmType *TTP = cast<TemplateTypeParmType>(T);
+ if (TTP->getDepth() == Depth)
+ Used[TTP->getIndex()] = true;
+ break;
+ }
+
+ case Type::SubstTemplateTypeParmPack: {
+ const SubstTemplateTypeParmPackType *Subst
+ = cast<SubstTemplateTypeParmPackType>(T);
+ MarkUsedTemplateParameters(Ctx,
+ QualType(Subst->getReplacedParameter(), 0),
+ OnlyDeduced, Depth, Used);
+ MarkUsedTemplateParameters(Ctx, Subst->getArgumentPack(),
+ OnlyDeduced, Depth, Used);
+ break;
+ }
+
+ case Type::InjectedClassName:
+ T = cast<InjectedClassNameType>(T)->getInjectedSpecializationType();
+ // fall through
+
+ case Type::TemplateSpecialization: {
+ const TemplateSpecializationType *Spec
+ = cast<TemplateSpecializationType>(T);
+ MarkUsedTemplateParameters(Ctx, Spec->getTemplateName(), OnlyDeduced,
+ Depth, Used);
+
+ // C++0x [temp.deduct.type]p9:
+ // If the template argument list of P contains a pack expansion that is
+ // not the last template argument, the entire template argument list is a
+ // non-deduced context.
+ if (OnlyDeduced &&
+ hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
+ break;
+
+ for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
+ MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
+ Used);
+ break;
+ }
+
+ case Type::Complex:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<ComplexType>(T)->getElementType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::Atomic:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<AtomicType>(T)->getValueType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::DependentName:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<DependentNameType>(T)->getQualifier(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::DependentTemplateSpecialization: {
+ const DependentTemplateSpecializationType *Spec
+ = cast<DependentTemplateSpecializationType>(T);
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx, Spec->getQualifier(),
+ OnlyDeduced, Depth, Used);
+
+ // C++0x [temp.deduct.type]p9:
+ // If the template argument list of P contains a pack expansion that is not
+ // the last template argument, the entire template argument list is a
+ // non-deduced context.
+ if (OnlyDeduced &&
+ hasPackExpansionBeforeEnd(Spec->getArgs(), Spec->getNumArgs()))
+ break;
+
+ for (unsigned I = 0, N = Spec->getNumArgs(); I != N; ++I)
+ MarkUsedTemplateParameters(Ctx, Spec->getArg(I), OnlyDeduced, Depth,
+ Used);
+ break;
+ }
+
+ case Type::TypeOf:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<TypeOfType>(T)->getUnderlyingType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::TypeOfExpr:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<TypeOfExprType>(T)->getUnderlyingExpr(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::Decltype:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<DecltypeType>(T)->getUnderlyingExpr(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::UnaryTransform:
+ if (!OnlyDeduced)
+ MarkUsedTemplateParameters(Ctx,
+ cast<UnaryTransformType>(T)->getUnderlyingType(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::PackExpansion:
+ MarkUsedTemplateParameters(Ctx,
+ cast<PackExpansionType>(T)->getPattern(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case Type::Auto:
+ MarkUsedTemplateParameters(Ctx,
+ cast<AutoType>(T)->getDeducedType(),
+ OnlyDeduced, Depth, Used);
+
+ // None of these types have any template parameters in them.
+ case Type::Builtin:
+ case Type::VariableArray:
+ case Type::FunctionNoProto:
+ case Type::Record:
+ case Type::Enum:
+ case Type::ObjCInterface:
+ case Type::ObjCObject:
+ case Type::ObjCObjectPointer:
+ case Type::UnresolvedUsing:
+#define TYPE(Class, Base)
+#define ABSTRACT_TYPE(Class, Base)
+#define DEPENDENT_TYPE(Class, Base)
+#define NON_CANONICAL_TYPE(Class, Base) case Type::Class:
+#include "clang/AST/TypeNodes.def"
+ break;
+ }
+}
+
+/// \brief Mark the template parameters that are used by this
+/// template argument.
+static void
+MarkUsedTemplateParameters(ASTContext &Ctx,
+ const TemplateArgument &TemplateArg,
+ bool OnlyDeduced,
+ unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ switch (TemplateArg.getKind()) {
+ case TemplateArgument::Null:
+ case TemplateArgument::Integral:
+ case TemplateArgument::Declaration:
+ break;
+
+ case TemplateArgument::NullPtr:
+ MarkUsedTemplateParameters(Ctx, TemplateArg.getNullPtrType(), OnlyDeduced,
+ Depth, Used);
+ break;
+
+ case TemplateArgument::Type:
+ MarkUsedTemplateParameters(Ctx, TemplateArg.getAsType(), OnlyDeduced,
+ Depth, Used);
+ break;
+
+ case TemplateArgument::Template:
+ case TemplateArgument::TemplateExpansion:
+ MarkUsedTemplateParameters(Ctx,
+ TemplateArg.getAsTemplateOrTemplatePattern(),
+ OnlyDeduced, Depth, Used);
+ break;
+
+ case TemplateArgument::Expression:
+ MarkUsedTemplateParameters(Ctx, TemplateArg.getAsExpr(), OnlyDeduced,
+ Depth, Used);
+ break;
+
+ case TemplateArgument::Pack:
+ for (const auto &P : TemplateArg.pack_elements())
+ MarkUsedTemplateParameters(Ctx, P, OnlyDeduced, Depth, Used);
+ break;
+ }
+}
+
+/// \brief Mark which template parameters can be deduced from a given
+/// template argument list.
+///
+/// \param TemplateArgs the template argument list from which template
+/// parameters will be deduced.
+///
+/// \param Used a bit vector whose elements will be set to \c true
+/// to indicate when the corresponding template parameter will be
+/// deduced.
+void
+Sema::MarkUsedTemplateParameters(const TemplateArgumentList &TemplateArgs,
+ bool OnlyDeduced, unsigned Depth,
+ llvm::SmallBitVector &Used) {
+ // C++0x [temp.deduct.type]p9:
+ // If the template argument list of P contains a pack expansion that is not
+ // the last template argument, the entire template argument list is a
+ // non-deduced context.
+ if (OnlyDeduced &&
+ hasPackExpansionBeforeEnd(TemplateArgs.data(), TemplateArgs.size()))
+ return;
+
+ for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
+ ::MarkUsedTemplateParameters(Context, TemplateArgs[I], OnlyDeduced,
+ Depth, Used);
+}
+
+/// \brief Marks all of the template parameters that will be deduced by a
+/// call to the given function template.
+void Sema::MarkDeducedTemplateParameters(
+ ASTContext &Ctx, const FunctionTemplateDecl *FunctionTemplate,
+ llvm::SmallBitVector &Deduced) {
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+ Deduced.clear();
+ Deduced.resize(TemplateParams->size());
+
+ FunctionDecl *Function = FunctionTemplate->getTemplatedDecl();
+ for (unsigned I = 0, N = Function->getNumParams(); I != N; ++I)
+ ::MarkUsedTemplateParameters(Ctx, Function->getParamDecl(I)->getType(),
+ true, TemplateParams->getDepth(), Deduced);
+}
+
+bool hasDeducibleTemplateParameters(Sema &S,
+ FunctionTemplateDecl *FunctionTemplate,
+ QualType T) {
+ if (!T->isDependentType())
+ return false;
+
+ TemplateParameterList *TemplateParams
+ = FunctionTemplate->getTemplateParameters();
+ llvm::SmallBitVector Deduced(TemplateParams->size());
+ ::MarkUsedTemplateParameters(S.Context, T, true, TemplateParams->getDepth(),
+ Deduced);
+
+ return Deduced.any();
+}