aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp1861
1 files changed, 1861 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp
new file mode 100644
index 000000000000..f0f706d7b957
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGExprCXX.cpp
@@ -0,0 +1,1861 @@
+//===--- CGExprCXX.cpp - Emit LLVM Code for C++ expressions ---------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code dealing with code generation of C++ expressions
+//
+//===----------------------------------------------------------------------===//
+
+#include "CodeGenFunction.h"
+#include "CGCUDARuntime.h"
+#include "CGCXXABI.h"
+#include "CGDebugInfo.h"
+#include "CGObjCRuntime.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "clang/Frontend/CodeGenOptions.h"
+#include "llvm/IR/CallSite.h"
+#include "llvm/IR/Intrinsics.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+static RequiredArgs commonEmitCXXMemberOrOperatorCall(
+ CodeGenFunction &CGF, const CXXMethodDecl *MD, llvm::Value *Callee,
+ ReturnValueSlot ReturnValue, llvm::Value *This, llvm::Value *ImplicitParam,
+ QualType ImplicitParamTy, const CallExpr *CE, CallArgList &Args) {
+ assert(CE == nullptr || isa<CXXMemberCallExpr>(CE) ||
+ isa<CXXOperatorCallExpr>(CE));
+ assert(MD->isInstance() &&
+ "Trying to emit a member or operator call expr on a static method!");
+
+ // C++11 [class.mfct.non-static]p2:
+ // If a non-static member function of a class X is called for an object that
+ // is not of type X, or of a type derived from X, the behavior is undefined.
+ SourceLocation CallLoc;
+ if (CE)
+ CallLoc = CE->getExprLoc();
+ CGF.EmitTypeCheck(
+ isa<CXXConstructorDecl>(MD) ? CodeGenFunction::TCK_ConstructorCall
+ : CodeGenFunction::TCK_MemberCall,
+ CallLoc, This, CGF.getContext().getRecordType(MD->getParent()));
+
+ // Push the this ptr.
+ Args.add(RValue::get(This), MD->getThisType(CGF.getContext()));
+
+ // If there is an implicit parameter (e.g. VTT), emit it.
+ if (ImplicitParam) {
+ Args.add(RValue::get(ImplicitParam), ImplicitParamTy);
+ }
+
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, Args.size());
+
+ // And the rest of the call args.
+ if (CE) {
+ // Special case: skip first argument of CXXOperatorCall (it is "this").
+ unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
+ CGF.EmitCallArgs(Args, FPT, CE->arg_begin() + ArgsToSkip, CE->arg_end(),
+ CE->getDirectCallee());
+ } else {
+ assert(
+ FPT->getNumParams() == 0 &&
+ "No CallExpr specified for function with non-zero number of arguments");
+ }
+ return required;
+}
+
+RValue CodeGenFunction::EmitCXXMemberOrOperatorCall(
+ const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
+ llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
+ const CallExpr *CE) {
+ const FunctionProtoType *FPT = MD->getType()->castAs<FunctionProtoType>();
+ CallArgList Args;
+ RequiredArgs required = commonEmitCXXMemberOrOperatorCall(
+ *this, MD, Callee, ReturnValue, This, ImplicitParam, ImplicitParamTy, CE,
+ Args);
+ return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
+ Callee, ReturnValue, Args, MD);
+}
+
+RValue CodeGenFunction::EmitCXXStructorCall(
+ const CXXMethodDecl *MD, llvm::Value *Callee, ReturnValueSlot ReturnValue,
+ llvm::Value *This, llvm::Value *ImplicitParam, QualType ImplicitParamTy,
+ const CallExpr *CE, StructorType Type) {
+ CallArgList Args;
+ commonEmitCXXMemberOrOperatorCall(*this, MD, Callee, ReturnValue, This,
+ ImplicitParam, ImplicitParamTy, CE, Args);
+ return EmitCall(CGM.getTypes().arrangeCXXStructorDeclaration(MD, Type),
+ Callee, ReturnValue, Args, MD);
+}
+
+static CXXRecordDecl *getCXXRecord(const Expr *E) {
+ QualType T = E->getType();
+ if (const PointerType *PTy = T->getAs<PointerType>())
+ T = PTy->getPointeeType();
+ const RecordType *Ty = T->castAs<RecordType>();
+ return cast<CXXRecordDecl>(Ty->getDecl());
+}
+
+// Note: This function also emit constructor calls to support a MSVC
+// extensions allowing explicit constructor function call.
+RValue CodeGenFunction::EmitCXXMemberCallExpr(const CXXMemberCallExpr *CE,
+ ReturnValueSlot ReturnValue) {
+ const Expr *callee = CE->getCallee()->IgnoreParens();
+
+ if (isa<BinaryOperator>(callee))
+ return EmitCXXMemberPointerCallExpr(CE, ReturnValue);
+
+ const MemberExpr *ME = cast<MemberExpr>(callee);
+ const CXXMethodDecl *MD = cast<CXXMethodDecl>(ME->getMemberDecl());
+
+ if (MD->isStatic()) {
+ // The method is static, emit it as we would a regular call.
+ llvm::Value *Callee = CGM.GetAddrOfFunction(MD);
+ return EmitCall(getContext().getPointerType(MD->getType()), Callee, CE,
+ ReturnValue);
+ }
+
+ bool HasQualifier = ME->hasQualifier();
+ NestedNameSpecifier *Qualifier = HasQualifier ? ME->getQualifier() : nullptr;
+ bool IsArrow = ME->isArrow();
+ const Expr *Base = ME->getBase();
+
+ return EmitCXXMemberOrOperatorMemberCallExpr(
+ CE, MD, ReturnValue, HasQualifier, Qualifier, IsArrow, Base);
+}
+
+RValue CodeGenFunction::EmitCXXMemberOrOperatorMemberCallExpr(
+ const CallExpr *CE, const CXXMethodDecl *MD, ReturnValueSlot ReturnValue,
+ bool HasQualifier, NestedNameSpecifier *Qualifier, bool IsArrow,
+ const Expr *Base) {
+ assert(isa<CXXMemberCallExpr>(CE) || isa<CXXOperatorCallExpr>(CE));
+
+ // Compute the object pointer.
+ bool CanUseVirtualCall = MD->isVirtual() && !HasQualifier;
+
+ const CXXMethodDecl *DevirtualizedMethod = nullptr;
+ if (CanUseVirtualCall && CanDevirtualizeMemberFunctionCall(Base, MD)) {
+ const CXXRecordDecl *BestDynamicDecl = Base->getBestDynamicClassType();
+ DevirtualizedMethod = MD->getCorrespondingMethodInClass(BestDynamicDecl);
+ assert(DevirtualizedMethod);
+ const CXXRecordDecl *DevirtualizedClass = DevirtualizedMethod->getParent();
+ const Expr *Inner = Base->ignoreParenBaseCasts();
+ if (DevirtualizedMethod->getReturnType().getCanonicalType() !=
+ MD->getReturnType().getCanonicalType())
+ // If the return types are not the same, this might be a case where more
+ // code needs to run to compensate for it. For example, the derived
+ // method might return a type that inherits form from the return
+ // type of MD and has a prefix.
+ // For now we just avoid devirtualizing these covariant cases.
+ DevirtualizedMethod = nullptr;
+ else if (getCXXRecord(Inner) == DevirtualizedClass)
+ // If the class of the Inner expression is where the dynamic method
+ // is defined, build the this pointer from it.
+ Base = Inner;
+ else if (getCXXRecord(Base) != DevirtualizedClass) {
+ // If the method is defined in a class that is not the best dynamic
+ // one or the one of the full expression, we would have to build
+ // a derived-to-base cast to compute the correct this pointer, but
+ // we don't have support for that yet, so do a virtual call.
+ DevirtualizedMethod = nullptr;
+ }
+ }
+
+ llvm::Value *This;
+ if (IsArrow)
+ This = EmitScalarExpr(Base);
+ else
+ This = EmitLValue(Base).getAddress();
+
+
+ if (MD->isTrivial() || (MD->isDefaulted() && MD->getParent()->isUnion())) {
+ if (isa<CXXDestructorDecl>(MD)) return RValue::get(nullptr);
+ if (isa<CXXConstructorDecl>(MD) &&
+ cast<CXXConstructorDecl>(MD)->isDefaultConstructor())
+ return RValue::get(nullptr);
+
+ if (!MD->getParent()->mayInsertExtraPadding()) {
+ if (MD->isCopyAssignmentOperator() || MD->isMoveAssignmentOperator()) {
+ // We don't like to generate the trivial copy/move assignment operator
+ // when it isn't necessary; just produce the proper effect here.
+ // Special case: skip first argument of CXXOperatorCall (it is "this").
+ unsigned ArgsToSkip = isa<CXXOperatorCallExpr>(CE) ? 1 : 0;
+ llvm::Value *RHS =
+ EmitLValue(*(CE->arg_begin() + ArgsToSkip)).getAddress();
+ EmitAggregateAssign(This, RHS, CE->getType());
+ return RValue::get(This);
+ }
+
+ if (isa<CXXConstructorDecl>(MD) &&
+ cast<CXXConstructorDecl>(MD)->isCopyOrMoveConstructor()) {
+ // Trivial move and copy ctor are the same.
+ assert(CE->getNumArgs() == 1 && "unexpected argcount for trivial ctor");
+ llvm::Value *RHS = EmitLValue(*CE->arg_begin()).getAddress();
+ EmitAggregateCopy(This, RHS, CE->arg_begin()->getType());
+ return RValue::get(This);
+ }
+ llvm_unreachable("unknown trivial member function");
+ }
+ }
+
+ // Compute the function type we're calling.
+ const CXXMethodDecl *CalleeDecl =
+ DevirtualizedMethod ? DevirtualizedMethod : MD;
+ const CGFunctionInfo *FInfo = nullptr;
+ if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(CalleeDecl))
+ FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
+ Dtor, StructorType::Complete);
+ else if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(CalleeDecl))
+ FInfo = &CGM.getTypes().arrangeCXXStructorDeclaration(
+ Ctor, StructorType::Complete);
+ else
+ FInfo = &CGM.getTypes().arrangeCXXMethodDeclaration(CalleeDecl);
+
+ llvm::FunctionType *Ty = CGM.getTypes().GetFunctionType(*FInfo);
+
+ // C++ [class.virtual]p12:
+ // Explicit qualification with the scope operator (5.1) suppresses the
+ // virtual call mechanism.
+ //
+ // We also don't emit a virtual call if the base expression has a record type
+ // because then we know what the type is.
+ bool UseVirtualCall = CanUseVirtualCall && !DevirtualizedMethod;
+ llvm::Value *Callee;
+
+ if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(MD)) {
+ assert(CE->arg_begin() == CE->arg_end() &&
+ "Destructor shouldn't have explicit parameters");
+ assert(ReturnValue.isNull() && "Destructor shouldn't have return value");
+ if (UseVirtualCall) {
+ CGM.getCXXABI().EmitVirtualDestructorCall(
+ *this, Dtor, Dtor_Complete, This, cast<CXXMemberCallExpr>(CE));
+ } else {
+ if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
+ Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
+ else if (!DevirtualizedMethod)
+ Callee =
+ CGM.getAddrOfCXXStructor(Dtor, StructorType::Complete, FInfo, Ty);
+ else {
+ const CXXDestructorDecl *DDtor =
+ cast<CXXDestructorDecl>(DevirtualizedMethod);
+ Callee = CGM.GetAddrOfFunction(GlobalDecl(DDtor, Dtor_Complete), Ty);
+ }
+ EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
+ /*ImplicitParam=*/nullptr, QualType(), CE);
+ }
+ return RValue::get(nullptr);
+ }
+
+ if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
+ Callee = CGM.GetAddrOfFunction(GlobalDecl(Ctor, Ctor_Complete), Ty);
+ } else if (UseVirtualCall) {
+ Callee = CGM.getCXXABI().getVirtualFunctionPointer(*this, MD, This, Ty,
+ CE->getLocStart());
+ } else {
+ if (SanOpts.has(SanitizerKind::CFINVCall) &&
+ MD->getParent()->isDynamicClass()) {
+ llvm::Value *VTable = GetVTablePtr(This, Int8PtrTy);
+ EmitVTablePtrCheckForCall(MD, VTable, CFITCK_NVCall, CE->getLocStart());
+ }
+
+ if (getLangOpts().AppleKext && MD->isVirtual() && HasQualifier)
+ Callee = BuildAppleKextVirtualCall(MD, Qualifier, Ty);
+ else if (!DevirtualizedMethod)
+ Callee = CGM.GetAddrOfFunction(MD, Ty);
+ else {
+ Callee = CGM.GetAddrOfFunction(DevirtualizedMethod, Ty);
+ }
+ }
+
+ if (MD->isVirtual()) {
+ This = CGM.getCXXABI().adjustThisArgumentForVirtualFunctionCall(
+ *this, MD, This, UseVirtualCall);
+ }
+
+ return EmitCXXMemberOrOperatorCall(MD, Callee, ReturnValue, This,
+ /*ImplicitParam=*/nullptr, QualType(), CE);
+}
+
+RValue
+CodeGenFunction::EmitCXXMemberPointerCallExpr(const CXXMemberCallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ const BinaryOperator *BO =
+ cast<BinaryOperator>(E->getCallee()->IgnoreParens());
+ const Expr *BaseExpr = BO->getLHS();
+ const Expr *MemFnExpr = BO->getRHS();
+
+ const MemberPointerType *MPT =
+ MemFnExpr->getType()->castAs<MemberPointerType>();
+
+ const FunctionProtoType *FPT =
+ MPT->getPointeeType()->castAs<FunctionProtoType>();
+ const CXXRecordDecl *RD =
+ cast<CXXRecordDecl>(MPT->getClass()->getAs<RecordType>()->getDecl());
+
+ // Get the member function pointer.
+ llvm::Value *MemFnPtr = EmitScalarExpr(MemFnExpr);
+
+ // Emit the 'this' pointer.
+ llvm::Value *This;
+
+ if (BO->getOpcode() == BO_PtrMemI)
+ This = EmitScalarExpr(BaseExpr);
+ else
+ This = EmitLValue(BaseExpr).getAddress();
+
+ EmitTypeCheck(TCK_MemberCall, E->getExprLoc(), This,
+ QualType(MPT->getClass(), 0));
+
+ // Ask the ABI to load the callee. Note that This is modified.
+ llvm::Value *Callee =
+ CGM.getCXXABI().EmitLoadOfMemberFunctionPointer(*this, BO, This, MemFnPtr, MPT);
+
+ CallArgList Args;
+
+ QualType ThisType =
+ getContext().getPointerType(getContext().getTagDeclType(RD));
+
+ // Push the this ptr.
+ Args.add(RValue::get(This), ThisType);
+
+ RequiredArgs required = RequiredArgs::forPrototypePlus(FPT, 1);
+
+ // And the rest of the call args
+ EmitCallArgs(Args, FPT, E->arg_begin(), E->arg_end(), E->getDirectCallee());
+ return EmitCall(CGM.getTypes().arrangeCXXMethodCall(Args, FPT, required),
+ Callee, ReturnValue, Args);
+}
+
+RValue
+CodeGenFunction::EmitCXXOperatorMemberCallExpr(const CXXOperatorCallExpr *E,
+ const CXXMethodDecl *MD,
+ ReturnValueSlot ReturnValue) {
+ assert(MD->isInstance() &&
+ "Trying to emit a member call expr on a static method!");
+ return EmitCXXMemberOrOperatorMemberCallExpr(
+ E, MD, ReturnValue, /*HasQualifier=*/false, /*Qualifier=*/nullptr,
+ /*IsArrow=*/false, E->getArg(0));
+}
+
+RValue CodeGenFunction::EmitCUDAKernelCallExpr(const CUDAKernelCallExpr *E,
+ ReturnValueSlot ReturnValue) {
+ return CGM.getCUDARuntime().EmitCUDAKernelCallExpr(*this, E, ReturnValue);
+}
+
+static void EmitNullBaseClassInitialization(CodeGenFunction &CGF,
+ llvm::Value *DestPtr,
+ const CXXRecordDecl *Base) {
+ if (Base->isEmpty())
+ return;
+
+ DestPtr = CGF.EmitCastToVoidPtr(DestPtr);
+
+ const ASTRecordLayout &Layout = CGF.getContext().getASTRecordLayout(Base);
+ CharUnits Size = Layout.getNonVirtualSize();
+ CharUnits Align = Layout.getNonVirtualAlignment();
+
+ llvm::Value *SizeVal = CGF.CGM.getSize(Size);
+
+ // If the type contains a pointer to data member we can't memset it to zero.
+ // Instead, create a null constant and copy it to the destination.
+ // TODO: there are other patterns besides zero that we can usefully memset,
+ // like -1, which happens to be the pattern used by member-pointers.
+ // TODO: isZeroInitializable can be over-conservative in the case where a
+ // virtual base contains a member pointer.
+ if (!CGF.CGM.getTypes().isZeroInitializable(Base)) {
+ llvm::Constant *NullConstant = CGF.CGM.EmitNullConstantForBase(Base);
+
+ llvm::GlobalVariable *NullVariable =
+ new llvm::GlobalVariable(CGF.CGM.getModule(), NullConstant->getType(),
+ /*isConstant=*/true,
+ llvm::GlobalVariable::PrivateLinkage,
+ NullConstant, Twine());
+ NullVariable->setAlignment(Align.getQuantity());
+ llvm::Value *SrcPtr = CGF.EmitCastToVoidPtr(NullVariable);
+
+ // Get and call the appropriate llvm.memcpy overload.
+ CGF.Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity());
+ return;
+ }
+
+ // Otherwise, just memset the whole thing to zero. This is legal
+ // because in LLVM, all default initializers (other than the ones we just
+ // handled above) are guaranteed to have a bit pattern of all zeros.
+ CGF.Builder.CreateMemSet(DestPtr, CGF.Builder.getInt8(0), SizeVal,
+ Align.getQuantity());
+}
+
+void
+CodeGenFunction::EmitCXXConstructExpr(const CXXConstructExpr *E,
+ AggValueSlot Dest) {
+ assert(!Dest.isIgnored() && "Must have a destination!");
+ const CXXConstructorDecl *CD = E->getConstructor();
+
+ // If we require zero initialization before (or instead of) calling the
+ // constructor, as can be the case with a non-user-provided default
+ // constructor, emit the zero initialization now, unless destination is
+ // already zeroed.
+ if (E->requiresZeroInitialization() && !Dest.isZeroed()) {
+ switch (E->getConstructionKind()) {
+ case CXXConstructExpr::CK_Delegating:
+ case CXXConstructExpr::CK_Complete:
+ EmitNullInitialization(Dest.getAddr(), E->getType());
+ break;
+ case CXXConstructExpr::CK_VirtualBase:
+ case CXXConstructExpr::CK_NonVirtualBase:
+ EmitNullBaseClassInitialization(*this, Dest.getAddr(), CD->getParent());
+ break;
+ }
+ }
+
+ // If this is a call to a trivial default constructor, do nothing.
+ if (CD->isTrivial() && CD->isDefaultConstructor())
+ return;
+
+ // Elide the constructor if we're constructing from a temporary.
+ // The temporary check is required because Sema sets this on NRVO
+ // returns.
+ if (getLangOpts().ElideConstructors && E->isElidable()) {
+ assert(getContext().hasSameUnqualifiedType(E->getType(),
+ E->getArg(0)->getType()));
+ if (E->getArg(0)->isTemporaryObject(getContext(), CD->getParent())) {
+ EmitAggExpr(E->getArg(0), Dest);
+ return;
+ }
+ }
+
+ if (const ConstantArrayType *arrayType
+ = getContext().getAsConstantArrayType(E->getType())) {
+ EmitCXXAggrConstructorCall(CD, arrayType, Dest.getAddr(), E);
+ } else {
+ CXXCtorType Type = Ctor_Complete;
+ bool ForVirtualBase = false;
+ bool Delegating = false;
+
+ switch (E->getConstructionKind()) {
+ case CXXConstructExpr::CK_Delegating:
+ // We should be emitting a constructor; GlobalDecl will assert this
+ Type = CurGD.getCtorType();
+ Delegating = true;
+ break;
+
+ case CXXConstructExpr::CK_Complete:
+ Type = Ctor_Complete;
+ break;
+
+ case CXXConstructExpr::CK_VirtualBase:
+ ForVirtualBase = true;
+ // fall-through
+
+ case CXXConstructExpr::CK_NonVirtualBase:
+ Type = Ctor_Base;
+ }
+
+ // Call the constructor.
+ EmitCXXConstructorCall(CD, Type, ForVirtualBase, Delegating, Dest.getAddr(),
+ E);
+ }
+}
+
+void
+CodeGenFunction::EmitSynthesizedCXXCopyCtor(llvm::Value *Dest,
+ llvm::Value *Src,
+ const Expr *Exp) {
+ if (const ExprWithCleanups *E = dyn_cast<ExprWithCleanups>(Exp))
+ Exp = E->getSubExpr();
+ assert(isa<CXXConstructExpr>(Exp) &&
+ "EmitSynthesizedCXXCopyCtor - unknown copy ctor expr");
+ const CXXConstructExpr* E = cast<CXXConstructExpr>(Exp);
+ const CXXConstructorDecl *CD = E->getConstructor();
+ RunCleanupsScope Scope(*this);
+
+ // If we require zero initialization before (or instead of) calling the
+ // constructor, as can be the case with a non-user-provided default
+ // constructor, emit the zero initialization now.
+ // FIXME. Do I still need this for a copy ctor synthesis?
+ if (E->requiresZeroInitialization())
+ EmitNullInitialization(Dest, E->getType());
+
+ assert(!getContext().getAsConstantArrayType(E->getType())
+ && "EmitSynthesizedCXXCopyCtor - Copied-in Array");
+ EmitSynthesizedCXXCopyCtorCall(CD, Dest, Src, E);
+}
+
+static CharUnits CalculateCookiePadding(CodeGenFunction &CGF,
+ const CXXNewExpr *E) {
+ if (!E->isArray())
+ return CharUnits::Zero();
+
+ // No cookie is required if the operator new[] being used is the
+ // reserved placement operator new[].
+ if (E->getOperatorNew()->isReservedGlobalPlacementOperator())
+ return CharUnits::Zero();
+
+ return CGF.CGM.getCXXABI().GetArrayCookieSize(E);
+}
+
+static llvm::Value *EmitCXXNewAllocSize(CodeGenFunction &CGF,
+ const CXXNewExpr *e,
+ unsigned minElements,
+ llvm::Value *&numElements,
+ llvm::Value *&sizeWithoutCookie) {
+ QualType type = e->getAllocatedType();
+
+ if (!e->isArray()) {
+ CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
+ sizeWithoutCookie
+ = llvm::ConstantInt::get(CGF.SizeTy, typeSize.getQuantity());
+ return sizeWithoutCookie;
+ }
+
+ // The width of size_t.
+ unsigned sizeWidth = CGF.SizeTy->getBitWidth();
+
+ // Figure out the cookie size.
+ llvm::APInt cookieSize(sizeWidth,
+ CalculateCookiePadding(CGF, e).getQuantity());
+
+ // Emit the array size expression.
+ // We multiply the size of all dimensions for NumElements.
+ // e.g for 'int[2][3]', ElemType is 'int' and NumElements is 6.
+ numElements = CGF.EmitScalarExpr(e->getArraySize());
+ assert(isa<llvm::IntegerType>(numElements->getType()));
+
+ // The number of elements can be have an arbitrary integer type;
+ // essentially, we need to multiply it by a constant factor, add a
+ // cookie size, and verify that the result is representable as a
+ // size_t. That's just a gloss, though, and it's wrong in one
+ // important way: if the count is negative, it's an error even if
+ // the cookie size would bring the total size >= 0.
+ bool isSigned
+ = e->getArraySize()->getType()->isSignedIntegerOrEnumerationType();
+ llvm::IntegerType *numElementsType
+ = cast<llvm::IntegerType>(numElements->getType());
+ unsigned numElementsWidth = numElementsType->getBitWidth();
+
+ // Compute the constant factor.
+ llvm::APInt arraySizeMultiplier(sizeWidth, 1);
+ while (const ConstantArrayType *CAT
+ = CGF.getContext().getAsConstantArrayType(type)) {
+ type = CAT->getElementType();
+ arraySizeMultiplier *= CAT->getSize();
+ }
+
+ CharUnits typeSize = CGF.getContext().getTypeSizeInChars(type);
+ llvm::APInt typeSizeMultiplier(sizeWidth, typeSize.getQuantity());
+ typeSizeMultiplier *= arraySizeMultiplier;
+
+ // This will be a size_t.
+ llvm::Value *size;
+
+ // If someone is doing 'new int[42]' there is no need to do a dynamic check.
+ // Don't bloat the -O0 code.
+ if (llvm::ConstantInt *numElementsC =
+ dyn_cast<llvm::ConstantInt>(numElements)) {
+ const llvm::APInt &count = numElementsC->getValue();
+
+ bool hasAnyOverflow = false;
+
+ // If 'count' was a negative number, it's an overflow.
+ if (isSigned && count.isNegative())
+ hasAnyOverflow = true;
+
+ // We want to do all this arithmetic in size_t. If numElements is
+ // wider than that, check whether it's already too big, and if so,
+ // overflow.
+ else if (numElementsWidth > sizeWidth &&
+ numElementsWidth - sizeWidth > count.countLeadingZeros())
+ hasAnyOverflow = true;
+
+ // Okay, compute a count at the right width.
+ llvm::APInt adjustedCount = count.zextOrTrunc(sizeWidth);
+
+ // If there is a brace-initializer, we cannot allocate fewer elements than
+ // there are initializers. If we do, that's treated like an overflow.
+ if (adjustedCount.ult(minElements))
+ hasAnyOverflow = true;
+
+ // Scale numElements by that. This might overflow, but we don't
+ // care because it only overflows if allocationSize does, too, and
+ // if that overflows then we shouldn't use this.
+ numElements = llvm::ConstantInt::get(CGF.SizeTy,
+ adjustedCount * arraySizeMultiplier);
+
+ // Compute the size before cookie, and track whether it overflowed.
+ bool overflow;
+ llvm::APInt allocationSize
+ = adjustedCount.umul_ov(typeSizeMultiplier, overflow);
+ hasAnyOverflow |= overflow;
+
+ // Add in the cookie, and check whether it's overflowed.
+ if (cookieSize != 0) {
+ // Save the current size without a cookie. This shouldn't be
+ // used if there was overflow.
+ sizeWithoutCookie = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
+
+ allocationSize = allocationSize.uadd_ov(cookieSize, overflow);
+ hasAnyOverflow |= overflow;
+ }
+
+ // On overflow, produce a -1 so operator new will fail.
+ if (hasAnyOverflow) {
+ size = llvm::Constant::getAllOnesValue(CGF.SizeTy);
+ } else {
+ size = llvm::ConstantInt::get(CGF.SizeTy, allocationSize);
+ }
+
+ // Otherwise, we might need to use the overflow intrinsics.
+ } else {
+ // There are up to five conditions we need to test for:
+ // 1) if isSigned, we need to check whether numElements is negative;
+ // 2) if numElementsWidth > sizeWidth, we need to check whether
+ // numElements is larger than something representable in size_t;
+ // 3) if minElements > 0, we need to check whether numElements is smaller
+ // than that.
+ // 4) we need to compute
+ // sizeWithoutCookie := numElements * typeSizeMultiplier
+ // and check whether it overflows; and
+ // 5) if we need a cookie, we need to compute
+ // size := sizeWithoutCookie + cookieSize
+ // and check whether it overflows.
+
+ llvm::Value *hasOverflow = nullptr;
+
+ // If numElementsWidth > sizeWidth, then one way or another, we're
+ // going to have to do a comparison for (2), and this happens to
+ // take care of (1), too.
+ if (numElementsWidth > sizeWidth) {
+ llvm::APInt threshold(numElementsWidth, 1);
+ threshold <<= sizeWidth;
+
+ llvm::Value *thresholdV
+ = llvm::ConstantInt::get(numElementsType, threshold);
+
+ hasOverflow = CGF.Builder.CreateICmpUGE(numElements, thresholdV);
+ numElements = CGF.Builder.CreateTrunc(numElements, CGF.SizeTy);
+
+ // Otherwise, if we're signed, we want to sext up to size_t.
+ } else if (isSigned) {
+ if (numElementsWidth < sizeWidth)
+ numElements = CGF.Builder.CreateSExt(numElements, CGF.SizeTy);
+
+ // If there's a non-1 type size multiplier, then we can do the
+ // signedness check at the same time as we do the multiply
+ // because a negative number times anything will cause an
+ // unsigned overflow. Otherwise, we have to do it here. But at least
+ // in this case, we can subsume the >= minElements check.
+ if (typeSizeMultiplier == 1)
+ hasOverflow = CGF.Builder.CreateICmpSLT(numElements,
+ llvm::ConstantInt::get(CGF.SizeTy, minElements));
+
+ // Otherwise, zext up to size_t if necessary.
+ } else if (numElementsWidth < sizeWidth) {
+ numElements = CGF.Builder.CreateZExt(numElements, CGF.SizeTy);
+ }
+
+ assert(numElements->getType() == CGF.SizeTy);
+
+ if (minElements) {
+ // Don't allow allocation of fewer elements than we have initializers.
+ if (!hasOverflow) {
+ hasOverflow = CGF.Builder.CreateICmpULT(numElements,
+ llvm::ConstantInt::get(CGF.SizeTy, minElements));
+ } else if (numElementsWidth > sizeWidth) {
+ // The other existing overflow subsumes this check.
+ // We do an unsigned comparison, since any signed value < -1 is
+ // taken care of either above or below.
+ hasOverflow = CGF.Builder.CreateOr(hasOverflow,
+ CGF.Builder.CreateICmpULT(numElements,
+ llvm::ConstantInt::get(CGF.SizeTy, minElements)));
+ }
+ }
+
+ size = numElements;
+
+ // Multiply by the type size if necessary. This multiplier
+ // includes all the factors for nested arrays.
+ //
+ // This step also causes numElements to be scaled up by the
+ // nested-array factor if necessary. Overflow on this computation
+ // can be ignored because the result shouldn't be used if
+ // allocation fails.
+ if (typeSizeMultiplier != 1) {
+ llvm::Value *umul_with_overflow
+ = CGF.CGM.getIntrinsic(llvm::Intrinsic::umul_with_overflow, CGF.SizeTy);
+
+ llvm::Value *tsmV =
+ llvm::ConstantInt::get(CGF.SizeTy, typeSizeMultiplier);
+ llvm::Value *result =
+ CGF.Builder.CreateCall(umul_with_overflow, {size, tsmV});
+
+ llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
+ if (hasOverflow)
+ hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
+ else
+ hasOverflow = overflowed;
+
+ size = CGF.Builder.CreateExtractValue(result, 0);
+
+ // Also scale up numElements by the array size multiplier.
+ if (arraySizeMultiplier != 1) {
+ // If the base element type size is 1, then we can re-use the
+ // multiply we just did.
+ if (typeSize.isOne()) {
+ assert(arraySizeMultiplier == typeSizeMultiplier);
+ numElements = size;
+
+ // Otherwise we need a separate multiply.
+ } else {
+ llvm::Value *asmV =
+ llvm::ConstantInt::get(CGF.SizeTy, arraySizeMultiplier);
+ numElements = CGF.Builder.CreateMul(numElements, asmV);
+ }
+ }
+ } else {
+ // numElements doesn't need to be scaled.
+ assert(arraySizeMultiplier == 1);
+ }
+
+ // Add in the cookie size if necessary.
+ if (cookieSize != 0) {
+ sizeWithoutCookie = size;
+
+ llvm::Value *uadd_with_overflow
+ = CGF.CGM.getIntrinsic(llvm::Intrinsic::uadd_with_overflow, CGF.SizeTy);
+
+ llvm::Value *cookieSizeV = llvm::ConstantInt::get(CGF.SizeTy, cookieSize);
+ llvm::Value *result =
+ CGF.Builder.CreateCall(uadd_with_overflow, {size, cookieSizeV});
+
+ llvm::Value *overflowed = CGF.Builder.CreateExtractValue(result, 1);
+ if (hasOverflow)
+ hasOverflow = CGF.Builder.CreateOr(hasOverflow, overflowed);
+ else
+ hasOverflow = overflowed;
+
+ size = CGF.Builder.CreateExtractValue(result, 0);
+ }
+
+ // If we had any possibility of dynamic overflow, make a select to
+ // overwrite 'size' with an all-ones value, which should cause
+ // operator new to throw.
+ if (hasOverflow)
+ size = CGF.Builder.CreateSelect(hasOverflow,
+ llvm::Constant::getAllOnesValue(CGF.SizeTy),
+ size);
+ }
+
+ if (cookieSize == 0)
+ sizeWithoutCookie = size;
+ else
+ assert(sizeWithoutCookie && "didn't set sizeWithoutCookie?");
+
+ return size;
+}
+
+static void StoreAnyExprIntoOneUnit(CodeGenFunction &CGF, const Expr *Init,
+ QualType AllocType, llvm::Value *NewPtr) {
+ // FIXME: Refactor with EmitExprAsInit.
+ CharUnits Alignment = CGF.getContext().getTypeAlignInChars(AllocType);
+ switch (CGF.getEvaluationKind(AllocType)) {
+ case TEK_Scalar:
+ CGF.EmitScalarInit(Init, nullptr,
+ CGF.MakeAddrLValue(NewPtr, AllocType, Alignment), false);
+ return;
+ case TEK_Complex:
+ CGF.EmitComplexExprIntoLValue(Init, CGF.MakeAddrLValue(NewPtr, AllocType,
+ Alignment),
+ /*isInit*/ true);
+ return;
+ case TEK_Aggregate: {
+ AggValueSlot Slot
+ = AggValueSlot::forAddr(NewPtr, Alignment, AllocType.getQualifiers(),
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased);
+ CGF.EmitAggExpr(Init, Slot);
+ return;
+ }
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+void CodeGenFunction::EmitNewArrayInitializer(
+ const CXXNewExpr *E, QualType ElementType, llvm::Type *ElementTy,
+ llvm::Value *BeginPtr, llvm::Value *NumElements,
+ llvm::Value *AllocSizeWithoutCookie) {
+ // If we have a type with trivial initialization and no initializer,
+ // there's nothing to do.
+ if (!E->hasInitializer())
+ return;
+
+ llvm::Value *CurPtr = BeginPtr;
+
+ unsigned InitListElements = 0;
+
+ const Expr *Init = E->getInitializer();
+ llvm::AllocaInst *EndOfInit = nullptr;
+ QualType::DestructionKind DtorKind = ElementType.isDestructedType();
+ EHScopeStack::stable_iterator Cleanup;
+ llvm::Instruction *CleanupDominator = nullptr;
+
+ // If the initializer is an initializer list, first do the explicit elements.
+ if (const InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
+ InitListElements = ILE->getNumInits();
+
+ // If this is a multi-dimensional array new, we will initialize multiple
+ // elements with each init list element.
+ QualType AllocType = E->getAllocatedType();
+ if (const ConstantArrayType *CAT = dyn_cast_or_null<ConstantArrayType>(
+ AllocType->getAsArrayTypeUnsafe())) {
+ unsigned AS = CurPtr->getType()->getPointerAddressSpace();
+ ElementTy = ConvertTypeForMem(AllocType);
+ llvm::Type *AllocPtrTy = ElementTy->getPointerTo(AS);
+ CurPtr = Builder.CreateBitCast(CurPtr, AllocPtrTy);
+ InitListElements *= getContext().getConstantArrayElementCount(CAT);
+ }
+
+ // Enter a partial-destruction Cleanup if necessary.
+ if (needsEHCleanup(DtorKind)) {
+ // In principle we could tell the Cleanup where we are more
+ // directly, but the control flow can get so varied here that it
+ // would actually be quite complex. Therefore we go through an
+ // alloca.
+ EndOfInit = CreateTempAlloca(BeginPtr->getType(), "array.init.end");
+ CleanupDominator = Builder.CreateStore(BeginPtr, EndOfInit);
+ pushIrregularPartialArrayCleanup(BeginPtr, EndOfInit, ElementType,
+ getDestroyer(DtorKind));
+ Cleanup = EHStack.stable_begin();
+ }
+
+ for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i) {
+ // Tell the cleanup that it needs to destroy up to this
+ // element. TODO: some of these stores can be trivially
+ // observed to be unnecessary.
+ if (EndOfInit)
+ Builder.CreateStore(Builder.CreateBitCast(CurPtr, BeginPtr->getType()),
+ EndOfInit);
+ // FIXME: If the last initializer is an incomplete initializer list for
+ // an array, and we have an array filler, we can fold together the two
+ // initialization loops.
+ StoreAnyExprIntoOneUnit(*this, ILE->getInit(i),
+ ILE->getInit(i)->getType(), CurPtr);
+ CurPtr = Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr, 1,
+ "array.exp.next");
+ }
+
+ // The remaining elements are filled with the array filler expression.
+ Init = ILE->getArrayFiller();
+
+ // Extract the initializer for the individual array elements by pulling
+ // out the array filler from all the nested initializer lists. This avoids
+ // generating a nested loop for the initialization.
+ while (Init && Init->getType()->isConstantArrayType()) {
+ auto *SubILE = dyn_cast<InitListExpr>(Init);
+ if (!SubILE)
+ break;
+ assert(SubILE->getNumInits() == 0 && "explicit inits in array filler?");
+ Init = SubILE->getArrayFiller();
+ }
+
+ // Switch back to initializing one base element at a time.
+ CurPtr = Builder.CreateBitCast(CurPtr, BeginPtr->getType());
+ }
+
+ // Attempt to perform zero-initialization using memset.
+ auto TryMemsetInitialization = [&]() -> bool {
+ // FIXME: If the type is a pointer-to-data-member under the Itanium ABI,
+ // we can initialize with a memset to -1.
+ if (!CGM.getTypes().isZeroInitializable(ElementType))
+ return false;
+
+ // Optimization: since zero initialization will just set the memory
+ // to all zeroes, generate a single memset to do it in one shot.
+
+ // Subtract out the size of any elements we've already initialized.
+ auto *RemainingSize = AllocSizeWithoutCookie;
+ if (InitListElements) {
+ // We know this can't overflow; we check this when doing the allocation.
+ auto *InitializedSize = llvm::ConstantInt::get(
+ RemainingSize->getType(),
+ getContext().getTypeSizeInChars(ElementType).getQuantity() *
+ InitListElements);
+ RemainingSize = Builder.CreateSub(RemainingSize, InitializedSize);
+ }
+
+ // Create the memset.
+ CharUnits Alignment = getContext().getTypeAlignInChars(ElementType);
+ Builder.CreateMemSet(CurPtr, Builder.getInt8(0), RemainingSize,
+ Alignment.getQuantity(), false);
+ return true;
+ };
+
+ // If all elements have already been initialized, skip any further
+ // initialization.
+ llvm::ConstantInt *ConstNum = dyn_cast<llvm::ConstantInt>(NumElements);
+ if (ConstNum && ConstNum->getZExtValue() <= InitListElements) {
+ // If there was a Cleanup, deactivate it.
+ if (CleanupDominator)
+ DeactivateCleanupBlock(Cleanup, CleanupDominator);
+ return;
+ }
+
+ assert(Init && "have trailing elements to initialize but no initializer");
+
+ // If this is a constructor call, try to optimize it out, and failing that
+ // emit a single loop to initialize all remaining elements.
+ if (const CXXConstructExpr *CCE = dyn_cast<CXXConstructExpr>(Init)) {
+ CXXConstructorDecl *Ctor = CCE->getConstructor();
+ if (Ctor->isTrivial()) {
+ // If new expression did not specify value-initialization, then there
+ // is no initialization.
+ if (!CCE->requiresZeroInitialization() || Ctor->getParent()->isEmpty())
+ return;
+
+ if (TryMemsetInitialization())
+ return;
+ }
+
+ // Store the new Cleanup position for irregular Cleanups.
+ //
+ // FIXME: Share this cleanup with the constructor call emission rather than
+ // having it create a cleanup of its own.
+ if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
+
+ // Emit a constructor call loop to initialize the remaining elements.
+ if (InitListElements)
+ NumElements = Builder.CreateSub(
+ NumElements,
+ llvm::ConstantInt::get(NumElements->getType(), InitListElements));
+ EmitCXXAggrConstructorCall(Ctor, NumElements, CurPtr, CCE,
+ CCE->requiresZeroInitialization());
+ return;
+ }
+
+ // If this is value-initialization, we can usually use memset.
+ ImplicitValueInitExpr IVIE(ElementType);
+ if (isa<ImplicitValueInitExpr>(Init)) {
+ if (TryMemsetInitialization())
+ return;
+
+ // Switch to an ImplicitValueInitExpr for the element type. This handles
+ // only one case: multidimensional array new of pointers to members. In
+ // all other cases, we already have an initializer for the array element.
+ Init = &IVIE;
+ }
+
+ // At this point we should have found an initializer for the individual
+ // elements of the array.
+ assert(getContext().hasSameUnqualifiedType(ElementType, Init->getType()) &&
+ "got wrong type of element to initialize");
+
+ // If we have an empty initializer list, we can usually use memset.
+ if (auto *ILE = dyn_cast<InitListExpr>(Init))
+ if (ILE->getNumInits() == 0 && TryMemsetInitialization())
+ return;
+
+ // If we have a struct whose every field is value-initialized, we can
+ // usually use memset.
+ if (auto *ILE = dyn_cast<InitListExpr>(Init)) {
+ if (const RecordType *RType = ILE->getType()->getAs<RecordType>()) {
+ if (RType->getDecl()->isStruct()) {
+ unsigned NumFields = 0;
+ for (auto *Field : RType->getDecl()->fields())
+ if (!Field->isUnnamedBitfield())
+ ++NumFields;
+ if (ILE->getNumInits() == NumFields)
+ for (unsigned i = 0, e = ILE->getNumInits(); i != e; ++i)
+ if (!isa<ImplicitValueInitExpr>(ILE->getInit(i)))
+ --NumFields;
+ if (ILE->getNumInits() == NumFields && TryMemsetInitialization())
+ return;
+ }
+ }
+ }
+
+ // Create the loop blocks.
+ llvm::BasicBlock *EntryBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *LoopBB = createBasicBlock("new.loop");
+ llvm::BasicBlock *ContBB = createBasicBlock("new.loop.end");
+
+ // Find the end of the array, hoisted out of the loop.
+ llvm::Value *EndPtr =
+ Builder.CreateInBoundsGEP(BeginPtr, NumElements, "array.end");
+
+ // If the number of elements isn't constant, we have to now check if there is
+ // anything left to initialize.
+ if (!ConstNum) {
+ llvm::Value *IsEmpty = Builder.CreateICmpEQ(CurPtr, EndPtr,
+ "array.isempty");
+ Builder.CreateCondBr(IsEmpty, ContBB, LoopBB);
+ }
+
+ // Enter the loop.
+ EmitBlock(LoopBB);
+
+ // Set up the current-element phi.
+ llvm::PHINode *CurPtrPhi =
+ Builder.CreatePHI(CurPtr->getType(), 2, "array.cur");
+ CurPtrPhi->addIncoming(CurPtr, EntryBB);
+ CurPtr = CurPtrPhi;
+
+ // Store the new Cleanup position for irregular Cleanups.
+ if (EndOfInit) Builder.CreateStore(CurPtr, EndOfInit);
+
+ // Enter a partial-destruction Cleanup if necessary.
+ if (!CleanupDominator && needsEHCleanup(DtorKind)) {
+ pushRegularPartialArrayCleanup(BeginPtr, CurPtr, ElementType,
+ getDestroyer(DtorKind));
+ Cleanup = EHStack.stable_begin();
+ CleanupDominator = Builder.CreateUnreachable();
+ }
+
+ // Emit the initializer into this element.
+ StoreAnyExprIntoOneUnit(*this, Init, Init->getType(), CurPtr);
+
+ // Leave the Cleanup if we entered one.
+ if (CleanupDominator) {
+ DeactivateCleanupBlock(Cleanup, CleanupDominator);
+ CleanupDominator->eraseFromParent();
+ }
+
+ // Advance to the next element by adjusting the pointer type as necessary.
+ llvm::Value *NextPtr =
+ Builder.CreateConstInBoundsGEP1_32(ElementTy, CurPtr, 1, "array.next");
+
+ // Check whether we've gotten to the end of the array and, if so,
+ // exit the loop.
+ llvm::Value *IsEnd = Builder.CreateICmpEQ(NextPtr, EndPtr, "array.atend");
+ Builder.CreateCondBr(IsEnd, ContBB, LoopBB);
+ CurPtrPhi->addIncoming(NextPtr, Builder.GetInsertBlock());
+
+ EmitBlock(ContBB);
+}
+
+static void EmitNewInitializer(CodeGenFunction &CGF, const CXXNewExpr *E,
+ QualType ElementType, llvm::Type *ElementTy,
+ llvm::Value *NewPtr, llvm::Value *NumElements,
+ llvm::Value *AllocSizeWithoutCookie) {
+ ApplyDebugLocation DL(CGF, E);
+ if (E->isArray())
+ CGF.EmitNewArrayInitializer(E, ElementType, ElementTy, NewPtr, NumElements,
+ AllocSizeWithoutCookie);
+ else if (const Expr *Init = E->getInitializer())
+ StoreAnyExprIntoOneUnit(CGF, Init, E->getAllocatedType(), NewPtr);
+}
+
+/// Emit a call to an operator new or operator delete function, as implicitly
+/// created by new-expressions and delete-expressions.
+static RValue EmitNewDeleteCall(CodeGenFunction &CGF,
+ const FunctionDecl *Callee,
+ const FunctionProtoType *CalleeType,
+ const CallArgList &Args) {
+ llvm::Instruction *CallOrInvoke;
+ llvm::Value *CalleeAddr = CGF.CGM.GetAddrOfFunction(Callee);
+ RValue RV =
+ CGF.EmitCall(CGF.CGM.getTypes().arrangeFreeFunctionCall(
+ Args, CalleeType, /*chainCall=*/false),
+ CalleeAddr, ReturnValueSlot(), Args, Callee, &CallOrInvoke);
+
+ /// C++1y [expr.new]p10:
+ /// [In a new-expression,] an implementation is allowed to omit a call
+ /// to a replaceable global allocation function.
+ ///
+ /// We model such elidable calls with the 'builtin' attribute.
+ llvm::Function *Fn = dyn_cast<llvm::Function>(CalleeAddr);
+ if (Callee->isReplaceableGlobalAllocationFunction() &&
+ Fn && Fn->hasFnAttribute(llvm::Attribute::NoBuiltin)) {
+ // FIXME: Add addAttribute to CallSite.
+ if (llvm::CallInst *CI = dyn_cast<llvm::CallInst>(CallOrInvoke))
+ CI->addAttribute(llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::Builtin);
+ else if (llvm::InvokeInst *II = dyn_cast<llvm::InvokeInst>(CallOrInvoke))
+ II->addAttribute(llvm::AttributeSet::FunctionIndex,
+ llvm::Attribute::Builtin);
+ else
+ llvm_unreachable("unexpected kind of call instruction");
+ }
+
+ return RV;
+}
+
+RValue CodeGenFunction::EmitBuiltinNewDeleteCall(const FunctionProtoType *Type,
+ const Expr *Arg,
+ bool IsDelete) {
+ CallArgList Args;
+ const Stmt *ArgS = Arg;
+ EmitCallArgs(Args, *Type->param_type_begin(),
+ ConstExprIterator(&ArgS), ConstExprIterator(&ArgS + 1));
+ // Find the allocation or deallocation function that we're calling.
+ ASTContext &Ctx = getContext();
+ DeclarationName Name = Ctx.DeclarationNames
+ .getCXXOperatorName(IsDelete ? OO_Delete : OO_New);
+ for (auto *Decl : Ctx.getTranslationUnitDecl()->lookup(Name))
+ if (auto *FD = dyn_cast<FunctionDecl>(Decl))
+ if (Ctx.hasSameType(FD->getType(), QualType(Type, 0)))
+ return EmitNewDeleteCall(*this, cast<FunctionDecl>(Decl), Type, Args);
+ llvm_unreachable("predeclared global operator new/delete is missing");
+}
+
+namespace {
+ /// A cleanup to call the given 'operator delete' function upon
+ /// abnormal exit from a new expression.
+ class CallDeleteDuringNew : public EHScopeStack::Cleanup {
+ size_t NumPlacementArgs;
+ const FunctionDecl *OperatorDelete;
+ llvm::Value *Ptr;
+ llvm::Value *AllocSize;
+
+ RValue *getPlacementArgs() { return reinterpret_cast<RValue*>(this+1); }
+
+ public:
+ static size_t getExtraSize(size_t NumPlacementArgs) {
+ return NumPlacementArgs * sizeof(RValue);
+ }
+
+ CallDeleteDuringNew(size_t NumPlacementArgs,
+ const FunctionDecl *OperatorDelete,
+ llvm::Value *Ptr,
+ llvm::Value *AllocSize)
+ : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
+ Ptr(Ptr), AllocSize(AllocSize) {}
+
+ void setPlacementArg(unsigned I, RValue Arg) {
+ assert(I < NumPlacementArgs && "index out of range");
+ getPlacementArgs()[I] = Arg;
+ }
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const FunctionProtoType *FPT
+ = OperatorDelete->getType()->getAs<FunctionProtoType>();
+ assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
+ (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
+
+ CallArgList DeleteArgs;
+
+ // The first argument is always a void*.
+ FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
+ DeleteArgs.add(RValue::get(Ptr), *AI++);
+
+ // A member 'operator delete' can take an extra 'size_t' argument.
+ if (FPT->getNumParams() == NumPlacementArgs + 2)
+ DeleteArgs.add(RValue::get(AllocSize), *AI++);
+
+ // Pass the rest of the arguments, which must match exactly.
+ for (unsigned I = 0; I != NumPlacementArgs; ++I)
+ DeleteArgs.add(getPlacementArgs()[I], *AI++);
+
+ // Call 'operator delete'.
+ EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
+ }
+ };
+
+ /// A cleanup to call the given 'operator delete' function upon
+ /// abnormal exit from a new expression when the new expression is
+ /// conditional.
+ class CallDeleteDuringConditionalNew : public EHScopeStack::Cleanup {
+ size_t NumPlacementArgs;
+ const FunctionDecl *OperatorDelete;
+ DominatingValue<RValue>::saved_type Ptr;
+ DominatingValue<RValue>::saved_type AllocSize;
+
+ DominatingValue<RValue>::saved_type *getPlacementArgs() {
+ return reinterpret_cast<DominatingValue<RValue>::saved_type*>(this+1);
+ }
+
+ public:
+ static size_t getExtraSize(size_t NumPlacementArgs) {
+ return NumPlacementArgs * sizeof(DominatingValue<RValue>::saved_type);
+ }
+
+ CallDeleteDuringConditionalNew(size_t NumPlacementArgs,
+ const FunctionDecl *OperatorDelete,
+ DominatingValue<RValue>::saved_type Ptr,
+ DominatingValue<RValue>::saved_type AllocSize)
+ : NumPlacementArgs(NumPlacementArgs), OperatorDelete(OperatorDelete),
+ Ptr(Ptr), AllocSize(AllocSize) {}
+
+ void setPlacementArg(unsigned I, DominatingValue<RValue>::saved_type Arg) {
+ assert(I < NumPlacementArgs && "index out of range");
+ getPlacementArgs()[I] = Arg;
+ }
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const FunctionProtoType *FPT
+ = OperatorDelete->getType()->getAs<FunctionProtoType>();
+ assert(FPT->getNumParams() == NumPlacementArgs + 1 ||
+ (FPT->getNumParams() == 2 && NumPlacementArgs == 0));
+
+ CallArgList DeleteArgs;
+
+ // The first argument is always a void*.
+ FunctionProtoType::param_type_iterator AI = FPT->param_type_begin();
+ DeleteArgs.add(Ptr.restore(CGF), *AI++);
+
+ // A member 'operator delete' can take an extra 'size_t' argument.
+ if (FPT->getNumParams() == NumPlacementArgs + 2) {
+ RValue RV = AllocSize.restore(CGF);
+ DeleteArgs.add(RV, *AI++);
+ }
+
+ // Pass the rest of the arguments, which must match exactly.
+ for (unsigned I = 0; I != NumPlacementArgs; ++I) {
+ RValue RV = getPlacementArgs()[I].restore(CGF);
+ DeleteArgs.add(RV, *AI++);
+ }
+
+ // Call 'operator delete'.
+ EmitNewDeleteCall(CGF, OperatorDelete, FPT, DeleteArgs);
+ }
+ };
+}
+
+/// Enter a cleanup to call 'operator delete' if the initializer in a
+/// new-expression throws.
+static void EnterNewDeleteCleanup(CodeGenFunction &CGF,
+ const CXXNewExpr *E,
+ llvm::Value *NewPtr,
+ llvm::Value *AllocSize,
+ const CallArgList &NewArgs) {
+ // If we're not inside a conditional branch, then the cleanup will
+ // dominate and we can do the easier (and more efficient) thing.
+ if (!CGF.isInConditionalBranch()) {
+ CallDeleteDuringNew *Cleanup = CGF.EHStack
+ .pushCleanupWithExtra<CallDeleteDuringNew>(EHCleanup,
+ E->getNumPlacementArgs(),
+ E->getOperatorDelete(),
+ NewPtr, AllocSize);
+ for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
+ Cleanup->setPlacementArg(I, NewArgs[I+1].RV);
+
+ return;
+ }
+
+ // Otherwise, we need to save all this stuff.
+ DominatingValue<RValue>::saved_type SavedNewPtr =
+ DominatingValue<RValue>::save(CGF, RValue::get(NewPtr));
+ DominatingValue<RValue>::saved_type SavedAllocSize =
+ DominatingValue<RValue>::save(CGF, RValue::get(AllocSize));
+
+ CallDeleteDuringConditionalNew *Cleanup = CGF.EHStack
+ .pushCleanupWithExtra<CallDeleteDuringConditionalNew>(EHCleanup,
+ E->getNumPlacementArgs(),
+ E->getOperatorDelete(),
+ SavedNewPtr,
+ SavedAllocSize);
+ for (unsigned I = 0, N = E->getNumPlacementArgs(); I != N; ++I)
+ Cleanup->setPlacementArg(I,
+ DominatingValue<RValue>::save(CGF, NewArgs[I+1].RV));
+
+ CGF.initFullExprCleanup();
+}
+
+llvm::Value *CodeGenFunction::EmitCXXNewExpr(const CXXNewExpr *E) {
+ // The element type being allocated.
+ QualType allocType = getContext().getBaseElementType(E->getAllocatedType());
+
+ // 1. Build a call to the allocation function.
+ FunctionDecl *allocator = E->getOperatorNew();
+ const FunctionProtoType *allocatorType =
+ allocator->getType()->castAs<FunctionProtoType>();
+
+ CallArgList allocatorArgs;
+
+ // The allocation size is the first argument.
+ QualType sizeType = getContext().getSizeType();
+
+ // If there is a brace-initializer, cannot allocate fewer elements than inits.
+ unsigned minElements = 0;
+ if (E->isArray() && E->hasInitializer()) {
+ if (const InitListExpr *ILE = dyn_cast<InitListExpr>(E->getInitializer()))
+ minElements = ILE->getNumInits();
+ }
+
+ llvm::Value *numElements = nullptr;
+ llvm::Value *allocSizeWithoutCookie = nullptr;
+ llvm::Value *allocSize =
+ EmitCXXNewAllocSize(*this, E, minElements, numElements,
+ allocSizeWithoutCookie);
+
+ allocatorArgs.add(RValue::get(allocSize), sizeType);
+
+ // We start at 1 here because the first argument (the allocation size)
+ // has already been emitted.
+ EmitCallArgs(allocatorArgs, allocatorType, E->placement_arg_begin(),
+ E->placement_arg_end(), /* CalleeDecl */ nullptr,
+ /*ParamsToSkip*/ 1);
+
+ // Emit the allocation call. If the allocator is a global placement
+ // operator, just "inline" it directly.
+ RValue RV;
+ if (allocator->isReservedGlobalPlacementOperator()) {
+ assert(allocatorArgs.size() == 2);
+ RV = allocatorArgs[1].RV;
+ // TODO: kill any unnecessary computations done for the size
+ // argument.
+ } else {
+ RV = EmitNewDeleteCall(*this, allocator, allocatorType, allocatorArgs);
+ }
+
+ // Emit a null check on the allocation result if the allocation
+ // function is allowed to return null (because it has a non-throwing
+ // exception spec or is the reserved placement new) and we have an
+ // interesting initializer.
+ bool nullCheck = E->shouldNullCheckAllocation(getContext()) &&
+ (!allocType.isPODType(getContext()) || E->hasInitializer());
+
+ llvm::BasicBlock *nullCheckBB = nullptr;
+ llvm::BasicBlock *contBB = nullptr;
+
+ llvm::Value *allocation = RV.getScalarVal();
+ unsigned AS = allocation->getType()->getPointerAddressSpace();
+
+ // The null-check means that the initializer is conditionally
+ // evaluated.
+ ConditionalEvaluation conditional(*this);
+
+ if (nullCheck) {
+ conditional.begin(*this);
+
+ nullCheckBB = Builder.GetInsertBlock();
+ llvm::BasicBlock *notNullBB = createBasicBlock("new.notnull");
+ contBB = createBasicBlock("new.cont");
+
+ llvm::Value *isNull = Builder.CreateIsNull(allocation, "new.isnull");
+ Builder.CreateCondBr(isNull, contBB, notNullBB);
+ EmitBlock(notNullBB);
+ }
+
+ // If there's an operator delete, enter a cleanup to call it if an
+ // exception is thrown.
+ EHScopeStack::stable_iterator operatorDeleteCleanup;
+ llvm::Instruction *cleanupDominator = nullptr;
+ if (E->getOperatorDelete() &&
+ !E->getOperatorDelete()->isReservedGlobalPlacementOperator()) {
+ EnterNewDeleteCleanup(*this, E, allocation, allocSize, allocatorArgs);
+ operatorDeleteCleanup = EHStack.stable_begin();
+ cleanupDominator = Builder.CreateUnreachable();
+ }
+
+ assert((allocSize == allocSizeWithoutCookie) ==
+ CalculateCookiePadding(*this, E).isZero());
+ if (allocSize != allocSizeWithoutCookie) {
+ assert(E->isArray());
+ allocation = CGM.getCXXABI().InitializeArrayCookie(*this, allocation,
+ numElements,
+ E, allocType);
+ }
+
+ llvm::Type *elementTy = ConvertTypeForMem(allocType);
+ llvm::Type *elementPtrTy = elementTy->getPointerTo(AS);
+ llvm::Value *result = Builder.CreateBitCast(allocation, elementPtrTy);
+
+ EmitNewInitializer(*this, E, allocType, elementTy, result, numElements,
+ allocSizeWithoutCookie);
+ if (E->isArray()) {
+ // NewPtr is a pointer to the base element type. If we're
+ // allocating an array of arrays, we'll need to cast back to the
+ // array pointer type.
+ llvm::Type *resultType = ConvertTypeForMem(E->getType());
+ if (result->getType() != resultType)
+ result = Builder.CreateBitCast(result, resultType);
+ }
+
+ // Deactivate the 'operator delete' cleanup if we finished
+ // initialization.
+ if (operatorDeleteCleanup.isValid()) {
+ DeactivateCleanupBlock(operatorDeleteCleanup, cleanupDominator);
+ cleanupDominator->eraseFromParent();
+ }
+
+ if (nullCheck) {
+ conditional.end(*this);
+
+ llvm::BasicBlock *notNullBB = Builder.GetInsertBlock();
+ EmitBlock(contBB);
+
+ llvm::PHINode *PHI = Builder.CreatePHI(result->getType(), 2);
+ PHI->addIncoming(result, notNullBB);
+ PHI->addIncoming(llvm::Constant::getNullValue(result->getType()),
+ nullCheckBB);
+
+ result = PHI;
+ }
+
+ return result;
+}
+
+void CodeGenFunction::EmitDeleteCall(const FunctionDecl *DeleteFD,
+ llvm::Value *Ptr,
+ QualType DeleteTy) {
+ assert(DeleteFD->getOverloadedOperator() == OO_Delete);
+
+ const FunctionProtoType *DeleteFTy =
+ DeleteFD->getType()->getAs<FunctionProtoType>();
+
+ CallArgList DeleteArgs;
+
+ // Check if we need to pass the size to the delete operator.
+ llvm::Value *Size = nullptr;
+ QualType SizeTy;
+ if (DeleteFTy->getNumParams() == 2) {
+ SizeTy = DeleteFTy->getParamType(1);
+ CharUnits DeleteTypeSize = getContext().getTypeSizeInChars(DeleteTy);
+ Size = llvm::ConstantInt::get(ConvertType(SizeTy),
+ DeleteTypeSize.getQuantity());
+ }
+
+ QualType ArgTy = DeleteFTy->getParamType(0);
+ llvm::Value *DeletePtr = Builder.CreateBitCast(Ptr, ConvertType(ArgTy));
+ DeleteArgs.add(RValue::get(DeletePtr), ArgTy);
+
+ if (Size)
+ DeleteArgs.add(RValue::get(Size), SizeTy);
+
+ // Emit the call to delete.
+ EmitNewDeleteCall(*this, DeleteFD, DeleteFTy, DeleteArgs);
+}
+
+namespace {
+ /// Calls the given 'operator delete' on a single object.
+ struct CallObjectDelete : EHScopeStack::Cleanup {
+ llvm::Value *Ptr;
+ const FunctionDecl *OperatorDelete;
+ QualType ElementType;
+
+ CallObjectDelete(llvm::Value *Ptr,
+ const FunctionDecl *OperatorDelete,
+ QualType ElementType)
+ : Ptr(Ptr), OperatorDelete(OperatorDelete), ElementType(ElementType) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitDeleteCall(OperatorDelete, Ptr, ElementType);
+ }
+ };
+}
+
+void
+CodeGenFunction::pushCallObjectDeleteCleanup(const FunctionDecl *OperatorDelete,
+ llvm::Value *CompletePtr,
+ QualType ElementType) {
+ EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup, CompletePtr,
+ OperatorDelete, ElementType);
+}
+
+/// Emit the code for deleting a single object.
+static void EmitObjectDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *DE,
+ llvm::Value *Ptr,
+ QualType ElementType) {
+ // Find the destructor for the type, if applicable. If the
+ // destructor is virtual, we'll just emit the vcall and return.
+ const CXXDestructorDecl *Dtor = nullptr;
+ if (const RecordType *RT = ElementType->getAs<RecordType>()) {
+ CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
+ if (RD->hasDefinition() && !RD->hasTrivialDestructor()) {
+ Dtor = RD->getDestructor();
+
+ if (Dtor->isVirtual()) {
+ CGF.CGM.getCXXABI().emitVirtualObjectDelete(CGF, DE, Ptr, ElementType,
+ Dtor);
+ return;
+ }
+ }
+ }
+
+ // Make sure that we call delete even if the dtor throws.
+ // This doesn't have to a conditional cleanup because we're going
+ // to pop it off in a second.
+ const FunctionDecl *OperatorDelete = DE->getOperatorDelete();
+ CGF.EHStack.pushCleanup<CallObjectDelete>(NormalAndEHCleanup,
+ Ptr, OperatorDelete, ElementType);
+
+ if (Dtor)
+ CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
+ /*ForVirtualBase=*/false,
+ /*Delegating=*/false,
+ Ptr);
+ else if (CGF.getLangOpts().ObjCAutoRefCount &&
+ ElementType->isObjCLifetimeType()) {
+ switch (ElementType.getObjCLifetime()) {
+ case Qualifiers::OCL_None:
+ case Qualifiers::OCL_ExplicitNone:
+ case Qualifiers::OCL_Autoreleasing:
+ break;
+
+ case Qualifiers::OCL_Strong: {
+ // Load the pointer value.
+ llvm::Value *PtrValue = CGF.Builder.CreateLoad(Ptr,
+ ElementType.isVolatileQualified());
+
+ CGF.EmitARCRelease(PtrValue, ARCPreciseLifetime);
+ break;
+ }
+
+ case Qualifiers::OCL_Weak:
+ CGF.EmitARCDestroyWeak(Ptr);
+ break;
+ }
+ }
+
+ CGF.PopCleanupBlock();
+}
+
+namespace {
+ /// Calls the given 'operator delete' on an array of objects.
+ struct CallArrayDelete : EHScopeStack::Cleanup {
+ llvm::Value *Ptr;
+ const FunctionDecl *OperatorDelete;
+ llvm::Value *NumElements;
+ QualType ElementType;
+ CharUnits CookieSize;
+
+ CallArrayDelete(llvm::Value *Ptr,
+ const FunctionDecl *OperatorDelete,
+ llvm::Value *NumElements,
+ QualType ElementType,
+ CharUnits CookieSize)
+ : Ptr(Ptr), OperatorDelete(OperatorDelete), NumElements(NumElements),
+ ElementType(ElementType), CookieSize(CookieSize) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ const FunctionProtoType *DeleteFTy =
+ OperatorDelete->getType()->getAs<FunctionProtoType>();
+ assert(DeleteFTy->getNumParams() == 1 || DeleteFTy->getNumParams() == 2);
+
+ CallArgList Args;
+
+ // Pass the pointer as the first argument.
+ QualType VoidPtrTy = DeleteFTy->getParamType(0);
+ llvm::Value *DeletePtr
+ = CGF.Builder.CreateBitCast(Ptr, CGF.ConvertType(VoidPtrTy));
+ Args.add(RValue::get(DeletePtr), VoidPtrTy);
+
+ // Pass the original requested size as the second argument.
+ if (DeleteFTy->getNumParams() == 2) {
+ QualType size_t = DeleteFTy->getParamType(1);
+ llvm::IntegerType *SizeTy
+ = cast<llvm::IntegerType>(CGF.ConvertType(size_t));
+
+ CharUnits ElementTypeSize =
+ CGF.CGM.getContext().getTypeSizeInChars(ElementType);
+
+ // The size of an element, multiplied by the number of elements.
+ llvm::Value *Size
+ = llvm::ConstantInt::get(SizeTy, ElementTypeSize.getQuantity());
+ Size = CGF.Builder.CreateMul(Size, NumElements);
+
+ // Plus the size of the cookie if applicable.
+ if (!CookieSize.isZero()) {
+ llvm::Value *CookieSizeV
+ = llvm::ConstantInt::get(SizeTy, CookieSize.getQuantity());
+ Size = CGF.Builder.CreateAdd(Size, CookieSizeV);
+ }
+
+ Args.add(RValue::get(Size), size_t);
+ }
+
+ // Emit the call to delete.
+ EmitNewDeleteCall(CGF, OperatorDelete, DeleteFTy, Args);
+ }
+ };
+}
+
+/// Emit the code for deleting an array of objects.
+static void EmitArrayDelete(CodeGenFunction &CGF,
+ const CXXDeleteExpr *E,
+ llvm::Value *deletedPtr,
+ QualType elementType) {
+ llvm::Value *numElements = nullptr;
+ llvm::Value *allocatedPtr = nullptr;
+ CharUnits cookieSize;
+ CGF.CGM.getCXXABI().ReadArrayCookie(CGF, deletedPtr, E, elementType,
+ numElements, allocatedPtr, cookieSize);
+
+ assert(allocatedPtr && "ReadArrayCookie didn't set allocated pointer");
+
+ // Make sure that we call delete even if one of the dtors throws.
+ const FunctionDecl *operatorDelete = E->getOperatorDelete();
+ CGF.EHStack.pushCleanup<CallArrayDelete>(NormalAndEHCleanup,
+ allocatedPtr, operatorDelete,
+ numElements, elementType,
+ cookieSize);
+
+ // Destroy the elements.
+ if (QualType::DestructionKind dtorKind = elementType.isDestructedType()) {
+ assert(numElements && "no element count for a type with a destructor!");
+
+ llvm::Value *arrayEnd =
+ CGF.Builder.CreateInBoundsGEP(deletedPtr, numElements, "delete.end");
+
+ // Note that it is legal to allocate a zero-length array, and we
+ // can never fold the check away because the length should always
+ // come from a cookie.
+ CGF.emitArrayDestroy(deletedPtr, arrayEnd, elementType,
+ CGF.getDestroyer(dtorKind),
+ /*checkZeroLength*/ true,
+ CGF.needsEHCleanup(dtorKind));
+ }
+
+ // Pop the cleanup block.
+ CGF.PopCleanupBlock();
+}
+
+void CodeGenFunction::EmitCXXDeleteExpr(const CXXDeleteExpr *E) {
+ const Expr *Arg = E->getArgument();
+ llvm::Value *Ptr = EmitScalarExpr(Arg);
+
+ // Null check the pointer.
+ llvm::BasicBlock *DeleteNotNull = createBasicBlock("delete.notnull");
+ llvm::BasicBlock *DeleteEnd = createBasicBlock("delete.end");
+
+ llvm::Value *IsNull = Builder.CreateIsNull(Ptr, "isnull");
+
+ Builder.CreateCondBr(IsNull, DeleteEnd, DeleteNotNull);
+ EmitBlock(DeleteNotNull);
+
+ // We might be deleting a pointer to array. If so, GEP down to the
+ // first non-array element.
+ // (this assumes that A(*)[3][7] is converted to [3 x [7 x %A]]*)
+ QualType DeleteTy = Arg->getType()->getAs<PointerType>()->getPointeeType();
+ if (DeleteTy->isConstantArrayType()) {
+ llvm::Value *Zero = Builder.getInt32(0);
+ SmallVector<llvm::Value*,8> GEP;
+
+ GEP.push_back(Zero); // point at the outermost array
+
+ // For each layer of array type we're pointing at:
+ while (const ConstantArrayType *Arr
+ = getContext().getAsConstantArrayType(DeleteTy)) {
+ // 1. Unpeel the array type.
+ DeleteTy = Arr->getElementType();
+
+ // 2. GEP to the first element of the array.
+ GEP.push_back(Zero);
+ }
+
+ Ptr = Builder.CreateInBoundsGEP(Ptr, GEP, "del.first");
+ }
+
+ assert(ConvertTypeForMem(DeleteTy) ==
+ cast<llvm::PointerType>(Ptr->getType())->getElementType());
+
+ if (E->isArrayForm()) {
+ EmitArrayDelete(*this, E, Ptr, DeleteTy);
+ } else {
+ EmitObjectDelete(*this, E, Ptr, DeleteTy);
+ }
+
+ EmitBlock(DeleteEnd);
+}
+
+static bool isGLValueFromPointerDeref(const Expr *E) {
+ E = E->IgnoreParens();
+
+ if (const auto *CE = dyn_cast<CastExpr>(E)) {
+ if (!CE->getSubExpr()->isGLValue())
+ return false;
+ return isGLValueFromPointerDeref(CE->getSubExpr());
+ }
+
+ if (const auto *OVE = dyn_cast<OpaqueValueExpr>(E))
+ return isGLValueFromPointerDeref(OVE->getSourceExpr());
+
+ if (const auto *BO = dyn_cast<BinaryOperator>(E))
+ if (BO->getOpcode() == BO_Comma)
+ return isGLValueFromPointerDeref(BO->getRHS());
+
+ if (const auto *ACO = dyn_cast<AbstractConditionalOperator>(E))
+ return isGLValueFromPointerDeref(ACO->getTrueExpr()) ||
+ isGLValueFromPointerDeref(ACO->getFalseExpr());
+
+ // C++11 [expr.sub]p1:
+ // The expression E1[E2] is identical (by definition) to *((E1)+(E2))
+ if (isa<ArraySubscriptExpr>(E))
+ return true;
+
+ if (const auto *UO = dyn_cast<UnaryOperator>(E))
+ if (UO->getOpcode() == UO_Deref)
+ return true;
+
+ return false;
+}
+
+static llvm::Value *EmitTypeidFromVTable(CodeGenFunction &CGF, const Expr *E,
+ llvm::Type *StdTypeInfoPtrTy) {
+ // Get the vtable pointer.
+ llvm::Value *ThisPtr = CGF.EmitLValue(E).getAddress();
+
+ // C++ [expr.typeid]p2:
+ // If the glvalue expression is obtained by applying the unary * operator to
+ // a pointer and the pointer is a null pointer value, the typeid expression
+ // throws the std::bad_typeid exception.
+ //
+ // However, this paragraph's intent is not clear. We choose a very generous
+ // interpretation which implores us to consider comma operators, conditional
+ // operators, parentheses and other such constructs.
+ QualType SrcRecordTy = E->getType();
+ if (CGF.CGM.getCXXABI().shouldTypeidBeNullChecked(
+ isGLValueFromPointerDeref(E), SrcRecordTy)) {
+ llvm::BasicBlock *BadTypeidBlock =
+ CGF.createBasicBlock("typeid.bad_typeid");
+ llvm::BasicBlock *EndBlock = CGF.createBasicBlock("typeid.end");
+
+ llvm::Value *IsNull = CGF.Builder.CreateIsNull(ThisPtr);
+ CGF.Builder.CreateCondBr(IsNull, BadTypeidBlock, EndBlock);
+
+ CGF.EmitBlock(BadTypeidBlock);
+ CGF.CGM.getCXXABI().EmitBadTypeidCall(CGF);
+ CGF.EmitBlock(EndBlock);
+ }
+
+ return CGF.CGM.getCXXABI().EmitTypeid(CGF, SrcRecordTy, ThisPtr,
+ StdTypeInfoPtrTy);
+}
+
+llvm::Value *CodeGenFunction::EmitCXXTypeidExpr(const CXXTypeidExpr *E) {
+ llvm::Type *StdTypeInfoPtrTy =
+ ConvertType(E->getType())->getPointerTo();
+
+ if (E->isTypeOperand()) {
+ llvm::Constant *TypeInfo =
+ CGM.GetAddrOfRTTIDescriptor(E->getTypeOperand(getContext()));
+ return Builder.CreateBitCast(TypeInfo, StdTypeInfoPtrTy);
+ }
+
+ // C++ [expr.typeid]p2:
+ // When typeid is applied to a glvalue expression whose type is a
+ // polymorphic class type, the result refers to a std::type_info object
+ // representing the type of the most derived object (that is, the dynamic
+ // type) to which the glvalue refers.
+ if (E->isPotentiallyEvaluated())
+ return EmitTypeidFromVTable(*this, E->getExprOperand(),
+ StdTypeInfoPtrTy);
+
+ QualType OperandTy = E->getExprOperand()->getType();
+ return Builder.CreateBitCast(CGM.GetAddrOfRTTIDescriptor(OperandTy),
+ StdTypeInfoPtrTy);
+}
+
+static llvm::Value *EmitDynamicCastToNull(CodeGenFunction &CGF,
+ QualType DestTy) {
+ llvm::Type *DestLTy = CGF.ConvertType(DestTy);
+ if (DestTy->isPointerType())
+ return llvm::Constant::getNullValue(DestLTy);
+
+ /// C++ [expr.dynamic.cast]p9:
+ /// A failed cast to reference type throws std::bad_cast
+ if (!CGF.CGM.getCXXABI().EmitBadCastCall(CGF))
+ return nullptr;
+
+ CGF.EmitBlock(CGF.createBasicBlock("dynamic_cast.end"));
+ return llvm::UndefValue::get(DestLTy);
+}
+
+llvm::Value *CodeGenFunction::EmitDynamicCast(llvm::Value *Value,
+ const CXXDynamicCastExpr *DCE) {
+ QualType DestTy = DCE->getTypeAsWritten();
+
+ if (DCE->isAlwaysNull())
+ if (llvm::Value *T = EmitDynamicCastToNull(*this, DestTy))
+ return T;
+
+ QualType SrcTy = DCE->getSubExpr()->getType();
+
+ // C++ [expr.dynamic.cast]p7:
+ // If T is "pointer to cv void," then the result is a pointer to the most
+ // derived object pointed to by v.
+ const PointerType *DestPTy = DestTy->getAs<PointerType>();
+
+ bool isDynamicCastToVoid;
+ QualType SrcRecordTy;
+ QualType DestRecordTy;
+ if (DestPTy) {
+ isDynamicCastToVoid = DestPTy->getPointeeType()->isVoidType();
+ SrcRecordTy = SrcTy->castAs<PointerType>()->getPointeeType();
+ DestRecordTy = DestPTy->getPointeeType();
+ } else {
+ isDynamicCastToVoid = false;
+ SrcRecordTy = SrcTy;
+ DestRecordTy = DestTy->castAs<ReferenceType>()->getPointeeType();
+ }
+
+ assert(SrcRecordTy->isRecordType() && "source type must be a record type!");
+
+ // C++ [expr.dynamic.cast]p4:
+ // If the value of v is a null pointer value in the pointer case, the result
+ // is the null pointer value of type T.
+ bool ShouldNullCheckSrcValue =
+ CGM.getCXXABI().shouldDynamicCastCallBeNullChecked(SrcTy->isPointerType(),
+ SrcRecordTy);
+
+ llvm::BasicBlock *CastNull = nullptr;
+ llvm::BasicBlock *CastNotNull = nullptr;
+ llvm::BasicBlock *CastEnd = createBasicBlock("dynamic_cast.end");
+
+ if (ShouldNullCheckSrcValue) {
+ CastNull = createBasicBlock("dynamic_cast.null");
+ CastNotNull = createBasicBlock("dynamic_cast.notnull");
+
+ llvm::Value *IsNull = Builder.CreateIsNull(Value);
+ Builder.CreateCondBr(IsNull, CastNull, CastNotNull);
+ EmitBlock(CastNotNull);
+ }
+
+ if (isDynamicCastToVoid) {
+ Value = CGM.getCXXABI().EmitDynamicCastToVoid(*this, Value, SrcRecordTy,
+ DestTy);
+ } else {
+ assert(DestRecordTy->isRecordType() &&
+ "destination type must be a record type!");
+ Value = CGM.getCXXABI().EmitDynamicCastCall(*this, Value, SrcRecordTy,
+ DestTy, DestRecordTy, CastEnd);
+ }
+
+ if (ShouldNullCheckSrcValue) {
+ EmitBranch(CastEnd);
+
+ EmitBlock(CastNull);
+ EmitBranch(CastEnd);
+ }
+
+ EmitBlock(CastEnd);
+
+ if (ShouldNullCheckSrcValue) {
+ llvm::PHINode *PHI = Builder.CreatePHI(Value->getType(), 2);
+ PHI->addIncoming(Value, CastNotNull);
+ PHI->addIncoming(llvm::Constant::getNullValue(Value->getType()), CastNull);
+
+ Value = PHI;
+ }
+
+ return Value;
+}
+
+void CodeGenFunction::EmitLambdaExpr(const LambdaExpr *E, AggValueSlot Slot) {
+ RunCleanupsScope Scope(*this);
+ LValue SlotLV =
+ MakeAddrLValue(Slot.getAddr(), E->getType(), Slot.getAlignment());
+
+ CXXRecordDecl::field_iterator CurField = E->getLambdaClass()->field_begin();
+ for (LambdaExpr::capture_init_iterator i = E->capture_init_begin(),
+ e = E->capture_init_end();
+ i != e; ++i, ++CurField) {
+ // Emit initialization
+ LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField);
+ if (CurField->hasCapturedVLAType()) {
+ auto VAT = CurField->getCapturedVLAType();
+ EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV);
+ } else {
+ ArrayRef<VarDecl *> ArrayIndexes;
+ if (CurField->getType()->isArrayType())
+ ArrayIndexes = E->getCaptureInitIndexVars(i);
+ EmitInitializerForField(*CurField, LV, *i, ArrayIndexes);
+ }
+ }
+}