diff options
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp')
-rw-r--r-- | contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp | 2422 |
1 files changed, 2422 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp new file mode 100644 index 000000000000..5959d889b455 --- /dev/null +++ b/contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp @@ -0,0 +1,2422 @@ +//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===// +// +// The LLVM Compiler Infrastructure +// +// This file is distributed under the University of Illinois Open Source +// License. See LICENSE.TXT for details. +// +//===----------------------------------------------------------------------===// +// +// This contains code to emit Decl nodes as LLVM code. +// +//===----------------------------------------------------------------------===// + +#include "CGBlocks.h" +#include "CGCXXABI.h" +#include "CGCleanup.h" +#include "CGDebugInfo.h" +#include "CGOpenCLRuntime.h" +#include "CGOpenMPRuntime.h" +#include "CodeGenFunction.h" +#include "CodeGenModule.h" +#include "ConstantEmitter.h" +#include "TargetInfo.h" +#include "clang/AST/ASTContext.h" +#include "clang/AST/CharUnits.h" +#include "clang/AST/Decl.h" +#include "clang/AST/DeclObjC.h" +#include "clang/AST/DeclOpenMP.h" +#include "clang/Basic/CodeGenOptions.h" +#include "clang/Basic/SourceManager.h" +#include "clang/Basic/TargetInfo.h" +#include "clang/CodeGen/CGFunctionInfo.h" +#include "llvm/Analysis/ValueTracking.h" +#include "llvm/IR/DataLayout.h" +#include "llvm/IR/GlobalVariable.h" +#include "llvm/IR/Intrinsics.h" +#include "llvm/IR/Type.h" + +using namespace clang; +using namespace CodeGen; + +void CodeGenFunction::EmitDecl(const Decl &D) { + switch (D.getKind()) { + case Decl::BuiltinTemplate: + case Decl::TranslationUnit: + case Decl::ExternCContext: + case Decl::Namespace: + case Decl::UnresolvedUsingTypename: + case Decl::ClassTemplateSpecialization: + case Decl::ClassTemplatePartialSpecialization: + case Decl::VarTemplateSpecialization: + case Decl::VarTemplatePartialSpecialization: + case Decl::TemplateTypeParm: + case Decl::UnresolvedUsingValue: + case Decl::NonTypeTemplateParm: + case Decl::CXXDeductionGuide: + case Decl::CXXMethod: + case Decl::CXXConstructor: + case Decl::CXXDestructor: + case Decl::CXXConversion: + case Decl::Field: + case Decl::MSProperty: + case Decl::IndirectField: + case Decl::ObjCIvar: + case Decl::ObjCAtDefsField: + case Decl::ParmVar: + case Decl::ImplicitParam: + case Decl::ClassTemplate: + case Decl::VarTemplate: + case Decl::FunctionTemplate: + case Decl::TypeAliasTemplate: + case Decl::TemplateTemplateParm: + case Decl::ObjCMethod: + case Decl::ObjCCategory: + case Decl::ObjCProtocol: + case Decl::ObjCInterface: + case Decl::ObjCCategoryImpl: + case Decl::ObjCImplementation: + case Decl::ObjCProperty: + case Decl::ObjCCompatibleAlias: + case Decl::PragmaComment: + case Decl::PragmaDetectMismatch: + case Decl::AccessSpec: + case Decl::LinkageSpec: + case Decl::Export: + case Decl::ObjCPropertyImpl: + case Decl::FileScopeAsm: + case Decl::Friend: + case Decl::FriendTemplate: + case Decl::Block: + case Decl::Captured: + case Decl::ClassScopeFunctionSpecialization: + case Decl::UsingShadow: + case Decl::ConstructorUsingShadow: + case Decl::ObjCTypeParam: + case Decl::Binding: + llvm_unreachable("Declaration should not be in declstmts!"); + case Decl::Function: // void X(); + case Decl::Record: // struct/union/class X; + case Decl::Enum: // enum X; + case Decl::EnumConstant: // enum ? { X = ? } + case Decl::CXXRecord: // struct/union/class X; [C++] + case Decl::StaticAssert: // static_assert(X, ""); [C++0x] + case Decl::Label: // __label__ x; + case Decl::Import: + case Decl::OMPThreadPrivate: + case Decl::OMPCapturedExpr: + case Decl::OMPRequires: + case Decl::Empty: + // None of these decls require codegen support. + return; + + case Decl::NamespaceAlias: + if (CGDebugInfo *DI = getDebugInfo()) + DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D)); + return; + case Decl::Using: // using X; [C++] + if (CGDebugInfo *DI = getDebugInfo()) + DI->EmitUsingDecl(cast<UsingDecl>(D)); + return; + case Decl::UsingPack: + for (auto *Using : cast<UsingPackDecl>(D).expansions()) + EmitDecl(*Using); + return; + case Decl::UsingDirective: // using namespace X; [C++] + if (CGDebugInfo *DI = getDebugInfo()) + DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D)); + return; + case Decl::Var: + case Decl::Decomposition: { + const VarDecl &VD = cast<VarDecl>(D); + assert(VD.isLocalVarDecl() && + "Should not see file-scope variables inside a function!"); + EmitVarDecl(VD); + if (auto *DD = dyn_cast<DecompositionDecl>(&VD)) + for (auto *B : DD->bindings()) + if (auto *HD = B->getHoldingVar()) + EmitVarDecl(*HD); + return; + } + + case Decl::OMPDeclareReduction: + return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this); + + case Decl::Typedef: // typedef int X; + case Decl::TypeAlias: { // using X = int; [C++0x] + const TypedefNameDecl &TD = cast<TypedefNameDecl>(D); + QualType Ty = TD.getUnderlyingType(); + + if (Ty->isVariablyModifiedType()) + EmitVariablyModifiedType(Ty); + } + } +} + +/// EmitVarDecl - This method handles emission of any variable declaration +/// inside a function, including static vars etc. +void CodeGenFunction::EmitVarDecl(const VarDecl &D) { + if (D.hasExternalStorage()) + // Don't emit it now, allow it to be emitted lazily on its first use. + return; + + // Some function-scope variable does not have static storage but still + // needs to be emitted like a static variable, e.g. a function-scope + // variable in constant address space in OpenCL. + if (D.getStorageDuration() != SD_Automatic) { + // Static sampler variables translated to function calls. + if (D.getType()->isSamplerT()) + return; + + llvm::GlobalValue::LinkageTypes Linkage = + CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false); + + // FIXME: We need to force the emission/use of a guard variable for + // some variables even if we can constant-evaluate them because + // we can't guarantee every translation unit will constant-evaluate them. + + return EmitStaticVarDecl(D, Linkage); + } + + if (D.getType().getAddressSpace() == LangAS::opencl_local) + return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D); + + assert(D.hasLocalStorage()); + return EmitAutoVarDecl(D); +} + +static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) { + if (CGM.getLangOpts().CPlusPlus) + return CGM.getMangledName(&D).str(); + + // If this isn't C++, we don't need a mangled name, just a pretty one. + assert(!D.isExternallyVisible() && "name shouldn't matter"); + std::string ContextName; + const DeclContext *DC = D.getDeclContext(); + if (auto *CD = dyn_cast<CapturedDecl>(DC)) + DC = cast<DeclContext>(CD->getNonClosureContext()); + if (const auto *FD = dyn_cast<FunctionDecl>(DC)) + ContextName = CGM.getMangledName(FD); + else if (const auto *BD = dyn_cast<BlockDecl>(DC)) + ContextName = CGM.getBlockMangledName(GlobalDecl(), BD); + else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC)) + ContextName = OMD->getSelector().getAsString(); + else + llvm_unreachable("Unknown context for static var decl"); + + ContextName += "." + D.getNameAsString(); + return ContextName; +} + +llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl( + const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) { + // In general, we don't always emit static var decls once before we reference + // them. It is possible to reference them before emitting the function that + // contains them, and it is possible to emit the containing function multiple + // times. + if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D]) + return ExistingGV; + + QualType Ty = D.getType(); + assert(Ty->isConstantSizeType() && "VLAs can't be static"); + + // Use the label if the variable is renamed with the asm-label extension. + std::string Name; + if (D.hasAttr<AsmLabelAttr>()) + Name = getMangledName(&D); + else + Name = getStaticDeclName(*this, D); + + llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty); + LangAS AS = GetGlobalVarAddressSpace(&D); + unsigned TargetAS = getContext().getTargetAddressSpace(AS); + + // OpenCL variables in local address space and CUDA shared + // variables cannot have an initializer. + llvm::Constant *Init = nullptr; + if (Ty.getAddressSpace() == LangAS::opencl_local || + D.hasAttr<CUDASharedAttr>()) + Init = llvm::UndefValue::get(LTy); + else + Init = EmitNullConstant(Ty); + + llvm::GlobalVariable *GV = new llvm::GlobalVariable( + getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name, + nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); + GV->setAlignment(getContext().getDeclAlign(&D).getQuantity()); + + if (supportsCOMDAT() && GV->isWeakForLinker()) + GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); + + if (D.getTLSKind()) + setTLSMode(GV, D); + + setGVProperties(GV, &D); + + // Make sure the result is of the correct type. + LangAS ExpectedAS = Ty.getAddressSpace(); + llvm::Constant *Addr = GV; + if (AS != ExpectedAS) { + Addr = getTargetCodeGenInfo().performAddrSpaceCast( + *this, GV, AS, ExpectedAS, + LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS))); + } + + setStaticLocalDeclAddress(&D, Addr); + + // Ensure that the static local gets initialized by making sure the parent + // function gets emitted eventually. + const Decl *DC = cast<Decl>(D.getDeclContext()); + + // We can't name blocks or captured statements directly, so try to emit their + // parents. + if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) { + DC = DC->getNonClosureContext(); + // FIXME: Ensure that global blocks get emitted. + if (!DC) + return Addr; + } + + GlobalDecl GD; + if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC)) + GD = GlobalDecl(CD, Ctor_Base); + else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC)) + GD = GlobalDecl(DD, Dtor_Base); + else if (const auto *FD = dyn_cast<FunctionDecl>(DC)) + GD = GlobalDecl(FD); + else { + // Don't do anything for Obj-C method decls or global closures. We should + // never defer them. + assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl"); + } + if (GD.getDecl()) { + // Disable emission of the parent function for the OpenMP device codegen. + CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this); + (void)GetAddrOfGlobal(GD); + } + + return Addr; +} + +/// hasNontrivialDestruction - Determine whether a type's destruction is +/// non-trivial. If so, and the variable uses static initialization, we must +/// register its destructor to run on exit. +static bool hasNontrivialDestruction(QualType T) { + CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); + return RD && !RD->hasTrivialDestructor(); +} + +/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the +/// global variable that has already been created for it. If the initializer +/// has a different type than GV does, this may free GV and return a different +/// one. Otherwise it just returns GV. +llvm::GlobalVariable * +CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D, + llvm::GlobalVariable *GV) { + ConstantEmitter emitter(*this); + llvm::Constant *Init = emitter.tryEmitForInitializer(D); + + // If constant emission failed, then this should be a C++ static + // initializer. + if (!Init) { + if (!getLangOpts().CPlusPlus) + CGM.ErrorUnsupported(D.getInit(), "constant l-value expression"); + else if (HaveInsertPoint()) { + // Since we have a static initializer, this global variable can't + // be constant. + GV->setConstant(false); + + EmitCXXGuardedInit(D, GV, /*PerformInit*/true); + } + return GV; + } + + // The initializer may differ in type from the global. Rewrite + // the global to match the initializer. (We have to do this + // because some types, like unions, can't be completely represented + // in the LLVM type system.) + if (GV->getType()->getElementType() != Init->getType()) { + llvm::GlobalVariable *OldGV = GV; + + GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(), + OldGV->isConstant(), + OldGV->getLinkage(), Init, "", + /*InsertBefore*/ OldGV, + OldGV->getThreadLocalMode(), + CGM.getContext().getTargetAddressSpace(D.getType())); + GV->setVisibility(OldGV->getVisibility()); + GV->setDSOLocal(OldGV->isDSOLocal()); + GV->setComdat(OldGV->getComdat()); + + // Steal the name of the old global + GV->takeName(OldGV); + + // Replace all uses of the old global with the new global + llvm::Constant *NewPtrForOldDecl = + llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); + OldGV->replaceAllUsesWith(NewPtrForOldDecl); + + // Erase the old global, since it is no longer used. + OldGV->eraseFromParent(); + } + + GV->setConstant(CGM.isTypeConstant(D.getType(), true)); + GV->setInitializer(Init); + + emitter.finalize(GV); + + if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) { + // We have a constant initializer, but a nontrivial destructor. We still + // need to perform a guarded "initialization" in order to register the + // destructor. + EmitCXXGuardedInit(D, GV, /*PerformInit*/false); + } + + return GV; +} + +void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D, + llvm::GlobalValue::LinkageTypes Linkage) { + // Check to see if we already have a global variable for this + // declaration. This can happen when double-emitting function + // bodies, e.g. with complete and base constructors. + llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage); + CharUnits alignment = getContext().getDeclAlign(&D); + + // Store into LocalDeclMap before generating initializer to handle + // circular references. + setAddrOfLocalVar(&D, Address(addr, alignment)); + + // We can't have a VLA here, but we can have a pointer to a VLA, + // even though that doesn't really make any sense. + // Make sure to evaluate VLA bounds now so that we have them for later. + if (D.getType()->isVariablyModifiedType()) + EmitVariablyModifiedType(D.getType()); + + // Save the type in case adding the initializer forces a type change. + llvm::Type *expectedType = addr->getType(); + + llvm::GlobalVariable *var = + cast<llvm::GlobalVariable>(addr->stripPointerCasts()); + + // CUDA's local and local static __shared__ variables should not + // have any non-empty initializers. This is ensured by Sema. + // Whatever initializer such variable may have when it gets here is + // a no-op and should not be emitted. + bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice && + D.hasAttr<CUDASharedAttr>(); + // If this value has an initializer, emit it. + if (D.getInit() && !isCudaSharedVar) + var = AddInitializerToStaticVarDecl(D, var); + + var->setAlignment(alignment.getQuantity()); + + if (D.hasAttr<AnnotateAttr>()) + CGM.AddGlobalAnnotations(&D, var); + + if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>()) + var->addAttribute("bss-section", SA->getName()); + if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>()) + var->addAttribute("data-section", SA->getName()); + if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>()) + var->addAttribute("rodata-section", SA->getName()); + + if (const SectionAttr *SA = D.getAttr<SectionAttr>()) + var->setSection(SA->getName()); + + if (D.hasAttr<UsedAttr>()) + CGM.addUsedGlobal(var); + + // We may have to cast the constant because of the initializer + // mismatch above. + // + // FIXME: It is really dangerous to store this in the map; if anyone + // RAUW's the GV uses of this constant will be invalid. + llvm::Constant *castedAddr = + llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType); + if (var != castedAddr) + LocalDeclMap.find(&D)->second = Address(castedAddr, alignment); + CGM.setStaticLocalDeclAddress(&D, castedAddr); + + CGM.getSanitizerMetadata()->reportGlobalToASan(var, D); + + // Emit global variable debug descriptor for static vars. + CGDebugInfo *DI = getDebugInfo(); + if (DI && + CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) { + DI->setLocation(D.getLocation()); + DI->EmitGlobalVariable(var, &D); + } +} + +namespace { + struct DestroyObject final : EHScopeStack::Cleanup { + DestroyObject(Address addr, QualType type, + CodeGenFunction::Destroyer *destroyer, + bool useEHCleanupForArray) + : addr(addr), type(type), destroyer(destroyer), + useEHCleanupForArray(useEHCleanupForArray) {} + + Address addr; + QualType type; + CodeGenFunction::Destroyer *destroyer; + bool useEHCleanupForArray; + + void Emit(CodeGenFunction &CGF, Flags flags) override { + // Don't use an EH cleanup recursively from an EH cleanup. + bool useEHCleanupForArray = + flags.isForNormalCleanup() && this->useEHCleanupForArray; + + CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray); + } + }; + + template <class Derived> + struct DestroyNRVOVariable : EHScopeStack::Cleanup { + DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag) + : NRVOFlag(NRVOFlag), Loc(addr) {} + + llvm::Value *NRVOFlag; + Address Loc; + + void Emit(CodeGenFunction &CGF, Flags flags) override { + // Along the exceptions path we always execute the dtor. + bool NRVO = flags.isForNormalCleanup() && NRVOFlag; + + llvm::BasicBlock *SkipDtorBB = nullptr; + if (NRVO) { + // If we exited via NRVO, we skip the destructor call. + llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused"); + SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor"); + llvm::Value *DidNRVO = + CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val"); + CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB); + CGF.EmitBlock(RunDtorBB); + } + + static_cast<Derived *>(this)->emitDestructorCall(CGF); + + if (NRVO) CGF.EmitBlock(SkipDtorBB); + } + + virtual ~DestroyNRVOVariable() = default; + }; + + struct DestroyNRVOVariableCXX final + : DestroyNRVOVariable<DestroyNRVOVariableCXX> { + DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor, + llvm::Value *NRVOFlag) + : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag), + Dtor(Dtor) {} + + const CXXDestructorDecl *Dtor; + + void emitDestructorCall(CodeGenFunction &CGF) { + CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete, + /*ForVirtualBase=*/false, + /*Delegating=*/false, Loc); + } + }; + + struct DestroyNRVOVariableC final + : DestroyNRVOVariable<DestroyNRVOVariableC> { + DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty) + : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {} + + QualType Ty; + + void emitDestructorCall(CodeGenFunction &CGF) { + CGF.destroyNonTrivialCStruct(CGF, Loc, Ty); + } + }; + + struct CallStackRestore final : EHScopeStack::Cleanup { + Address Stack; + CallStackRestore(Address Stack) : Stack(Stack) {} + void Emit(CodeGenFunction &CGF, Flags flags) override { + llvm::Value *V = CGF.Builder.CreateLoad(Stack); + llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore); + CGF.Builder.CreateCall(F, V); + } + }; + + struct ExtendGCLifetime final : EHScopeStack::Cleanup { + const VarDecl &Var; + ExtendGCLifetime(const VarDecl *var) : Var(*var) {} + + void Emit(CodeGenFunction &CGF, Flags flags) override { + // Compute the address of the local variable, in case it's a + // byref or something. + DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, + Var.getType(), VK_LValue, SourceLocation()); + llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE), + SourceLocation()); + CGF.EmitExtendGCLifetime(value); + } + }; + + struct CallCleanupFunction final : EHScopeStack::Cleanup { + llvm::Constant *CleanupFn; + const CGFunctionInfo &FnInfo; + const VarDecl &Var; + + CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info, + const VarDecl *Var) + : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {} + + void Emit(CodeGenFunction &CGF, Flags flags) override { + DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false, + Var.getType(), VK_LValue, SourceLocation()); + // Compute the address of the local variable, in case it's a byref + // or something. + llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer(); + + // In some cases, the type of the function argument will be different from + // the type of the pointer. An example of this is + // void f(void* arg); + // __attribute__((cleanup(f))) void *g; + // + // To fix this we insert a bitcast here. + QualType ArgTy = FnInfo.arg_begin()->type; + llvm::Value *Arg = + CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy)); + + CallArgList Args; + Args.add(RValue::get(Arg), + CGF.getContext().getPointerType(Var.getType())); + auto Callee = CGCallee::forDirect(CleanupFn); + CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args); + } + }; +} // end anonymous namespace + +/// EmitAutoVarWithLifetime - Does the setup required for an automatic +/// variable with lifetime. +static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var, + Address addr, + Qualifiers::ObjCLifetime lifetime) { + switch (lifetime) { + case Qualifiers::OCL_None: + llvm_unreachable("present but none"); + + case Qualifiers::OCL_ExplicitNone: + // nothing to do + break; + + case Qualifiers::OCL_Strong: { + CodeGenFunction::Destroyer *destroyer = + (var.hasAttr<ObjCPreciseLifetimeAttr>() + ? CodeGenFunction::destroyARCStrongPrecise + : CodeGenFunction::destroyARCStrongImprecise); + + CleanupKind cleanupKind = CGF.getARCCleanupKind(); + CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer, + cleanupKind & EHCleanup); + break; + } + case Qualifiers::OCL_Autoreleasing: + // nothing to do + break; + + case Qualifiers::OCL_Weak: + // __weak objects always get EH cleanups; otherwise, exceptions + // could cause really nasty crashes instead of mere leaks. + CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(), + CodeGenFunction::destroyARCWeak, + /*useEHCleanup*/ true); + break; + } +} + +static bool isAccessedBy(const VarDecl &var, const Stmt *s) { + if (const Expr *e = dyn_cast<Expr>(s)) { + // Skip the most common kinds of expressions that make + // hierarchy-walking expensive. + s = e = e->IgnoreParenCasts(); + + if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e)) + return (ref->getDecl() == &var); + if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) { + const BlockDecl *block = be->getBlockDecl(); + for (const auto &I : block->captures()) { + if (I.getVariable() == &var) + return true; + } + } + } + + for (const Stmt *SubStmt : s->children()) + // SubStmt might be null; as in missing decl or conditional of an if-stmt. + if (SubStmt && isAccessedBy(var, SubStmt)) + return true; + + return false; +} + +static bool isAccessedBy(const ValueDecl *decl, const Expr *e) { + if (!decl) return false; + if (!isa<VarDecl>(decl)) return false; + const VarDecl *var = cast<VarDecl>(decl); + return isAccessedBy(*var, e); +} + +static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF, + const LValue &destLV, const Expr *init) { + bool needsCast = false; + + while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) { + switch (castExpr->getCastKind()) { + // Look through casts that don't require representation changes. + case CK_NoOp: + case CK_BitCast: + case CK_BlockPointerToObjCPointerCast: + needsCast = true; + break; + + // If we find an l-value to r-value cast from a __weak variable, + // emit this operation as a copy or move. + case CK_LValueToRValue: { + const Expr *srcExpr = castExpr->getSubExpr(); + if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak) + return false; + + // Emit the source l-value. + LValue srcLV = CGF.EmitLValue(srcExpr); + + // Handle a formal type change to avoid asserting. + auto srcAddr = srcLV.getAddress(); + if (needsCast) { + srcAddr = CGF.Builder.CreateElementBitCast(srcAddr, + destLV.getAddress().getElementType()); + } + + // If it was an l-value, use objc_copyWeak. + if (srcExpr->getValueKind() == VK_LValue) { + CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr); + } else { + assert(srcExpr->getValueKind() == VK_XValue); + CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr); + } + return true; + } + + // Stop at anything else. + default: + return false; + } + + init = castExpr->getSubExpr(); + } + return false; +} + +static void drillIntoBlockVariable(CodeGenFunction &CGF, + LValue &lvalue, + const VarDecl *var) { + lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var)); +} + +void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS, + SourceLocation Loc) { + if (!SanOpts.has(SanitizerKind::NullabilityAssign)) + return; + + auto Nullability = LHS.getType()->getNullability(getContext()); + if (!Nullability || *Nullability != NullabilityKind::NonNull) + return; + + // Check if the right hand side of the assignment is nonnull, if the left + // hand side must be nonnull. + SanitizerScope SanScope(this); + llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS); + llvm::Constant *StaticData[] = { + EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()), + llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused. + llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)}; + EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}}, + SanitizerHandler::TypeMismatch, StaticData, RHS); +} + +void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D, + LValue lvalue, bool capturedByInit) { + Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime(); + if (!lifetime) { + llvm::Value *value = EmitScalarExpr(init); + if (capturedByInit) + drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); + EmitNullabilityCheck(lvalue, value, init->getExprLoc()); + EmitStoreThroughLValue(RValue::get(value), lvalue, true); + return; + } + + if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init)) + init = DIE->getExpr(); + + // If we're emitting a value with lifetime, we have to do the + // initialization *before* we leave the cleanup scopes. + if (const FullExpr *fe = dyn_cast<FullExpr>(init)) { + enterFullExpression(fe); + init = fe->getSubExpr(); + } + CodeGenFunction::RunCleanupsScope Scope(*this); + + // We have to maintain the illusion that the variable is + // zero-initialized. If the variable might be accessed in its + // initializer, zero-initialize before running the initializer, then + // actually perform the initialization with an assign. + bool accessedByInit = false; + if (lifetime != Qualifiers::OCL_ExplicitNone) + accessedByInit = (capturedByInit || isAccessedBy(D, init)); + if (accessedByInit) { + LValue tempLV = lvalue; + // Drill down to the __block object if necessary. + if (capturedByInit) { + // We can use a simple GEP for this because it can't have been + // moved yet. + tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(), + cast<VarDecl>(D), + /*follow*/ false)); + } + + auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType()); + llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType()); + + // If __weak, we want to use a barrier under certain conditions. + if (lifetime == Qualifiers::OCL_Weak) + EmitARCInitWeak(tempLV.getAddress(), zero); + + // Otherwise just do a simple store. + else + EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true); + } + + // Emit the initializer. + llvm::Value *value = nullptr; + + switch (lifetime) { + case Qualifiers::OCL_None: + llvm_unreachable("present but none"); + + case Qualifiers::OCL_Strong: { + if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) { + value = EmitARCRetainScalarExpr(init); + break; + } + // If D is pseudo-strong, treat it like __unsafe_unretained here. This means + // that we omit the retain, and causes non-autoreleased return values to be + // immediately released. + LLVM_FALLTHROUGH; + } + + case Qualifiers::OCL_ExplicitNone: + value = EmitARCUnsafeUnretainedScalarExpr(init); + break; + + case Qualifiers::OCL_Weak: { + // If it's not accessed by the initializer, try to emit the + // initialization with a copy or move. + if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) { + return; + } + + // No way to optimize a producing initializer into this. It's not + // worth optimizing for, because the value will immediately + // disappear in the common case. + value = EmitScalarExpr(init); + + if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); + if (accessedByInit) + EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true); + else + EmitARCInitWeak(lvalue.getAddress(), value); + return; + } + + case Qualifiers::OCL_Autoreleasing: + value = EmitARCRetainAutoreleaseScalarExpr(init); + break; + } + + if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); + + EmitNullabilityCheck(lvalue, value, init->getExprLoc()); + + // If the variable might have been accessed by its initializer, we + // might have to initialize with a barrier. We have to do this for + // both __weak and __strong, but __weak got filtered out above. + if (accessedByInit && lifetime == Qualifiers::OCL_Strong) { + llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc()); + EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); + EmitARCRelease(oldValue, ARCImpreciseLifetime); + return; + } + + EmitStoreOfScalar(value, lvalue, /* isInitialization */ true); +} + +/// Decide whether we can emit the non-zero parts of the specified initializer +/// with equal or fewer than NumStores scalar stores. +static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init, + unsigned &NumStores) { + // Zero and Undef never requires any extra stores. + if (isa<llvm::ConstantAggregateZero>(Init) || + isa<llvm::ConstantPointerNull>(Init) || + isa<llvm::UndefValue>(Init)) + return true; + if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || + isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || + isa<llvm::ConstantExpr>(Init)) + return Init->isNullValue() || NumStores--; + + // See if we can emit each element. + if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) { + for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { + llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); + if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) + return false; + } + return true; + } + + if (llvm::ConstantDataSequential *CDS = + dyn_cast<llvm::ConstantDataSequential>(Init)) { + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { + llvm::Constant *Elt = CDS->getElementAsConstant(i); + if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores)) + return false; + } + return true; + } + + // Anything else is hard and scary. + return false; +} + +/// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit +/// the scalar stores that would be required. +static void emitStoresForInitAfterBZero(CodeGenModule &CGM, + llvm::Constant *Init, Address Loc, + bool isVolatile, CGBuilderTy &Builder) { + assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) && + "called emitStoresForInitAfterBZero for zero or undef value."); + + if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) || + isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) || + isa<llvm::ConstantExpr>(Init)) { + Builder.CreateStore(Init, Loc, isVolatile); + return; + } + + if (llvm::ConstantDataSequential *CDS = + dyn_cast<llvm::ConstantDataSequential>(Init)) { + for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { + llvm::Constant *Elt = CDS->getElementAsConstant(i); + + // If necessary, get a pointer to the element and emit it. + if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) + emitStoresForInitAfterBZero( + CGM, Elt, + Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), + isVolatile, Builder); + } + return; + } + + assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) && + "Unknown value type!"); + + for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) { + llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i)); + + // If necessary, get a pointer to the element and emit it. + if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt)) + emitStoresForInitAfterBZero( + CGM, Elt, + Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()), + isVolatile, Builder); + } +} + +/// Decide whether we should use bzero plus some stores to initialize a local +/// variable instead of using a memcpy from a constant global. It is beneficial +/// to use bzero if the global is all zeros, or mostly zeros and large. +static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init, + uint64_t GlobalSize) { + // If a global is all zeros, always use a bzero. + if (isa<llvm::ConstantAggregateZero>(Init)) return true; + + // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large, + // do it if it will require 6 or fewer scalar stores. + // TODO: Should budget depends on the size? Avoiding a large global warrants + // plopping in more stores. + unsigned StoreBudget = 6; + uint64_t SizeLimit = 32; + + return GlobalSize > SizeLimit && + canEmitInitWithFewStoresAfterBZero(Init, StoreBudget); +} + +/// Decide whether we should use memset to initialize a local variable instead +/// of using a memcpy from a constant global. Assumes we've already decided to +/// not user bzero. +/// FIXME We could be more clever, as we are for bzero above, and generate +/// memset followed by stores. It's unclear that's worth the effort. +static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init, + uint64_t GlobalSize) { + uint64_t SizeLimit = 32; + if (GlobalSize <= SizeLimit) + return nullptr; + return llvm::isBytewiseValue(Init); +} + +static llvm::Constant *patternFor(CodeGenModule &CGM, llvm::Type *Ty) { + // The following value is a guaranteed unmappable pointer value and has a + // repeated byte-pattern which makes it easier to synthesize. We use it for + // pointers as well as integers so that aggregates are likely to be + // initialized with this repeated value. + constexpr uint64_t LargeValue = 0xAAAAAAAAAAAAAAAAull; + // For 32-bit platforms it's a bit trickier because, across systems, only the + // zero page can reasonably be expected to be unmapped, and even then we need + // a very low address. We use a smaller value, and that value sadly doesn't + // have a repeated byte-pattern. We don't use it for integers. + constexpr uint32_t SmallValue = 0x000000AA; + // Floating-point values are initialized as NaNs because they propagate. Using + // a repeated byte pattern means that it will be easier to initialize + // all-floating-point aggregates and arrays with memset. Further, aggregates + // which mix integral and a few floats might also initialize with memset + // followed by a handful of stores for the floats. Using fairly unique NaNs + // also means they'll be easier to distinguish in a crash. + constexpr bool NegativeNaN = true; + constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull; + if (Ty->isIntOrIntVectorTy()) { + unsigned BitWidth = cast<llvm::IntegerType>( + Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) + ->getBitWidth(); + if (BitWidth <= 64) + return llvm::ConstantInt::get(Ty, LargeValue); + return llvm::ConstantInt::get( + Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, LargeValue))); + } + if (Ty->isPtrOrPtrVectorTy()) { + auto *PtrTy = cast<llvm::PointerType>( + Ty->isVectorTy() ? Ty->getVectorElementType() : Ty); + unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth( + PtrTy->getAddressSpace()); + llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth); + uint64_t IntValue; + switch (PtrWidth) { + default: + llvm_unreachable("pattern initialization of unsupported pointer width"); + case 64: + IntValue = LargeValue; + break; + case 32: + IntValue = SmallValue; + break; + } + auto *Int = llvm::ConstantInt::get(IntTy, IntValue); + return llvm::ConstantExpr::getIntToPtr(Int, PtrTy); + } + if (Ty->isFPOrFPVectorTy()) { + unsigned BitWidth = llvm::APFloat::semanticsSizeInBits( + (Ty->isVectorTy() ? Ty->getVectorElementType() : Ty) + ->getFltSemantics()); + llvm::APInt Payload(64, NaNPayload); + if (BitWidth >= 64) + Payload = llvm::APInt::getSplat(BitWidth, Payload); + return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload); + } + if (Ty->isArrayTy()) { + // Note: this doesn't touch tail padding (at the end of an object, before + // the next array object). It is instead handled by replaceUndef. + auto *ArrTy = cast<llvm::ArrayType>(Ty); + llvm::SmallVector<llvm::Constant *, 8> Element( + ArrTy->getNumElements(), patternFor(CGM, ArrTy->getElementType())); + return llvm::ConstantArray::get(ArrTy, Element); + } + + // Note: this doesn't touch struct padding. It will initialize as much union + // padding as is required for the largest type in the union. Padding is + // instead handled by replaceUndef. Stores to structs with volatile members + // don't have a volatile qualifier when initialized according to C++. This is + // fine because stack-based volatiles don't really have volatile semantics + // anyways, and the initialization shouldn't be observable. + auto *StructTy = cast<llvm::StructType>(Ty); + llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements()); + for (unsigned El = 0; El != Struct.size(); ++El) + Struct[El] = patternFor(CGM, StructTy->getElementType(El)); + return llvm::ConstantStruct::get(StructTy, Struct); +} + +static Address createUnnamedGlobalFrom(CodeGenModule &CGM, const VarDecl &D, + CGBuilderTy &Builder, + llvm::Constant *Constant, + CharUnits Align) { + auto FunctionName = [&](const DeclContext *DC) -> std::string { + if (const auto *FD = dyn_cast<FunctionDecl>(DC)) { + if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD)) + return CC->getNameAsString(); + if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD)) + return CD->getNameAsString(); + return CGM.getMangledName(FD); + } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) { + return OM->getNameAsString(); + } else if (isa<BlockDecl>(DC)) { + return "<block>"; + } else if (isa<CapturedDecl>(DC)) { + return "<captured>"; + } else { + llvm::llvm_unreachable_internal("expected a function or method"); + } + }; + + auto *Ty = Constant->getType(); + bool isConstant = true; + llvm::GlobalVariable *InsertBefore = nullptr; + unsigned AS = CGM.getContext().getTargetAddressSpace( + CGM.getStringLiteralAddressSpace()); + llvm::GlobalVariable *GV = new llvm::GlobalVariable( + CGM.getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage, + Constant, + "__const." + FunctionName(D.getParentFunctionOrMethod()) + "." + + D.getName(), + InsertBefore, llvm::GlobalValue::NotThreadLocal, AS); + GV->setAlignment(Align.getQuantity()); + GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); + + Address SrcPtr = Address(GV, Align); + llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS); + if (SrcPtr.getType() != BP) + SrcPtr = Builder.CreateBitCast(SrcPtr, BP); + return SrcPtr; +} + +static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D, + Address Loc, bool isVolatile, + CGBuilderTy &Builder, + llvm::Constant *constant) { + auto *Ty = constant->getType(); + bool isScalar = Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy() || + Ty->isFPOrFPVectorTy(); + if (isScalar) { + Builder.CreateStore(constant, Loc, isVolatile); + return; + } + + auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext()); + auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext()); + + // If the initializer is all or mostly the same, codegen with bzero / memset + // then do a few stores afterward. + uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty); + auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize); + if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) { + Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, + isVolatile); + + bool valueAlreadyCorrect = + constant->isNullValue() || isa<llvm::UndefValue>(constant); + if (!valueAlreadyCorrect) { + Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace())); + emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder); + } + return; + } + + llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize); + if (Pattern) { + uint64_t Value = 0x00; + if (!isa<llvm::UndefValue>(Pattern)) { + const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue(); + assert(AP.getBitWidth() <= 8); + Value = AP.getLimitedValue(); + } + Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal, + isVolatile); + return; + } + + Builder.CreateMemCpy( + Loc, + createUnnamedGlobalFrom(CGM, D, Builder, constant, Loc.getAlignment()), + SizeVal, isVolatile); +} + +static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D, + Address Loc, bool isVolatile, + CGBuilderTy &Builder) { + llvm::Type *ElTy = Loc.getElementType(); + llvm::Constant *constant = llvm::Constant::getNullValue(ElTy); + emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); +} + +static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D, + Address Loc, bool isVolatile, + CGBuilderTy &Builder) { + llvm::Type *ElTy = Loc.getElementType(); + llvm::Constant *constant = patternFor(CGM, ElTy); + assert(!isa<llvm::UndefValue>(constant)); + emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); +} + +static bool containsUndef(llvm::Constant *constant) { + auto *Ty = constant->getType(); + if (isa<llvm::UndefValue>(constant)) + return true; + if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) + for (llvm::Use &Op : constant->operands()) + if (containsUndef(cast<llvm::Constant>(Op))) + return true; + return false; +} + +static llvm::Constant *replaceUndef(llvm::Constant *constant) { + // FIXME: when doing pattern initialization, replace undef with 0xAA instead. + // FIXME: also replace padding between values by creating a new struct type + // which has no padding. + auto *Ty = constant->getType(); + if (isa<llvm::UndefValue>(constant)) + return llvm::Constant::getNullValue(Ty); + if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())) + return constant; + if (!containsUndef(constant)) + return constant; + llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands()); + for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) { + auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op)); + Values[Op] = replaceUndef(OpValue); + } + if (Ty->isStructTy()) + return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values); + if (Ty->isArrayTy()) + return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values); + assert(Ty->isVectorTy()); + return llvm::ConstantVector::get(Values); +} + +/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a +/// variable declaration with auto, register, or no storage class specifier. +/// These turn into simple stack objects, or GlobalValues depending on target. +void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) { + AutoVarEmission emission = EmitAutoVarAlloca(D); + EmitAutoVarInit(emission); + EmitAutoVarCleanups(emission); +} + +/// Emit a lifetime.begin marker if some criteria are satisfied. +/// \return a pointer to the temporary size Value if a marker was emitted, null +/// otherwise +llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size, + llvm::Value *Addr) { + if (!ShouldEmitLifetimeMarkers) + return nullptr; + + assert(Addr->getType()->getPointerAddressSpace() == + CGM.getDataLayout().getAllocaAddrSpace() && + "Pointer should be in alloca address space"); + llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size); + Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); + llvm::CallInst *C = + Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr}); + C->setDoesNotThrow(); + return SizeV; +} + +void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) { + assert(Addr->getType()->getPointerAddressSpace() == + CGM.getDataLayout().getAllocaAddrSpace() && + "Pointer should be in alloca address space"); + Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy); + llvm::CallInst *C = + Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr}); + C->setDoesNotThrow(); +} + +void CodeGenFunction::EmitAndRegisterVariableArrayDimensions( + CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) { + // For each dimension stores its QualType and corresponding + // size-expression Value. + SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions; + SmallVector<IdentifierInfo *, 4> VLAExprNames; + + // Break down the array into individual dimensions. + QualType Type1D = D.getType(); + while (getContext().getAsVariableArrayType(Type1D)) { + auto VlaSize = getVLAElements1D(Type1D); + if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) + Dimensions.emplace_back(C, Type1D.getUnqualifiedType()); + else { + // Generate a locally unique name for the size expression. + Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++); + SmallString<12> Buffer; + StringRef NameRef = Name.toStringRef(Buffer); + auto &Ident = getContext().Idents.getOwn(NameRef); + VLAExprNames.push_back(&Ident); + auto SizeExprAddr = + CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef); + Builder.CreateStore(VlaSize.NumElts, SizeExprAddr); + Dimensions.emplace_back(SizeExprAddr.getPointer(), + Type1D.getUnqualifiedType()); + } + Type1D = VlaSize.Type; + } + + if (!EmitDebugInfo) + return; + + // Register each dimension's size-expression with a DILocalVariable, + // so that it can be used by CGDebugInfo when instantiating a DISubrange + // to describe this array. + unsigned NameIdx = 0; + for (auto &VlaSize : Dimensions) { + llvm::Metadata *MD; + if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts)) + MD = llvm::ConstantAsMetadata::get(C); + else { + // Create an artificial VarDecl to generate debug info for. + IdentifierInfo *NameIdent = VLAExprNames[NameIdx++]; + auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType(); + auto QT = getContext().getIntTypeForBitwidth( + VlaExprTy->getScalarSizeInBits(), false); + auto *ArtificialDecl = VarDecl::Create( + getContext(), const_cast<DeclContext *>(D.getDeclContext()), + D.getLocation(), D.getLocation(), NameIdent, QT, + getContext().CreateTypeSourceInfo(QT), SC_Auto); + ArtificialDecl->setImplicit(); + + MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts, + Builder); + } + assert(MD && "No Size expression debug node created"); + DI->registerVLASizeExpression(VlaSize.Type, MD); + } +} + +/// EmitAutoVarAlloca - Emit the alloca and debug information for a +/// local variable. Does not emit initialization or destruction. +CodeGenFunction::AutoVarEmission +CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) { + QualType Ty = D.getType(); + assert( + Ty.getAddressSpace() == LangAS::Default || + (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL)); + + AutoVarEmission emission(D); + + bool isEscapingByRef = D.isEscapingByref(); + emission.IsEscapingByRef = isEscapingByRef; + + CharUnits alignment = getContext().getDeclAlign(&D); + + // If the type is variably-modified, emit all the VLA sizes for it. + if (Ty->isVariablyModifiedType()) + EmitVariablyModifiedType(Ty); + + auto *DI = getDebugInfo(); + bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >= + codegenoptions::LimitedDebugInfo; + + Address address = Address::invalid(); + Address AllocaAddr = Address::invalid(); + if (Ty->isConstantSizeType()) { + bool NRVO = getLangOpts().ElideConstructors && + D.isNRVOVariable(); + + // If this value is an array or struct with a statically determinable + // constant initializer, there are optimizations we can do. + // + // TODO: We should constant-evaluate the initializer of any variable, + // as long as it is initialized by a constant expression. Currently, + // isConstantInitializer produces wrong answers for structs with + // reference or bitfield members, and a few other cases, and checking + // for POD-ness protects us from some of these. + if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) && + (D.isConstexpr() || + ((Ty.isPODType(getContext()) || + getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) && + D.getInit()->isConstantInitializer(getContext(), false)))) { + + // If the variable's a const type, and it's neither an NRVO + // candidate nor a __block variable and has no mutable members, + // emit it as a global instead. + // Exception is if a variable is located in non-constant address space + // in OpenCL. + if ((!getLangOpts().OpenCL || + Ty.getAddressSpace() == LangAS::opencl_constant) && + (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && + !isEscapingByRef && CGM.isTypeConstant(Ty, true))) { + EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage); + + // Signal this condition to later callbacks. + emission.Addr = Address::invalid(); + assert(emission.wasEmittedAsGlobal()); + return emission; + } + + // Otherwise, tell the initialization code that we're in this case. + emission.IsConstantAggregate = true; + } + + // A normal fixed sized variable becomes an alloca in the entry block, + // unless: + // - it's an NRVO variable. + // - we are compiling OpenMP and it's an OpenMP local variable. + + Address OpenMPLocalAddr = + getLangOpts().OpenMP + ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) + : Address::invalid(); + if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { + address = OpenMPLocalAddr; + } else if (NRVO) { + // The named return value optimization: allocate this variable in the + // return slot, so that we can elide the copy when returning this + // variable (C++0x [class.copy]p34). + address = ReturnValue; + + if (const RecordType *RecordTy = Ty->getAs<RecordType>()) { + const auto *RD = RecordTy->getDecl(); + const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD); + if ((CXXRD && !CXXRD->hasTrivialDestructor()) || + RD->isNonTrivialToPrimitiveDestroy()) { + // Create a flag that is used to indicate when the NRVO was applied + // to this variable. Set it to zero to indicate that NRVO was not + // applied. + llvm::Value *Zero = Builder.getFalse(); + Address NRVOFlag = + CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo"); + EnsureInsertPoint(); + Builder.CreateStore(Zero, NRVOFlag); + + // Record the NRVO flag for this variable. + NRVOFlags[&D] = NRVOFlag.getPointer(); + emission.NRVOFlag = NRVOFlag.getPointer(); + } + } + } else { + CharUnits allocaAlignment; + llvm::Type *allocaTy; + if (isEscapingByRef) { + auto &byrefInfo = getBlockByrefInfo(&D); + allocaTy = byrefInfo.Type; + allocaAlignment = byrefInfo.ByrefAlignment; + } else { + allocaTy = ConvertTypeForMem(Ty); + allocaAlignment = alignment; + } + + // Create the alloca. Note that we set the name separately from + // building the instruction so that it's there even in no-asserts + // builds. + address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(), + /*ArraySize=*/nullptr, &AllocaAddr); + + // Don't emit lifetime markers for MSVC catch parameters. The lifetime of + // the catch parameter starts in the catchpad instruction, and we can't + // insert code in those basic blocks. + bool IsMSCatchParam = + D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft(); + + // Emit a lifetime intrinsic if meaningful. There's no point in doing this + // if we don't have a valid insertion point (?). + if (HaveInsertPoint() && !IsMSCatchParam) { + // If there's a jump into the lifetime of this variable, its lifetime + // gets broken up into several regions in IR, which requires more work + // to handle correctly. For now, just omit the intrinsics; this is a + // rare case, and it's better to just be conservatively correct. + // PR28267. + // + // We have to do this in all language modes if there's a jump past the + // declaration. We also have to do it in C if there's a jump to an + // earlier point in the current block because non-VLA lifetimes begin as + // soon as the containing block is entered, not when its variables + // actually come into scope; suppressing the lifetime annotations + // completely in this case is unnecessarily pessimistic, but again, this + // is rare. + if (!Bypasses.IsBypassed(&D) && + !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) { + uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy); + emission.SizeForLifetimeMarkers = + EmitLifetimeStart(size, AllocaAddr.getPointer()); + } + } else { + assert(!emission.useLifetimeMarkers()); + } + } + } else { + EnsureInsertPoint(); + + if (!DidCallStackSave) { + // Save the stack. + Address Stack = + CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack"); + + llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave); + llvm::Value *V = Builder.CreateCall(F); + Builder.CreateStore(V, Stack); + + DidCallStackSave = true; + + // Push a cleanup block and restore the stack there. + // FIXME: in general circumstances, this should be an EH cleanup. + pushStackRestore(NormalCleanup, Stack); + } + + auto VlaSize = getVLASize(Ty); + llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type); + + // Allocate memory for the array. + address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts, + &AllocaAddr); + + // If we have debug info enabled, properly describe the VLA dimensions for + // this type by registering the vla size expression for each of the + // dimensions. + EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo); + } + + setAddrOfLocalVar(&D, address); + emission.Addr = address; + emission.AllocaAddr = AllocaAddr; + + // Emit debug info for local var declaration. + if (EmitDebugInfo && HaveInsertPoint()) { + DI->setLocation(D.getLocation()); + (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder); + } + + if (D.hasAttr<AnnotateAttr>()) + EmitVarAnnotations(&D, address.getPointer()); + + // Make sure we call @llvm.lifetime.end. + if (emission.useLifetimeMarkers()) + EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker, + emission.getOriginalAllocatedAddress(), + emission.getSizeForLifetimeMarkers()); + + return emission; +} + +static bool isCapturedBy(const VarDecl &, const Expr *); + +/// Determines whether the given __block variable is potentially +/// captured by the given statement. +static bool isCapturedBy(const VarDecl &Var, const Stmt *S) { + if (const Expr *E = dyn_cast<Expr>(S)) + return isCapturedBy(Var, E); + for (const Stmt *SubStmt : S->children()) + if (isCapturedBy(Var, SubStmt)) + return true; + return false; +} + +/// Determines whether the given __block variable is potentially +/// captured by the given expression. +static bool isCapturedBy(const VarDecl &Var, const Expr *E) { + // Skip the most common kinds of expressions that make + // hierarchy-walking expensive. + E = E->IgnoreParenCasts(); + + if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) { + const BlockDecl *Block = BE->getBlockDecl(); + for (const auto &I : Block->captures()) { + if (I.getVariable() == &Var) + return true; + } + + // No need to walk into the subexpressions. + return false; + } + + if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) { + const CompoundStmt *CS = SE->getSubStmt(); + for (const auto *BI : CS->body()) + if (const auto *BIE = dyn_cast<Expr>(BI)) { + if (isCapturedBy(Var, BIE)) + return true; + } + else if (const auto *DS = dyn_cast<DeclStmt>(BI)) { + // special case declarations + for (const auto *I : DS->decls()) { + if (const auto *VD = dyn_cast<VarDecl>((I))) { + const Expr *Init = VD->getInit(); + if (Init && isCapturedBy(Var, Init)) + return true; + } + } + } + else + // FIXME. Make safe assumption assuming arbitrary statements cause capturing. + // Later, provide code to poke into statements for capture analysis. + return true; + return false; + } + + for (const Stmt *SubStmt : E->children()) + if (isCapturedBy(Var, SubStmt)) + return true; + + return false; +} + +/// Determine whether the given initializer is trivial in the sense +/// that it requires no code to be generated. +bool CodeGenFunction::isTrivialInitializer(const Expr *Init) { + if (!Init) + return true; + + if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init)) + if (CXXConstructorDecl *Constructor = Construct->getConstructor()) + if (Constructor->isTrivial() && + Constructor->isDefaultConstructor() && + !Construct->requiresZeroInitialization()) + return true; + + return false; +} + +void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) { + assert(emission.Variable && "emission was not valid!"); + + // If this was emitted as a global constant, we're done. + if (emission.wasEmittedAsGlobal()) return; + + const VarDecl &D = *emission.Variable; + auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation()); + QualType type = D.getType(); + + bool isVolatile = type.isVolatileQualified(); + + // If this local has an initializer, emit it now. + const Expr *Init = D.getInit(); + + // If we are at an unreachable point, we don't need to emit the initializer + // unless it contains a label. + if (!HaveInsertPoint()) { + if (!Init || !ContainsLabel(Init)) return; + EnsureInsertPoint(); + } + + // Initialize the structure of a __block variable. + if (emission.IsEscapingByRef) + emitByrefStructureInit(emission); + + // Initialize the variable here if it doesn't have a initializer and it is a + // C struct that is non-trivial to initialize or an array containing such a + // struct. + if (!Init && + type.isNonTrivialToPrimitiveDefaultInitialize() == + QualType::PDIK_Struct) { + LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type); + if (emission.IsEscapingByRef) + drillIntoBlockVariable(*this, Dst, &D); + defaultInitNonTrivialCStructVar(Dst); + return; + } + + // Check whether this is a byref variable that's potentially + // captured and moved by its own initializer. If so, we'll need to + // emit the initializer first, then copy into the variable. + bool capturedByInit = + Init && emission.IsEscapingByRef && isCapturedBy(D, Init); + + Address Loc = + capturedByInit ? emission.Addr : emission.getObjectAddress(*this); + + // Note: constexpr already initializes everything correctly. + LangOptions::TrivialAutoVarInitKind trivialAutoVarInit = + (D.isConstexpr() + ? LangOptions::TrivialAutoVarInitKind::Uninitialized + : (D.getAttr<UninitializedAttr>() + ? LangOptions::TrivialAutoVarInitKind::Uninitialized + : getContext().getLangOpts().getTrivialAutoVarInit())); + + auto initializeWhatIsTechnicallyUninitialized = [&]() { + if (trivialAutoVarInit == + LangOptions::TrivialAutoVarInitKind::Uninitialized) + return; + + CharUnits Size = getContext().getTypeSizeInChars(type); + if (!Size.isZero()) { + switch (trivialAutoVarInit) { + case LangOptions::TrivialAutoVarInitKind::Uninitialized: + llvm_unreachable("Uninitialized handled above"); + case LangOptions::TrivialAutoVarInitKind::Zero: + emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder); + break; + case LangOptions::TrivialAutoVarInitKind::Pattern: + emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder); + break; + } + return; + } + + // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to + // them, so emit a memcpy with the VLA size to initialize each element. + // Technically zero-sized or negative-sized VLAs are undefined, and UBSan + // will catch that code, but there exists code which generates zero-sized + // VLAs. Be nice and initialize whatever they requested. + const VariableArrayType *VlaType = + dyn_cast_or_null<VariableArrayType>(getContext().getAsArrayType(type)); + if (!VlaType) + return; + auto VlaSize = getVLASize(VlaType); + auto SizeVal = VlaSize.NumElts; + CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type); + switch (trivialAutoVarInit) { + case LangOptions::TrivialAutoVarInitKind::Uninitialized: + llvm_unreachable("Uninitialized handled above"); + + case LangOptions::TrivialAutoVarInitKind::Zero: + if (!EltSize.isOne()) + SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); + Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal, + isVolatile); + break; + + case LangOptions::TrivialAutoVarInitKind::Pattern: { + llvm::Type *ElTy = Loc.getElementType(); + llvm::Constant *Constant = patternFor(CGM, ElTy); + CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type); + llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop"); + llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop"); + llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont"); + llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ( + SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0), + "vla.iszerosized"); + Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB); + EmitBlock(SetupBB); + if (!EltSize.isOne()) + SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize)); + llvm::Value *BaseSizeInChars = + llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity()); + Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin"); + llvm::Value *End = + Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end"); + llvm::BasicBlock *OriginBB = Builder.GetInsertBlock(); + EmitBlock(LoopBB); + llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur"); + Cur->addIncoming(Begin.getPointer(), OriginBB); + CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize); + Builder.CreateMemCpy( + Address(Cur, CurAlign), + createUnnamedGlobalFrom(CGM, D, Builder, Constant, ConstantAlign), + BaseSizeInChars, isVolatile); + llvm::Value *Next = + Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next"); + llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone"); + Builder.CreateCondBr(Done, ContBB, LoopBB); + Cur->addIncoming(Next, LoopBB); + EmitBlock(ContBB); + } break; + } + }; + + if (isTrivialInitializer(Init)) { + initializeWhatIsTechnicallyUninitialized(); + return; + } + + llvm::Constant *constant = nullptr; + if (emission.IsConstantAggregate || D.isConstexpr()) { + assert(!capturedByInit && "constant init contains a capturing block?"); + constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D); + if (constant && trivialAutoVarInit != + LangOptions::TrivialAutoVarInitKind::Uninitialized) + constant = replaceUndef(constant); + } + + if (!constant) { + initializeWhatIsTechnicallyUninitialized(); + LValue lv = MakeAddrLValue(Loc, type); + lv.setNonGC(true); + return EmitExprAsInit(Init, &D, lv, capturedByInit); + } + + if (!emission.IsConstantAggregate) { + // For simple scalar/complex initialization, store the value directly. + LValue lv = MakeAddrLValue(Loc, type); + lv.setNonGC(true); + return EmitStoreThroughLValue(RValue::get(constant), lv, true); + } + + llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace()); + if (Loc.getType() != BP) + Loc = Builder.CreateBitCast(Loc, BP); + + emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant); +} + +/// Emit an expression as an initializer for an object (variable, field, etc.) +/// at the given location. The expression is not necessarily the normal +/// initializer for the object, and the address is not necessarily +/// its normal location. +/// +/// \param init the initializing expression +/// \param D the object to act as if we're initializing +/// \param loc the address to initialize; its type is a pointer +/// to the LLVM mapping of the object's type +/// \param alignment the alignment of the address +/// \param capturedByInit true if \p D is a __block variable +/// whose address is potentially changed by the initializer +void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D, + LValue lvalue, bool capturedByInit) { + QualType type = D->getType(); + + if (type->isReferenceType()) { + RValue rvalue = EmitReferenceBindingToExpr(init); + if (capturedByInit) + drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); + EmitStoreThroughLValue(rvalue, lvalue, true); + return; + } + switch (getEvaluationKind(type)) { + case TEK_Scalar: + EmitScalarInit(init, D, lvalue, capturedByInit); + return; + case TEK_Complex: { + ComplexPairTy complex = EmitComplexExpr(init); + if (capturedByInit) + drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D)); + EmitStoreOfComplex(complex, lvalue, /*init*/ true); + return; + } + case TEK_Aggregate: + if (type->isAtomicType()) { + EmitAtomicInit(const_cast<Expr*>(init), lvalue); + } else { + AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap; + if (isa<VarDecl>(D)) + Overlap = AggValueSlot::DoesNotOverlap; + else if (auto *FD = dyn_cast<FieldDecl>(D)) + Overlap = overlapForFieldInit(FD); + // TODO: how can we delay here if D is captured by its initializer? + EmitAggExpr(init, AggValueSlot::forLValue(lvalue, + AggValueSlot::IsDestructed, + AggValueSlot::DoesNotNeedGCBarriers, + AggValueSlot::IsNotAliased, + Overlap)); + } + return; + } + llvm_unreachable("bad evaluation kind"); +} + +/// Enter a destroy cleanup for the given local variable. +void CodeGenFunction::emitAutoVarTypeCleanup( + const CodeGenFunction::AutoVarEmission &emission, + QualType::DestructionKind dtorKind) { + assert(dtorKind != QualType::DK_none); + + // Note that for __block variables, we want to destroy the + // original stack object, not the possibly forwarded object. + Address addr = emission.getObjectAddress(*this); + + const VarDecl *var = emission.Variable; + QualType type = var->getType(); + + CleanupKind cleanupKind = NormalAndEHCleanup; + CodeGenFunction::Destroyer *destroyer = nullptr; + + switch (dtorKind) { + case QualType::DK_none: + llvm_unreachable("no cleanup for trivially-destructible variable"); + + case QualType::DK_cxx_destructor: + // If there's an NRVO flag on the emission, we need a different + // cleanup. + if (emission.NRVOFlag) { + assert(!type->isArrayType()); + CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor(); + EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor, + emission.NRVOFlag); + return; + } + break; + + case QualType::DK_objc_strong_lifetime: + // Suppress cleanups for pseudo-strong variables. + if (var->isARCPseudoStrong()) return; + + // Otherwise, consider whether to use an EH cleanup or not. + cleanupKind = getARCCleanupKind(); + + // Use the imprecise destroyer by default. + if (!var->hasAttr<ObjCPreciseLifetimeAttr>()) + destroyer = CodeGenFunction::destroyARCStrongImprecise; + break; + + case QualType::DK_objc_weak_lifetime: + break; + + case QualType::DK_nontrivial_c_struct: + destroyer = CodeGenFunction::destroyNonTrivialCStruct; + if (emission.NRVOFlag) { + assert(!type->isArrayType()); + EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr, + emission.NRVOFlag, type); + return; + } + break; + } + + // If we haven't chosen a more specific destroyer, use the default. + if (!destroyer) destroyer = getDestroyer(dtorKind); + + // Use an EH cleanup in array destructors iff the destructor itself + // is being pushed as an EH cleanup. + bool useEHCleanup = (cleanupKind & EHCleanup); + EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer, + useEHCleanup); +} + +void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) { + assert(emission.Variable && "emission was not valid!"); + + // If this was emitted as a global constant, we're done. + if (emission.wasEmittedAsGlobal()) return; + + // If we don't have an insertion point, we're done. Sema prevents + // us from jumping into any of these scopes anyway. + if (!HaveInsertPoint()) return; + + const VarDecl &D = *emission.Variable; + + // Check the type for a cleanup. + if (QualType::DestructionKind dtorKind = D.getType().isDestructedType()) + emitAutoVarTypeCleanup(emission, dtorKind); + + // In GC mode, honor objc_precise_lifetime. + if (getLangOpts().getGC() != LangOptions::NonGC && + D.hasAttr<ObjCPreciseLifetimeAttr>()) { + EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D); + } + + // Handle the cleanup attribute. + if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) { + const FunctionDecl *FD = CA->getFunctionDecl(); + + llvm::Constant *F = CGM.GetAddrOfFunction(FD); + assert(F && "Could not find function!"); + + const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD); + EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D); + } + + // If this is a block variable, call _Block_object_destroy + // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC + // mode. + if (emission.IsEscapingByRef && + CGM.getLangOpts().getGC() != LangOptions::GCOnly) { + BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF; + if (emission.Variable->getType().isObjCGCWeak()) + Flags |= BLOCK_FIELD_IS_WEAK; + enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags, + /*LoadBlockVarAddr*/ false, + cxxDestructorCanThrow(emission.Variable->getType())); + } +} + +CodeGenFunction::Destroyer * +CodeGenFunction::getDestroyer(QualType::DestructionKind kind) { + switch (kind) { + case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor"); + case QualType::DK_cxx_destructor: + return destroyCXXObject; + case QualType::DK_objc_strong_lifetime: + return destroyARCStrongPrecise; + case QualType::DK_objc_weak_lifetime: + return destroyARCWeak; + case QualType::DK_nontrivial_c_struct: + return destroyNonTrivialCStruct; + } + llvm_unreachable("Unknown DestructionKind"); +} + +/// pushEHDestroy - Push the standard destructor for the given type as +/// an EH-only cleanup. +void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind, + Address addr, QualType type) { + assert(dtorKind && "cannot push destructor for trivial type"); + assert(needsEHCleanup(dtorKind)); + + pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true); +} + +/// pushDestroy - Push the standard destructor for the given type as +/// at least a normal cleanup. +void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind, + Address addr, QualType type) { + assert(dtorKind && "cannot push destructor for trivial type"); + + CleanupKind cleanupKind = getCleanupKind(dtorKind); + pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind), + cleanupKind & EHCleanup); +} + +void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr, + QualType type, Destroyer *destroyer, + bool useEHCleanupForArray) { + pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type, + destroyer, useEHCleanupForArray); +} + +void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) { + EHStack.pushCleanup<CallStackRestore>(Kind, SPMem); +} + +void CodeGenFunction::pushLifetimeExtendedDestroy( + CleanupKind cleanupKind, Address addr, QualType type, + Destroyer *destroyer, bool useEHCleanupForArray) { + // Push an EH-only cleanup for the object now. + // FIXME: When popping normal cleanups, we need to keep this EH cleanup + // around in case a temporary's destructor throws an exception. + if (cleanupKind & EHCleanup) + EHStack.pushCleanup<DestroyObject>( + static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type, + destroyer, useEHCleanupForArray); + + // Remember that we need to push a full cleanup for the object at the + // end of the full-expression. + pushCleanupAfterFullExpr<DestroyObject>( + cleanupKind, addr, type, destroyer, useEHCleanupForArray); +} + +/// emitDestroy - Immediately perform the destruction of the given +/// object. +/// +/// \param addr - the address of the object; a type* +/// \param type - the type of the object; if an array type, all +/// objects are destroyed in reverse order +/// \param destroyer - the function to call to destroy individual +/// elements +/// \param useEHCleanupForArray - whether an EH cleanup should be +/// used when destroying array elements, in case one of the +/// destructions throws an exception +void CodeGenFunction::emitDestroy(Address addr, QualType type, + Destroyer *destroyer, + bool useEHCleanupForArray) { + const ArrayType *arrayType = getContext().getAsArrayType(type); + if (!arrayType) + return destroyer(*this, addr, type); + + llvm::Value *length = emitArrayLength(arrayType, type, addr); + + CharUnits elementAlign = + addr.getAlignment() + .alignmentOfArrayElement(getContext().getTypeSizeInChars(type)); + + // Normally we have to check whether the array is zero-length. + bool checkZeroLength = true; + + // But if the array length is constant, we can suppress that. + if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) { + // ...and if it's constant zero, we can just skip the entire thing. + if (constLength->isZero()) return; + checkZeroLength = false; + } + + llvm::Value *begin = addr.getPointer(); + llvm::Value *end = Builder.CreateInBoundsGEP(begin, length); + emitArrayDestroy(begin, end, type, elementAlign, destroyer, + checkZeroLength, useEHCleanupForArray); +} + +/// emitArrayDestroy - Destroys all the elements of the given array, +/// beginning from last to first. The array cannot be zero-length. +/// +/// \param begin - a type* denoting the first element of the array +/// \param end - a type* denoting one past the end of the array +/// \param elementType - the element type of the array +/// \param destroyer - the function to call to destroy elements +/// \param useEHCleanup - whether to push an EH cleanup to destroy +/// the remaining elements in case the destruction of a single +/// element throws +void CodeGenFunction::emitArrayDestroy(llvm::Value *begin, + llvm::Value *end, + QualType elementType, + CharUnits elementAlign, + Destroyer *destroyer, + bool checkZeroLength, + bool useEHCleanup) { + assert(!elementType->isArrayType()); + + // The basic structure here is a do-while loop, because we don't + // need to check for the zero-element case. + llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body"); + llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done"); + + if (checkZeroLength) { + llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end, + "arraydestroy.isempty"); + Builder.CreateCondBr(isEmpty, doneBB, bodyBB); + } + + // Enter the loop body, making that address the current address. + llvm::BasicBlock *entryBB = Builder.GetInsertBlock(); + EmitBlock(bodyBB); + llvm::PHINode *elementPast = + Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast"); + elementPast->addIncoming(end, entryBB); + + // Shift the address back by one element. + llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true); + llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne, + "arraydestroy.element"); + + if (useEHCleanup) + pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign, + destroyer); + + // Perform the actual destruction there. + destroyer(*this, Address(element, elementAlign), elementType); + + if (useEHCleanup) + PopCleanupBlock(); + + // Check whether we've reached the end. + llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done"); + Builder.CreateCondBr(done, doneBB, bodyBB); + elementPast->addIncoming(element, Builder.GetInsertBlock()); + + // Done. + EmitBlock(doneBB); +} + +/// Perform partial array destruction as if in an EH cleanup. Unlike +/// emitArrayDestroy, the element type here may still be an array type. +static void emitPartialArrayDestroy(CodeGenFunction &CGF, + llvm::Value *begin, llvm::Value *end, + QualType type, CharUnits elementAlign, + CodeGenFunction::Destroyer *destroyer) { + // If the element type is itself an array, drill down. + unsigned arrayDepth = 0; + while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) { + // VLAs don't require a GEP index to walk into. + if (!isa<VariableArrayType>(arrayType)) + arrayDepth++; + type = arrayType->getElementType(); + } + + if (arrayDepth) { + llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0); + + SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero); + begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin"); + end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend"); + } + + // Destroy the array. We don't ever need an EH cleanup because we + // assume that we're in an EH cleanup ourselves, so a throwing + // destructor causes an immediate terminate. + CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer, + /*checkZeroLength*/ true, /*useEHCleanup*/ false); +} + +namespace { + /// RegularPartialArrayDestroy - a cleanup which performs a partial + /// array destroy where the end pointer is regularly determined and + /// does not need to be loaded from a local. + class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup { + llvm::Value *ArrayBegin; + llvm::Value *ArrayEnd; + QualType ElementType; + CodeGenFunction::Destroyer *Destroyer; + CharUnits ElementAlign; + public: + RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd, + QualType elementType, CharUnits elementAlign, + CodeGenFunction::Destroyer *destroyer) + : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd), + ElementType(elementType), Destroyer(destroyer), + ElementAlign(elementAlign) {} + + void Emit(CodeGenFunction &CGF, Flags flags) override { + emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd, + ElementType, ElementAlign, Destroyer); + } + }; + + /// IrregularPartialArrayDestroy - a cleanup which performs a + /// partial array destroy where the end pointer is irregularly + /// determined and must be loaded from a local. + class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup { + llvm::Value *ArrayBegin; + Address ArrayEndPointer; + QualType ElementType; + CodeGenFunction::Destroyer *Destroyer; + CharUnits ElementAlign; + public: + IrregularPartialArrayDestroy(llvm::Value *arrayBegin, + Address arrayEndPointer, + QualType elementType, + CharUnits elementAlign, + CodeGenFunction::Destroyer *destroyer) + : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer), + ElementType(elementType), Destroyer(destroyer), + ElementAlign(elementAlign) {} + + void Emit(CodeGenFunction &CGF, Flags flags) override { + llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer); + emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd, + ElementType, ElementAlign, Destroyer); + } + }; +} // end anonymous namespace + +/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy +/// already-constructed elements of the given array. The cleanup +/// may be popped with DeactivateCleanupBlock or PopCleanupBlock. +/// +/// \param elementType - the immediate element type of the array; +/// possibly still an array type +void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin, + Address arrayEndPointer, + QualType elementType, + CharUnits elementAlign, + Destroyer *destroyer) { + pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup, + arrayBegin, arrayEndPointer, + elementType, elementAlign, + destroyer); +} + +/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy +/// already-constructed elements of the given array. The cleanup +/// may be popped with DeactivateCleanupBlock or PopCleanupBlock. +/// +/// \param elementType - the immediate element type of the array; +/// possibly still an array type +void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin, + llvm::Value *arrayEnd, + QualType elementType, + CharUnits elementAlign, + Destroyer *destroyer) { + pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup, + arrayBegin, arrayEnd, + elementType, elementAlign, + destroyer); +} + +/// Lazily declare the @llvm.lifetime.start intrinsic. +llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() { + if (LifetimeStartFn) + return LifetimeStartFn; + LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(), + llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy); + return LifetimeStartFn; +} + +/// Lazily declare the @llvm.lifetime.end intrinsic. +llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() { + if (LifetimeEndFn) + return LifetimeEndFn; + LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(), + llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy); + return LifetimeEndFn; +} + +namespace { + /// A cleanup to perform a release of an object at the end of a + /// function. This is used to balance out the incoming +1 of a + /// ns_consumed argument when we can't reasonably do that just by + /// not doing the initial retain for a __block argument. + struct ConsumeARCParameter final : EHScopeStack::Cleanup { + ConsumeARCParameter(llvm::Value *param, + ARCPreciseLifetime_t precise) + : Param(param), Precise(precise) {} + + llvm::Value *Param; + ARCPreciseLifetime_t Precise; + + void Emit(CodeGenFunction &CGF, Flags flags) override { + CGF.EmitARCRelease(Param, Precise); + } + }; +} // end anonymous namespace + +/// Emit an alloca (or GlobalValue depending on target) +/// for the specified parameter and set up LocalDeclMap. +void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg, + unsigned ArgNo) { + // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl? + assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) && + "Invalid argument to EmitParmDecl"); + + Arg.getAnyValue()->setName(D.getName()); + + QualType Ty = D.getType(); + + // Use better IR generation for certain implicit parameters. + if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) { + // The only implicit argument a block has is its literal. + // This may be passed as an inalloca'ed value on Windows x86. + if (BlockInfo) { + llvm::Value *V = Arg.isIndirect() + ? Builder.CreateLoad(Arg.getIndirectAddress()) + : Arg.getDirectValue(); + setBlockContextParameter(IPD, ArgNo, V); + return; + } + } + + Address DeclPtr = Address::invalid(); + bool DoStore = false; + bool IsScalar = hasScalarEvaluationKind(Ty); + // If we already have a pointer to the argument, reuse the input pointer. + if (Arg.isIndirect()) { + DeclPtr = Arg.getIndirectAddress(); + // If we have a prettier pointer type at this point, bitcast to that. + unsigned AS = DeclPtr.getType()->getAddressSpace(); + llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS); + if (DeclPtr.getType() != IRTy) + DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName()); + // Indirect argument is in alloca address space, which may be different + // from the default address space. + auto AllocaAS = CGM.getASTAllocaAddressSpace(); + auto *V = DeclPtr.getPointer(); + auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS; + auto DestLangAS = + getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default; + if (SrcLangAS != DestLangAS) { + assert(getContext().getTargetAddressSpace(SrcLangAS) == + CGM.getDataLayout().getAllocaAddrSpace()); + auto DestAS = getContext().getTargetAddressSpace(DestLangAS); + auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS); + DeclPtr = Address(getTargetHooks().performAddrSpaceCast( + *this, V, SrcLangAS, DestLangAS, T, true), + DeclPtr.getAlignment()); + } + + // Push a destructor cleanup for this parameter if the ABI requires it. + // Don't push a cleanup in a thunk for a method that will also emit a + // cleanup. + if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk && + Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) { + if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) { + assert((DtorKind == QualType::DK_cxx_destructor || + DtorKind == QualType::DK_nontrivial_c_struct) && + "unexpected destructor type"); + pushDestroy(DtorKind, DeclPtr, Ty); + CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] = + EHStack.stable_begin(); + } + } + } else { + // Check if the parameter address is controlled by OpenMP runtime. + Address OpenMPLocalAddr = + getLangOpts().OpenMP + ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D) + : Address::invalid(); + if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) { + DeclPtr = OpenMPLocalAddr; + } else { + // Otherwise, create a temporary to hold the value. + DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D), + D.getName() + ".addr"); + } + DoStore = true; + } + + llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr); + + LValue lv = MakeAddrLValue(DeclPtr, Ty); + if (IsScalar) { + Qualifiers qs = Ty.getQualifiers(); + if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) { + // We honor __attribute__((ns_consumed)) for types with lifetime. + // For __strong, it's handled by just skipping the initial retain; + // otherwise we have to balance out the initial +1 with an extra + // cleanup to do the release at the end of the function. + bool isConsumed = D.hasAttr<NSConsumedAttr>(); + + // If a parameter is pseudo-strong then we can omit the implicit retain. + if (D.isARCPseudoStrong()) { + assert(lt == Qualifiers::OCL_Strong && + "pseudo-strong variable isn't strong?"); + assert(qs.hasConst() && "pseudo-strong variable should be const!"); + lt = Qualifiers::OCL_ExplicitNone; + } + + // Load objects passed indirectly. + if (Arg.isIndirect() && !ArgVal) + ArgVal = Builder.CreateLoad(DeclPtr); + + if (lt == Qualifiers::OCL_Strong) { + if (!isConsumed) { + if (CGM.getCodeGenOpts().OptimizationLevel == 0) { + // use objc_storeStrong(&dest, value) for retaining the + // object. But first, store a null into 'dest' because + // objc_storeStrong attempts to release its old value. + llvm::Value *Null = CGM.EmitNullConstant(D.getType()); + EmitStoreOfScalar(Null, lv, /* isInitialization */ true); + EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true); + DoStore = false; + } + else + // Don't use objc_retainBlock for block pointers, because we + // don't want to Block_copy something just because we got it + // as a parameter. + ArgVal = EmitARCRetainNonBlock(ArgVal); + } + } else { + // Push the cleanup for a consumed parameter. + if (isConsumed) { + ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>() + ? ARCPreciseLifetime : ARCImpreciseLifetime); + EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal, + precise); + } + + if (lt == Qualifiers::OCL_Weak) { + EmitARCInitWeak(DeclPtr, ArgVal); + DoStore = false; // The weak init is a store, no need to do two. + } + } + + // Enter the cleanup scope. + EmitAutoVarWithLifetime(*this, D, DeclPtr, lt); + } + } + + // Store the initial value into the alloca. + if (DoStore) + EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true); + + setAddrOfLocalVar(&D, DeclPtr); + + // Emit debug info for param declaration. + if (CGDebugInfo *DI = getDebugInfo()) { + if (CGM.getCodeGenOpts().getDebugInfo() >= + codegenoptions::LimitedDebugInfo) { + DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder); + } + } + + if (D.hasAttr<AnnotateAttr>()) + EmitVarAnnotations(&D, DeclPtr.getPointer()); + + // We can only check return value nullability if all arguments to the + // function satisfy their nullability preconditions. This makes it necessary + // to emit null checks for args in the function body itself. + if (requiresReturnValueNullabilityCheck()) { + auto Nullability = Ty->getNullability(getContext()); + if (Nullability && *Nullability == NullabilityKind::NonNull) { + SanitizerScope SanScope(this); + RetValNullabilityPrecondition = + Builder.CreateAnd(RetValNullabilityPrecondition, + Builder.CreateIsNotNull(Arg.getAnyValue())); + } + } +} + +void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D, + CodeGenFunction *CGF) { + if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed())) + return; + getOpenMPRuntime().emitUserDefinedReduction(CGF, D); +} + +void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) { + getOpenMPRuntime().checkArchForUnifiedAddressing(*this, D); +} |