aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp4604
1 files changed, 4604 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
new file mode 100644
index 000000000000..7046ab3aa35c
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGOpenMPRuntimeNVPTX.cpp
@@ -0,0 +1,4604 @@
+//===---- CGOpenMPRuntimeNVPTX.cpp - Interface to OpenMP NVPTX Runtimes ---===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This provides a class for OpenMP runtime code generation specialized to NVPTX
+// targets.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGOpenMPRuntimeNVPTX.h"
+#include "CodeGenFunction.h"
+#include "clang/AST/DeclOpenMP.h"
+#include "clang/AST/StmtOpenMP.h"
+#include "clang/AST/StmtVisitor.h"
+#include "clang/Basic/Cuda.h"
+#include "llvm/ADT/SmallPtrSet.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+namespace {
+enum OpenMPRTLFunctionNVPTX {
+ /// Call to void __kmpc_kernel_init(kmp_int32 thread_limit,
+ /// int16_t RequiresOMPRuntime);
+ OMPRTL_NVPTX__kmpc_kernel_init,
+ /// Call to void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
+ OMPRTL_NVPTX__kmpc_kernel_deinit,
+ /// Call to void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
+ /// int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
+ OMPRTL_NVPTX__kmpc_spmd_kernel_init,
+ /// Call to void __kmpc_spmd_kernel_deinit_v2(int16_t RequiresOMPRuntime);
+ OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2,
+ /// Call to void __kmpc_kernel_prepare_parallel(void
+ /// *outlined_function, int16_t
+ /// IsOMPRuntimeInitialized);
+ OMPRTL_NVPTX__kmpc_kernel_prepare_parallel,
+ /// Call to bool __kmpc_kernel_parallel(void **outlined_function,
+ /// int16_t IsOMPRuntimeInitialized);
+ OMPRTL_NVPTX__kmpc_kernel_parallel,
+ /// Call to void __kmpc_kernel_end_parallel();
+ OMPRTL_NVPTX__kmpc_kernel_end_parallel,
+ /// Call to void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
+ /// global_tid);
+ OMPRTL_NVPTX__kmpc_serialized_parallel,
+ /// Call to void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
+ /// global_tid);
+ OMPRTL_NVPTX__kmpc_end_serialized_parallel,
+ /// Call to int32_t __kmpc_shuffle_int32(int32_t element,
+ /// int16_t lane_offset, int16_t warp_size);
+ OMPRTL_NVPTX__kmpc_shuffle_int32,
+ /// Call to int64_t __kmpc_shuffle_int64(int64_t element,
+ /// int16_t lane_offset, int16_t warp_size);
+ OMPRTL_NVPTX__kmpc_shuffle_int64,
+ /// Call to __kmpc_nvptx_parallel_reduce_nowait_v2(ident_t *loc, kmp_int32
+ /// global_tid, kmp_int32 num_vars, size_t reduce_size, void* reduce_data,
+ /// void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t lane_id, int16_t
+ /// lane_offset, int16_t shortCircuit),
+ /// void (*kmp_InterWarpCopyFctPtr)(void* src, int32_t warp_num));
+ OMPRTL_NVPTX__kmpc_parallel_reduce_nowait_v2,
+ /// Call to __kmpc_nvptx_teams_reduce_nowait_simple(ident_t *loc, kmp_int32
+ /// global_tid, kmp_critical_name *lck)
+ OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_simple,
+ /// Call to __kmpc_nvptx_teams_end_reduce_nowait_simple(ident_t *loc,
+ /// kmp_int32 global_tid, kmp_critical_name *lck)
+ OMPRTL_NVPTX__kmpc_nvptx_teams_end_reduce_nowait_simple,
+ /// Call to __kmpc_nvptx_end_reduce_nowait(int32_t global_tid);
+ OMPRTL_NVPTX__kmpc_end_reduce_nowait,
+ /// Call to void __kmpc_data_sharing_init_stack();
+ OMPRTL_NVPTX__kmpc_data_sharing_init_stack,
+ /// Call to void __kmpc_data_sharing_init_stack_spmd();
+ OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd,
+ /// Call to void* __kmpc_data_sharing_coalesced_push_stack(size_t size,
+ /// int16_t UseSharedMemory);
+ OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack,
+ /// Call to void __kmpc_data_sharing_pop_stack(void *a);
+ OMPRTL_NVPTX__kmpc_data_sharing_pop_stack,
+ /// Call to void __kmpc_begin_sharing_variables(void ***args,
+ /// size_t n_args);
+ OMPRTL_NVPTX__kmpc_begin_sharing_variables,
+ /// Call to void __kmpc_end_sharing_variables();
+ OMPRTL_NVPTX__kmpc_end_sharing_variables,
+ /// Call to void __kmpc_get_shared_variables(void ***GlobalArgs)
+ OMPRTL_NVPTX__kmpc_get_shared_variables,
+ /// Call to uint16_t __kmpc_parallel_level(ident_t *loc, kmp_int32
+ /// global_tid);
+ OMPRTL_NVPTX__kmpc_parallel_level,
+ /// Call to int8_t __kmpc_is_spmd_exec_mode();
+ OMPRTL_NVPTX__kmpc_is_spmd_exec_mode,
+ /// Call to void __kmpc_get_team_static_memory(int16_t isSPMDExecutionMode,
+ /// const void *buf, size_t size, int16_t is_shared, const void **res);
+ OMPRTL_NVPTX__kmpc_get_team_static_memory,
+ /// Call to void __kmpc_restore_team_static_memory(int16_t
+ /// isSPMDExecutionMode, int16_t is_shared);
+ OMPRTL_NVPTX__kmpc_restore_team_static_memory,
+ /// Call to void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
+ OMPRTL__kmpc_barrier,
+ /// Call to void __kmpc_barrier_simple_spmd(ident_t *loc, kmp_int32
+ /// global_tid);
+ OMPRTL__kmpc_barrier_simple_spmd,
+};
+
+/// Pre(post)-action for different OpenMP constructs specialized for NVPTX.
+class NVPTXActionTy final : public PrePostActionTy {
+ llvm::Value *EnterCallee = nullptr;
+ ArrayRef<llvm::Value *> EnterArgs;
+ llvm::Value *ExitCallee = nullptr;
+ ArrayRef<llvm::Value *> ExitArgs;
+ bool Conditional = false;
+ llvm::BasicBlock *ContBlock = nullptr;
+
+public:
+ NVPTXActionTy(llvm::Value *EnterCallee, ArrayRef<llvm::Value *> EnterArgs,
+ llvm::Value *ExitCallee, ArrayRef<llvm::Value *> ExitArgs,
+ bool Conditional = false)
+ : EnterCallee(EnterCallee), EnterArgs(EnterArgs), ExitCallee(ExitCallee),
+ ExitArgs(ExitArgs), Conditional(Conditional) {}
+ void Enter(CodeGenFunction &CGF) override {
+ llvm::Value *EnterRes = CGF.EmitRuntimeCall(EnterCallee, EnterArgs);
+ if (Conditional) {
+ llvm::Value *CallBool = CGF.Builder.CreateIsNotNull(EnterRes);
+ auto *ThenBlock = CGF.createBasicBlock("omp_if.then");
+ ContBlock = CGF.createBasicBlock("omp_if.end");
+ // Generate the branch (If-stmt)
+ CGF.Builder.CreateCondBr(CallBool, ThenBlock, ContBlock);
+ CGF.EmitBlock(ThenBlock);
+ }
+ }
+ void Done(CodeGenFunction &CGF) {
+ // Emit the rest of blocks/branches
+ CGF.EmitBranch(ContBlock);
+ CGF.EmitBlock(ContBlock, true);
+ }
+ void Exit(CodeGenFunction &CGF) override {
+ CGF.EmitRuntimeCall(ExitCallee, ExitArgs);
+ }
+};
+
+/// A class to track the execution mode when codegening directives within
+/// a target region. The appropriate mode (SPMD|NON-SPMD) is set on entry
+/// to the target region and used by containing directives such as 'parallel'
+/// to emit optimized code.
+class ExecutionRuntimeModesRAII {
+private:
+ CGOpenMPRuntimeNVPTX::ExecutionMode SavedExecMode =
+ CGOpenMPRuntimeNVPTX::EM_Unknown;
+ CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode;
+ bool SavedRuntimeMode = false;
+ bool *RuntimeMode = nullptr;
+
+public:
+ /// Constructor for Non-SPMD mode.
+ ExecutionRuntimeModesRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode)
+ : ExecMode(ExecMode) {
+ SavedExecMode = ExecMode;
+ ExecMode = CGOpenMPRuntimeNVPTX::EM_NonSPMD;
+ }
+ /// Constructor for SPMD mode.
+ ExecutionRuntimeModesRAII(CGOpenMPRuntimeNVPTX::ExecutionMode &ExecMode,
+ bool &RuntimeMode, bool FullRuntimeMode)
+ : ExecMode(ExecMode), RuntimeMode(&RuntimeMode) {
+ SavedExecMode = ExecMode;
+ SavedRuntimeMode = RuntimeMode;
+ ExecMode = CGOpenMPRuntimeNVPTX::EM_SPMD;
+ RuntimeMode = FullRuntimeMode;
+ }
+ ~ExecutionRuntimeModesRAII() {
+ ExecMode = SavedExecMode;
+ if (RuntimeMode)
+ *RuntimeMode = SavedRuntimeMode;
+ }
+};
+
+/// GPU Configuration: This information can be derived from cuda registers,
+/// however, providing compile time constants helps generate more efficient
+/// code. For all practical purposes this is fine because the configuration
+/// is the same for all known NVPTX architectures.
+enum MachineConfiguration : unsigned {
+ WarpSize = 32,
+ /// Number of bits required to represent a lane identifier, which is
+ /// computed as log_2(WarpSize).
+ LaneIDBits = 5,
+ LaneIDMask = WarpSize - 1,
+
+ /// Global memory alignment for performance.
+ GlobalMemoryAlignment = 128,
+
+ /// Maximal size of the shared memory buffer.
+ SharedMemorySize = 128,
+};
+
+static const ValueDecl *getPrivateItem(const Expr *RefExpr) {
+ RefExpr = RefExpr->IgnoreParens();
+ if (const auto *ASE = dyn_cast<ArraySubscriptExpr>(RefExpr)) {
+ const Expr *Base = ASE->getBase()->IgnoreParenImpCasts();
+ while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
+ Base = TempASE->getBase()->IgnoreParenImpCasts();
+ RefExpr = Base;
+ } else if (auto *OASE = dyn_cast<OMPArraySectionExpr>(RefExpr)) {
+ const Expr *Base = OASE->getBase()->IgnoreParenImpCasts();
+ while (const auto *TempOASE = dyn_cast<OMPArraySectionExpr>(Base))
+ Base = TempOASE->getBase()->IgnoreParenImpCasts();
+ while (const auto *TempASE = dyn_cast<ArraySubscriptExpr>(Base))
+ Base = TempASE->getBase()->IgnoreParenImpCasts();
+ RefExpr = Base;
+ }
+ RefExpr = RefExpr->IgnoreParenImpCasts();
+ if (const auto *DE = dyn_cast<DeclRefExpr>(RefExpr))
+ return cast<ValueDecl>(DE->getDecl()->getCanonicalDecl());
+ const auto *ME = cast<MemberExpr>(RefExpr);
+ return cast<ValueDecl>(ME->getMemberDecl()->getCanonicalDecl());
+}
+
+typedef std::pair<CharUnits /*Align*/, const ValueDecl *> VarsDataTy;
+static bool stable_sort_comparator(const VarsDataTy P1, const VarsDataTy P2) {
+ return P1.first > P2.first;
+}
+
+static RecordDecl *buildRecordForGlobalizedVars(
+ ASTContext &C, ArrayRef<const ValueDecl *> EscapedDecls,
+ ArrayRef<const ValueDecl *> EscapedDeclsForTeams,
+ llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+ &MappedDeclsFields) {
+ if (EscapedDecls.empty() && EscapedDeclsForTeams.empty())
+ return nullptr;
+ SmallVector<VarsDataTy, 4> GlobalizedVars;
+ for (const ValueDecl *D : EscapedDecls)
+ GlobalizedVars.emplace_back(
+ CharUnits::fromQuantity(std::max(
+ C.getDeclAlign(D).getQuantity(),
+ static_cast<CharUnits::QuantityType>(GlobalMemoryAlignment))),
+ D);
+ for (const ValueDecl *D : EscapedDeclsForTeams)
+ GlobalizedVars.emplace_back(C.getDeclAlign(D), D);
+ std::stable_sort(GlobalizedVars.begin(), GlobalizedVars.end(),
+ stable_sort_comparator);
+ // Build struct _globalized_locals_ty {
+ // /* globalized vars */[WarSize] align (max(decl_align,
+ // GlobalMemoryAlignment))
+ // /* globalized vars */ for EscapedDeclsForTeams
+ // };
+ RecordDecl *GlobalizedRD = C.buildImplicitRecord("_globalized_locals_ty");
+ GlobalizedRD->startDefinition();
+ llvm::SmallPtrSet<const ValueDecl *, 16> SingleEscaped(
+ EscapedDeclsForTeams.begin(), EscapedDeclsForTeams.end());
+ for (const auto &Pair : GlobalizedVars) {
+ const ValueDecl *VD = Pair.second;
+ QualType Type = VD->getType();
+ if (Type->isLValueReferenceType())
+ Type = C.getPointerType(Type.getNonReferenceType());
+ else
+ Type = Type.getNonReferenceType();
+ SourceLocation Loc = VD->getLocation();
+ FieldDecl *Field;
+ if (SingleEscaped.count(VD)) {
+ Field = FieldDecl::Create(
+ C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
+ C.getTrivialTypeSourceInfo(Type, SourceLocation()),
+ /*BW=*/nullptr, /*Mutable=*/false,
+ /*InitStyle=*/ICIS_NoInit);
+ Field->setAccess(AS_public);
+ if (VD->hasAttrs()) {
+ for (specific_attr_iterator<AlignedAttr> I(VD->getAttrs().begin()),
+ E(VD->getAttrs().end());
+ I != E; ++I)
+ Field->addAttr(*I);
+ }
+ } else {
+ llvm::APInt ArraySize(32, WarpSize);
+ Type = C.getConstantArrayType(Type, ArraySize, ArrayType::Normal, 0);
+ Field = FieldDecl::Create(
+ C, GlobalizedRD, Loc, Loc, VD->getIdentifier(), Type,
+ C.getTrivialTypeSourceInfo(Type, SourceLocation()),
+ /*BW=*/nullptr, /*Mutable=*/false,
+ /*InitStyle=*/ICIS_NoInit);
+ Field->setAccess(AS_public);
+ llvm::APInt Align(32, std::max(C.getDeclAlign(VD).getQuantity(),
+ static_cast<CharUnits::QuantityType>(
+ GlobalMemoryAlignment)));
+ Field->addAttr(AlignedAttr::CreateImplicit(
+ C, AlignedAttr::GNU_aligned, /*IsAlignmentExpr=*/true,
+ IntegerLiteral::Create(C, Align,
+ C.getIntTypeForBitwidth(32, /*Signed=*/0),
+ SourceLocation())));
+ }
+ GlobalizedRD->addDecl(Field);
+ MappedDeclsFields.try_emplace(VD, Field);
+ }
+ GlobalizedRD->completeDefinition();
+ return GlobalizedRD;
+}
+
+/// Get the list of variables that can escape their declaration context.
+class CheckVarsEscapingDeclContext final
+ : public ConstStmtVisitor<CheckVarsEscapingDeclContext> {
+ CodeGenFunction &CGF;
+ llvm::SetVector<const ValueDecl *> EscapedDecls;
+ llvm::SetVector<const ValueDecl *> EscapedVariableLengthDecls;
+ llvm::SmallPtrSet<const Decl *, 4> EscapedParameters;
+ RecordDecl *GlobalizedRD = nullptr;
+ llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
+ bool AllEscaped = false;
+ bool IsForCombinedParallelRegion = false;
+
+ void markAsEscaped(const ValueDecl *VD) {
+ // Do not globalize declare target variables.
+ if (!isa<VarDecl>(VD) ||
+ OMPDeclareTargetDeclAttr::isDeclareTargetDeclaration(VD))
+ return;
+ VD = cast<ValueDecl>(VD->getCanonicalDecl());
+ // Variables captured by value must be globalized.
+ if (auto *CSI = CGF.CapturedStmtInfo) {
+ if (const FieldDecl *FD = CSI->lookup(cast<VarDecl>(VD))) {
+ // Check if need to capture the variable that was already captured by
+ // value in the outer region.
+ if (!IsForCombinedParallelRegion) {
+ if (!FD->hasAttrs())
+ return;
+ const auto *Attr = FD->getAttr<OMPCaptureKindAttr>();
+ if (!Attr)
+ return;
+ if (((Attr->getCaptureKind() != OMPC_map) &&
+ !isOpenMPPrivate(
+ static_cast<OpenMPClauseKind>(Attr->getCaptureKind()))) ||
+ ((Attr->getCaptureKind() == OMPC_map) &&
+ !FD->getType()->isAnyPointerType()))
+ return;
+ }
+ if (!FD->getType()->isReferenceType()) {
+ assert(!VD->getType()->isVariablyModifiedType() &&
+ "Parameter captured by value with variably modified type");
+ EscapedParameters.insert(VD);
+ } else if (!IsForCombinedParallelRegion) {
+ return;
+ }
+ }
+ }
+ if ((!CGF.CapturedStmtInfo ||
+ (IsForCombinedParallelRegion && CGF.CapturedStmtInfo)) &&
+ VD->getType()->isReferenceType())
+ // Do not globalize variables with reference type.
+ return;
+ if (VD->getType()->isVariablyModifiedType())
+ EscapedVariableLengthDecls.insert(VD);
+ else
+ EscapedDecls.insert(VD);
+ }
+
+ void VisitValueDecl(const ValueDecl *VD) {
+ if (VD->getType()->isLValueReferenceType())
+ markAsEscaped(VD);
+ if (const auto *VarD = dyn_cast<VarDecl>(VD)) {
+ if (!isa<ParmVarDecl>(VarD) && VarD->hasInit()) {
+ const bool SavedAllEscaped = AllEscaped;
+ AllEscaped = VD->getType()->isLValueReferenceType();
+ Visit(VarD->getInit());
+ AllEscaped = SavedAllEscaped;
+ }
+ }
+ }
+ void VisitOpenMPCapturedStmt(const CapturedStmt *S,
+ ArrayRef<OMPClause *> Clauses,
+ bool IsCombinedParallelRegion) {
+ if (!S)
+ return;
+ for (const CapturedStmt::Capture &C : S->captures()) {
+ if (C.capturesVariable() && !C.capturesVariableByCopy()) {
+ const ValueDecl *VD = C.getCapturedVar();
+ bool SavedIsForCombinedParallelRegion = IsForCombinedParallelRegion;
+ if (IsCombinedParallelRegion) {
+ // Check if the variable is privatized in the combined construct and
+ // those private copies must be shared in the inner parallel
+ // directive.
+ IsForCombinedParallelRegion = false;
+ for (const OMPClause *C : Clauses) {
+ if (!isOpenMPPrivate(C->getClauseKind()) ||
+ C->getClauseKind() == OMPC_reduction ||
+ C->getClauseKind() == OMPC_linear ||
+ C->getClauseKind() == OMPC_private)
+ continue;
+ ArrayRef<const Expr *> Vars;
+ if (const auto *PC = dyn_cast<OMPFirstprivateClause>(C))
+ Vars = PC->getVarRefs();
+ else if (const auto *PC = dyn_cast<OMPLastprivateClause>(C))
+ Vars = PC->getVarRefs();
+ else
+ llvm_unreachable("Unexpected clause.");
+ for (const auto *E : Vars) {
+ const Decl *D =
+ cast<DeclRefExpr>(E)->getDecl()->getCanonicalDecl();
+ if (D == VD->getCanonicalDecl()) {
+ IsForCombinedParallelRegion = true;
+ break;
+ }
+ }
+ if (IsForCombinedParallelRegion)
+ break;
+ }
+ }
+ markAsEscaped(VD);
+ if (isa<OMPCapturedExprDecl>(VD))
+ VisitValueDecl(VD);
+ IsForCombinedParallelRegion = SavedIsForCombinedParallelRegion;
+ }
+ }
+ }
+
+ void buildRecordForGlobalizedVars(bool IsInTTDRegion) {
+ assert(!GlobalizedRD &&
+ "Record for globalized variables is built already.");
+ ArrayRef<const ValueDecl *> EscapedDeclsForParallel, EscapedDeclsForTeams;
+ if (IsInTTDRegion)
+ EscapedDeclsForTeams = EscapedDecls.getArrayRef();
+ else
+ EscapedDeclsForParallel = EscapedDecls.getArrayRef();
+ GlobalizedRD = ::buildRecordForGlobalizedVars(
+ CGF.getContext(), EscapedDeclsForParallel, EscapedDeclsForTeams,
+ MappedDeclsFields);
+ }
+
+public:
+ CheckVarsEscapingDeclContext(CodeGenFunction &CGF,
+ ArrayRef<const ValueDecl *> TeamsReductions)
+ : CGF(CGF), EscapedDecls(TeamsReductions.begin(), TeamsReductions.end()) {
+ }
+ virtual ~CheckVarsEscapingDeclContext() = default;
+ void VisitDeclStmt(const DeclStmt *S) {
+ if (!S)
+ return;
+ for (const Decl *D : S->decls())
+ if (const auto *VD = dyn_cast_or_null<ValueDecl>(D))
+ VisitValueDecl(VD);
+ }
+ void VisitOMPExecutableDirective(const OMPExecutableDirective *D) {
+ if (!D)
+ return;
+ if (!D->hasAssociatedStmt())
+ return;
+ if (const auto *S =
+ dyn_cast_or_null<CapturedStmt>(D->getAssociatedStmt())) {
+ // Do not analyze directives that do not actually require capturing,
+ // like `omp for` or `omp simd` directives.
+ llvm::SmallVector<OpenMPDirectiveKind, 4> CaptureRegions;
+ getOpenMPCaptureRegions(CaptureRegions, D->getDirectiveKind());
+ if (CaptureRegions.size() == 1 && CaptureRegions.back() == OMPD_unknown) {
+ VisitStmt(S->getCapturedStmt());
+ return;
+ }
+ VisitOpenMPCapturedStmt(
+ S, D->clauses(),
+ CaptureRegions.back() == OMPD_parallel &&
+ isOpenMPDistributeDirective(D->getDirectiveKind()));
+ }
+ }
+ void VisitCapturedStmt(const CapturedStmt *S) {
+ if (!S)
+ return;
+ for (const CapturedStmt::Capture &C : S->captures()) {
+ if (C.capturesVariable() && !C.capturesVariableByCopy()) {
+ const ValueDecl *VD = C.getCapturedVar();
+ markAsEscaped(VD);
+ if (isa<OMPCapturedExprDecl>(VD))
+ VisitValueDecl(VD);
+ }
+ }
+ }
+ void VisitLambdaExpr(const LambdaExpr *E) {
+ if (!E)
+ return;
+ for (const LambdaCapture &C : E->captures()) {
+ if (C.capturesVariable()) {
+ if (C.getCaptureKind() == LCK_ByRef) {
+ const ValueDecl *VD = C.getCapturedVar();
+ markAsEscaped(VD);
+ if (E->isInitCapture(&C) || isa<OMPCapturedExprDecl>(VD))
+ VisitValueDecl(VD);
+ }
+ }
+ }
+ }
+ void VisitBlockExpr(const BlockExpr *E) {
+ if (!E)
+ return;
+ for (const BlockDecl::Capture &C : E->getBlockDecl()->captures()) {
+ if (C.isByRef()) {
+ const VarDecl *VD = C.getVariable();
+ markAsEscaped(VD);
+ if (isa<OMPCapturedExprDecl>(VD) || VD->isInitCapture())
+ VisitValueDecl(VD);
+ }
+ }
+ }
+ void VisitCallExpr(const CallExpr *E) {
+ if (!E)
+ return;
+ for (const Expr *Arg : E->arguments()) {
+ if (!Arg)
+ continue;
+ if (Arg->isLValue()) {
+ const bool SavedAllEscaped = AllEscaped;
+ AllEscaped = true;
+ Visit(Arg);
+ AllEscaped = SavedAllEscaped;
+ } else {
+ Visit(Arg);
+ }
+ }
+ Visit(E->getCallee());
+ }
+ void VisitDeclRefExpr(const DeclRefExpr *E) {
+ if (!E)
+ return;
+ const ValueDecl *VD = E->getDecl();
+ if (AllEscaped)
+ markAsEscaped(VD);
+ if (isa<OMPCapturedExprDecl>(VD))
+ VisitValueDecl(VD);
+ else if (const auto *VarD = dyn_cast<VarDecl>(VD))
+ if (VarD->isInitCapture())
+ VisitValueDecl(VD);
+ }
+ void VisitUnaryOperator(const UnaryOperator *E) {
+ if (!E)
+ return;
+ if (E->getOpcode() == UO_AddrOf) {
+ const bool SavedAllEscaped = AllEscaped;
+ AllEscaped = true;
+ Visit(E->getSubExpr());
+ AllEscaped = SavedAllEscaped;
+ } else {
+ Visit(E->getSubExpr());
+ }
+ }
+ void VisitImplicitCastExpr(const ImplicitCastExpr *E) {
+ if (!E)
+ return;
+ if (E->getCastKind() == CK_ArrayToPointerDecay) {
+ const bool SavedAllEscaped = AllEscaped;
+ AllEscaped = true;
+ Visit(E->getSubExpr());
+ AllEscaped = SavedAllEscaped;
+ } else {
+ Visit(E->getSubExpr());
+ }
+ }
+ void VisitExpr(const Expr *E) {
+ if (!E)
+ return;
+ bool SavedAllEscaped = AllEscaped;
+ if (!E->isLValue())
+ AllEscaped = false;
+ for (const Stmt *Child : E->children())
+ if (Child)
+ Visit(Child);
+ AllEscaped = SavedAllEscaped;
+ }
+ void VisitStmt(const Stmt *S) {
+ if (!S)
+ return;
+ for (const Stmt *Child : S->children())
+ if (Child)
+ Visit(Child);
+ }
+
+ /// Returns the record that handles all the escaped local variables and used
+ /// instead of their original storage.
+ const RecordDecl *getGlobalizedRecord(bool IsInTTDRegion) {
+ if (!GlobalizedRD)
+ buildRecordForGlobalizedVars(IsInTTDRegion);
+ return GlobalizedRD;
+ }
+
+ /// Returns the field in the globalized record for the escaped variable.
+ const FieldDecl *getFieldForGlobalizedVar(const ValueDecl *VD) const {
+ assert(GlobalizedRD &&
+ "Record for globalized variables must be generated already.");
+ auto I = MappedDeclsFields.find(VD);
+ if (I == MappedDeclsFields.end())
+ return nullptr;
+ return I->getSecond();
+ }
+
+ /// Returns the list of the escaped local variables/parameters.
+ ArrayRef<const ValueDecl *> getEscapedDecls() const {
+ return EscapedDecls.getArrayRef();
+ }
+
+ /// Checks if the escaped local variable is actually a parameter passed by
+ /// value.
+ const llvm::SmallPtrSetImpl<const Decl *> &getEscapedParameters() const {
+ return EscapedParameters;
+ }
+
+ /// Returns the list of the escaped variables with the variably modified
+ /// types.
+ ArrayRef<const ValueDecl *> getEscapedVariableLengthDecls() const {
+ return EscapedVariableLengthDecls.getArrayRef();
+ }
+};
+} // anonymous namespace
+
+/// Get the GPU warp size.
+static llvm::Value *getNVPTXWarpSize(CodeGenFunction &CGF) {
+ return CGF.EmitRuntimeCall(
+ llvm::Intrinsic::getDeclaration(
+ &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_warpsize),
+ "nvptx_warp_size");
+}
+
+/// Get the id of the current thread on the GPU.
+static llvm::Value *getNVPTXThreadID(CodeGenFunction &CGF) {
+ return CGF.EmitRuntimeCall(
+ llvm::Intrinsic::getDeclaration(
+ &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_tid_x),
+ "nvptx_tid");
+}
+
+/// Get the id of the warp in the block.
+/// We assume that the warp size is 32, which is always the case
+/// on the NVPTX device, to generate more efficient code.
+static llvm::Value *getNVPTXWarpID(CodeGenFunction &CGF) {
+ CGBuilderTy &Bld = CGF.Builder;
+ return Bld.CreateAShr(getNVPTXThreadID(CGF), LaneIDBits, "nvptx_warp_id");
+}
+
+/// Get the id of the current lane in the Warp.
+/// We assume that the warp size is 32, which is always the case
+/// on the NVPTX device, to generate more efficient code.
+static llvm::Value *getNVPTXLaneID(CodeGenFunction &CGF) {
+ CGBuilderTy &Bld = CGF.Builder;
+ return Bld.CreateAnd(getNVPTXThreadID(CGF), Bld.getInt32(LaneIDMask),
+ "nvptx_lane_id");
+}
+
+/// Get the maximum number of threads in a block of the GPU.
+static llvm::Value *getNVPTXNumThreads(CodeGenFunction &CGF) {
+ return CGF.EmitRuntimeCall(
+ llvm::Intrinsic::getDeclaration(
+ &CGF.CGM.getModule(), llvm::Intrinsic::nvvm_read_ptx_sreg_ntid_x),
+ "nvptx_num_threads");
+}
+
+/// Get the value of the thread_limit clause in the teams directive.
+/// For the 'generic' execution mode, the runtime encodes thread_limit in
+/// the launch parameters, always starting thread_limit+warpSize threads per
+/// CTA. The threads in the last warp are reserved for master execution.
+/// For the 'spmd' execution mode, all threads in a CTA are part of the team.
+static llvm::Value *getThreadLimit(CodeGenFunction &CGF,
+ bool IsInSPMDExecutionMode = false) {
+ CGBuilderTy &Bld = CGF.Builder;
+ return IsInSPMDExecutionMode
+ ? getNVPTXNumThreads(CGF)
+ : Bld.CreateNUWSub(getNVPTXNumThreads(CGF), getNVPTXWarpSize(CGF),
+ "thread_limit");
+}
+
+/// Get the thread id of the OMP master thread.
+/// The master thread id is the first thread (lane) of the last warp in the
+/// GPU block. Warp size is assumed to be some power of 2.
+/// Thread id is 0 indexed.
+/// E.g: If NumThreads is 33, master id is 32.
+/// If NumThreads is 64, master id is 32.
+/// If NumThreads is 1024, master id is 992.
+static llvm::Value *getMasterThreadID(CodeGenFunction &CGF) {
+ CGBuilderTy &Bld = CGF.Builder;
+ llvm::Value *NumThreads = getNVPTXNumThreads(CGF);
+
+ // We assume that the warp size is a power of 2.
+ llvm::Value *Mask = Bld.CreateNUWSub(getNVPTXWarpSize(CGF), Bld.getInt32(1));
+
+ return Bld.CreateAnd(Bld.CreateNUWSub(NumThreads, Bld.getInt32(1)),
+ Bld.CreateNot(Mask), "master_tid");
+}
+
+CGOpenMPRuntimeNVPTX::WorkerFunctionState::WorkerFunctionState(
+ CodeGenModule &CGM, SourceLocation Loc)
+ : WorkerFn(nullptr), CGFI(CGM.getTypes().arrangeNullaryFunction()),
+ Loc(Loc) {
+ createWorkerFunction(CGM);
+}
+
+void CGOpenMPRuntimeNVPTX::WorkerFunctionState::createWorkerFunction(
+ CodeGenModule &CGM) {
+ // Create an worker function with no arguments.
+
+ WorkerFn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ /*placeholder=*/"_worker", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), WorkerFn, CGFI);
+ WorkerFn->setDoesNotRecurse();
+}
+
+CGOpenMPRuntimeNVPTX::ExecutionMode
+CGOpenMPRuntimeNVPTX::getExecutionMode() const {
+ return CurrentExecutionMode;
+}
+
+static CGOpenMPRuntimeNVPTX::DataSharingMode
+getDataSharingMode(CodeGenModule &CGM) {
+ return CGM.getLangOpts().OpenMPCUDAMode ? CGOpenMPRuntimeNVPTX::CUDA
+ : CGOpenMPRuntimeNVPTX::Generic;
+}
+
+/// Checks if the expression is constant or does not have non-trivial function
+/// calls.
+static bool isTrivial(ASTContext &Ctx, const Expr * E) {
+ // We can skip constant expressions.
+ // We can skip expressions with trivial calls or simple expressions.
+ return (E->isEvaluatable(Ctx, Expr::SE_AllowUndefinedBehavior) ||
+ !E->hasNonTrivialCall(Ctx)) &&
+ !E->HasSideEffects(Ctx, /*IncludePossibleEffects=*/true);
+}
+
+/// Checks if the \p Body is the \a CompoundStmt and returns its child statement
+/// iff there is only one that is not evaluatable at the compile time.
+static const Stmt *getSingleCompoundChild(ASTContext &Ctx, const Stmt *Body) {
+ if (const auto *C = dyn_cast<CompoundStmt>(Body)) {
+ const Stmt *Child = nullptr;
+ for (const Stmt *S : C->body()) {
+ if (const auto *E = dyn_cast<Expr>(S)) {
+ if (isTrivial(Ctx, E))
+ continue;
+ }
+ // Some of the statements can be ignored.
+ if (isa<AsmStmt>(S) || isa<NullStmt>(S) || isa<OMPFlushDirective>(S) ||
+ isa<OMPBarrierDirective>(S) || isa<OMPTaskyieldDirective>(S))
+ continue;
+ // Analyze declarations.
+ if (const auto *DS = dyn_cast<DeclStmt>(S)) {
+ if (llvm::all_of(DS->decls(), [&Ctx](const Decl *D) {
+ if (isa<EmptyDecl>(D) || isa<DeclContext>(D) ||
+ isa<TypeDecl>(D) || isa<PragmaCommentDecl>(D) ||
+ isa<PragmaDetectMismatchDecl>(D) || isa<UsingDecl>(D) ||
+ isa<UsingDirectiveDecl>(D) ||
+ isa<OMPDeclareReductionDecl>(D) ||
+ isa<OMPThreadPrivateDecl>(D))
+ return true;
+ const auto *VD = dyn_cast<VarDecl>(D);
+ if (!VD)
+ return false;
+ return VD->isConstexpr() ||
+ ((VD->getType().isTrivialType(Ctx) ||
+ VD->getType()->isReferenceType()) &&
+ (!VD->hasInit() || isTrivial(Ctx, VD->getInit())));
+ }))
+ continue;
+ }
+ // Found multiple children - cannot get the one child only.
+ if (Child)
+ return Body;
+ Child = S;
+ }
+ if (Child)
+ return Child;
+ }
+ return Body;
+}
+
+/// Check if the parallel directive has an 'if' clause with non-constant or
+/// false condition. Also, check if the number of threads is strictly specified
+/// and run those directives in non-SPMD mode.
+static bool hasParallelIfNumThreadsClause(ASTContext &Ctx,
+ const OMPExecutableDirective &D) {
+ if (D.hasClausesOfKind<OMPNumThreadsClause>())
+ return true;
+ for (const auto *C : D.getClausesOfKind<OMPIfClause>()) {
+ OpenMPDirectiveKind NameModifier = C->getNameModifier();
+ if (NameModifier != OMPD_parallel && NameModifier != OMPD_unknown)
+ continue;
+ const Expr *Cond = C->getCondition();
+ bool Result;
+ if (!Cond->EvaluateAsBooleanCondition(Result, Ctx) || !Result)
+ return true;
+ }
+ return false;
+}
+
+/// Check for inner (nested) SPMD construct, if any
+static bool hasNestedSPMDDirective(ASTContext &Ctx,
+ const OMPExecutableDirective &D) {
+ const auto *CS = D.getInnermostCapturedStmt();
+ const auto *Body =
+ CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
+ const Stmt *ChildStmt = getSingleCompoundChild(Ctx, Body);
+
+ if (const auto *NestedDir = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
+ OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
+ switch (D.getDirectiveKind()) {
+ case OMPD_target:
+ if (isOpenMPParallelDirective(DKind) &&
+ !hasParallelIfNumThreadsClause(Ctx, *NestedDir))
+ return true;
+ if (DKind == OMPD_teams) {
+ Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true);
+ if (!Body)
+ return false;
+ ChildStmt = getSingleCompoundChild(Ctx, Body);
+ if (const auto *NND = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
+ DKind = NND->getDirectiveKind();
+ if (isOpenMPParallelDirective(DKind) &&
+ !hasParallelIfNumThreadsClause(Ctx, *NND))
+ return true;
+ }
+ }
+ return false;
+ case OMPD_target_teams:
+ return isOpenMPParallelDirective(DKind) &&
+ !hasParallelIfNumThreadsClause(Ctx, *NestedDir);
+ case OMPD_target_simd:
+ case OMPD_target_parallel:
+ case OMPD_target_parallel_for:
+ case OMPD_target_parallel_for_simd:
+ case OMPD_target_teams_distribute:
+ case OMPD_target_teams_distribute_simd:
+ case OMPD_target_teams_distribute_parallel_for:
+ case OMPD_target_teams_distribute_parallel_for_simd:
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_target_exit_data:
+ case OMPD_target_enter_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_target_update:
+ case OMPD_declare_simd:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ llvm_unreachable("Unexpected directive.");
+ }
+ }
+
+ return false;
+}
+
+static bool supportsSPMDExecutionMode(ASTContext &Ctx,
+ const OMPExecutableDirective &D) {
+ OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
+ switch (DirectiveKind) {
+ case OMPD_target:
+ case OMPD_target_teams:
+ return hasNestedSPMDDirective(Ctx, D);
+ case OMPD_target_parallel:
+ case OMPD_target_parallel_for:
+ case OMPD_target_parallel_for_simd:
+ case OMPD_target_teams_distribute_parallel_for:
+ case OMPD_target_teams_distribute_parallel_for_simd:
+ return !hasParallelIfNumThreadsClause(Ctx, D);
+ case OMPD_target_simd:
+ case OMPD_target_teams_distribute:
+ case OMPD_target_teams_distribute_simd:
+ return false;
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_target_exit_data:
+ case OMPD_target_enter_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_target_update:
+ case OMPD_declare_simd:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ break;
+ }
+ llvm_unreachable(
+ "Unknown programming model for OpenMP directive on NVPTX target.");
+}
+
+/// Check if the directive is loops based and has schedule clause at all or has
+/// static scheduling.
+static bool hasStaticScheduling(const OMPExecutableDirective &D) {
+ assert(isOpenMPWorksharingDirective(D.getDirectiveKind()) &&
+ isOpenMPLoopDirective(D.getDirectiveKind()) &&
+ "Expected loop-based directive.");
+ return !D.hasClausesOfKind<OMPOrderedClause>() &&
+ (!D.hasClausesOfKind<OMPScheduleClause>() ||
+ llvm::any_of(D.getClausesOfKind<OMPScheduleClause>(),
+ [](const OMPScheduleClause *C) {
+ return C->getScheduleKind() == OMPC_SCHEDULE_static;
+ }));
+}
+
+/// Check for inner (nested) lightweight runtime construct, if any
+static bool hasNestedLightweightDirective(ASTContext &Ctx,
+ const OMPExecutableDirective &D) {
+ assert(supportsSPMDExecutionMode(Ctx, D) && "Expected SPMD mode directive.");
+ const auto *CS = D.getInnermostCapturedStmt();
+ const auto *Body =
+ CS->getCapturedStmt()->IgnoreContainers(/*IgnoreCaptured=*/true);
+ const Stmt *ChildStmt = getSingleCompoundChild(Ctx, Body);
+
+ if (const auto *NestedDir = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
+ OpenMPDirectiveKind DKind = NestedDir->getDirectiveKind();
+ switch (D.getDirectiveKind()) {
+ case OMPD_target:
+ if (isOpenMPParallelDirective(DKind) &&
+ isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
+ hasStaticScheduling(*NestedDir))
+ return true;
+ if (DKind == OMPD_parallel) {
+ Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true);
+ if (!Body)
+ return false;
+ ChildStmt = getSingleCompoundChild(Ctx, Body);
+ if (const auto *NND = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
+ DKind = NND->getDirectiveKind();
+ if (isOpenMPWorksharingDirective(DKind) &&
+ isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
+ return true;
+ }
+ } else if (DKind == OMPD_teams) {
+ Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true);
+ if (!Body)
+ return false;
+ ChildStmt = getSingleCompoundChild(Ctx, Body);
+ if (const auto *NND = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
+ DKind = NND->getDirectiveKind();
+ if (isOpenMPParallelDirective(DKind) &&
+ isOpenMPWorksharingDirective(DKind) &&
+ isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
+ return true;
+ if (DKind == OMPD_parallel) {
+ Body = NND->getInnermostCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true);
+ if (!Body)
+ return false;
+ ChildStmt = getSingleCompoundChild(Ctx, Body);
+ if (const auto *NND = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
+ DKind = NND->getDirectiveKind();
+ if (isOpenMPWorksharingDirective(DKind) &&
+ isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
+ return true;
+ }
+ }
+ }
+ }
+ return false;
+ case OMPD_target_teams:
+ if (isOpenMPParallelDirective(DKind) &&
+ isOpenMPWorksharingDirective(DKind) && isOpenMPLoopDirective(DKind) &&
+ hasStaticScheduling(*NestedDir))
+ return true;
+ if (DKind == OMPD_parallel) {
+ Body = NestedDir->getInnermostCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true);
+ if (!Body)
+ return false;
+ ChildStmt = getSingleCompoundChild(Ctx, Body);
+ if (const auto *NND = dyn_cast<OMPExecutableDirective>(ChildStmt)) {
+ DKind = NND->getDirectiveKind();
+ if (isOpenMPWorksharingDirective(DKind) &&
+ isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NND))
+ return true;
+ }
+ }
+ return false;
+ case OMPD_target_parallel:
+ return isOpenMPWorksharingDirective(DKind) &&
+ isOpenMPLoopDirective(DKind) && hasStaticScheduling(*NestedDir);
+ case OMPD_target_teams_distribute:
+ case OMPD_target_simd:
+ case OMPD_target_parallel_for:
+ case OMPD_target_parallel_for_simd:
+ case OMPD_target_teams_distribute_simd:
+ case OMPD_target_teams_distribute_parallel_for:
+ case OMPD_target_teams_distribute_parallel_for_simd:
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_target_exit_data:
+ case OMPD_target_enter_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_target_update:
+ case OMPD_declare_simd:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ llvm_unreachable("Unexpected directive.");
+ }
+ }
+
+ return false;
+}
+
+/// Checks if the construct supports lightweight runtime. It must be SPMD
+/// construct + inner loop-based construct with static scheduling.
+static bool supportsLightweightRuntime(ASTContext &Ctx,
+ const OMPExecutableDirective &D) {
+ if (!supportsSPMDExecutionMode(Ctx, D))
+ return false;
+ OpenMPDirectiveKind DirectiveKind = D.getDirectiveKind();
+ switch (DirectiveKind) {
+ case OMPD_target:
+ case OMPD_target_teams:
+ case OMPD_target_parallel:
+ return hasNestedLightweightDirective(Ctx, D);
+ case OMPD_target_parallel_for:
+ case OMPD_target_parallel_for_simd:
+ case OMPD_target_teams_distribute_parallel_for:
+ case OMPD_target_teams_distribute_parallel_for_simd:
+ // (Last|First)-privates must be shared in parallel region.
+ return hasStaticScheduling(D);
+ case OMPD_target_simd:
+ case OMPD_target_teams_distribute:
+ case OMPD_target_teams_distribute_simd:
+ return false;
+ case OMPD_parallel:
+ case OMPD_for:
+ case OMPD_parallel_for:
+ case OMPD_parallel_sections:
+ case OMPD_for_simd:
+ case OMPD_parallel_for_simd:
+ case OMPD_cancel:
+ case OMPD_cancellation_point:
+ case OMPD_ordered:
+ case OMPD_threadprivate:
+ case OMPD_task:
+ case OMPD_simd:
+ case OMPD_sections:
+ case OMPD_section:
+ case OMPD_single:
+ case OMPD_master:
+ case OMPD_critical:
+ case OMPD_taskyield:
+ case OMPD_barrier:
+ case OMPD_taskwait:
+ case OMPD_taskgroup:
+ case OMPD_atomic:
+ case OMPD_flush:
+ case OMPD_teams:
+ case OMPD_target_data:
+ case OMPD_target_exit_data:
+ case OMPD_target_enter_data:
+ case OMPD_distribute:
+ case OMPD_distribute_simd:
+ case OMPD_distribute_parallel_for:
+ case OMPD_distribute_parallel_for_simd:
+ case OMPD_teams_distribute:
+ case OMPD_teams_distribute_simd:
+ case OMPD_teams_distribute_parallel_for:
+ case OMPD_teams_distribute_parallel_for_simd:
+ case OMPD_target_update:
+ case OMPD_declare_simd:
+ case OMPD_declare_target:
+ case OMPD_end_declare_target:
+ case OMPD_declare_reduction:
+ case OMPD_taskloop:
+ case OMPD_taskloop_simd:
+ case OMPD_requires:
+ case OMPD_unknown:
+ break;
+ }
+ llvm_unreachable(
+ "Unknown programming model for OpenMP directive on NVPTX target.");
+}
+
+void CGOpenMPRuntimeNVPTX::emitNonSPMDKernel(const OMPExecutableDirective &D,
+ StringRef ParentName,
+ llvm::Function *&OutlinedFn,
+ llvm::Constant *&OutlinedFnID,
+ bool IsOffloadEntry,
+ const RegionCodeGenTy &CodeGen) {
+ ExecutionRuntimeModesRAII ModeRAII(CurrentExecutionMode);
+ EntryFunctionState EST;
+ WorkerFunctionState WST(CGM, D.getBeginLoc());
+ Work.clear();
+ WrapperFunctionsMap.clear();
+
+ // Emit target region as a standalone region.
+ class NVPTXPrePostActionTy : public PrePostActionTy {
+ CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
+ CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST;
+
+ public:
+ NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
+ CGOpenMPRuntimeNVPTX::WorkerFunctionState &WST)
+ : EST(EST), WST(WST) {}
+ void Enter(CodeGenFunction &CGF) override {
+ auto &RT =
+ static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
+ RT.emitNonSPMDEntryHeader(CGF, EST, WST);
+ // Skip target region initialization.
+ RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
+ }
+ void Exit(CodeGenFunction &CGF) override {
+ auto &RT =
+ static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
+ RT.clearLocThreadIdInsertPt(CGF);
+ RT.emitNonSPMDEntryFooter(CGF, EST);
+ }
+ } Action(EST, WST);
+ CodeGen.setAction(Action);
+ IsInTTDRegion = true;
+ // Reserve place for the globalized memory.
+ GlobalizedRecords.emplace_back();
+ if (!KernelStaticGlobalized) {
+ KernelStaticGlobalized = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
+ llvm::GlobalValue::InternalLinkage,
+ llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
+ "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
+ llvm::GlobalValue::NotThreadLocal,
+ CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
+ }
+ emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
+ IsOffloadEntry, CodeGen);
+ IsInTTDRegion = false;
+
+ // Now change the name of the worker function to correspond to this target
+ // region's entry function.
+ WST.WorkerFn->setName(Twine(OutlinedFn->getName(), "_worker"));
+
+ // Create the worker function
+ emitWorkerFunction(WST);
+}
+
+// Setup NVPTX threads for master-worker OpenMP scheme.
+void CGOpenMPRuntimeNVPTX::emitNonSPMDEntryHeader(CodeGenFunction &CGF,
+ EntryFunctionState &EST,
+ WorkerFunctionState &WST) {
+ CGBuilderTy &Bld = CGF.Builder;
+
+ llvm::BasicBlock *WorkerBB = CGF.createBasicBlock(".worker");
+ llvm::BasicBlock *MasterCheckBB = CGF.createBasicBlock(".mastercheck");
+ llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
+ EST.ExitBB = CGF.createBasicBlock(".exit");
+
+ llvm::Value *IsWorker =
+ Bld.CreateICmpULT(getNVPTXThreadID(CGF), getThreadLimit(CGF));
+ Bld.CreateCondBr(IsWorker, WorkerBB, MasterCheckBB);
+
+ CGF.EmitBlock(WorkerBB);
+ emitCall(CGF, WST.Loc, WST.WorkerFn);
+ CGF.EmitBranch(EST.ExitBB);
+
+ CGF.EmitBlock(MasterCheckBB);
+ llvm::Value *IsMaster =
+ Bld.CreateICmpEQ(getNVPTXThreadID(CGF), getMasterThreadID(CGF));
+ Bld.CreateCondBr(IsMaster, MasterBB, EST.ExitBB);
+
+ CGF.EmitBlock(MasterBB);
+ IsInTargetMasterThreadRegion = true;
+ // SEQUENTIAL (MASTER) REGION START
+ // First action in sequential region:
+ // Initialize the state of the OpenMP runtime library on the GPU.
+ // TODO: Optimize runtime initialization and pass in correct value.
+ llvm::Value *Args[] = {getThreadLimit(CGF),
+ Bld.getInt16(/*RequiresOMPRuntime=*/1)};
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_init), Args);
+
+ // For data sharing, we need to initialize the stack.
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_data_sharing_init_stack));
+
+ emitGenericVarsProlog(CGF, WST.Loc);
+}
+
+void CGOpenMPRuntimeNVPTX::emitNonSPMDEntryFooter(CodeGenFunction &CGF,
+ EntryFunctionState &EST) {
+ IsInTargetMasterThreadRegion = false;
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ emitGenericVarsEpilog(CGF);
+
+ if (!EST.ExitBB)
+ EST.ExitBB = CGF.createBasicBlock(".exit");
+
+ llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".termination.notifier");
+ CGF.EmitBranch(TerminateBB);
+
+ CGF.EmitBlock(TerminateBB);
+ // Signal termination condition.
+ // TODO: Optimize runtime initialization and pass in correct value.
+ llvm::Value *Args[] = {CGF.Builder.getInt16(/*IsOMPRuntimeInitialized=*/1)};
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_deinit), Args);
+ // Barrier to terminate worker threads.
+ syncCTAThreads(CGF);
+ // Master thread jumps to exit point.
+ CGF.EmitBranch(EST.ExitBB);
+
+ CGF.EmitBlock(EST.ExitBB);
+ EST.ExitBB = nullptr;
+}
+
+void CGOpenMPRuntimeNVPTX::emitSPMDKernel(const OMPExecutableDirective &D,
+ StringRef ParentName,
+ llvm::Function *&OutlinedFn,
+ llvm::Constant *&OutlinedFnID,
+ bool IsOffloadEntry,
+ const RegionCodeGenTy &CodeGen) {
+ ExecutionRuntimeModesRAII ModeRAII(
+ CurrentExecutionMode, RequiresFullRuntime,
+ CGM.getLangOpts().OpenMPCUDAForceFullRuntime ||
+ !supportsLightweightRuntime(CGM.getContext(), D));
+ EntryFunctionState EST;
+
+ // Emit target region as a standalone region.
+ class NVPTXPrePostActionTy : public PrePostActionTy {
+ CGOpenMPRuntimeNVPTX &RT;
+ CGOpenMPRuntimeNVPTX::EntryFunctionState &EST;
+ const OMPExecutableDirective &D;
+
+ public:
+ NVPTXPrePostActionTy(CGOpenMPRuntimeNVPTX &RT,
+ CGOpenMPRuntimeNVPTX::EntryFunctionState &EST,
+ const OMPExecutableDirective &D)
+ : RT(RT), EST(EST), D(D) {}
+ void Enter(CodeGenFunction &CGF) override {
+ RT.emitSPMDEntryHeader(CGF, EST, D);
+ // Skip target region initialization.
+ RT.setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
+ }
+ void Exit(CodeGenFunction &CGF) override {
+ RT.clearLocThreadIdInsertPt(CGF);
+ RT.emitSPMDEntryFooter(CGF, EST);
+ }
+ } Action(*this, EST, D);
+ CodeGen.setAction(Action);
+ IsInTTDRegion = true;
+ // Reserve place for the globalized memory.
+ GlobalizedRecords.emplace_back();
+ if (!KernelStaticGlobalized) {
+ KernelStaticGlobalized = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.VoidPtrTy, /*isConstant=*/false,
+ llvm::GlobalValue::InternalLinkage,
+ llvm::ConstantPointerNull::get(CGM.VoidPtrTy),
+ "_openmp_kernel_static_glob_rd$ptr", /*InsertBefore=*/nullptr,
+ llvm::GlobalValue::NotThreadLocal,
+ CGM.getContext().getTargetAddressSpace(LangAS::cuda_shared));
+ }
+ emitTargetOutlinedFunctionHelper(D, ParentName, OutlinedFn, OutlinedFnID,
+ IsOffloadEntry, CodeGen);
+ IsInTTDRegion = false;
+}
+
+void CGOpenMPRuntimeNVPTX::emitSPMDEntryHeader(
+ CodeGenFunction &CGF, EntryFunctionState &EST,
+ const OMPExecutableDirective &D) {
+ CGBuilderTy &Bld = CGF.Builder;
+
+ // Setup BBs in entry function.
+ llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute");
+ EST.ExitBB = CGF.createBasicBlock(".exit");
+
+ llvm::Value *Args[] = {getThreadLimit(CGF, /*IsInSPMDExecutionMode=*/true),
+ /*RequiresOMPRuntime=*/
+ Bld.getInt16(RequiresFullRuntime ? 1 : 0),
+ /*RequiresDataSharing=*/Bld.getInt16(0)};
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_spmd_kernel_init), Args);
+
+ if (RequiresFullRuntime) {
+ // For data sharing, we need to initialize the stack.
+ CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd));
+ }
+
+ CGF.EmitBranch(ExecuteBB);
+
+ CGF.EmitBlock(ExecuteBB);
+
+ IsInTargetMasterThreadRegion = true;
+}
+
+void CGOpenMPRuntimeNVPTX::emitSPMDEntryFooter(CodeGenFunction &CGF,
+ EntryFunctionState &EST) {
+ IsInTargetMasterThreadRegion = false;
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ if (!EST.ExitBB)
+ EST.ExitBB = CGF.createBasicBlock(".exit");
+
+ llvm::BasicBlock *OMPDeInitBB = CGF.createBasicBlock(".omp.deinit");
+ CGF.EmitBranch(OMPDeInitBB);
+
+ CGF.EmitBlock(OMPDeInitBB);
+ // DeInitialize the OMP state in the runtime; called by all active threads.
+ llvm::Value *Args[] = {/*RequiresOMPRuntime=*/
+ CGF.Builder.getInt16(RequiresFullRuntime ? 1 : 0)};
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2), Args);
+ CGF.EmitBranch(EST.ExitBB);
+
+ CGF.EmitBlock(EST.ExitBB);
+ EST.ExitBB = nullptr;
+}
+
+// Create a unique global variable to indicate the execution mode of this target
+// region. The execution mode is either 'generic', or 'spmd' depending on the
+// target directive. This variable is picked up by the offload library to setup
+// the device appropriately before kernel launch. If the execution mode is
+// 'generic', the runtime reserves one warp for the master, otherwise, all
+// warps participate in parallel work.
+static void setPropertyExecutionMode(CodeGenModule &CGM, StringRef Name,
+ bool Mode) {
+ auto *GVMode =
+ new llvm::GlobalVariable(CGM.getModule(), CGM.Int8Ty, /*isConstant=*/true,
+ llvm::GlobalValue::WeakAnyLinkage,
+ llvm::ConstantInt::get(CGM.Int8Ty, Mode ? 0 : 1),
+ Twine(Name, "_exec_mode"));
+ CGM.addCompilerUsedGlobal(GVMode);
+}
+
+void CGOpenMPRuntimeNVPTX::emitWorkerFunction(WorkerFunctionState &WST) {
+ ASTContext &Ctx = CGM.getContext();
+
+ CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
+ CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, WST.WorkerFn, WST.CGFI, {},
+ WST.Loc, WST.Loc);
+ emitWorkerLoop(CGF, WST);
+ CGF.FinishFunction();
+}
+
+void CGOpenMPRuntimeNVPTX::emitWorkerLoop(CodeGenFunction &CGF,
+ WorkerFunctionState &WST) {
+ //
+ // The workers enter this loop and wait for parallel work from the master.
+ // When the master encounters a parallel region it sets up the work + variable
+ // arguments, and wakes up the workers. The workers first check to see if
+ // they are required for the parallel region, i.e., within the # of requested
+ // parallel threads. The activated workers load the variable arguments and
+ // execute the parallel work.
+ //
+
+ CGBuilderTy &Bld = CGF.Builder;
+
+ llvm::BasicBlock *AwaitBB = CGF.createBasicBlock(".await.work");
+ llvm::BasicBlock *SelectWorkersBB = CGF.createBasicBlock(".select.workers");
+ llvm::BasicBlock *ExecuteBB = CGF.createBasicBlock(".execute.parallel");
+ llvm::BasicBlock *TerminateBB = CGF.createBasicBlock(".terminate.parallel");
+ llvm::BasicBlock *BarrierBB = CGF.createBasicBlock(".barrier.parallel");
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
+
+ CGF.EmitBranch(AwaitBB);
+
+ // Workers wait for work from master.
+ CGF.EmitBlock(AwaitBB);
+ // Wait for parallel work
+ syncCTAThreads(CGF);
+
+ Address WorkFn =
+ CGF.CreateDefaultAlignTempAlloca(CGF.Int8PtrTy, /*Name=*/"work_fn");
+ Address ExecStatus =
+ CGF.CreateDefaultAlignTempAlloca(CGF.Int8Ty, /*Name=*/"exec_status");
+ CGF.InitTempAlloca(ExecStatus, Bld.getInt8(/*C=*/0));
+ CGF.InitTempAlloca(WorkFn, llvm::Constant::getNullValue(CGF.Int8PtrTy));
+
+ // TODO: Optimize runtime initialization and pass in correct value.
+ llvm::Value *Args[] = {WorkFn.getPointer(),
+ /*RequiresOMPRuntime=*/Bld.getInt16(1)};
+ llvm::Value *Ret = CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_parallel), Args);
+ Bld.CreateStore(Bld.CreateZExt(Ret, CGF.Int8Ty), ExecStatus);
+
+ // On termination condition (workid == 0), exit loop.
+ llvm::Value *WorkID = Bld.CreateLoad(WorkFn);
+ llvm::Value *ShouldTerminate = Bld.CreateIsNull(WorkID, "should_terminate");
+ Bld.CreateCondBr(ShouldTerminate, ExitBB, SelectWorkersBB);
+
+ // Activate requested workers.
+ CGF.EmitBlock(SelectWorkersBB);
+ llvm::Value *IsActive =
+ Bld.CreateIsNotNull(Bld.CreateLoad(ExecStatus), "is_active");
+ Bld.CreateCondBr(IsActive, ExecuteBB, BarrierBB);
+
+ // Signal start of parallel region.
+ CGF.EmitBlock(ExecuteBB);
+ // Skip initialization.
+ setLocThreadIdInsertPt(CGF, /*AtCurrentPoint=*/true);
+
+ // Process work items: outlined parallel functions.
+ for (llvm::Function *W : Work) {
+ // Try to match this outlined function.
+ llvm::Value *ID = Bld.CreatePointerBitCastOrAddrSpaceCast(W, CGM.Int8PtrTy);
+
+ llvm::Value *WorkFnMatch =
+ Bld.CreateICmpEQ(Bld.CreateLoad(WorkFn), ID, "work_match");
+
+ llvm::BasicBlock *ExecuteFNBB = CGF.createBasicBlock(".execute.fn");
+ llvm::BasicBlock *CheckNextBB = CGF.createBasicBlock(".check.next");
+ Bld.CreateCondBr(WorkFnMatch, ExecuteFNBB, CheckNextBB);
+
+ // Execute this outlined function.
+ CGF.EmitBlock(ExecuteFNBB);
+
+ // Insert call to work function via shared wrapper. The shared
+ // wrapper takes two arguments:
+ // - the parallelism level;
+ // - the thread ID;
+ emitCall(CGF, WST.Loc, W,
+ {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
+
+ // Go to end of parallel region.
+ CGF.EmitBranch(TerminateBB);
+
+ CGF.EmitBlock(CheckNextBB);
+ }
+ // Default case: call to outlined function through pointer if the target
+ // region makes a declare target call that may contain an orphaned parallel
+ // directive.
+ auto *ParallelFnTy =
+ llvm::FunctionType::get(CGM.VoidTy, {CGM.Int16Ty, CGM.Int32Ty},
+ /*isVarArg=*/false)
+ ->getPointerTo();
+ llvm::Value *WorkFnCast = Bld.CreateBitCast(WorkID, ParallelFnTy);
+ // Insert call to work function via shared wrapper. The shared
+ // wrapper takes two arguments:
+ // - the parallelism level;
+ // - the thread ID;
+ emitCall(CGF, WST.Loc, WorkFnCast,
+ {Bld.getInt16(/*ParallelLevel=*/0), getThreadID(CGF, WST.Loc)});
+ // Go to end of parallel region.
+ CGF.EmitBranch(TerminateBB);
+
+ // Signal end of parallel region.
+ CGF.EmitBlock(TerminateBB);
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_end_parallel),
+ llvm::None);
+ CGF.EmitBranch(BarrierBB);
+
+ // All active and inactive workers wait at a barrier after parallel region.
+ CGF.EmitBlock(BarrierBB);
+ // Barrier after parallel region.
+ syncCTAThreads(CGF);
+ CGF.EmitBranch(AwaitBB);
+
+ // Exit target region.
+ CGF.EmitBlock(ExitBB);
+ // Skip initialization.
+ clearLocThreadIdInsertPt(CGF);
+}
+
+/// Returns specified OpenMP runtime function for the current OpenMP
+/// implementation. Specialized for the NVPTX device.
+/// \param Function OpenMP runtime function.
+/// \return Specified function.
+llvm::Constant *
+CGOpenMPRuntimeNVPTX::createNVPTXRuntimeFunction(unsigned Function) {
+ llvm::Constant *RTLFn = nullptr;
+ switch (static_cast<OpenMPRTLFunctionNVPTX>(Function)) {
+ case OMPRTL_NVPTX__kmpc_kernel_init: {
+ // Build void __kmpc_kernel_init(kmp_int32 thread_limit, int16_t
+ // RequiresOMPRuntime);
+ llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_init");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_kernel_deinit: {
+ // Build void __kmpc_kernel_deinit(int16_t IsOMPRuntimeInitialized);
+ llvm::Type *TypeParams[] = {CGM.Int16Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_deinit");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_spmd_kernel_init: {
+ // Build void __kmpc_spmd_kernel_init(kmp_int32 thread_limit,
+ // int16_t RequiresOMPRuntime, int16_t RequiresDataSharing);
+ llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_init");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_spmd_kernel_deinit_v2: {
+ // Build void __kmpc_spmd_kernel_deinit_v2(int16_t RequiresOMPRuntime);
+ llvm::Type *TypeParams[] = {CGM.Int16Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_spmd_kernel_deinit_v2");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_kernel_prepare_parallel: {
+ /// Build void __kmpc_kernel_prepare_parallel(
+ /// void *outlined_function, int16_t IsOMPRuntimeInitialized);
+ llvm::Type *TypeParams[] = {CGM.Int8PtrTy, CGM.Int16Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_prepare_parallel");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_kernel_parallel: {
+ /// Build bool __kmpc_kernel_parallel(void **outlined_function,
+ /// int16_t IsOMPRuntimeInitialized);
+ llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy, CGM.Int16Ty};
+ llvm::Type *RetTy = CGM.getTypes().ConvertType(CGM.getContext().BoolTy);
+ auto *FnTy =
+ llvm::FunctionType::get(RetTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_parallel");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_kernel_end_parallel: {
+ /// Build void __kmpc_kernel_end_parallel();
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_kernel_end_parallel");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_serialized_parallel: {
+ // Build void __kmpc_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_serialized_parallel");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_end_serialized_parallel: {
+ // Build void __kmpc_end_serialized_parallel(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_serialized_parallel");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_shuffle_int32: {
+ // Build int32_t __kmpc_shuffle_int32(int32_t element,
+ // int16_t lane_offset, int16_t warp_size);
+ llvm::Type *TypeParams[] = {CGM.Int32Ty, CGM.Int16Ty, CGM.Int16Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int32");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_shuffle_int64: {
+ // Build int64_t __kmpc_shuffle_int64(int64_t element,
+ // int16_t lane_offset, int16_t warp_size);
+ llvm::Type *TypeParams[] = {CGM.Int64Ty, CGM.Int16Ty, CGM.Int16Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int64Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_shuffle_int64");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_parallel_reduce_nowait_v2: {
+ // Build int32_t kmpc_nvptx_parallel_reduce_nowait_v2(ident_t *loc,
+ // kmp_int32 global_tid, kmp_int32 num_vars, size_t reduce_size, void*
+ // reduce_data, void (*kmp_ShuffleReductFctPtr)(void *rhsData, int16_t
+ // lane_id, int16_t lane_offset, int16_t Algorithm Version), void
+ // (*kmp_InterWarpCopyFctPtr)(void* src, int warp_num));
+ llvm::Type *ShuffleReduceTypeParams[] = {CGM.VoidPtrTy, CGM.Int16Ty,
+ CGM.Int16Ty, CGM.Int16Ty};
+ auto *ShuffleReduceFnTy =
+ llvm::FunctionType::get(CGM.VoidTy, ShuffleReduceTypeParams,
+ /*isVarArg=*/false);
+ llvm::Type *InterWarpCopyTypeParams[] = {CGM.VoidPtrTy, CGM.Int32Ty};
+ auto *InterWarpCopyFnTy =
+ llvm::FunctionType::get(CGM.VoidTy, InterWarpCopyTypeParams,
+ /*isVarArg=*/false);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(),
+ CGM.Int32Ty,
+ CGM.Int32Ty,
+ CGM.SizeTy,
+ CGM.VoidPtrTy,
+ ShuffleReduceFnTy->getPointerTo(),
+ InterWarpCopyFnTy->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(
+ FnTy, /*Name=*/"__kmpc_nvptx_parallel_reduce_nowait_v2");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_end_reduce_nowait: {
+ // Build __kmpc_end_reduce_nowait(kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(
+ FnTy, /*Name=*/"__kmpc_nvptx_end_reduce_nowait");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_simple: {
+ // Build __kmpc_nvptx_teams_reduce_nowait_simple(ident_t *loc, kmp_int32
+ // global_tid, kmp_critical_name *lck)
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(getKmpCriticalNameTy())};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int32Ty, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(
+ FnTy, /*Name=*/"__kmpc_nvptx_teams_reduce_nowait_simple");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_nvptx_teams_end_reduce_nowait_simple: {
+ // Build __kmpc_nvptx_teams_end_reduce_nowait_simple(ident_t *loc, kmp_int32
+ // global_tid, kmp_critical_name *lck)
+ llvm::Type *TypeParams[] = {
+ getIdentTyPointerTy(), CGM.Int32Ty,
+ llvm::PointerType::getUnqual(getKmpCriticalNameTy())};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(
+ FnTy, /*Name=*/"__kmpc_nvptx_teams_end_reduce_nowait_simple");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_data_sharing_init_stack: {
+ /// Build void __kmpc_data_sharing_init_stack();
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_data_sharing_init_stack");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_data_sharing_init_stack_spmd: {
+ /// Build void __kmpc_data_sharing_init_stack_spmd();
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
+ RTLFn =
+ CGM.CreateRuntimeFunction(FnTy, "__kmpc_data_sharing_init_stack_spmd");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack: {
+ // Build void *__kmpc_data_sharing_coalesced_push_stack(size_t size,
+ // int16_t UseSharedMemory);
+ llvm::Type *TypeParams[] = {CGM.SizeTy, CGM.Int16Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidPtrTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(
+ FnTy, /*Name=*/"__kmpc_data_sharing_coalesced_push_stack");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_data_sharing_pop_stack: {
+ // Build void __kmpc_data_sharing_pop_stack(void *a);
+ llvm::Type *TypeParams[] = {CGM.VoidPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy,
+ /*Name=*/"__kmpc_data_sharing_pop_stack");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_begin_sharing_variables: {
+ /// Build void __kmpc_begin_sharing_variables(void ***args,
+ /// size_t n_args);
+ llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy->getPointerTo(), CGM.SizeTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_begin_sharing_variables");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_end_sharing_variables: {
+ /// Build void __kmpc_end_sharing_variables();
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, llvm::None, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_end_sharing_variables");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_get_shared_variables: {
+ /// Build void __kmpc_get_shared_variables(void ***GlobalArgs);
+ llvm::Type *TypeParams[] = {CGM.Int8PtrPtrTy->getPointerTo()};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_get_shared_variables");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_parallel_level: {
+ // Build uint16_t __kmpc_parallel_level(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.Int16Ty, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_parallel_level");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_is_spmd_exec_mode: {
+ // Build int8_t __kmpc_is_spmd_exec_mode();
+ auto *FnTy = llvm::FunctionType::get(CGM.Int8Ty, /*isVarArg=*/false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_is_spmd_exec_mode");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_get_team_static_memory: {
+ // Build void __kmpc_get_team_static_memory(int16_t isSPMDExecutionMode,
+ // const void *buf, size_t size, int16_t is_shared, const void **res);
+ llvm::Type *TypeParams[] = {CGM.Int16Ty, CGM.VoidPtrTy, CGM.SizeTy,
+ CGM.Int16Ty, CGM.VoidPtrPtrTy};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, "__kmpc_get_team_static_memory");
+ break;
+ }
+ case OMPRTL_NVPTX__kmpc_restore_team_static_memory: {
+ // Build void __kmpc_restore_team_static_memory(int16_t isSPMDExecutionMode,
+ // int16_t is_shared);
+ llvm::Type *TypeParams[] = {CGM.Int16Ty, CGM.Int16Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg=*/false);
+ RTLFn =
+ CGM.CreateRuntimeFunction(FnTy, "__kmpc_restore_team_static_memory");
+ break;
+ }
+ case OMPRTL__kmpc_barrier: {
+ // Build void __kmpc_barrier(ident_t *loc, kmp_int32 global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn = CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier");
+ cast<llvm::Function>(RTLFn)->addFnAttr(llvm::Attribute::Convergent);
+ break;
+ }
+ case OMPRTL__kmpc_barrier_simple_spmd: {
+ // Build void __kmpc_barrier_simple_spmd(ident_t *loc, kmp_int32
+ // global_tid);
+ llvm::Type *TypeParams[] = {getIdentTyPointerTy(), CGM.Int32Ty};
+ auto *FnTy =
+ llvm::FunctionType::get(CGM.VoidTy, TypeParams, /*isVarArg*/ false);
+ RTLFn =
+ CGM.CreateRuntimeFunction(FnTy, /*Name*/ "__kmpc_barrier_simple_spmd");
+ cast<llvm::Function>(RTLFn)->addFnAttr(llvm::Attribute::Convergent);
+ break;
+ }
+ }
+ return RTLFn;
+}
+
+void CGOpenMPRuntimeNVPTX::createOffloadEntry(llvm::Constant *ID,
+ llvm::Constant *Addr,
+ uint64_t Size, int32_t,
+ llvm::GlobalValue::LinkageTypes) {
+ // TODO: Add support for global variables on the device after declare target
+ // support.
+ if (!isa<llvm::Function>(Addr))
+ return;
+ llvm::Module &M = CGM.getModule();
+ llvm::LLVMContext &Ctx = CGM.getLLVMContext();
+
+ // Get "nvvm.annotations" metadata node
+ llvm::NamedMDNode *MD = M.getOrInsertNamedMetadata("nvvm.annotations");
+
+ llvm::Metadata *MDVals[] = {
+ llvm::ConstantAsMetadata::get(Addr), llvm::MDString::get(Ctx, "kernel"),
+ llvm::ConstantAsMetadata::get(
+ llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), 1))};
+ // Append metadata to nvvm.annotations
+ MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
+}
+
+void CGOpenMPRuntimeNVPTX::emitTargetOutlinedFunction(
+ const OMPExecutableDirective &D, StringRef ParentName,
+ llvm::Function *&OutlinedFn, llvm::Constant *&OutlinedFnID,
+ bool IsOffloadEntry, const RegionCodeGenTy &CodeGen) {
+ if (!IsOffloadEntry) // Nothing to do.
+ return;
+
+ assert(!ParentName.empty() && "Invalid target region parent name!");
+
+ bool Mode = supportsSPMDExecutionMode(CGM.getContext(), D);
+ if (Mode)
+ emitSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
+ CodeGen);
+ else
+ emitNonSPMDKernel(D, ParentName, OutlinedFn, OutlinedFnID, IsOffloadEntry,
+ CodeGen);
+
+ setPropertyExecutionMode(CGM, OutlinedFn->getName(), Mode);
+}
+
+namespace {
+LLVM_ENABLE_BITMASK_ENUMS_IN_NAMESPACE();
+/// Enum for accesseing the reserved_2 field of the ident_t struct.
+enum ModeFlagsTy : unsigned {
+ /// Bit set to 1 when in SPMD mode.
+ KMP_IDENT_SPMD_MODE = 0x01,
+ /// Bit set to 1 when a simplified runtime is used.
+ KMP_IDENT_SIMPLE_RT_MODE = 0x02,
+ LLVM_MARK_AS_BITMASK_ENUM(/*LargestValue=*/KMP_IDENT_SIMPLE_RT_MODE)
+};
+
+/// Special mode Undefined. Is the combination of Non-SPMD mode + SimpleRuntime.
+static const ModeFlagsTy UndefinedMode =
+ (~KMP_IDENT_SPMD_MODE) & KMP_IDENT_SIMPLE_RT_MODE;
+} // anonymous namespace
+
+unsigned CGOpenMPRuntimeNVPTX::getDefaultLocationReserved2Flags() const {
+ switch (getExecutionMode()) {
+ case EM_SPMD:
+ if (requiresFullRuntime())
+ return KMP_IDENT_SPMD_MODE & (~KMP_IDENT_SIMPLE_RT_MODE);
+ return KMP_IDENT_SPMD_MODE | KMP_IDENT_SIMPLE_RT_MODE;
+ case EM_NonSPMD:
+ assert(requiresFullRuntime() && "Expected full runtime.");
+ return (~KMP_IDENT_SPMD_MODE) & (~KMP_IDENT_SIMPLE_RT_MODE);
+ case EM_Unknown:
+ return UndefinedMode;
+ }
+ llvm_unreachable("Unknown flags are requested.");
+}
+
+CGOpenMPRuntimeNVPTX::CGOpenMPRuntimeNVPTX(CodeGenModule &CGM)
+ : CGOpenMPRuntime(CGM, "_", "$") {
+ if (!CGM.getLangOpts().OpenMPIsDevice)
+ llvm_unreachable("OpenMP NVPTX can only handle device code.");
+}
+
+void CGOpenMPRuntimeNVPTX::emitProcBindClause(CodeGenFunction &CGF,
+ OpenMPProcBindClauseKind ProcBind,
+ SourceLocation Loc) {
+ // Do nothing in case of SPMD mode and L0 parallel.
+ if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
+ return;
+
+ CGOpenMPRuntime::emitProcBindClause(CGF, ProcBind, Loc);
+}
+
+void CGOpenMPRuntimeNVPTX::emitNumThreadsClause(CodeGenFunction &CGF,
+ llvm::Value *NumThreads,
+ SourceLocation Loc) {
+ // Do nothing in case of SPMD mode and L0 parallel.
+ if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
+ return;
+
+ CGOpenMPRuntime::emitNumThreadsClause(CGF, NumThreads, Loc);
+}
+
+void CGOpenMPRuntimeNVPTX::emitNumTeamsClause(CodeGenFunction &CGF,
+ const Expr *NumTeams,
+ const Expr *ThreadLimit,
+ SourceLocation Loc) {}
+
+llvm::Value *CGOpenMPRuntimeNVPTX::emitParallelOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+ // Emit target region as a standalone region.
+ class NVPTXPrePostActionTy : public PrePostActionTy {
+ bool &IsInParallelRegion;
+ bool PrevIsInParallelRegion;
+
+ public:
+ NVPTXPrePostActionTy(bool &IsInParallelRegion)
+ : IsInParallelRegion(IsInParallelRegion) {}
+ void Enter(CodeGenFunction &CGF) override {
+ PrevIsInParallelRegion = IsInParallelRegion;
+ IsInParallelRegion = true;
+ }
+ void Exit(CodeGenFunction &CGF) override {
+ IsInParallelRegion = PrevIsInParallelRegion;
+ }
+ } Action(IsInParallelRegion);
+ CodeGen.setAction(Action);
+ bool PrevIsInTTDRegion = IsInTTDRegion;
+ IsInTTDRegion = false;
+ bool PrevIsInTargetMasterThreadRegion = IsInTargetMasterThreadRegion;
+ IsInTargetMasterThreadRegion = false;
+ auto *OutlinedFun =
+ cast<llvm::Function>(CGOpenMPRuntime::emitParallelOutlinedFunction(
+ D, ThreadIDVar, InnermostKind, CodeGen));
+ IsInTargetMasterThreadRegion = PrevIsInTargetMasterThreadRegion;
+ IsInTTDRegion = PrevIsInTTDRegion;
+ if (getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD &&
+ !IsInParallelRegion) {
+ llvm::Function *WrapperFun =
+ createParallelDataSharingWrapper(OutlinedFun, D);
+ WrapperFunctionsMap[OutlinedFun] = WrapperFun;
+ }
+
+ return OutlinedFun;
+}
+
+/// Get list of lastprivate variables from the teams distribute ... or
+/// teams {distribute ...} directives.
+static void
+getDistributeLastprivateVars(ASTContext &Ctx, const OMPExecutableDirective &D,
+ llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
+ assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
+ "expected teams directive.");
+ const OMPExecutableDirective *Dir = &D;
+ if (!isOpenMPDistributeDirective(D.getDirectiveKind())) {
+ if (const Stmt *S = getSingleCompoundChild(
+ Ctx,
+ D.getInnermostCapturedStmt()->getCapturedStmt()->IgnoreContainers(
+ /*IgnoreCaptured=*/true))) {
+ Dir = dyn_cast<OMPExecutableDirective>(S);
+ if (Dir && !isOpenMPDistributeDirective(Dir->getDirectiveKind()))
+ Dir = nullptr;
+ }
+ }
+ if (!Dir)
+ return;
+ for (const auto *C : Dir->getClausesOfKind<OMPLastprivateClause>()) {
+ for (const Expr *E : C->getVarRefs())
+ Vars.push_back(getPrivateItem(E));
+ }
+}
+
+/// Get list of reduction variables from the teams ... directives.
+static void
+getTeamsReductionVars(ASTContext &Ctx, const OMPExecutableDirective &D,
+ llvm::SmallVectorImpl<const ValueDecl *> &Vars) {
+ assert(isOpenMPTeamsDirective(D.getDirectiveKind()) &&
+ "expected teams directive.");
+ for (const auto *C : D.getClausesOfKind<OMPReductionClause>()) {
+ for (const Expr *E : C->privates())
+ Vars.push_back(getPrivateItem(E));
+ }
+}
+
+llvm::Value *CGOpenMPRuntimeNVPTX::emitTeamsOutlinedFunction(
+ const OMPExecutableDirective &D, const VarDecl *ThreadIDVar,
+ OpenMPDirectiveKind InnermostKind, const RegionCodeGenTy &CodeGen) {
+ SourceLocation Loc = D.getBeginLoc();
+
+ const RecordDecl *GlobalizedRD = nullptr;
+ llvm::SmallVector<const ValueDecl *, 4> LastPrivatesReductions;
+ llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *> MappedDeclsFields;
+ // Globalize team reductions variable unconditionally in all modes.
+ getTeamsReductionVars(CGM.getContext(), D, LastPrivatesReductions);
+ if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD) {
+ getDistributeLastprivateVars(CGM.getContext(), D, LastPrivatesReductions);
+ if (!LastPrivatesReductions.empty()) {
+ GlobalizedRD = ::buildRecordForGlobalizedVars(
+ CGM.getContext(), llvm::None, LastPrivatesReductions,
+ MappedDeclsFields);
+ }
+ } else if (!LastPrivatesReductions.empty()) {
+ assert(!TeamAndReductions.first &&
+ "Previous team declaration is not expected.");
+ TeamAndReductions.first = D.getCapturedStmt(OMPD_teams)->getCapturedDecl();
+ std::swap(TeamAndReductions.second, LastPrivatesReductions);
+ }
+
+ // Emit target region as a standalone region.
+ class NVPTXPrePostActionTy : public PrePostActionTy {
+ SourceLocation &Loc;
+ const RecordDecl *GlobalizedRD;
+ llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+ &MappedDeclsFields;
+
+ public:
+ NVPTXPrePostActionTy(
+ SourceLocation &Loc, const RecordDecl *GlobalizedRD,
+ llvm::SmallDenseMap<const ValueDecl *, const FieldDecl *>
+ &MappedDeclsFields)
+ : Loc(Loc), GlobalizedRD(GlobalizedRD),
+ MappedDeclsFields(MappedDeclsFields) {}
+ void Enter(CodeGenFunction &CGF) override {
+ auto &Rt =
+ static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime());
+ if (GlobalizedRD) {
+ auto I = Rt.FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
+ I->getSecond().GlobalRecord = GlobalizedRD;
+ I->getSecond().MappedParams =
+ llvm::make_unique<CodeGenFunction::OMPMapVars>();
+ DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
+ for (const auto &Pair : MappedDeclsFields) {
+ assert(Pair.getFirst()->isCanonicalDecl() &&
+ "Expected canonical declaration");
+ Data.insert(std::make_pair(Pair.getFirst(),
+ MappedVarData(Pair.getSecond(),
+ /*IsOnePerTeam=*/true)));
+ }
+ }
+ Rt.emitGenericVarsProlog(CGF, Loc);
+ }
+ void Exit(CodeGenFunction &CGF) override {
+ static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime())
+ .emitGenericVarsEpilog(CGF);
+ }
+ } Action(Loc, GlobalizedRD, MappedDeclsFields);
+ CodeGen.setAction(Action);
+ llvm::Value *OutlinedFunVal = CGOpenMPRuntime::emitTeamsOutlinedFunction(
+ D, ThreadIDVar, InnermostKind, CodeGen);
+ llvm::Function *OutlinedFun = cast<llvm::Function>(OutlinedFunVal);
+ OutlinedFun->removeFnAttr(llvm::Attribute::NoInline);
+ OutlinedFun->removeFnAttr(llvm::Attribute::OptimizeNone);
+ OutlinedFun->addFnAttr(llvm::Attribute::AlwaysInline);
+
+ return OutlinedFun;
+}
+
+void CGOpenMPRuntimeNVPTX::emitGenericVarsProlog(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ bool WithSPMDCheck) {
+ if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic &&
+ getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
+ return;
+
+ CGBuilderTy &Bld = CGF.Builder;
+
+ const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
+ if (I == FunctionGlobalizedDecls.end())
+ return;
+ if (const RecordDecl *GlobalizedVarsRecord = I->getSecond().GlobalRecord) {
+ QualType GlobalRecTy = CGM.getContext().getRecordType(GlobalizedVarsRecord);
+ QualType SecGlobalRecTy;
+
+ // Recover pointer to this function's global record. The runtime will
+ // handle the specifics of the allocation of the memory.
+ // Use actual memory size of the record including the padding
+ // for alignment purposes.
+ unsigned Alignment =
+ CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
+ unsigned GlobalRecordSize =
+ CGM.getContext().getTypeSizeInChars(GlobalRecTy).getQuantity();
+ GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
+
+ llvm::PointerType *GlobalRecPtrTy =
+ CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo();
+ llvm::Value *GlobalRecCastAddr;
+ llvm::Value *IsTTD = nullptr;
+ if (!IsInTTDRegion &&
+ (WithSPMDCheck ||
+ getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
+ llvm::BasicBlock *SPMDBB = CGF.createBasicBlock(".spmd");
+ llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
+ if (I->getSecond().SecondaryGlobalRecord.hasValue()) {
+ llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+ llvm::Value *ThreadID = getThreadID(CGF, Loc);
+ llvm::Value *PL = CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_level),
+ {RTLoc, ThreadID});
+ IsTTD = Bld.CreateIsNull(PL);
+ }
+ llvm::Value *IsSPMD = Bld.CreateIsNotNull(CGF.EmitNounwindRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_is_spmd_exec_mode)));
+ Bld.CreateCondBr(IsSPMD, SPMDBB, NonSPMDBB);
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(SPMDBB);
+ Address RecPtr = Address(llvm::ConstantPointerNull::get(GlobalRecPtrTy),
+ CharUnits::fromQuantity(Alignment));
+ CGF.EmitBranch(ExitBB);
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(NonSPMDBB);
+ llvm::Value *Size = llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize);
+ if (const RecordDecl *SecGlobalizedVarsRecord =
+ I->getSecond().SecondaryGlobalRecord.getValueOr(nullptr)) {
+ SecGlobalRecTy =
+ CGM.getContext().getRecordType(SecGlobalizedVarsRecord);
+
+ // Recover pointer to this function's global record. The runtime will
+ // handle the specifics of the allocation of the memory.
+ // Use actual memory size of the record including the padding
+ // for alignment purposes.
+ unsigned Alignment =
+ CGM.getContext().getTypeAlignInChars(SecGlobalRecTy).getQuantity();
+ unsigned GlobalRecordSize =
+ CGM.getContext().getTypeSizeInChars(SecGlobalRecTy).getQuantity();
+ GlobalRecordSize = llvm::alignTo(GlobalRecordSize, Alignment);
+ Size = Bld.CreateSelect(
+ IsTTD, llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize), Size);
+ }
+ // TODO: allow the usage of shared memory to be controlled by
+ // the user, for now, default to global.
+ llvm::Value *GlobalRecordSizeArg[] = {
+ Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
+ llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
+ GlobalRecordSizeArg);
+ GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ GlobalRecValue, GlobalRecPtrTy);
+ CGF.EmitBlock(ExitBB);
+ auto *Phi = Bld.CreatePHI(GlobalRecPtrTy,
+ /*NumReservedValues=*/2, "_select_stack");
+ Phi->addIncoming(RecPtr.getPointer(), SPMDBB);
+ Phi->addIncoming(GlobalRecCastAddr, NonSPMDBB);
+ GlobalRecCastAddr = Phi;
+ I->getSecond().GlobalRecordAddr = Phi;
+ I->getSecond().IsInSPMDModeFlag = IsSPMD;
+ } else if (IsInTTDRegion) {
+ assert(GlobalizedRecords.back().Records.size() < 2 &&
+ "Expected less than 2 globalized records: one for target and one "
+ "for teams.");
+ unsigned Offset = 0;
+ for (const RecordDecl *RD : GlobalizedRecords.back().Records) {
+ QualType RDTy = CGM.getContext().getRecordType(RD);
+ unsigned Alignment =
+ CGM.getContext().getTypeAlignInChars(RDTy).getQuantity();
+ unsigned Size = CGM.getContext().getTypeSizeInChars(RDTy).getQuantity();
+ Offset =
+ llvm::alignTo(llvm::alignTo(Offset, Alignment) + Size, Alignment);
+ }
+ unsigned Alignment =
+ CGM.getContext().getTypeAlignInChars(GlobalRecTy).getQuantity();
+ Offset = llvm::alignTo(Offset, Alignment);
+ GlobalizedRecords.back().Records.push_back(GlobalizedVarsRecord);
+ ++GlobalizedRecords.back().RegionCounter;
+ if (GlobalizedRecords.back().Records.size() == 1) {
+ assert(KernelStaticGlobalized &&
+ "Kernel static pointer must be initialized already.");
+ auto *UseSharedMemory = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.Int16Ty, /*isConstant=*/true,
+ llvm::GlobalValue::InternalLinkage, nullptr,
+ "_openmp_static_kernel$is_shared");
+ UseSharedMemory->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
+ /*DestWidth=*/16, /*Signed=*/0);
+ llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
+ Address(UseSharedMemory,
+ CGM.getContext().getTypeAlignInChars(Int16Ty)),
+ /*Volatile=*/false, Int16Ty, Loc);
+ auto *StaticGlobalized = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.Int8Ty, /*isConstant=*/false,
+ llvm::GlobalValue::CommonLinkage, nullptr);
+ auto *RecSize = new llvm::GlobalVariable(
+ CGM.getModule(), CGM.SizeTy, /*isConstant=*/true,
+ llvm::GlobalValue::InternalLinkage, nullptr,
+ "_openmp_static_kernel$size");
+ RecSize->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+ llvm::Value *Ld = CGF.EmitLoadOfScalar(
+ Address(RecSize, CGM.getSizeAlign()), /*Volatile=*/false,
+ CGM.getContext().getSizeType(), Loc);
+ llvm::Value *ResAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ KernelStaticGlobalized, CGM.VoidPtrPtrTy);
+ llvm::Value *GlobalRecordSizeArg[] = {
+ llvm::ConstantInt::get(
+ CGM.Int16Ty,
+ getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD ? 1 : 0),
+ StaticGlobalized, Ld, IsInSharedMemory, ResAddr};
+ CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_get_team_static_memory),
+ GlobalRecordSizeArg);
+ GlobalizedRecords.back().Buffer = StaticGlobalized;
+ GlobalizedRecords.back().RecSize = RecSize;
+ GlobalizedRecords.back().UseSharedMemory = UseSharedMemory;
+ GlobalizedRecords.back().Loc = Loc;
+ }
+ assert(KernelStaticGlobalized && "Global address must be set already.");
+ Address FrameAddr = CGF.EmitLoadOfPointer(
+ Address(KernelStaticGlobalized, CGM.getPointerAlign()),
+ CGM.getContext()
+ .getPointerType(CGM.getContext().VoidPtrTy)
+ .castAs<PointerType>());
+ llvm::Value *GlobalRecValue =
+ Bld.CreateConstInBoundsGEP(FrameAddr, Offset, CharUnits::One())
+ .getPointer();
+ I->getSecond().GlobalRecordAddr = GlobalRecValue;
+ I->getSecond().IsInSPMDModeFlag = nullptr;
+ GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ GlobalRecValue, CGF.ConvertTypeForMem(GlobalRecTy)->getPointerTo());
+ } else {
+ // TODO: allow the usage of shared memory to be controlled by
+ // the user, for now, default to global.
+ llvm::Value *GlobalRecordSizeArg[] = {
+ llvm::ConstantInt::get(CGM.SizeTy, GlobalRecordSize),
+ CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
+ llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
+ GlobalRecordSizeArg);
+ GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ GlobalRecValue, GlobalRecPtrTy);
+ I->getSecond().GlobalRecordAddr = GlobalRecValue;
+ I->getSecond().IsInSPMDModeFlag = nullptr;
+ }
+ LValue Base =
+ CGF.MakeNaturalAlignPointeeAddrLValue(GlobalRecCastAddr, GlobalRecTy);
+
+ // Emit the "global alloca" which is a GEP from the global declaration
+ // record using the pointer returned by the runtime.
+ LValue SecBase;
+ decltype(I->getSecond().LocalVarData)::const_iterator SecIt;
+ if (IsTTD) {
+ SecIt = I->getSecond().SecondaryLocalVarData->begin();
+ llvm::PointerType *SecGlobalRecPtrTy =
+ CGF.ConvertTypeForMem(SecGlobalRecTy)->getPointerTo();
+ SecBase = CGF.MakeNaturalAlignPointeeAddrLValue(
+ Bld.CreatePointerBitCastOrAddrSpaceCast(
+ I->getSecond().GlobalRecordAddr, SecGlobalRecPtrTy),
+ SecGlobalRecTy);
+ }
+ for (auto &Rec : I->getSecond().LocalVarData) {
+ bool EscapedParam = I->getSecond().EscapedParameters.count(Rec.first);
+ llvm::Value *ParValue;
+ if (EscapedParam) {
+ const auto *VD = cast<VarDecl>(Rec.first);
+ LValue ParLVal =
+ CGF.MakeAddrLValue(CGF.GetAddrOfLocalVar(VD), VD->getType());
+ ParValue = CGF.EmitLoadOfScalar(ParLVal, Loc);
+ }
+ LValue VarAddr = CGF.EmitLValueForField(Base, Rec.second.FD);
+ // Emit VarAddr basing on lane-id if required.
+ QualType VarTy;
+ if (Rec.second.IsOnePerTeam) {
+ VarTy = Rec.second.FD->getType();
+ } else {
+ llvm::Value *Ptr = CGF.Builder.CreateInBoundsGEP(
+ VarAddr.getAddress().getPointer(),
+ {Bld.getInt32(0), getNVPTXLaneID(CGF)});
+ VarTy =
+ Rec.second.FD->getType()->castAsArrayTypeUnsafe()->getElementType();
+ VarAddr = CGF.MakeAddrLValue(
+ Address(Ptr, CGM.getContext().getDeclAlign(Rec.first)), VarTy,
+ AlignmentSource::Decl);
+ }
+ Rec.second.PrivateAddr = VarAddr.getAddress();
+ if (!IsInTTDRegion &&
+ (WithSPMDCheck ||
+ getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
+ assert(I->getSecond().IsInSPMDModeFlag &&
+ "Expected unknown execution mode or required SPMD check.");
+ if (IsTTD) {
+ assert(SecIt->second.IsOnePerTeam &&
+ "Secondary glob data must be one per team.");
+ LValue SecVarAddr = CGF.EmitLValueForField(SecBase, SecIt->second.FD);
+ VarAddr.setAddress(
+ Address(Bld.CreateSelect(IsTTD, SecVarAddr.getPointer(),
+ VarAddr.getPointer()),
+ VarAddr.getAlignment()));
+ Rec.second.PrivateAddr = VarAddr.getAddress();
+ }
+ Address GlobalPtr = Rec.second.PrivateAddr;
+ Address LocalAddr = CGF.CreateMemTemp(VarTy, Rec.second.FD->getName());
+ Rec.second.PrivateAddr = Address(
+ Bld.CreateSelect(I->getSecond().IsInSPMDModeFlag,
+ LocalAddr.getPointer(), GlobalPtr.getPointer()),
+ LocalAddr.getAlignment());
+ }
+ if (EscapedParam) {
+ const auto *VD = cast<VarDecl>(Rec.first);
+ CGF.EmitStoreOfScalar(ParValue, VarAddr);
+ I->getSecond().MappedParams->setVarAddr(CGF, VD, VarAddr.getAddress());
+ }
+ if (IsTTD)
+ ++SecIt;
+ }
+ }
+ for (const ValueDecl *VD : I->getSecond().EscapedVariableLengthDecls) {
+ // Recover pointer to this function's global record. The runtime will
+ // handle the specifics of the allocation of the memory.
+ // Use actual memory size of the record including the padding
+ // for alignment purposes.
+ CGBuilderTy &Bld = CGF.Builder;
+ llvm::Value *Size = CGF.getTypeSize(VD->getType());
+ CharUnits Align = CGM.getContext().getDeclAlign(VD);
+ Size = Bld.CreateNUWAdd(
+ Size, llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity() - 1));
+ llvm::Value *AlignVal =
+ llvm::ConstantInt::get(CGF.SizeTy, Align.getQuantity());
+ Size = Bld.CreateUDiv(Size, AlignVal);
+ Size = Bld.CreateNUWMul(Size, AlignVal);
+ // TODO: allow the usage of shared memory to be controlled by
+ // the user, for now, default to global.
+ llvm::Value *GlobalRecordSizeArg[] = {
+ Size, CGF.Builder.getInt16(/*UseSharedMemory=*/0)};
+ llvm::Value *GlobalRecValue = CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_data_sharing_coalesced_push_stack),
+ GlobalRecordSizeArg);
+ llvm::Value *GlobalRecCastAddr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ GlobalRecValue, CGF.ConvertTypeForMem(VD->getType())->getPointerTo());
+ LValue Base = CGF.MakeAddrLValue(GlobalRecCastAddr, VD->getType(),
+ CGM.getContext().getDeclAlign(VD),
+ AlignmentSource::Decl);
+ I->getSecond().MappedParams->setVarAddr(CGF, cast<VarDecl>(VD),
+ Base.getAddress());
+ I->getSecond().EscapedVariableLengthDeclsAddrs.emplace_back(GlobalRecValue);
+ }
+ I->getSecond().MappedParams->apply(CGF);
+}
+
+void CGOpenMPRuntimeNVPTX::emitGenericVarsEpilog(CodeGenFunction &CGF,
+ bool WithSPMDCheck) {
+ if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic &&
+ getExecutionMode() != CGOpenMPRuntimeNVPTX::EM_SPMD)
+ return;
+
+ const auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
+ if (I != FunctionGlobalizedDecls.end()) {
+ I->getSecond().MappedParams->restore(CGF);
+ if (!CGF.HaveInsertPoint())
+ return;
+ for (llvm::Value *Addr :
+ llvm::reverse(I->getSecond().EscapedVariableLengthDeclsAddrs)) {
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
+ Addr);
+ }
+ if (I->getSecond().GlobalRecordAddr) {
+ if (!IsInTTDRegion &&
+ (WithSPMDCheck ||
+ getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_Unknown)) {
+ CGBuilderTy &Bld = CGF.Builder;
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
+ llvm::BasicBlock *NonSPMDBB = CGF.createBasicBlock(".non-spmd");
+ Bld.CreateCondBr(I->getSecond().IsInSPMDModeFlag, ExitBB, NonSPMDBB);
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(NonSPMDBB);
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
+ CGF.EmitCastToVoidPtr(I->getSecond().GlobalRecordAddr));
+ CGF.EmitBlock(ExitBB);
+ } else if (IsInTTDRegion) {
+ assert(GlobalizedRecords.back().RegionCounter > 0 &&
+ "region counter must be > 0.");
+ --GlobalizedRecords.back().RegionCounter;
+ // Emit the restore function only in the target region.
+ if (GlobalizedRecords.back().RegionCounter == 0) {
+ QualType Int16Ty = CGM.getContext().getIntTypeForBitwidth(
+ /*DestWidth=*/16, /*Signed=*/0);
+ llvm::Value *IsInSharedMemory = CGF.EmitLoadOfScalar(
+ Address(GlobalizedRecords.back().UseSharedMemory,
+ CGM.getContext().getTypeAlignInChars(Int16Ty)),
+ /*Volatile=*/false, Int16Ty, GlobalizedRecords.back().Loc);
+ llvm::Value *Args[] = {
+ llvm::ConstantInt::get(
+ CGM.Int16Ty,
+ getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD ? 1 : 0),
+ IsInSharedMemory};
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_restore_team_static_memory),
+ Args);
+ }
+ } else {
+ CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_data_sharing_pop_stack),
+ I->getSecond().GlobalRecordAddr);
+ }
+ }
+ }
+}
+
+void CGOpenMPRuntimeNVPTX::emitTeamsCall(CodeGenFunction &CGF,
+ const OMPExecutableDirective &D,
+ SourceLocation Loc,
+ llvm::Value *OutlinedFn,
+ ArrayRef<llvm::Value *> CapturedVars) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ Address ZeroAddr = CGF.CreateMemTemp(
+ CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
+ /*Name*/ ".zero.addr");
+ CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+ llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+ OutlinedFnArgs.push_back(emitThreadIDAddress(CGF, Loc).getPointer());
+ OutlinedFnArgs.push_back(ZeroAddr.getPointer());
+ OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
+ emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
+}
+
+void CGOpenMPRuntimeNVPTX::emitParallelCall(
+ CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
+ ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
+ emitSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
+ else
+ emitNonSPMDParallelCall(CGF, Loc, OutlinedFn, CapturedVars, IfCond);
+}
+
+void CGOpenMPRuntimeNVPTX::emitNonSPMDParallelCall(
+ CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
+ ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
+ llvm::Function *Fn = cast<llvm::Function>(OutlinedFn);
+
+ // Force inline this outlined function at its call site.
+ Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
+
+ Address ZeroAddr = CGF.CreateMemTemp(CGF.getContext().getIntTypeForBitwidth(
+ /*DestWidth=*/32, /*Signed=*/1),
+ ".zero.addr");
+ CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+ // ThreadId for serialized parallels is 0.
+ Address ThreadIDAddr = ZeroAddr;
+ auto &&CodeGen = [this, Fn, CapturedVars, Loc, ZeroAddr, &ThreadIDAddr](
+ CodeGenFunction &CGF, PrePostActionTy &Action) {
+ Action.Enter(CGF);
+
+ llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+ OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
+ OutlinedFnArgs.push_back(ZeroAddr.getPointer());
+ OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
+ emitOutlinedFunctionCall(CGF, Loc, Fn, OutlinedFnArgs);
+ };
+ auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+
+ RegionCodeGenTy RCG(CodeGen);
+ llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+ llvm::Value *ThreadID = getThreadID(CGF, Loc);
+ llvm::Value *Args[] = {RTLoc, ThreadID};
+
+ NVPTXActionTy Action(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
+ Args,
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
+ Args);
+ RCG.setAction(Action);
+ RCG(CGF);
+ };
+
+ auto &&L0ParallelGen = [this, CapturedVars, Fn](CodeGenFunction &CGF,
+ PrePostActionTy &Action) {
+ CGBuilderTy &Bld = CGF.Builder;
+ llvm::Function *WFn = WrapperFunctionsMap[Fn];
+ assert(WFn && "Wrapper function does not exist!");
+ llvm::Value *ID = Bld.CreateBitOrPointerCast(WFn, CGM.Int8PtrTy);
+
+ // Prepare for parallel region. Indicate the outlined function.
+ llvm::Value *Args[] = {ID, /*RequiresOMPRuntime=*/Bld.getInt16(1)};
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_kernel_prepare_parallel),
+ Args);
+
+ // Create a private scope that will globalize the arguments
+ // passed from the outside of the target region.
+ CodeGenFunction::OMPPrivateScope PrivateArgScope(CGF);
+
+ // There's something to share.
+ if (!CapturedVars.empty()) {
+ // Prepare for parallel region. Indicate the outlined function.
+ Address SharedArgs =
+ CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "shared_arg_refs");
+ llvm::Value *SharedArgsPtr = SharedArgs.getPointer();
+
+ llvm::Value *DataSharingArgs[] = {
+ SharedArgsPtr,
+ llvm::ConstantInt::get(CGM.SizeTy, CapturedVars.size())};
+ CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_begin_sharing_variables),
+ DataSharingArgs);
+
+ // Store variable address in a list of references to pass to workers.
+ unsigned Idx = 0;
+ ASTContext &Ctx = CGF.getContext();
+ Address SharedArgListAddress = CGF.EmitLoadOfPointer(
+ SharedArgs, Ctx.getPointerType(Ctx.getPointerType(Ctx.VoidPtrTy))
+ .castAs<PointerType>());
+ for (llvm::Value *V : CapturedVars) {
+ Address Dst = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx,
+ CGF.getPointerSize());
+ llvm::Value *PtrV;
+ if (V->getType()->isIntegerTy())
+ PtrV = Bld.CreateIntToPtr(V, CGF.VoidPtrTy);
+ else
+ PtrV = Bld.CreatePointerBitCastOrAddrSpaceCast(V, CGF.VoidPtrTy);
+ CGF.EmitStoreOfScalar(PtrV, Dst, /*Volatile=*/false,
+ Ctx.getPointerType(Ctx.VoidPtrTy));
+ ++Idx;
+ }
+ }
+
+ // Activate workers. This barrier is used by the master to signal
+ // work for the workers.
+ syncCTAThreads(CGF);
+
+ // OpenMP [2.5, Parallel Construct, p.49]
+ // There is an implied barrier at the end of a parallel region. After the
+ // end of a parallel region, only the master thread of the team resumes
+ // execution of the enclosing task region.
+ //
+ // The master waits at this barrier until all workers are done.
+ syncCTAThreads(CGF);
+
+ if (!CapturedVars.empty())
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_sharing_variables));
+
+ // Remember for post-processing in worker loop.
+ Work.emplace_back(WFn);
+ };
+
+ auto &&LNParallelGen = [this, Loc, &SeqGen, &L0ParallelGen](
+ CodeGenFunction &CGF, PrePostActionTy &Action) {
+ if (IsInParallelRegion) {
+ SeqGen(CGF, Action);
+ } else if (IsInTargetMasterThreadRegion) {
+ L0ParallelGen(CGF, Action);
+ } else {
+ // Check for master and then parallelism:
+ // if (__kmpc_is_spmd_exec_mode() || __kmpc_parallel_level(loc, gtid)) {
+ // Serialized execution.
+ // } else {
+ // Worker call.
+ // }
+ CGBuilderTy &Bld = CGF.Builder;
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".exit");
+ llvm::BasicBlock *SeqBB = CGF.createBasicBlock(".sequential");
+ llvm::BasicBlock *ParallelCheckBB = CGF.createBasicBlock(".parcheck");
+ llvm::BasicBlock *MasterBB = CGF.createBasicBlock(".master");
+ llvm::Value *IsSPMD = Bld.CreateIsNotNull(CGF.EmitNounwindRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_is_spmd_exec_mode)));
+ Bld.CreateCondBr(IsSPMD, SeqBB, ParallelCheckBB);
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(ParallelCheckBB);
+ llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+ llvm::Value *ThreadID = getThreadID(CGF, Loc);
+ llvm::Value *PL = CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_parallel_level),
+ {RTLoc, ThreadID});
+ llvm::Value *Res = Bld.CreateIsNotNull(PL);
+ Bld.CreateCondBr(Res, SeqBB, MasterBB);
+ CGF.EmitBlock(SeqBB);
+ SeqGen(CGF, Action);
+ CGF.EmitBranch(ExitBB);
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(MasterBB);
+ L0ParallelGen(CGF, Action);
+ CGF.EmitBranch(ExitBB);
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ // Emit the continuation block for code after the if.
+ CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+ }
+ };
+
+ if (IfCond) {
+ emitOMPIfClause(CGF, IfCond, LNParallelGen, SeqGen);
+ } else {
+ CodeGenFunction::RunCleanupsScope Scope(CGF);
+ RegionCodeGenTy ThenRCG(LNParallelGen);
+ ThenRCG(CGF);
+ }
+}
+
+void CGOpenMPRuntimeNVPTX::emitSPMDParallelCall(
+ CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
+ ArrayRef<llvm::Value *> CapturedVars, const Expr *IfCond) {
+ // Just call the outlined function to execute the parallel region.
+ // OutlinedFn(&GTid, &zero, CapturedStruct);
+ //
+ llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+
+ Address ZeroAddr = CGF.CreateMemTemp(CGF.getContext().getIntTypeForBitwidth(
+ /*DestWidth=*/32, /*Signed=*/1),
+ ".zero.addr");
+ CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+ // ThreadId for serialized parallels is 0.
+ Address ThreadIDAddr = ZeroAddr;
+ auto &&CodeGen = [this, OutlinedFn, CapturedVars, Loc, ZeroAddr,
+ &ThreadIDAddr](CodeGenFunction &CGF,
+ PrePostActionTy &Action) {
+ Action.Enter(CGF);
+
+ llvm::SmallVector<llvm::Value *, 16> OutlinedFnArgs;
+ OutlinedFnArgs.push_back(ThreadIDAddr.getPointer());
+ OutlinedFnArgs.push_back(ZeroAddr.getPointer());
+ OutlinedFnArgs.append(CapturedVars.begin(), CapturedVars.end());
+ emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, OutlinedFnArgs);
+ };
+ auto &&SeqGen = [this, &CodeGen, Loc](CodeGenFunction &CGF,
+ PrePostActionTy &) {
+
+ RegionCodeGenTy RCG(CodeGen);
+ llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+ llvm::Value *ThreadID = getThreadID(CGF, Loc);
+ llvm::Value *Args[] = {RTLoc, ThreadID};
+
+ NVPTXActionTy Action(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_serialized_parallel),
+ Args,
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_serialized_parallel),
+ Args);
+ RCG.setAction(Action);
+ RCG(CGF);
+ };
+
+ if (IsInTargetMasterThreadRegion) {
+ // In the worker need to use the real thread id.
+ ThreadIDAddr = emitThreadIDAddress(CGF, Loc);
+ RegionCodeGenTy RCG(CodeGen);
+ RCG(CGF);
+ } else {
+ // If we are not in the target region, it is definitely L2 parallelism or
+ // more, because for SPMD mode we always has L1 parallel level, sowe don't
+ // need to check for orphaned directives.
+ RegionCodeGenTy RCG(SeqGen);
+ RCG(CGF);
+ }
+}
+
+void CGOpenMPRuntimeNVPTX::syncCTAThreads(CodeGenFunction &CGF) {
+ // Always emit simple barriers!
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call __kmpc_barrier_simple_spmd(nullptr, 0);
+ // This function does not use parameters, so we can emit just default values.
+ llvm::Value *Args[] = {
+ llvm::ConstantPointerNull::get(
+ cast<llvm::PointerType>(getIdentTyPointerTy())),
+ llvm::ConstantInt::get(CGF.Int32Ty, /*V=*/0, /*isSigned=*/true)};
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL__kmpc_barrier_simple_spmd), Args);
+}
+
+void CGOpenMPRuntimeNVPTX::emitBarrierCall(CodeGenFunction &CGF,
+ SourceLocation Loc,
+ OpenMPDirectiveKind Kind, bool,
+ bool) {
+ // Always emit simple barriers!
+ if (!CGF.HaveInsertPoint())
+ return;
+ // Build call __kmpc_cancel_barrier(loc, thread_id);
+ unsigned Flags = getDefaultFlagsForBarriers(Kind);
+ llvm::Value *Args[] = {emitUpdateLocation(CGF, Loc, Flags),
+ getThreadID(CGF, Loc)};
+ CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(OMPRTL__kmpc_barrier), Args);
+}
+
+void CGOpenMPRuntimeNVPTX::emitCriticalRegion(
+ CodeGenFunction &CGF, StringRef CriticalName,
+ const RegionCodeGenTy &CriticalOpGen, SourceLocation Loc,
+ const Expr *Hint) {
+ llvm::BasicBlock *LoopBB = CGF.createBasicBlock("omp.critical.loop");
+ llvm::BasicBlock *TestBB = CGF.createBasicBlock("omp.critical.test");
+ llvm::BasicBlock *SyncBB = CGF.createBasicBlock("omp.critical.sync");
+ llvm::BasicBlock *BodyBB = CGF.createBasicBlock("omp.critical.body");
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock("omp.critical.exit");
+
+ // Fetch team-local id of the thread.
+ llvm::Value *ThreadID = getNVPTXThreadID(CGF);
+
+ // Get the width of the team.
+ llvm::Value *TeamWidth = getNVPTXNumThreads(CGF);
+
+ // Initialize the counter variable for the loop.
+ QualType Int32Ty =
+ CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/0);
+ Address Counter = CGF.CreateMemTemp(Int32Ty, "critical_counter");
+ LValue CounterLVal = CGF.MakeAddrLValue(Counter, Int32Ty);
+ CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.Int32Ty), CounterLVal,
+ /*isInit=*/true);
+
+ // Block checks if loop counter exceeds upper bound.
+ CGF.EmitBlock(LoopBB);
+ llvm::Value *CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
+ llvm::Value *CmpLoopBound = CGF.Builder.CreateICmpSLT(CounterVal, TeamWidth);
+ CGF.Builder.CreateCondBr(CmpLoopBound, TestBB, ExitBB);
+
+ // Block tests which single thread should execute region, and which threads
+ // should go straight to synchronisation point.
+ CGF.EmitBlock(TestBB);
+ CounterVal = CGF.EmitLoadOfScalar(CounterLVal, Loc);
+ llvm::Value *CmpThreadToCounter =
+ CGF.Builder.CreateICmpEQ(ThreadID, CounterVal);
+ CGF.Builder.CreateCondBr(CmpThreadToCounter, BodyBB, SyncBB);
+
+ // Block emits the body of the critical region.
+ CGF.EmitBlock(BodyBB);
+
+ // Output the critical statement.
+ CGOpenMPRuntime::emitCriticalRegion(CGF, CriticalName, CriticalOpGen, Loc,
+ Hint);
+
+ // After the body surrounded by the critical region, the single executing
+ // thread will jump to the synchronisation point.
+ // Block waits for all threads in current team to finish then increments the
+ // counter variable and returns to the loop.
+ CGF.EmitBlock(SyncBB);
+ emitBarrierCall(CGF, Loc, OMPD_unknown, /*EmitChecks=*/false,
+ /*ForceSimpleCall=*/true);
+
+ llvm::Value *IncCounterVal =
+ CGF.Builder.CreateNSWAdd(CounterVal, CGF.Builder.getInt32(1));
+ CGF.EmitStoreOfScalar(IncCounterVal, CounterLVal);
+ CGF.EmitBranch(LoopBB);
+
+ // Block that is reached when all threads in the team complete the region.
+ CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+}
+
+/// Cast value to the specified type.
+static llvm::Value *castValueToType(CodeGenFunction &CGF, llvm::Value *Val,
+ QualType ValTy, QualType CastTy,
+ SourceLocation Loc) {
+ assert(!CGF.getContext().getTypeSizeInChars(CastTy).isZero() &&
+ "Cast type must sized.");
+ assert(!CGF.getContext().getTypeSizeInChars(ValTy).isZero() &&
+ "Val type must sized.");
+ llvm::Type *LLVMCastTy = CGF.ConvertTypeForMem(CastTy);
+ if (ValTy == CastTy)
+ return Val;
+ if (CGF.getContext().getTypeSizeInChars(ValTy) ==
+ CGF.getContext().getTypeSizeInChars(CastTy))
+ return CGF.Builder.CreateBitCast(Val, LLVMCastTy);
+ if (CastTy->isIntegerType() && ValTy->isIntegerType())
+ return CGF.Builder.CreateIntCast(Val, LLVMCastTy,
+ CastTy->hasSignedIntegerRepresentation());
+ Address CastItem = CGF.CreateMemTemp(CastTy);
+ Address ValCastItem = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CastItem, Val->getType()->getPointerTo(CastItem.getAddressSpace()));
+ CGF.EmitStoreOfScalar(Val, ValCastItem, /*Volatile=*/false, ValTy);
+ return CGF.EmitLoadOfScalar(CastItem, /*Volatile=*/false, CastTy, Loc);
+}
+
+/// This function creates calls to one of two shuffle functions to copy
+/// variables between lanes in a warp.
+static llvm::Value *createRuntimeShuffleFunction(CodeGenFunction &CGF,
+ llvm::Value *Elem,
+ QualType ElemType,
+ llvm::Value *Offset,
+ SourceLocation Loc) {
+ CodeGenModule &CGM = CGF.CGM;
+ CGBuilderTy &Bld = CGF.Builder;
+ CGOpenMPRuntimeNVPTX &RT =
+ *(static_cast<CGOpenMPRuntimeNVPTX *>(&CGM.getOpenMPRuntime()));
+
+ CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
+ assert(Size.getQuantity() <= 8 &&
+ "Unsupported bitwidth in shuffle instruction.");
+
+ OpenMPRTLFunctionNVPTX ShuffleFn = Size.getQuantity() <= 4
+ ? OMPRTL_NVPTX__kmpc_shuffle_int32
+ : OMPRTL_NVPTX__kmpc_shuffle_int64;
+
+ // Cast all types to 32- or 64-bit values before calling shuffle routines.
+ QualType CastTy = CGF.getContext().getIntTypeForBitwidth(
+ Size.getQuantity() <= 4 ? 32 : 64, /*Signed=*/1);
+ llvm::Value *ElemCast = castValueToType(CGF, Elem, ElemType, CastTy, Loc);
+ llvm::Value *WarpSize =
+ Bld.CreateIntCast(getNVPTXWarpSize(CGF), CGM.Int16Ty, /*isSigned=*/true);
+
+ llvm::Value *ShuffledVal = CGF.EmitRuntimeCall(
+ RT.createNVPTXRuntimeFunction(ShuffleFn), {ElemCast, Offset, WarpSize});
+
+ return castValueToType(CGF, ShuffledVal, CastTy, ElemType, Loc);
+}
+
+static void shuffleAndStore(CodeGenFunction &CGF, Address SrcAddr,
+ Address DestAddr, QualType ElemType,
+ llvm::Value *Offset, SourceLocation Loc) {
+ CGBuilderTy &Bld = CGF.Builder;
+
+ CharUnits Size = CGF.getContext().getTypeSizeInChars(ElemType);
+ // Create the loop over the big sized data.
+ // ptr = (void*)Elem;
+ // ptrEnd = (void*) Elem + 1;
+ // Step = 8;
+ // while (ptr + Step < ptrEnd)
+ // shuffle((int64_t)*ptr);
+ // Step = 4;
+ // while (ptr + Step < ptrEnd)
+ // shuffle((int32_t)*ptr);
+ // ...
+ Address ElemPtr = DestAddr;
+ Address Ptr = SrcAddr;
+ Address PtrEnd = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ Bld.CreateConstGEP(SrcAddr, 1, Size), CGF.VoidPtrTy);
+ for (int IntSize = 8; IntSize >= 1; IntSize /= 2) {
+ if (Size < CharUnits::fromQuantity(IntSize))
+ continue;
+ QualType IntType = CGF.getContext().getIntTypeForBitwidth(
+ CGF.getContext().toBits(CharUnits::fromQuantity(IntSize)),
+ /*Signed=*/1);
+ llvm::Type *IntTy = CGF.ConvertTypeForMem(IntType);
+ Ptr = Bld.CreatePointerBitCastOrAddrSpaceCast(Ptr, IntTy->getPointerTo());
+ ElemPtr =
+ Bld.CreatePointerBitCastOrAddrSpaceCast(ElemPtr, IntTy->getPointerTo());
+ if (Size.getQuantity() / IntSize > 1) {
+ llvm::BasicBlock *PreCondBB = CGF.createBasicBlock(".shuffle.pre_cond");
+ llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".shuffle.then");
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".shuffle.exit");
+ llvm::BasicBlock *CurrentBB = Bld.GetInsertBlock();
+ CGF.EmitBlock(PreCondBB);
+ llvm::PHINode *PhiSrc =
+ Bld.CreatePHI(Ptr.getType(), /*NumReservedValues=*/2);
+ PhiSrc->addIncoming(Ptr.getPointer(), CurrentBB);
+ llvm::PHINode *PhiDest =
+ Bld.CreatePHI(ElemPtr.getType(), /*NumReservedValues=*/2);
+ PhiDest->addIncoming(ElemPtr.getPointer(), CurrentBB);
+ Ptr = Address(PhiSrc, Ptr.getAlignment());
+ ElemPtr = Address(PhiDest, ElemPtr.getAlignment());
+ llvm::Value *PtrDiff = Bld.CreatePtrDiff(
+ PtrEnd.getPointer(), Bld.CreatePointerBitCastOrAddrSpaceCast(
+ Ptr.getPointer(), CGF.VoidPtrTy));
+ Bld.CreateCondBr(Bld.CreateICmpSGT(PtrDiff, Bld.getInt64(IntSize - 1)),
+ ThenBB, ExitBB);
+ CGF.EmitBlock(ThenBB);
+ llvm::Value *Res = createRuntimeShuffleFunction(
+ CGF, CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc),
+ IntType, Offset, Loc);
+ CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType);
+ Address LocalPtr =
+ Bld.CreateConstGEP(Ptr, 1, CharUnits::fromQuantity(IntSize));
+ Address LocalElemPtr =
+ Bld.CreateConstGEP(ElemPtr, 1, CharUnits::fromQuantity(IntSize));
+ PhiSrc->addIncoming(LocalPtr.getPointer(), ThenBB);
+ PhiDest->addIncoming(LocalElemPtr.getPointer(), ThenBB);
+ CGF.EmitBranch(PreCondBB);
+ CGF.EmitBlock(ExitBB);
+ } else {
+ llvm::Value *Res = createRuntimeShuffleFunction(
+ CGF, CGF.EmitLoadOfScalar(Ptr, /*Volatile=*/false, IntType, Loc),
+ IntType, Offset, Loc);
+ CGF.EmitStoreOfScalar(Res, ElemPtr, /*Volatile=*/false, IntType);
+ Ptr = Bld.CreateConstGEP(Ptr, 1, CharUnits::fromQuantity(IntSize));
+ ElemPtr =
+ Bld.CreateConstGEP(ElemPtr, 1, CharUnits::fromQuantity(IntSize));
+ }
+ Size = Size % IntSize;
+ }
+}
+
+namespace {
+enum CopyAction : unsigned {
+ // RemoteLaneToThread: Copy over a Reduce list from a remote lane in
+ // the warp using shuffle instructions.
+ RemoteLaneToThread,
+ // ThreadCopy: Make a copy of a Reduce list on the thread's stack.
+ ThreadCopy,
+ // ThreadToScratchpad: Copy a team-reduced array to the scratchpad.
+ ThreadToScratchpad,
+ // ScratchpadToThread: Copy from a scratchpad array in global memory
+ // containing team-reduced data to a thread's stack.
+ ScratchpadToThread,
+};
+} // namespace
+
+struct CopyOptionsTy {
+ llvm::Value *RemoteLaneOffset;
+ llvm::Value *ScratchpadIndex;
+ llvm::Value *ScratchpadWidth;
+};
+
+/// Emit instructions to copy a Reduce list, which contains partially
+/// aggregated values, in the specified direction.
+static void emitReductionListCopy(
+ CopyAction Action, CodeGenFunction &CGF, QualType ReductionArrayTy,
+ ArrayRef<const Expr *> Privates, Address SrcBase, Address DestBase,
+ CopyOptionsTy CopyOptions = {nullptr, nullptr, nullptr}) {
+
+ CodeGenModule &CGM = CGF.CGM;
+ ASTContext &C = CGM.getContext();
+ CGBuilderTy &Bld = CGF.Builder;
+
+ llvm::Value *RemoteLaneOffset = CopyOptions.RemoteLaneOffset;
+ llvm::Value *ScratchpadIndex = CopyOptions.ScratchpadIndex;
+ llvm::Value *ScratchpadWidth = CopyOptions.ScratchpadWidth;
+
+ // Iterates, element-by-element, through the source Reduce list and
+ // make a copy.
+ unsigned Idx = 0;
+ unsigned Size = Privates.size();
+ for (const Expr *Private : Privates) {
+ Address SrcElementAddr = Address::invalid();
+ Address DestElementAddr = Address::invalid();
+ Address DestElementPtrAddr = Address::invalid();
+ // Should we shuffle in an element from a remote lane?
+ bool ShuffleInElement = false;
+ // Set to true to update the pointer in the dest Reduce list to a
+ // newly created element.
+ bool UpdateDestListPtr = false;
+ // Increment the src or dest pointer to the scratchpad, for each
+ // new element.
+ bool IncrScratchpadSrc = false;
+ bool IncrScratchpadDest = false;
+
+ switch (Action) {
+ case RemoteLaneToThread: {
+ // Step 1.1: Get the address for the src element in the Reduce list.
+ Address SrcElementPtrAddr =
+ Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
+ SrcElementAddr = CGF.EmitLoadOfPointer(
+ SrcElementPtrAddr,
+ C.getPointerType(Private->getType())->castAs<PointerType>());
+
+ // Step 1.2: Create a temporary to store the element in the destination
+ // Reduce list.
+ DestElementPtrAddr =
+ Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
+ DestElementAddr =
+ CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
+ ShuffleInElement = true;
+ UpdateDestListPtr = true;
+ break;
+ }
+ case ThreadCopy: {
+ // Step 1.1: Get the address for the src element in the Reduce list.
+ Address SrcElementPtrAddr =
+ Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
+ SrcElementAddr = CGF.EmitLoadOfPointer(
+ SrcElementPtrAddr,
+ C.getPointerType(Private->getType())->castAs<PointerType>());
+
+ // Step 1.2: Get the address for dest element. The destination
+ // element has already been created on the thread's stack.
+ DestElementPtrAddr =
+ Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
+ DestElementAddr = CGF.EmitLoadOfPointer(
+ DestElementPtrAddr,
+ C.getPointerType(Private->getType())->castAs<PointerType>());
+ break;
+ }
+ case ThreadToScratchpad: {
+ // Step 1.1: Get the address for the src element in the Reduce list.
+ Address SrcElementPtrAddr =
+ Bld.CreateConstArrayGEP(SrcBase, Idx, CGF.getPointerSize());
+ SrcElementAddr = CGF.EmitLoadOfPointer(
+ SrcElementPtrAddr,
+ C.getPointerType(Private->getType())->castAs<PointerType>());
+
+ // Step 1.2: Get the address for dest element:
+ // address = base + index * ElementSizeInChars.
+ llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
+ llvm::Value *CurrentOffset =
+ Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
+ llvm::Value *ScratchPadElemAbsolutePtrVal =
+ Bld.CreateNUWAdd(DestBase.getPointer(), CurrentOffset);
+ ScratchPadElemAbsolutePtrVal =
+ Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
+ DestElementAddr = Address(ScratchPadElemAbsolutePtrVal,
+ C.getTypeAlignInChars(Private->getType()));
+ IncrScratchpadDest = true;
+ break;
+ }
+ case ScratchpadToThread: {
+ // Step 1.1: Get the address for the src element in the scratchpad.
+ // address = base + index * ElementSizeInChars.
+ llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
+ llvm::Value *CurrentOffset =
+ Bld.CreateNUWMul(ElementSizeInChars, ScratchpadIndex);
+ llvm::Value *ScratchPadElemAbsolutePtrVal =
+ Bld.CreateNUWAdd(SrcBase.getPointer(), CurrentOffset);
+ ScratchPadElemAbsolutePtrVal =
+ Bld.CreateIntToPtr(ScratchPadElemAbsolutePtrVal, CGF.VoidPtrTy);
+ SrcElementAddr = Address(ScratchPadElemAbsolutePtrVal,
+ C.getTypeAlignInChars(Private->getType()));
+ IncrScratchpadSrc = true;
+
+ // Step 1.2: Create a temporary to store the element in the destination
+ // Reduce list.
+ DestElementPtrAddr =
+ Bld.CreateConstArrayGEP(DestBase, Idx, CGF.getPointerSize());
+ DestElementAddr =
+ CGF.CreateMemTemp(Private->getType(), ".omp.reduction.element");
+ UpdateDestListPtr = true;
+ break;
+ }
+ }
+
+ // Regardless of src and dest of copy, we emit the load of src
+ // element as this is required in all directions
+ SrcElementAddr = Bld.CreateElementBitCast(
+ SrcElementAddr, CGF.ConvertTypeForMem(Private->getType()));
+ DestElementAddr = Bld.CreateElementBitCast(DestElementAddr,
+ SrcElementAddr.getElementType());
+
+ // Now that all active lanes have read the element in the
+ // Reduce list, shuffle over the value from the remote lane.
+ if (ShuffleInElement) {
+ shuffleAndStore(CGF, SrcElementAddr, DestElementAddr, Private->getType(),
+ RemoteLaneOffset, Private->getExprLoc());
+ } else {
+ if (Private->getType()->isScalarType()) {
+ llvm::Value *Elem =
+ CGF.EmitLoadOfScalar(SrcElementAddr, /*Volatile=*/false,
+ Private->getType(), Private->getExprLoc());
+ // Store the source element value to the dest element address.
+ CGF.EmitStoreOfScalar(Elem, DestElementAddr, /*Volatile=*/false,
+ Private->getType());
+ } else {
+ CGF.EmitAggregateCopy(
+ CGF.MakeAddrLValue(DestElementAddr, Private->getType()),
+ CGF.MakeAddrLValue(SrcElementAddr, Private->getType()),
+ Private->getType(), AggValueSlot::DoesNotOverlap);
+ }
+ }
+
+ // Step 3.1: Modify reference in dest Reduce list as needed.
+ // Modifying the reference in Reduce list to point to the newly
+ // created element. The element is live in the current function
+ // scope and that of functions it invokes (i.e., reduce_function).
+ // RemoteReduceData[i] = (void*)&RemoteElem
+ if (UpdateDestListPtr) {
+ CGF.EmitStoreOfScalar(Bld.CreatePointerBitCastOrAddrSpaceCast(
+ DestElementAddr.getPointer(), CGF.VoidPtrTy),
+ DestElementPtrAddr, /*Volatile=*/false,
+ C.VoidPtrTy);
+ }
+
+ // Step 4.1: Increment SrcBase/DestBase so that it points to the starting
+ // address of the next element in scratchpad memory, unless we're currently
+ // processing the last one. Memory alignment is also taken care of here.
+ if ((IncrScratchpadDest || IncrScratchpadSrc) && (Idx + 1 < Size)) {
+ llvm::Value *ScratchpadBasePtr =
+ IncrScratchpadDest ? DestBase.getPointer() : SrcBase.getPointer();
+ llvm::Value *ElementSizeInChars = CGF.getTypeSize(Private->getType());
+ ScratchpadBasePtr = Bld.CreateNUWAdd(
+ ScratchpadBasePtr,
+ Bld.CreateNUWMul(ScratchpadWidth, ElementSizeInChars));
+
+ // Take care of global memory alignment for performance
+ ScratchpadBasePtr = Bld.CreateNUWSub(
+ ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
+ ScratchpadBasePtr = Bld.CreateUDiv(
+ ScratchpadBasePtr,
+ llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
+ ScratchpadBasePtr = Bld.CreateNUWAdd(
+ ScratchpadBasePtr, llvm::ConstantInt::get(CGM.SizeTy, 1));
+ ScratchpadBasePtr = Bld.CreateNUWMul(
+ ScratchpadBasePtr,
+ llvm::ConstantInt::get(CGM.SizeTy, GlobalMemoryAlignment));
+
+ if (IncrScratchpadDest)
+ DestBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
+ else /* IncrScratchpadSrc = true */
+ SrcBase = Address(ScratchpadBasePtr, CGF.getPointerAlign());
+ }
+
+ ++Idx;
+ }
+}
+
+/// This function emits a helper that gathers Reduce lists from the first
+/// lane of every active warp to lanes in the first warp.
+///
+/// void inter_warp_copy_func(void* reduce_data, num_warps)
+/// shared smem[warp_size];
+/// For all data entries D in reduce_data:
+/// sync
+/// If (I am the first lane in each warp)
+/// Copy my local D to smem[warp_id]
+/// sync
+/// if (I am the first warp)
+/// Copy smem[thread_id] to my local D
+static llvm::Value *emitInterWarpCopyFunction(CodeGenModule &CGM,
+ ArrayRef<const Expr *> Privates,
+ QualType ReductionArrayTy,
+ SourceLocation Loc) {
+ ASTContext &C = CGM.getContext();
+ llvm::Module &M = CGM.getModule();
+
+ // ReduceList: thread local Reduce list.
+ // At the stage of the computation when this function is called, partially
+ // aggregated values reside in the first lane of every active warp.
+ ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ // NumWarps: number of warps active in the parallel region. This could
+ // be smaller than 32 (max warps in a CTA) for partial block reduction.
+ ImplicitParamDecl NumWarpsArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.getIntTypeForBitwidth(32, /* Signed */ true),
+ ImplicitParamDecl::Other);
+ FunctionArgList Args;
+ Args.push_back(&ReduceListArg);
+ Args.push_back(&NumWarpsArg);
+
+ const CGFunctionInfo &CGFI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ "_omp_reduction_inter_warp_copy_func", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+ Fn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+ CGBuilderTy &Bld = CGF.Builder;
+
+ // This array is used as a medium to transfer, one reduce element at a time,
+ // the data from the first lane of every warp to lanes in the first warp
+ // in order to perform the final step of a reduction in a parallel region
+ // (reduction across warps). The array is placed in NVPTX __shared__ memory
+ // for reduced latency, as well as to have a distinct copy for concurrently
+ // executing target regions. The array is declared with common linkage so
+ // as to be shared across compilation units.
+ StringRef TransferMediumName =
+ "__openmp_nvptx_data_transfer_temporary_storage";
+ llvm::GlobalVariable *TransferMedium =
+ M.getGlobalVariable(TransferMediumName);
+ if (!TransferMedium) {
+ auto *Ty = llvm::ArrayType::get(CGM.Int32Ty, WarpSize);
+ unsigned SharedAddressSpace = C.getTargetAddressSpace(LangAS::cuda_shared);
+ TransferMedium = new llvm::GlobalVariable(
+ M, Ty, /*isConstant=*/false, llvm::GlobalVariable::CommonLinkage,
+ llvm::Constant::getNullValue(Ty), TransferMediumName,
+ /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal,
+ SharedAddressSpace);
+ CGM.addCompilerUsedGlobal(TransferMedium);
+ }
+
+ // Get the CUDA thread id of the current OpenMP thread on the GPU.
+ llvm::Value *ThreadID = getNVPTXThreadID(CGF);
+ // nvptx_lane_id = nvptx_id % warpsize
+ llvm::Value *LaneID = getNVPTXLaneID(CGF);
+ // nvptx_warp_id = nvptx_id / warpsize
+ llvm::Value *WarpID = getNVPTXWarpID(CGF);
+
+ Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+ Address LocalReduceList(
+ Bld.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+ C.VoidPtrTy, Loc),
+ CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+ CGF.getPointerAlign());
+
+ unsigned Idx = 0;
+ for (const Expr *Private : Privates) {
+ //
+ // Warp master copies reduce element to transfer medium in __shared__
+ // memory.
+ //
+ unsigned RealTySize =
+ C.getTypeSizeInChars(Private->getType())
+ .alignTo(C.getTypeAlignInChars(Private->getType()))
+ .getQuantity();
+ for (unsigned TySize = 4; TySize > 0 && RealTySize > 0; TySize /=2) {
+ unsigned NumIters = RealTySize / TySize;
+ if (NumIters == 0)
+ continue;
+ QualType CType = C.getIntTypeForBitwidth(
+ C.toBits(CharUnits::fromQuantity(TySize)), /*Signed=*/1);
+ llvm::Type *CopyType = CGF.ConvertTypeForMem(CType);
+ CharUnits Align = CharUnits::fromQuantity(TySize);
+ llvm::Value *Cnt = nullptr;
+ Address CntAddr = Address::invalid();
+ llvm::BasicBlock *PrecondBB = nullptr;
+ llvm::BasicBlock *ExitBB = nullptr;
+ if (NumIters > 1) {
+ CntAddr = CGF.CreateMemTemp(C.IntTy, ".cnt.addr");
+ CGF.EmitStoreOfScalar(llvm::Constant::getNullValue(CGM.IntTy), CntAddr,
+ /*Volatile=*/false, C.IntTy);
+ PrecondBB = CGF.createBasicBlock("precond");
+ ExitBB = CGF.createBasicBlock("exit");
+ llvm::BasicBlock *BodyBB = CGF.createBasicBlock("body");
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(PrecondBB);
+ Cnt = CGF.EmitLoadOfScalar(CntAddr, /*Volatile=*/false, C.IntTy, Loc);
+ llvm::Value *Cmp =
+ Bld.CreateICmpULT(Cnt, llvm::ConstantInt::get(CGM.IntTy, NumIters));
+ Bld.CreateCondBr(Cmp, BodyBB, ExitBB);
+ CGF.EmitBlock(BodyBB);
+ }
+ // kmpc_barrier.
+ CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
+ /*EmitChecks=*/false,
+ /*ForceSimpleCall=*/true);
+ llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
+ llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
+ llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
+
+ // if (lane_id == 0)
+ llvm::Value *IsWarpMaster = Bld.CreateIsNull(LaneID, "warp_master");
+ Bld.CreateCondBr(IsWarpMaster, ThenBB, ElseBB);
+ CGF.EmitBlock(ThenBB);
+
+ // Reduce element = LocalReduceList[i]
+ Address ElemPtrPtrAddr =
+ Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize());
+ llvm::Value *ElemPtrPtr = CGF.EmitLoadOfScalar(
+ ElemPtrPtrAddr, /*Volatile=*/false, C.VoidPtrTy, SourceLocation());
+ // elemptr = ((CopyType*)(elemptrptr)) + I
+ Address ElemPtr = Address(ElemPtrPtr, Align);
+ ElemPtr = Bld.CreateElementBitCast(ElemPtr, CopyType);
+ if (NumIters > 1) {
+ ElemPtr = Address(Bld.CreateGEP(ElemPtr.getPointer(), Cnt),
+ ElemPtr.getAlignment());
+ }
+
+ // Get pointer to location in transfer medium.
+ // MediumPtr = &medium[warp_id]
+ llvm::Value *MediumPtrVal = Bld.CreateInBoundsGEP(
+ TransferMedium, {llvm::Constant::getNullValue(CGM.Int64Ty), WarpID});
+ Address MediumPtr(MediumPtrVal, Align);
+ // Casting to actual data type.
+ // MediumPtr = (CopyType*)MediumPtrAddr;
+ MediumPtr = Bld.CreateElementBitCast(MediumPtr, CopyType);
+
+ // elem = *elemptr
+ //*MediumPtr = elem
+ llvm::Value *Elem =
+ CGF.EmitLoadOfScalar(ElemPtr, /*Volatile=*/false, CType, Loc);
+ // Store the source element value to the dest element address.
+ CGF.EmitStoreOfScalar(Elem, MediumPtr, /*Volatile=*/true, CType);
+
+ Bld.CreateBr(MergeBB);
+
+ CGF.EmitBlock(ElseBB);
+ Bld.CreateBr(MergeBB);
+
+ CGF.EmitBlock(MergeBB);
+
+ // kmpc_barrier.
+ CGM.getOpenMPRuntime().emitBarrierCall(CGF, Loc, OMPD_unknown,
+ /*EmitChecks=*/false,
+ /*ForceSimpleCall=*/true);
+
+ //
+ // Warp 0 copies reduce element from transfer medium.
+ //
+ llvm::BasicBlock *W0ThenBB = CGF.createBasicBlock("then");
+ llvm::BasicBlock *W0ElseBB = CGF.createBasicBlock("else");
+ llvm::BasicBlock *W0MergeBB = CGF.createBasicBlock("ifcont");
+
+ Address AddrNumWarpsArg = CGF.GetAddrOfLocalVar(&NumWarpsArg);
+ llvm::Value *NumWarpsVal = CGF.EmitLoadOfScalar(
+ AddrNumWarpsArg, /*Volatile=*/false, C.IntTy, Loc);
+
+ // Up to 32 threads in warp 0 are active.
+ llvm::Value *IsActiveThread =
+ Bld.CreateICmpULT(ThreadID, NumWarpsVal, "is_active_thread");
+ Bld.CreateCondBr(IsActiveThread, W0ThenBB, W0ElseBB);
+
+ CGF.EmitBlock(W0ThenBB);
+
+ // SrcMediumPtr = &medium[tid]
+ llvm::Value *SrcMediumPtrVal = Bld.CreateInBoundsGEP(
+ TransferMedium,
+ {llvm::Constant::getNullValue(CGM.Int64Ty), ThreadID});
+ Address SrcMediumPtr(SrcMediumPtrVal, Align);
+ // SrcMediumVal = *SrcMediumPtr;
+ SrcMediumPtr = Bld.CreateElementBitCast(SrcMediumPtr, CopyType);
+
+ // TargetElemPtr = (CopyType*)(SrcDataAddr[i]) + I
+ Address TargetElemPtrPtr =
+ Bld.CreateConstArrayGEP(LocalReduceList, Idx, CGF.getPointerSize());
+ llvm::Value *TargetElemPtrVal = CGF.EmitLoadOfScalar(
+ TargetElemPtrPtr, /*Volatile=*/false, C.VoidPtrTy, Loc);
+ Address TargetElemPtr = Address(TargetElemPtrVal, Align);
+ TargetElemPtr = Bld.CreateElementBitCast(TargetElemPtr, CopyType);
+ if (NumIters > 1) {
+ TargetElemPtr = Address(Bld.CreateGEP(TargetElemPtr.getPointer(), Cnt),
+ TargetElemPtr.getAlignment());
+ }
+
+ // *TargetElemPtr = SrcMediumVal;
+ llvm::Value *SrcMediumValue =
+ CGF.EmitLoadOfScalar(SrcMediumPtr, /*Volatile=*/true, CType, Loc);
+ CGF.EmitStoreOfScalar(SrcMediumValue, TargetElemPtr, /*Volatile=*/false,
+ CType);
+ Bld.CreateBr(W0MergeBB);
+
+ CGF.EmitBlock(W0ElseBB);
+ Bld.CreateBr(W0MergeBB);
+
+ CGF.EmitBlock(W0MergeBB);
+
+ if (NumIters > 1) {
+ Cnt = Bld.CreateNSWAdd(Cnt, llvm::ConstantInt::get(CGM.IntTy, /*V=*/1));
+ CGF.EmitStoreOfScalar(Cnt, CntAddr, /*Volatile=*/false, C.IntTy);
+ CGF.EmitBranch(PrecondBB);
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(ExitBB);
+ }
+ RealTySize %= TySize;
+ }
+ ++Idx;
+ }
+
+ CGF.FinishFunction();
+ return Fn;
+}
+
+/// Emit a helper that reduces data across two OpenMP threads (lanes)
+/// in the same warp. It uses shuffle instructions to copy over data from
+/// a remote lane's stack. The reduction algorithm performed is specified
+/// by the fourth parameter.
+///
+/// Algorithm Versions.
+/// Full Warp Reduce (argument value 0):
+/// This algorithm assumes that all 32 lanes are active and gathers
+/// data from these 32 lanes, producing a single resultant value.
+/// Contiguous Partial Warp Reduce (argument value 1):
+/// This algorithm assumes that only a *contiguous* subset of lanes
+/// are active. This happens for the last warp in a parallel region
+/// when the user specified num_threads is not an integer multiple of
+/// 32. This contiguous subset always starts with the zeroth lane.
+/// Partial Warp Reduce (argument value 2):
+/// This algorithm gathers data from any number of lanes at any position.
+/// All reduced values are stored in the lowest possible lane. The set
+/// of problems every algorithm addresses is a super set of those
+/// addressable by algorithms with a lower version number. Overhead
+/// increases as algorithm version increases.
+///
+/// Terminology
+/// Reduce element:
+/// Reduce element refers to the individual data field with primitive
+/// data types to be combined and reduced across threads.
+/// Reduce list:
+/// Reduce list refers to a collection of local, thread-private
+/// reduce elements.
+/// Remote Reduce list:
+/// Remote Reduce list refers to a collection of remote (relative to
+/// the current thread) reduce elements.
+///
+/// We distinguish between three states of threads that are important to
+/// the implementation of this function.
+/// Alive threads:
+/// Threads in a warp executing the SIMT instruction, as distinguished from
+/// threads that are inactive due to divergent control flow.
+/// Active threads:
+/// The minimal set of threads that has to be alive upon entry to this
+/// function. The computation is correct iff active threads are alive.
+/// Some threads are alive but they are not active because they do not
+/// contribute to the computation in any useful manner. Turning them off
+/// may introduce control flow overheads without any tangible benefits.
+/// Effective threads:
+/// In order to comply with the argument requirements of the shuffle
+/// function, we must keep all lanes holding data alive. But at most
+/// half of them perform value aggregation; we refer to this half of
+/// threads as effective. The other half is simply handing off their
+/// data.
+///
+/// Procedure
+/// Value shuffle:
+/// In this step active threads transfer data from higher lane positions
+/// in the warp to lower lane positions, creating Remote Reduce list.
+/// Value aggregation:
+/// In this step, effective threads combine their thread local Reduce list
+/// with Remote Reduce list and store the result in the thread local
+/// Reduce list.
+/// Value copy:
+/// In this step, we deal with the assumption made by algorithm 2
+/// (i.e. contiguity assumption). When we have an odd number of lanes
+/// active, say 2k+1, only k threads will be effective and therefore k
+/// new values will be produced. However, the Reduce list owned by the
+/// (2k+1)th thread is ignored in the value aggregation. Therefore
+/// we copy the Reduce list from the (2k+1)th lane to (k+1)th lane so
+/// that the contiguity assumption still holds.
+static llvm::Value *emitShuffleAndReduceFunction(
+ CodeGenModule &CGM, ArrayRef<const Expr *> Privates,
+ QualType ReductionArrayTy, llvm::Value *ReduceFn, SourceLocation Loc) {
+ ASTContext &C = CGM.getContext();
+
+ // Thread local Reduce list used to host the values of data to be reduced.
+ ImplicitParamDecl ReduceListArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.VoidPtrTy, ImplicitParamDecl::Other);
+ // Current lane id; could be logical.
+ ImplicitParamDecl LaneIDArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr, C.ShortTy,
+ ImplicitParamDecl::Other);
+ // Offset of the remote source lane relative to the current lane.
+ ImplicitParamDecl RemoteLaneOffsetArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.ShortTy, ImplicitParamDecl::Other);
+ // Algorithm version. This is expected to be known at compile time.
+ ImplicitParamDecl AlgoVerArg(C, /*DC=*/nullptr, Loc, /*Id=*/nullptr,
+ C.ShortTy, ImplicitParamDecl::Other);
+ FunctionArgList Args;
+ Args.push_back(&ReduceListArg);
+ Args.push_back(&LaneIDArg);
+ Args.push_back(&RemoteLaneOffsetArg);
+ Args.push_back(&AlgoVerArg);
+
+ const CGFunctionInfo &CGFI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(C.VoidTy, Args);
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ "_omp_reduction_shuffle_and_reduce_func", &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+ Fn->setDoesNotRecurse();
+ CodeGenFunction CGF(CGM);
+ CGF.StartFunction(GlobalDecl(), C.VoidTy, Fn, CGFI, Args, Loc, Loc);
+
+ CGBuilderTy &Bld = CGF.Builder;
+
+ Address AddrReduceListArg = CGF.GetAddrOfLocalVar(&ReduceListArg);
+ Address LocalReduceList(
+ Bld.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLoadOfScalar(AddrReduceListArg, /*Volatile=*/false,
+ C.VoidPtrTy, SourceLocation()),
+ CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo()),
+ CGF.getPointerAlign());
+
+ Address AddrLaneIDArg = CGF.GetAddrOfLocalVar(&LaneIDArg);
+ llvm::Value *LaneIDArgVal = CGF.EmitLoadOfScalar(
+ AddrLaneIDArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+ Address AddrRemoteLaneOffsetArg = CGF.GetAddrOfLocalVar(&RemoteLaneOffsetArg);
+ llvm::Value *RemoteLaneOffsetArgVal = CGF.EmitLoadOfScalar(
+ AddrRemoteLaneOffsetArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+ Address AddrAlgoVerArg = CGF.GetAddrOfLocalVar(&AlgoVerArg);
+ llvm::Value *AlgoVerArgVal = CGF.EmitLoadOfScalar(
+ AddrAlgoVerArg, /*Volatile=*/false, C.ShortTy, SourceLocation());
+
+ // Create a local thread-private variable to host the Reduce list
+ // from a remote lane.
+ Address RemoteReduceList =
+ CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.remote_reduce_list");
+
+ // This loop iterates through the list of reduce elements and copies,
+ // element by element, from a remote lane in the warp to RemoteReduceList,
+ // hosted on the thread's stack.
+ emitReductionListCopy(RemoteLaneToThread, CGF, ReductionArrayTy, Privates,
+ LocalReduceList, RemoteReduceList,
+ {/*RemoteLaneOffset=*/RemoteLaneOffsetArgVal,
+ /*ScratchpadIndex=*/nullptr,
+ /*ScratchpadWidth=*/nullptr});
+
+ // The actions to be performed on the Remote Reduce list is dependent
+ // on the algorithm version.
+ //
+ // if (AlgoVer==0) || (AlgoVer==1 && (LaneId < Offset)) || (AlgoVer==2 &&
+ // LaneId % 2 == 0 && Offset > 0):
+ // do the reduction value aggregation
+ //
+ // The thread local variable Reduce list is mutated in place to host the
+ // reduced data, which is the aggregated value produced from local and
+ // remote lanes.
+ //
+ // Note that AlgoVer is expected to be a constant integer known at compile
+ // time.
+ // When AlgoVer==0, the first conjunction evaluates to true, making
+ // the entire predicate true during compile time.
+ // When AlgoVer==1, the second conjunction has only the second part to be
+ // evaluated during runtime. Other conjunctions evaluates to false
+ // during compile time.
+ // When AlgoVer==2, the third conjunction has only the second part to be
+ // evaluated during runtime. Other conjunctions evaluates to false
+ // during compile time.
+ llvm::Value *CondAlgo0 = Bld.CreateIsNull(AlgoVerArgVal);
+
+ llvm::Value *Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
+ llvm::Value *CondAlgo1 = Bld.CreateAnd(
+ Algo1, Bld.CreateICmpULT(LaneIDArgVal, RemoteLaneOffsetArgVal));
+
+ llvm::Value *Algo2 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(2));
+ llvm::Value *CondAlgo2 = Bld.CreateAnd(
+ Algo2, Bld.CreateIsNull(Bld.CreateAnd(LaneIDArgVal, Bld.getInt16(1))));
+ CondAlgo2 = Bld.CreateAnd(
+ CondAlgo2, Bld.CreateICmpSGT(RemoteLaneOffsetArgVal, Bld.getInt16(0)));
+
+ llvm::Value *CondReduce = Bld.CreateOr(CondAlgo0, CondAlgo1);
+ CondReduce = Bld.CreateOr(CondReduce, CondAlgo2);
+
+ llvm::BasicBlock *ThenBB = CGF.createBasicBlock("then");
+ llvm::BasicBlock *ElseBB = CGF.createBasicBlock("else");
+ llvm::BasicBlock *MergeBB = CGF.createBasicBlock("ifcont");
+ Bld.CreateCondBr(CondReduce, ThenBB, ElseBB);
+
+ CGF.EmitBlock(ThenBB);
+ // reduce_function(LocalReduceList, RemoteReduceList)
+ llvm::Value *LocalReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ LocalReduceList.getPointer(), CGF.VoidPtrTy);
+ llvm::Value *RemoteReduceListPtr = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ RemoteReduceList.getPointer(), CGF.VoidPtrTy);
+ CGM.getOpenMPRuntime().emitOutlinedFunctionCall(
+ CGF, Loc, ReduceFn, {LocalReduceListPtr, RemoteReduceListPtr});
+ Bld.CreateBr(MergeBB);
+
+ CGF.EmitBlock(ElseBB);
+ Bld.CreateBr(MergeBB);
+
+ CGF.EmitBlock(MergeBB);
+
+ // if (AlgoVer==1 && (LaneId >= Offset)) copy Remote Reduce list to local
+ // Reduce list.
+ Algo1 = Bld.CreateICmpEQ(AlgoVerArgVal, Bld.getInt16(1));
+ llvm::Value *CondCopy = Bld.CreateAnd(
+ Algo1, Bld.CreateICmpUGE(LaneIDArgVal, RemoteLaneOffsetArgVal));
+
+ llvm::BasicBlock *CpyThenBB = CGF.createBasicBlock("then");
+ llvm::BasicBlock *CpyElseBB = CGF.createBasicBlock("else");
+ llvm::BasicBlock *CpyMergeBB = CGF.createBasicBlock("ifcont");
+ Bld.CreateCondBr(CondCopy, CpyThenBB, CpyElseBB);
+
+ CGF.EmitBlock(CpyThenBB);
+ emitReductionListCopy(ThreadCopy, CGF, ReductionArrayTy, Privates,
+ RemoteReduceList, LocalReduceList);
+ Bld.CreateBr(CpyMergeBB);
+
+ CGF.EmitBlock(CpyElseBB);
+ Bld.CreateBr(CpyMergeBB);
+
+ CGF.EmitBlock(CpyMergeBB);
+
+ CGF.FinishFunction();
+ return Fn;
+}
+
+///
+/// Design of OpenMP reductions on the GPU
+///
+/// Consider a typical OpenMP program with one or more reduction
+/// clauses:
+///
+/// float foo;
+/// double bar;
+/// #pragma omp target teams distribute parallel for \
+/// reduction(+:foo) reduction(*:bar)
+/// for (int i = 0; i < N; i++) {
+/// foo += A[i]; bar *= B[i];
+/// }
+///
+/// where 'foo' and 'bar' are reduced across all OpenMP threads in
+/// all teams. In our OpenMP implementation on the NVPTX device an
+/// OpenMP team is mapped to a CUDA threadblock and OpenMP threads
+/// within a team are mapped to CUDA threads within a threadblock.
+/// Our goal is to efficiently aggregate values across all OpenMP
+/// threads such that:
+///
+/// - the compiler and runtime are logically concise, and
+/// - the reduction is performed efficiently in a hierarchical
+/// manner as follows: within OpenMP threads in the same warp,
+/// across warps in a threadblock, and finally across teams on
+/// the NVPTX device.
+///
+/// Introduction to Decoupling
+///
+/// We would like to decouple the compiler and the runtime so that the
+/// latter is ignorant of the reduction variables (number, data types)
+/// and the reduction operators. This allows a simpler interface
+/// and implementation while still attaining good performance.
+///
+/// Pseudocode for the aforementioned OpenMP program generated by the
+/// compiler is as follows:
+///
+/// 1. Create private copies of reduction variables on each OpenMP
+/// thread: 'foo_private', 'bar_private'
+/// 2. Each OpenMP thread reduces the chunk of 'A' and 'B' assigned
+/// to it and writes the result in 'foo_private' and 'bar_private'
+/// respectively.
+/// 3. Call the OpenMP runtime on the GPU to reduce within a team
+/// and store the result on the team master:
+///
+/// __kmpc_nvptx_parallel_reduce_nowait_v2(...,
+/// reduceData, shuffleReduceFn, interWarpCpyFn)
+///
+/// where:
+/// struct ReduceData {
+/// double *foo;
+/// double *bar;
+/// } reduceData
+/// reduceData.foo = &foo_private
+/// reduceData.bar = &bar_private
+///
+/// 'shuffleReduceFn' and 'interWarpCpyFn' are pointers to two
+/// auxiliary functions generated by the compiler that operate on
+/// variables of type 'ReduceData'. They aid the runtime perform
+/// algorithmic steps in a data agnostic manner.
+///
+/// 'shuffleReduceFn' is a pointer to a function that reduces data
+/// of type 'ReduceData' across two OpenMP threads (lanes) in the
+/// same warp. It takes the following arguments as input:
+///
+/// a. variable of type 'ReduceData' on the calling lane,
+/// b. its lane_id,
+/// c. an offset relative to the current lane_id to generate a
+/// remote_lane_id. The remote lane contains the second
+/// variable of type 'ReduceData' that is to be reduced.
+/// d. an algorithm version parameter determining which reduction
+/// algorithm to use.
+///
+/// 'shuffleReduceFn' retrieves data from the remote lane using
+/// efficient GPU shuffle intrinsics and reduces, using the
+/// algorithm specified by the 4th parameter, the two operands
+/// element-wise. The result is written to the first operand.
+///
+/// Different reduction algorithms are implemented in different
+/// runtime functions, all calling 'shuffleReduceFn' to perform
+/// the essential reduction step. Therefore, based on the 4th
+/// parameter, this function behaves slightly differently to
+/// cooperate with the runtime to ensure correctness under
+/// different circumstances.
+///
+/// 'InterWarpCpyFn' is a pointer to a function that transfers
+/// reduced variables across warps. It tunnels, through CUDA
+/// shared memory, the thread-private data of type 'ReduceData'
+/// from lane 0 of each warp to a lane in the first warp.
+/// 4. Call the OpenMP runtime on the GPU to reduce across teams.
+/// The last team writes the global reduced value to memory.
+///
+/// ret = __kmpc_nvptx_teams_reduce_nowait(...,
+/// reduceData, shuffleReduceFn, interWarpCpyFn,
+/// scratchpadCopyFn, loadAndReduceFn)
+///
+/// 'scratchpadCopyFn' is a helper that stores reduced
+/// data from the team master to a scratchpad array in
+/// global memory.
+///
+/// 'loadAndReduceFn' is a helper that loads data from
+/// the scratchpad array and reduces it with the input
+/// operand.
+///
+/// These compiler generated functions hide address
+/// calculation and alignment information from the runtime.
+/// 5. if ret == 1:
+/// The team master of the last team stores the reduced
+/// result to the globals in memory.
+/// foo += reduceData.foo; bar *= reduceData.bar
+///
+///
+/// Warp Reduction Algorithms
+///
+/// On the warp level, we have three algorithms implemented in the
+/// OpenMP runtime depending on the number of active lanes:
+///
+/// Full Warp Reduction
+///
+/// The reduce algorithm within a warp where all lanes are active
+/// is implemented in the runtime as follows:
+///
+/// full_warp_reduce(void *reduce_data,
+/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
+/// for (int offset = WARPSIZE/2; offset > 0; offset /= 2)
+/// ShuffleReduceFn(reduce_data, 0, offset, 0);
+/// }
+///
+/// The algorithm completes in log(2, WARPSIZE) steps.
+///
+/// 'ShuffleReduceFn' is used here with lane_id set to 0 because it is
+/// not used therefore we save instructions by not retrieving lane_id
+/// from the corresponding special registers. The 4th parameter, which
+/// represents the version of the algorithm being used, is set to 0 to
+/// signify full warp reduction.
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// #reduce_elem refers to an element in the local lane's data structure
+/// #remote_elem is retrieved from a remote lane
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// reduce_elem = reduce_elem REDUCE_OP remote_elem;
+///
+/// Contiguous Partial Warp Reduction
+///
+/// This reduce algorithm is used within a warp where only the first
+/// 'n' (n <= WARPSIZE) lanes are active. It is typically used when the
+/// number of OpenMP threads in a parallel region is not a multiple of
+/// WARPSIZE. The algorithm is implemented in the runtime as follows:
+///
+/// void
+/// contiguous_partial_reduce(void *reduce_data,
+/// kmp_ShuffleReductFctPtr ShuffleReduceFn,
+/// int size, int lane_id) {
+/// int curr_size;
+/// int offset;
+/// curr_size = size;
+/// mask = curr_size/2;
+/// while (offset>0) {
+/// ShuffleReduceFn(reduce_data, lane_id, offset, 1);
+/// curr_size = (curr_size+1)/2;
+/// offset = curr_size/2;
+/// }
+/// }
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// if (lane_id < offset)
+/// reduce_elem = reduce_elem REDUCE_OP remote_elem
+/// else
+/// reduce_elem = remote_elem
+///
+/// This algorithm assumes that the data to be reduced are located in a
+/// contiguous subset of lanes starting from the first. When there is
+/// an odd number of active lanes, the data in the last lane is not
+/// aggregated with any other lane's dat but is instead copied over.
+///
+/// Dispersed Partial Warp Reduction
+///
+/// This algorithm is used within a warp when any discontiguous subset of
+/// lanes are active. It is used to implement the reduction operation
+/// across lanes in an OpenMP simd region or in a nested parallel region.
+///
+/// void
+/// dispersed_partial_reduce(void *reduce_data,
+/// kmp_ShuffleReductFctPtr ShuffleReduceFn) {
+/// int size, remote_id;
+/// int logical_lane_id = number_of_active_lanes_before_me() * 2;
+/// do {
+/// remote_id = next_active_lane_id_right_after_me();
+/// # the above function returns 0 of no active lane
+/// # is present right after the current lane.
+/// size = number_of_active_lanes_in_this_warp();
+/// logical_lane_id /= 2;
+/// ShuffleReduceFn(reduce_data, logical_lane_id,
+/// remote_id-1-threadIdx.x, 2);
+/// } while (logical_lane_id % 2 == 0 && size > 1);
+/// }
+///
+/// There is no assumption made about the initial state of the reduction.
+/// Any number of lanes (>=1) could be active at any position. The reduction
+/// result is returned in the first active lane.
+///
+/// In this version, 'ShuffleReduceFn' behaves, per element, as follows:
+///
+/// remote_elem = shuffle_down(reduce_elem, offset, WARPSIZE);
+/// if (lane_id % 2 == 0 && offset > 0)
+/// reduce_elem = reduce_elem REDUCE_OP remote_elem
+/// else
+/// reduce_elem = remote_elem
+///
+///
+/// Intra-Team Reduction
+///
+/// This function, as implemented in the runtime call
+/// '__kmpc_nvptx_parallel_reduce_nowait_v2', aggregates data across OpenMP
+/// threads in a team. It first reduces within a warp using the
+/// aforementioned algorithms. We then proceed to gather all such
+/// reduced values at the first warp.
+///
+/// The runtime makes use of the function 'InterWarpCpyFn', which copies
+/// data from each of the "warp master" (zeroth lane of each warp, where
+/// warp-reduced data is held) to the zeroth warp. This step reduces (in
+/// a mathematical sense) the problem of reduction across warp masters in
+/// a block to the problem of warp reduction.
+///
+///
+/// Inter-Team Reduction
+///
+/// Once a team has reduced its data to a single value, it is stored in
+/// a global scratchpad array. Since each team has a distinct slot, this
+/// can be done without locking.
+///
+/// The last team to write to the scratchpad array proceeds to reduce the
+/// scratchpad array. One or more workers in the last team use the helper
+/// 'loadAndReduceDataFn' to load and reduce values from the array, i.e.,
+/// the k'th worker reduces every k'th element.
+///
+/// Finally, a call is made to '__kmpc_nvptx_parallel_reduce_nowait_v2' to
+/// reduce across workers and compute a globally reduced value.
+///
+void CGOpenMPRuntimeNVPTX::emitReduction(
+ CodeGenFunction &CGF, SourceLocation Loc, ArrayRef<const Expr *> Privates,
+ ArrayRef<const Expr *> LHSExprs, ArrayRef<const Expr *> RHSExprs,
+ ArrayRef<const Expr *> ReductionOps, ReductionOptionsTy Options) {
+ if (!CGF.HaveInsertPoint())
+ return;
+
+ bool ParallelReduction = isOpenMPParallelDirective(Options.ReductionKind);
+#ifndef NDEBUG
+ bool TeamsReduction = isOpenMPTeamsDirective(Options.ReductionKind);
+#endif
+
+ if (Options.SimpleReduction) {
+ assert(!TeamsReduction && !ParallelReduction &&
+ "Invalid reduction selection in emitReduction.");
+ CGOpenMPRuntime::emitReduction(CGF, Loc, Privates, LHSExprs, RHSExprs,
+ ReductionOps, Options);
+ return;
+ }
+
+ assert((TeamsReduction || ParallelReduction) &&
+ "Invalid reduction selection in emitReduction.");
+
+ // Build res = __kmpc_reduce{_nowait}(<gtid>, <n>, sizeof(RedList),
+ // RedList, shuffle_reduce_func, interwarp_copy_func);
+ // or
+ // Build res = __kmpc_reduce_teams_nowait_simple(<loc>, <gtid>, <lck>);
+ llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+ llvm::Value *ThreadId = getThreadID(CGF, Loc);
+
+ llvm::Value *Res;
+ if (ParallelReduction) {
+ ASTContext &C = CGM.getContext();
+ // 1. Build a list of reduction variables.
+ // void *RedList[<n>] = {<ReductionVars>[0], ..., <ReductionVars>[<n>-1]};
+ auto Size = RHSExprs.size();
+ for (const Expr *E : Privates) {
+ if (E->getType()->isVariablyModifiedType())
+ // Reserve place for array size.
+ ++Size;
+ }
+ llvm::APInt ArraySize(/*unsigned int numBits=*/32, Size);
+ QualType ReductionArrayTy =
+ C.getConstantArrayType(C.VoidPtrTy, ArraySize, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ Address ReductionList =
+ CGF.CreateMemTemp(ReductionArrayTy, ".omp.reduction.red_list");
+ auto IPriv = Privates.begin();
+ unsigned Idx = 0;
+ for (unsigned I = 0, E = RHSExprs.size(); I < E; ++I, ++IPriv, ++Idx) {
+ Address Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
+ CGF.getPointerSize());
+ CGF.Builder.CreateStore(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ CGF.EmitLValue(RHSExprs[I]).getPointer(), CGF.VoidPtrTy),
+ Elem);
+ if ((*IPriv)->getType()->isVariablyModifiedType()) {
+ // Store array size.
+ ++Idx;
+ Elem = CGF.Builder.CreateConstArrayGEP(ReductionList, Idx,
+ CGF.getPointerSize());
+ llvm::Value *Size = CGF.Builder.CreateIntCast(
+ CGF.getVLASize(
+ CGF.getContext().getAsVariableArrayType((*IPriv)->getType()))
+ .NumElts,
+ CGF.SizeTy, /*isSigned=*/false);
+ CGF.Builder.CreateStore(CGF.Builder.CreateIntToPtr(Size, CGF.VoidPtrTy),
+ Elem);
+ }
+ }
+
+ llvm::Value *ReductionArrayTySize = CGF.getTypeSize(ReductionArrayTy);
+ llvm::Value *RL = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ ReductionList.getPointer(), CGF.VoidPtrTy);
+ llvm::Value *ReductionFn = emitReductionFunction(
+ CGM, Loc, CGF.ConvertTypeForMem(ReductionArrayTy)->getPointerTo(),
+ Privates, LHSExprs, RHSExprs, ReductionOps);
+ llvm::Value *ShuffleAndReduceFn = emitShuffleAndReduceFunction(
+ CGM, Privates, ReductionArrayTy, ReductionFn, Loc);
+ llvm::Value *InterWarpCopyFn =
+ emitInterWarpCopyFunction(CGM, Privates, ReductionArrayTy, Loc);
+
+ llvm::Value *Args[] = {RTLoc,
+ ThreadId,
+ CGF.Builder.getInt32(RHSExprs.size()),
+ ReductionArrayTySize,
+ RL,
+ ShuffleAndReduceFn,
+ InterWarpCopyFn};
+
+ Res = CGF.EmitRuntimeCall(createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_parallel_reduce_nowait_v2),
+ Args);
+ } else {
+ assert(TeamsReduction && "expected teams reduction.");
+ std::string Name = getName({"reduction"});
+ llvm::Value *Lock = getCriticalRegionLock(Name);
+ llvm::Value *Args[] = {RTLoc, ThreadId, Lock};
+ Res = CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_nvptx_teams_reduce_nowait_simple),
+ Args);
+ }
+
+ // 5. Build if (res == 1)
+ llvm::BasicBlock *ExitBB = CGF.createBasicBlock(".omp.reduction.done");
+ llvm::BasicBlock *ThenBB = CGF.createBasicBlock(".omp.reduction.then");
+ llvm::Value *Cond = CGF.Builder.CreateICmpEQ(
+ Res, llvm::ConstantInt::get(CGM.Int32Ty, /*V=*/1));
+ CGF.Builder.CreateCondBr(Cond, ThenBB, ExitBB);
+
+ // 6. Build then branch: where we have reduced values in the master
+ // thread in each team.
+ // __kmpc_end_reduce{_nowait}(<gtid>);
+ // break;
+ CGF.EmitBlock(ThenBB);
+
+ // Add emission of __kmpc_end_reduce{_nowait}(<gtid>);
+ auto &&CodeGen = [Privates, LHSExprs, RHSExprs, ReductionOps,
+ this](CodeGenFunction &CGF, PrePostActionTy &Action) {
+ auto IPriv = Privates.begin();
+ auto ILHS = LHSExprs.begin();
+ auto IRHS = RHSExprs.begin();
+ for (const Expr *E : ReductionOps) {
+ emitSingleReductionCombiner(CGF, E, *IPriv, cast<DeclRefExpr>(*ILHS),
+ cast<DeclRefExpr>(*IRHS));
+ ++IPriv;
+ ++ILHS;
+ ++IRHS;
+ }
+ };
+ if (ParallelReduction) {
+ llvm::Value *EndArgs[] = {ThreadId};
+ RegionCodeGenTy RCG(CodeGen);
+ NVPTXActionTy Action(
+ nullptr, llvm::None,
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_end_reduce_nowait),
+ EndArgs);
+ RCG.setAction(Action);
+ RCG(CGF);
+ } else {
+ assert(TeamsReduction && "expected teams reduction.");
+ llvm::Value *RTLoc = emitUpdateLocation(CGF, Loc);
+ std::string Name = getName({"reduction"});
+ llvm::Value *Lock = getCriticalRegionLock(Name);
+ llvm::Value *EndArgs[] = {RTLoc, ThreadId, Lock};
+ RegionCodeGenTy RCG(CodeGen);
+ NVPTXActionTy Action(
+ nullptr, llvm::None,
+ createNVPTXRuntimeFunction(
+ OMPRTL_NVPTX__kmpc_nvptx_teams_end_reduce_nowait_simple),
+ EndArgs);
+ RCG.setAction(Action);
+ RCG(CGF);
+ }
+ // There is no need to emit line number for unconditional branch.
+ (void)ApplyDebugLocation::CreateEmpty(CGF);
+ CGF.EmitBlock(ExitBB, /*IsFinished=*/true);
+}
+
+const VarDecl *
+CGOpenMPRuntimeNVPTX::translateParameter(const FieldDecl *FD,
+ const VarDecl *NativeParam) const {
+ if (!NativeParam->getType()->isReferenceType())
+ return NativeParam;
+ QualType ArgType = NativeParam->getType();
+ QualifierCollector QC;
+ const Type *NonQualTy = QC.strip(ArgType);
+ QualType PointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
+ if (const auto *Attr = FD->getAttr<OMPCaptureKindAttr>()) {
+ if (Attr->getCaptureKind() == OMPC_map) {
+ PointeeTy = CGM.getContext().getAddrSpaceQualType(PointeeTy,
+ LangAS::opencl_global);
+ }
+ }
+ ArgType = CGM.getContext().getPointerType(PointeeTy);
+ QC.addRestrict();
+ enum { NVPTX_local_addr = 5 };
+ QC.addAddressSpace(getLangASFromTargetAS(NVPTX_local_addr));
+ ArgType = QC.apply(CGM.getContext(), ArgType);
+ if (isa<ImplicitParamDecl>(NativeParam))
+ return ImplicitParamDecl::Create(
+ CGM.getContext(), /*DC=*/nullptr, NativeParam->getLocation(),
+ NativeParam->getIdentifier(), ArgType, ImplicitParamDecl::Other);
+ return ParmVarDecl::Create(
+ CGM.getContext(),
+ const_cast<DeclContext *>(NativeParam->getDeclContext()),
+ NativeParam->getBeginLoc(), NativeParam->getLocation(),
+ NativeParam->getIdentifier(), ArgType,
+ /*TInfo=*/nullptr, SC_None, /*DefArg=*/nullptr);
+}
+
+Address
+CGOpenMPRuntimeNVPTX::getParameterAddress(CodeGenFunction &CGF,
+ const VarDecl *NativeParam,
+ const VarDecl *TargetParam) const {
+ assert(NativeParam != TargetParam &&
+ NativeParam->getType()->isReferenceType() &&
+ "Native arg must not be the same as target arg.");
+ Address LocalAddr = CGF.GetAddrOfLocalVar(TargetParam);
+ QualType NativeParamType = NativeParam->getType();
+ QualifierCollector QC;
+ const Type *NonQualTy = QC.strip(NativeParamType);
+ QualType NativePointeeTy = cast<ReferenceType>(NonQualTy)->getPointeeType();
+ unsigned NativePointeeAddrSpace =
+ CGF.getContext().getTargetAddressSpace(NativePointeeTy);
+ QualType TargetTy = TargetParam->getType();
+ llvm::Value *TargetAddr = CGF.EmitLoadOfScalar(
+ LocalAddr, /*Volatile=*/false, TargetTy, SourceLocation());
+ // First cast to generic.
+ TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
+ /*AddrSpace=*/0));
+ // Cast from generic to native address space.
+ TargetAddr = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ TargetAddr, TargetAddr->getType()->getPointerElementType()->getPointerTo(
+ NativePointeeAddrSpace));
+ Address NativeParamAddr = CGF.CreateMemTemp(NativeParamType);
+ CGF.EmitStoreOfScalar(TargetAddr, NativeParamAddr, /*Volatile=*/false,
+ NativeParamType);
+ return NativeParamAddr;
+}
+
+void CGOpenMPRuntimeNVPTX::emitOutlinedFunctionCall(
+ CodeGenFunction &CGF, SourceLocation Loc, llvm::Value *OutlinedFn,
+ ArrayRef<llvm::Value *> Args) const {
+ SmallVector<llvm::Value *, 4> TargetArgs;
+ TargetArgs.reserve(Args.size());
+ auto *FnType =
+ cast<llvm::FunctionType>(OutlinedFn->getType()->getPointerElementType());
+ for (unsigned I = 0, E = Args.size(); I < E; ++I) {
+ if (FnType->isVarArg() && FnType->getNumParams() <= I) {
+ TargetArgs.append(std::next(Args.begin(), I), Args.end());
+ break;
+ }
+ llvm::Type *TargetType = FnType->getParamType(I);
+ llvm::Value *NativeArg = Args[I];
+ if (!TargetType->isPointerTy()) {
+ TargetArgs.emplace_back(NativeArg);
+ continue;
+ }
+ llvm::Value *TargetArg = CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
+ NativeArg,
+ NativeArg->getType()->getPointerElementType()->getPointerTo());
+ TargetArgs.emplace_back(
+ CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(TargetArg, TargetType));
+ }
+ CGOpenMPRuntime::emitOutlinedFunctionCall(CGF, Loc, OutlinedFn, TargetArgs);
+}
+
+/// Emit function which wraps the outline parallel region
+/// and controls the arguments which are passed to this function.
+/// The wrapper ensures that the outlined function is called
+/// with the correct arguments when data is shared.
+llvm::Function *CGOpenMPRuntimeNVPTX::createParallelDataSharingWrapper(
+ llvm::Function *OutlinedParallelFn, const OMPExecutableDirective &D) {
+ ASTContext &Ctx = CGM.getContext();
+ const auto &CS = *D.getCapturedStmt(OMPD_parallel);
+
+ // Create a function that takes as argument the source thread.
+ FunctionArgList WrapperArgs;
+ QualType Int16QTy =
+ Ctx.getIntTypeForBitwidth(/*DestWidth=*/16, /*Signed=*/false);
+ QualType Int32QTy =
+ Ctx.getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/false);
+ ImplicitParamDecl ParallelLevelArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
+ /*Id=*/nullptr, Int16QTy,
+ ImplicitParamDecl::Other);
+ ImplicitParamDecl WrapperArg(Ctx, /*DC=*/nullptr, D.getBeginLoc(),
+ /*Id=*/nullptr, Int32QTy,
+ ImplicitParamDecl::Other);
+ WrapperArgs.emplace_back(&ParallelLevelArg);
+ WrapperArgs.emplace_back(&WrapperArg);
+
+ const CGFunctionInfo &CGFI =
+ CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, WrapperArgs);
+
+ auto *Fn = llvm::Function::Create(
+ CGM.getTypes().GetFunctionType(CGFI), llvm::GlobalValue::InternalLinkage,
+ Twine(OutlinedParallelFn->getName(), "_wrapper"), &CGM.getModule());
+ CGM.SetInternalFunctionAttributes(GlobalDecl(), Fn, CGFI);
+ Fn->setLinkage(llvm::GlobalValue::InternalLinkage);
+ Fn->setDoesNotRecurse();
+
+ CodeGenFunction CGF(CGM, /*suppressNewContext=*/true);
+ CGF.StartFunction(GlobalDecl(), Ctx.VoidTy, Fn, CGFI, WrapperArgs,
+ D.getBeginLoc(), D.getBeginLoc());
+
+ const auto *RD = CS.getCapturedRecordDecl();
+ auto CurField = RD->field_begin();
+
+ Address ZeroAddr = CGF.CreateMemTemp(
+ CGF.getContext().getIntTypeForBitwidth(/*DestWidth=*/32, /*Signed=*/1),
+ /*Name*/ ".zero.addr");
+ CGF.InitTempAlloca(ZeroAddr, CGF.Builder.getInt32(/*C*/ 0));
+ // Get the array of arguments.
+ SmallVector<llvm::Value *, 8> Args;
+
+ Args.emplace_back(CGF.GetAddrOfLocalVar(&WrapperArg).getPointer());
+ Args.emplace_back(ZeroAddr.getPointer());
+
+ CGBuilderTy &Bld = CGF.Builder;
+ auto CI = CS.capture_begin();
+
+ // Use global memory for data sharing.
+ // Handle passing of global args to workers.
+ Address GlobalArgs =
+ CGF.CreateDefaultAlignTempAlloca(CGF.VoidPtrPtrTy, "global_args");
+ llvm::Value *GlobalArgsPtr = GlobalArgs.getPointer();
+ llvm::Value *DataSharingArgs[] = {GlobalArgsPtr};
+ CGF.EmitRuntimeCall(
+ createNVPTXRuntimeFunction(OMPRTL_NVPTX__kmpc_get_shared_variables),
+ DataSharingArgs);
+
+ // Retrieve the shared variables from the list of references returned
+ // by the runtime. Pass the variables to the outlined function.
+ Address SharedArgListAddress = Address::invalid();
+ if (CS.capture_size() > 0 ||
+ isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
+ SharedArgListAddress = CGF.EmitLoadOfPointer(
+ GlobalArgs, CGF.getContext()
+ .getPointerType(CGF.getContext().getPointerType(
+ CGF.getContext().VoidPtrTy))
+ .castAs<PointerType>());
+ }
+ unsigned Idx = 0;
+ if (isOpenMPLoopBoundSharingDirective(D.getDirectiveKind())) {
+ Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx,
+ CGF.getPointerSize());
+ Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ Src, CGF.SizeTy->getPointerTo());
+ llvm::Value *LB = CGF.EmitLoadOfScalar(
+ TypedAddress,
+ /*Volatile=*/false,
+ CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
+ cast<OMPLoopDirective>(D).getLowerBoundVariable()->getExprLoc());
+ Args.emplace_back(LB);
+ ++Idx;
+ Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, Idx,
+ CGF.getPointerSize());
+ TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ Src, CGF.SizeTy->getPointerTo());
+ llvm::Value *UB = CGF.EmitLoadOfScalar(
+ TypedAddress,
+ /*Volatile=*/false,
+ CGF.getContext().getPointerType(CGF.getContext().getSizeType()),
+ cast<OMPLoopDirective>(D).getUpperBoundVariable()->getExprLoc());
+ Args.emplace_back(UB);
+ ++Idx;
+ }
+ if (CS.capture_size() > 0) {
+ ASTContext &CGFContext = CGF.getContext();
+ for (unsigned I = 0, E = CS.capture_size(); I < E; ++I, ++CI, ++CurField) {
+ QualType ElemTy = CurField->getType();
+ Address Src = Bld.CreateConstInBoundsGEP(SharedArgListAddress, I + Idx,
+ CGF.getPointerSize());
+ Address TypedAddress = Bld.CreatePointerBitCastOrAddrSpaceCast(
+ Src, CGF.ConvertTypeForMem(CGFContext.getPointerType(ElemTy)));
+ llvm::Value *Arg = CGF.EmitLoadOfScalar(TypedAddress,
+ /*Volatile=*/false,
+ CGFContext.getPointerType(ElemTy),
+ CI->getLocation());
+ if (CI->capturesVariableByCopy() &&
+ !CI->getCapturedVar()->getType()->isAnyPointerType()) {
+ Arg = castValueToType(CGF, Arg, ElemTy, CGFContext.getUIntPtrType(),
+ CI->getLocation());
+ }
+ Args.emplace_back(Arg);
+ }
+ }
+
+ emitOutlinedFunctionCall(CGF, D.getBeginLoc(), OutlinedParallelFn, Args);
+ CGF.FinishFunction();
+ return Fn;
+}
+
+void CGOpenMPRuntimeNVPTX::emitFunctionProlog(CodeGenFunction &CGF,
+ const Decl *D) {
+ if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic)
+ return;
+
+ assert(D && "Expected function or captured|block decl.");
+ assert(FunctionGlobalizedDecls.count(CGF.CurFn) == 0 &&
+ "Function is registered already.");
+ assert((!TeamAndReductions.first || TeamAndReductions.first == D) &&
+ "Team is set but not processed.");
+ const Stmt *Body = nullptr;
+ bool NeedToDelayGlobalization = false;
+ if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
+ Body = FD->getBody();
+ } else if (const auto *BD = dyn_cast<BlockDecl>(D)) {
+ Body = BD->getBody();
+ } else if (const auto *CD = dyn_cast<CapturedDecl>(D)) {
+ Body = CD->getBody();
+ NeedToDelayGlobalization = CGF.CapturedStmtInfo->getKind() == CR_OpenMP;
+ if (NeedToDelayGlobalization &&
+ getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD)
+ return;
+ }
+ if (!Body)
+ return;
+ CheckVarsEscapingDeclContext VarChecker(CGF, TeamAndReductions.second);
+ VarChecker.Visit(Body);
+ const RecordDecl *GlobalizedVarsRecord =
+ VarChecker.getGlobalizedRecord(IsInTTDRegion);
+ TeamAndReductions.first = nullptr;
+ TeamAndReductions.second.clear();
+ ArrayRef<const ValueDecl *> EscapedVariableLengthDecls =
+ VarChecker.getEscapedVariableLengthDecls();
+ if (!GlobalizedVarsRecord && EscapedVariableLengthDecls.empty())
+ return;
+ auto I = FunctionGlobalizedDecls.try_emplace(CGF.CurFn).first;
+ I->getSecond().MappedParams =
+ llvm::make_unique<CodeGenFunction::OMPMapVars>();
+ I->getSecond().GlobalRecord = GlobalizedVarsRecord;
+ I->getSecond().EscapedParameters.insert(
+ VarChecker.getEscapedParameters().begin(),
+ VarChecker.getEscapedParameters().end());
+ I->getSecond().EscapedVariableLengthDecls.append(
+ EscapedVariableLengthDecls.begin(), EscapedVariableLengthDecls.end());
+ DeclToAddrMapTy &Data = I->getSecond().LocalVarData;
+ for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
+ assert(VD->isCanonicalDecl() && "Expected canonical declaration");
+ const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
+ Data.insert(std::make_pair(VD, MappedVarData(FD, IsInTTDRegion)));
+ }
+ if (!IsInTTDRegion && !NeedToDelayGlobalization && !IsInParallelRegion) {
+ CheckVarsEscapingDeclContext VarChecker(CGF, llvm::None);
+ VarChecker.Visit(Body);
+ I->getSecond().SecondaryGlobalRecord =
+ VarChecker.getGlobalizedRecord(/*IsInTTDRegion=*/true);
+ I->getSecond().SecondaryLocalVarData.emplace();
+ DeclToAddrMapTy &Data = I->getSecond().SecondaryLocalVarData.getValue();
+ for (const ValueDecl *VD : VarChecker.getEscapedDecls()) {
+ assert(VD->isCanonicalDecl() && "Expected canonical declaration");
+ const FieldDecl *FD = VarChecker.getFieldForGlobalizedVar(VD);
+ Data.insert(
+ std::make_pair(VD, MappedVarData(FD, /*IsInTTDRegion=*/true)));
+ }
+ }
+ if (!NeedToDelayGlobalization) {
+ emitGenericVarsProlog(CGF, D->getBeginLoc(), /*WithSPMDCheck=*/true);
+ struct GlobalizationScope final : EHScopeStack::Cleanup {
+ GlobalizationScope() = default;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ static_cast<CGOpenMPRuntimeNVPTX &>(CGF.CGM.getOpenMPRuntime())
+ .emitGenericVarsEpilog(CGF, /*WithSPMDCheck=*/true);
+ }
+ };
+ CGF.EHStack.pushCleanup<GlobalizationScope>(NormalAndEHCleanup);
+ }
+}
+
+Address CGOpenMPRuntimeNVPTX::getAddressOfLocalVariable(CodeGenFunction &CGF,
+ const VarDecl *VD) {
+ if (getDataSharingMode(CGM) != CGOpenMPRuntimeNVPTX::Generic)
+ return Address::invalid();
+
+ VD = VD->getCanonicalDecl();
+ auto I = FunctionGlobalizedDecls.find(CGF.CurFn);
+ if (I == FunctionGlobalizedDecls.end())
+ return Address::invalid();
+ auto VDI = I->getSecond().LocalVarData.find(VD);
+ if (VDI != I->getSecond().LocalVarData.end())
+ return VDI->second.PrivateAddr;
+ if (VD->hasAttrs()) {
+ for (specific_attr_iterator<OMPReferencedVarAttr> IT(VD->attr_begin()),
+ E(VD->attr_end());
+ IT != E; ++IT) {
+ auto VDI = I->getSecond().LocalVarData.find(
+ cast<VarDecl>(cast<DeclRefExpr>(IT->getRef())->getDecl())
+ ->getCanonicalDecl());
+ if (VDI != I->getSecond().LocalVarData.end())
+ return VDI->second.PrivateAddr;
+ }
+ }
+ return Address::invalid();
+}
+
+void CGOpenMPRuntimeNVPTX::functionFinished(CodeGenFunction &CGF) {
+ FunctionGlobalizedDecls.erase(CGF.CurFn);
+ CGOpenMPRuntime::functionFinished(CGF);
+}
+
+void CGOpenMPRuntimeNVPTX::getDefaultDistScheduleAndChunk(
+ CodeGenFunction &CGF, const OMPLoopDirective &S,
+ OpenMPDistScheduleClauseKind &ScheduleKind,
+ llvm::Value *&Chunk) const {
+ if (getExecutionMode() == CGOpenMPRuntimeNVPTX::EM_SPMD) {
+ ScheduleKind = OMPC_DIST_SCHEDULE_static;
+ Chunk = CGF.EmitScalarConversion(getNVPTXNumThreads(CGF),
+ CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
+ S.getIterationVariable()->getType(), S.getBeginLoc());
+ return;
+ }
+ CGOpenMPRuntime::getDefaultDistScheduleAndChunk(
+ CGF, S, ScheduleKind, Chunk);
+}
+
+void CGOpenMPRuntimeNVPTX::getDefaultScheduleAndChunk(
+ CodeGenFunction &CGF, const OMPLoopDirective &S,
+ OpenMPScheduleClauseKind &ScheduleKind,
+ const Expr *&ChunkExpr) const {
+ ScheduleKind = OMPC_SCHEDULE_static;
+ // Chunk size is 1 in this case.
+ llvm::APInt ChunkSize(32, 1);
+ ChunkExpr = IntegerLiteral::Create(CGF.getContext(), ChunkSize,
+ CGF.getContext().getIntTypeForBitwidth(32, /*Signed=*/0),
+ SourceLocation());
+}
+
+void CGOpenMPRuntimeNVPTX::adjustTargetSpecificDataForLambdas(
+ CodeGenFunction &CGF, const OMPExecutableDirective &D) const {
+ assert(isOpenMPTargetExecutionDirective(D.getDirectiveKind()) &&
+ " Expected target-based directive.");
+ const CapturedStmt *CS = D.getCapturedStmt(OMPD_target);
+ for (const CapturedStmt::Capture &C : CS->captures()) {
+ // Capture variables captured by reference in lambdas for target-based
+ // directives.
+ if (!C.capturesVariable())
+ continue;
+ const VarDecl *VD = C.getCapturedVar();
+ const auto *RD = VD->getType()
+ .getCanonicalType()
+ .getNonReferenceType()
+ ->getAsCXXRecordDecl();
+ if (!RD || !RD->isLambda())
+ continue;
+ Address VDAddr = CGF.GetAddrOfLocalVar(VD);
+ LValue VDLVal;
+ if (VD->getType().getCanonicalType()->isReferenceType())
+ VDLVal = CGF.EmitLoadOfReferenceLValue(VDAddr, VD->getType());
+ else
+ VDLVal = CGF.MakeAddrLValue(
+ VDAddr, VD->getType().getCanonicalType().getNonReferenceType());
+ llvm::DenseMap<const VarDecl *, FieldDecl *> Captures;
+ FieldDecl *ThisCapture = nullptr;
+ RD->getCaptureFields(Captures, ThisCapture);
+ if (ThisCapture && CGF.CapturedStmtInfo->isCXXThisExprCaptured()) {
+ LValue ThisLVal =
+ CGF.EmitLValueForFieldInitialization(VDLVal, ThisCapture);
+ llvm::Value *CXXThis = CGF.LoadCXXThis();
+ CGF.EmitStoreOfScalar(CXXThis, ThisLVal);
+ }
+ for (const LambdaCapture &LC : RD->captures()) {
+ if (LC.getCaptureKind() != LCK_ByRef)
+ continue;
+ const VarDecl *VD = LC.getCapturedVar();
+ if (!CS->capturesVariable(VD))
+ continue;
+ auto It = Captures.find(VD);
+ assert(It != Captures.end() && "Found lambda capture without field.");
+ LValue VarLVal = CGF.EmitLValueForFieldInitialization(VDLVal, It->second);
+ Address VDAddr = CGF.GetAddrOfLocalVar(VD);
+ if (VD->getType().getCanonicalType()->isReferenceType())
+ VDAddr = CGF.EmitLoadOfReferenceLValue(VDAddr,
+ VD->getType().getCanonicalType())
+ .getAddress();
+ CGF.EmitStoreOfScalar(VDAddr.getPointer(), VarLVal);
+ }
+ }
+}
+
+// Get current CudaArch and ignore any unknown values
+static CudaArch getCudaArch(CodeGenModule &CGM) {
+ if (!CGM.getTarget().hasFeature("ptx"))
+ return CudaArch::UNKNOWN;
+ llvm::StringMap<bool> Features;
+ CGM.getTarget().initFeatureMap(Features, CGM.getDiags(),
+ CGM.getTarget().getTargetOpts().CPU,
+ CGM.getTarget().getTargetOpts().Features);
+ for (const auto &Feature : Features) {
+ if (Feature.getValue()) {
+ CudaArch Arch = StringToCudaArch(Feature.getKey());
+ if (Arch != CudaArch::UNKNOWN)
+ return Arch;
+ }
+ }
+ return CudaArch::UNKNOWN;
+}
+
+/// Check to see if target architecture supports unified addressing which is
+/// a restriction for OpenMP requires clause "unified_shared_memory".
+void CGOpenMPRuntimeNVPTX::checkArchForUnifiedAddressing(
+ CodeGenModule &CGM, const OMPRequiresDecl *D) const {
+ for (const OMPClause *Clause : D->clauselists()) {
+ if (Clause->getClauseKind() == OMPC_unified_shared_memory) {
+ switch (getCudaArch(CGM)) {
+ case CudaArch::SM_20:
+ case CudaArch::SM_21:
+ case CudaArch::SM_30:
+ case CudaArch::SM_32:
+ case CudaArch::SM_35:
+ case CudaArch::SM_37:
+ case CudaArch::SM_50:
+ case CudaArch::SM_52:
+ case CudaArch::SM_53:
+ case CudaArch::SM_60:
+ case CudaArch::SM_61:
+ case CudaArch::SM_62:
+ CGM.Error(Clause->getBeginLoc(),
+ "Target architecture does not support unified addressing");
+ return;
+ case CudaArch::SM_70:
+ case CudaArch::SM_72:
+ case CudaArch::SM_75:
+ case CudaArch::GFX600:
+ case CudaArch::GFX601:
+ case CudaArch::GFX700:
+ case CudaArch::GFX701:
+ case CudaArch::GFX702:
+ case CudaArch::GFX703:
+ case CudaArch::GFX704:
+ case CudaArch::GFX801:
+ case CudaArch::GFX802:
+ case CudaArch::GFX803:
+ case CudaArch::GFX810:
+ case CudaArch::GFX900:
+ case CudaArch::GFX902:
+ case CudaArch::GFX904:
+ case CudaArch::GFX906:
+ case CudaArch::GFX909:
+ case CudaArch::UNKNOWN:
+ break;
+ case CudaArch::LAST:
+ llvm_unreachable("Unexpected Cuda arch.");
+ }
+ }
+ }
+}
+
+/// Get number of SMs and number of blocks per SM.
+static std::pair<unsigned, unsigned> getSMsBlocksPerSM(CodeGenModule &CGM) {
+ std::pair<unsigned, unsigned> Data;
+ if (CGM.getLangOpts().OpenMPCUDANumSMs)
+ Data.first = CGM.getLangOpts().OpenMPCUDANumSMs;
+ if (CGM.getLangOpts().OpenMPCUDABlocksPerSM)
+ Data.second = CGM.getLangOpts().OpenMPCUDABlocksPerSM;
+ if (Data.first && Data.second)
+ return Data;
+ switch (getCudaArch(CGM)) {
+ case CudaArch::SM_20:
+ case CudaArch::SM_21:
+ case CudaArch::SM_30:
+ case CudaArch::SM_32:
+ case CudaArch::SM_35:
+ case CudaArch::SM_37:
+ case CudaArch::SM_50:
+ case CudaArch::SM_52:
+ case CudaArch::SM_53:
+ return {16, 16};
+ case CudaArch::SM_60:
+ case CudaArch::SM_61:
+ case CudaArch::SM_62:
+ return {56, 32};
+ case CudaArch::SM_70:
+ case CudaArch::SM_72:
+ case CudaArch::SM_75:
+ return {84, 32};
+ case CudaArch::GFX600:
+ case CudaArch::GFX601:
+ case CudaArch::GFX700:
+ case CudaArch::GFX701:
+ case CudaArch::GFX702:
+ case CudaArch::GFX703:
+ case CudaArch::GFX704:
+ case CudaArch::GFX801:
+ case CudaArch::GFX802:
+ case CudaArch::GFX803:
+ case CudaArch::GFX810:
+ case CudaArch::GFX900:
+ case CudaArch::GFX902:
+ case CudaArch::GFX904:
+ case CudaArch::GFX906:
+ case CudaArch::GFX909:
+ case CudaArch::UNKNOWN:
+ break;
+ case CudaArch::LAST:
+ llvm_unreachable("Unexpected Cuda arch.");
+ }
+ llvm_unreachable("Unexpected NVPTX target without ptx feature.");
+}
+
+void CGOpenMPRuntimeNVPTX::clear() {
+ if (!GlobalizedRecords.empty()) {
+ ASTContext &C = CGM.getContext();
+ llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> GlobalRecs;
+ llvm::SmallVector<const GlobalPtrSizeRecsTy *, 4> SharedRecs;
+ RecordDecl *StaticRD = C.buildImplicitRecord(
+ "_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
+ StaticRD->startDefinition();
+ RecordDecl *SharedStaticRD = C.buildImplicitRecord(
+ "_shared_openmp_static_memory_type_$_", RecordDecl::TagKind::TTK_Union);
+ SharedStaticRD->startDefinition();
+ for (const GlobalPtrSizeRecsTy &Records : GlobalizedRecords) {
+ if (Records.Records.empty())
+ continue;
+ unsigned Size = 0;
+ unsigned RecAlignment = 0;
+ for (const RecordDecl *RD : Records.Records) {
+ QualType RDTy = C.getRecordType(RD);
+ unsigned Alignment = C.getTypeAlignInChars(RDTy).getQuantity();
+ RecAlignment = std::max(RecAlignment, Alignment);
+ unsigned RecSize = C.getTypeSizeInChars(RDTy).getQuantity();
+ Size =
+ llvm::alignTo(llvm::alignTo(Size, Alignment) + RecSize, Alignment);
+ }
+ Size = llvm::alignTo(Size, RecAlignment);
+ llvm::APInt ArySize(/*numBits=*/64, Size);
+ QualType SubTy = C.getConstantArrayType(
+ C.CharTy, ArySize, ArrayType::Normal, /*IndexTypeQuals=*/0);
+ const bool UseSharedMemory = Size <= SharedMemorySize;
+ auto *Field =
+ FieldDecl::Create(C, UseSharedMemory ? SharedStaticRD : StaticRD,
+ SourceLocation(), SourceLocation(), nullptr, SubTy,
+ C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
+ /*BW=*/nullptr, /*Mutable=*/false,
+ /*InitStyle=*/ICIS_NoInit);
+ Field->setAccess(AS_public);
+ if (UseSharedMemory) {
+ SharedStaticRD->addDecl(Field);
+ SharedRecs.push_back(&Records);
+ } else {
+ StaticRD->addDecl(Field);
+ GlobalRecs.push_back(&Records);
+ }
+ Records.RecSize->setInitializer(llvm::ConstantInt::get(CGM.SizeTy, Size));
+ Records.UseSharedMemory->setInitializer(
+ llvm::ConstantInt::get(CGM.Int16Ty, UseSharedMemory ? 1 : 0));
+ }
+ // Allocate SharedMemorySize buffer for the shared memory.
+ // FIXME: nvlink does not handle weak linkage correctly (object with the
+ // different size are reported as erroneous).
+ // Restore this code as sson as nvlink is fixed.
+ if (!SharedStaticRD->field_empty()) {
+ llvm::APInt ArySize(/*numBits=*/64, SharedMemorySize);
+ QualType SubTy = C.getConstantArrayType(
+ C.CharTy, ArySize, ArrayType::Normal, /*IndexTypeQuals=*/0);
+ auto *Field = FieldDecl::Create(
+ C, SharedStaticRD, SourceLocation(), SourceLocation(), nullptr, SubTy,
+ C.getTrivialTypeSourceInfo(SubTy, SourceLocation()),
+ /*BW=*/nullptr, /*Mutable=*/false,
+ /*InitStyle=*/ICIS_NoInit);
+ Field->setAccess(AS_public);
+ SharedStaticRD->addDecl(Field);
+ }
+ SharedStaticRD->completeDefinition();
+ if (!SharedStaticRD->field_empty()) {
+ QualType StaticTy = C.getRecordType(SharedStaticRD);
+ llvm::Type *LLVMStaticTy = CGM.getTypes().ConvertTypeForMem(StaticTy);
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), LLVMStaticTy,
+ /*isConstant=*/false, llvm::GlobalValue::CommonLinkage,
+ llvm::Constant::getNullValue(LLVMStaticTy),
+ "_openmp_shared_static_glob_rd_$_", /*InsertBefore=*/nullptr,
+ llvm::GlobalValue::NotThreadLocal,
+ C.getTargetAddressSpace(LangAS::cuda_shared));
+ auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
+ GV, CGM.VoidPtrTy);
+ for (const GlobalPtrSizeRecsTy *Rec : SharedRecs) {
+ Rec->Buffer->replaceAllUsesWith(Replacement);
+ Rec->Buffer->eraseFromParent();
+ }
+ }
+ StaticRD->completeDefinition();
+ if (!StaticRD->field_empty()) {
+ QualType StaticTy = C.getRecordType(StaticRD);
+ std::pair<unsigned, unsigned> SMsBlockPerSM = getSMsBlocksPerSM(CGM);
+ llvm::APInt Size1(32, SMsBlockPerSM.second);
+ QualType Arr1Ty =
+ C.getConstantArrayType(StaticTy, Size1, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ llvm::APInt Size2(32, SMsBlockPerSM.first);
+ QualType Arr2Ty = C.getConstantArrayType(Arr1Ty, Size2, ArrayType::Normal,
+ /*IndexTypeQuals=*/0);
+ llvm::Type *LLVMArr2Ty = CGM.getTypes().ConvertTypeForMem(Arr2Ty);
+ auto *GV = new llvm::GlobalVariable(
+ CGM.getModule(), LLVMArr2Ty,
+ /*isConstant=*/false, llvm::GlobalValue::CommonLinkage,
+ llvm::Constant::getNullValue(LLVMArr2Ty),
+ "_openmp_static_glob_rd_$_");
+ auto *Replacement = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(
+ GV, CGM.VoidPtrTy);
+ for (const GlobalPtrSizeRecsTy *Rec : GlobalRecs) {
+ Rec->Buffer->replaceAllUsesWith(Replacement);
+ Rec->Buffer->eraseFromParent();
+ }
+ }
+ }
+ CGOpenMPRuntime::clear();
+}