aboutsummaryrefslogtreecommitdiff
path: root/contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp')
-rw-r--r--contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp2422
1 files changed, 2422 insertions, 0 deletions
diff --git a/contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp b/contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp
new file mode 100644
index 000000000000..5959d889b455
--- /dev/null
+++ b/contrib/llvm/tools/clang/lib/CodeGen/CGDecl.cpp
@@ -0,0 +1,2422 @@
+//===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This contains code to emit Decl nodes as LLVM code.
+//
+//===----------------------------------------------------------------------===//
+
+#include "CGBlocks.h"
+#include "CGCXXABI.h"
+#include "CGCleanup.h"
+#include "CGDebugInfo.h"
+#include "CGOpenCLRuntime.h"
+#include "CGOpenMPRuntime.h"
+#include "CodeGenFunction.h"
+#include "CodeGenModule.h"
+#include "ConstantEmitter.h"
+#include "TargetInfo.h"
+#include "clang/AST/ASTContext.h"
+#include "clang/AST/CharUnits.h"
+#include "clang/AST/Decl.h"
+#include "clang/AST/DeclObjC.h"
+#include "clang/AST/DeclOpenMP.h"
+#include "clang/Basic/CodeGenOptions.h"
+#include "clang/Basic/SourceManager.h"
+#include "clang/Basic/TargetInfo.h"
+#include "clang/CodeGen/CGFunctionInfo.h"
+#include "llvm/Analysis/ValueTracking.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/GlobalVariable.h"
+#include "llvm/IR/Intrinsics.h"
+#include "llvm/IR/Type.h"
+
+using namespace clang;
+using namespace CodeGen;
+
+void CodeGenFunction::EmitDecl(const Decl &D) {
+ switch (D.getKind()) {
+ case Decl::BuiltinTemplate:
+ case Decl::TranslationUnit:
+ case Decl::ExternCContext:
+ case Decl::Namespace:
+ case Decl::UnresolvedUsingTypename:
+ case Decl::ClassTemplateSpecialization:
+ case Decl::ClassTemplatePartialSpecialization:
+ case Decl::VarTemplateSpecialization:
+ case Decl::VarTemplatePartialSpecialization:
+ case Decl::TemplateTypeParm:
+ case Decl::UnresolvedUsingValue:
+ case Decl::NonTypeTemplateParm:
+ case Decl::CXXDeductionGuide:
+ case Decl::CXXMethod:
+ case Decl::CXXConstructor:
+ case Decl::CXXDestructor:
+ case Decl::CXXConversion:
+ case Decl::Field:
+ case Decl::MSProperty:
+ case Decl::IndirectField:
+ case Decl::ObjCIvar:
+ case Decl::ObjCAtDefsField:
+ case Decl::ParmVar:
+ case Decl::ImplicitParam:
+ case Decl::ClassTemplate:
+ case Decl::VarTemplate:
+ case Decl::FunctionTemplate:
+ case Decl::TypeAliasTemplate:
+ case Decl::TemplateTemplateParm:
+ case Decl::ObjCMethod:
+ case Decl::ObjCCategory:
+ case Decl::ObjCProtocol:
+ case Decl::ObjCInterface:
+ case Decl::ObjCCategoryImpl:
+ case Decl::ObjCImplementation:
+ case Decl::ObjCProperty:
+ case Decl::ObjCCompatibleAlias:
+ case Decl::PragmaComment:
+ case Decl::PragmaDetectMismatch:
+ case Decl::AccessSpec:
+ case Decl::LinkageSpec:
+ case Decl::Export:
+ case Decl::ObjCPropertyImpl:
+ case Decl::FileScopeAsm:
+ case Decl::Friend:
+ case Decl::FriendTemplate:
+ case Decl::Block:
+ case Decl::Captured:
+ case Decl::ClassScopeFunctionSpecialization:
+ case Decl::UsingShadow:
+ case Decl::ConstructorUsingShadow:
+ case Decl::ObjCTypeParam:
+ case Decl::Binding:
+ llvm_unreachable("Declaration should not be in declstmts!");
+ case Decl::Function: // void X();
+ case Decl::Record: // struct/union/class X;
+ case Decl::Enum: // enum X;
+ case Decl::EnumConstant: // enum ? { X = ? }
+ case Decl::CXXRecord: // struct/union/class X; [C++]
+ case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
+ case Decl::Label: // __label__ x;
+ case Decl::Import:
+ case Decl::OMPThreadPrivate:
+ case Decl::OMPCapturedExpr:
+ case Decl::OMPRequires:
+ case Decl::Empty:
+ // None of these decls require codegen support.
+ return;
+
+ case Decl::NamespaceAlias:
+ if (CGDebugInfo *DI = getDebugInfo())
+ DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
+ return;
+ case Decl::Using: // using X; [C++]
+ if (CGDebugInfo *DI = getDebugInfo())
+ DI->EmitUsingDecl(cast<UsingDecl>(D));
+ return;
+ case Decl::UsingPack:
+ for (auto *Using : cast<UsingPackDecl>(D).expansions())
+ EmitDecl(*Using);
+ return;
+ case Decl::UsingDirective: // using namespace X; [C++]
+ if (CGDebugInfo *DI = getDebugInfo())
+ DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
+ return;
+ case Decl::Var:
+ case Decl::Decomposition: {
+ const VarDecl &VD = cast<VarDecl>(D);
+ assert(VD.isLocalVarDecl() &&
+ "Should not see file-scope variables inside a function!");
+ EmitVarDecl(VD);
+ if (auto *DD = dyn_cast<DecompositionDecl>(&VD))
+ for (auto *B : DD->bindings())
+ if (auto *HD = B->getHoldingVar())
+ EmitVarDecl(*HD);
+ return;
+ }
+
+ case Decl::OMPDeclareReduction:
+ return CGM.EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(&D), this);
+
+ case Decl::Typedef: // typedef int X;
+ case Decl::TypeAlias: { // using X = int; [C++0x]
+ const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
+ QualType Ty = TD.getUnderlyingType();
+
+ if (Ty->isVariablyModifiedType())
+ EmitVariablyModifiedType(Ty);
+ }
+ }
+}
+
+/// EmitVarDecl - This method handles emission of any variable declaration
+/// inside a function, including static vars etc.
+void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
+ if (D.hasExternalStorage())
+ // Don't emit it now, allow it to be emitted lazily on its first use.
+ return;
+
+ // Some function-scope variable does not have static storage but still
+ // needs to be emitted like a static variable, e.g. a function-scope
+ // variable in constant address space in OpenCL.
+ if (D.getStorageDuration() != SD_Automatic) {
+ // Static sampler variables translated to function calls.
+ if (D.getType()->isSamplerT())
+ return;
+
+ llvm::GlobalValue::LinkageTypes Linkage =
+ CGM.getLLVMLinkageVarDefinition(&D, /*isConstant=*/false);
+
+ // FIXME: We need to force the emission/use of a guard variable for
+ // some variables even if we can constant-evaluate them because
+ // we can't guarantee every translation unit will constant-evaluate them.
+
+ return EmitStaticVarDecl(D, Linkage);
+ }
+
+ if (D.getType().getAddressSpace() == LangAS::opencl_local)
+ return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
+
+ assert(D.hasLocalStorage());
+ return EmitAutoVarDecl(D);
+}
+
+static std::string getStaticDeclName(CodeGenModule &CGM, const VarDecl &D) {
+ if (CGM.getLangOpts().CPlusPlus)
+ return CGM.getMangledName(&D).str();
+
+ // If this isn't C++, we don't need a mangled name, just a pretty one.
+ assert(!D.isExternallyVisible() && "name shouldn't matter");
+ std::string ContextName;
+ const DeclContext *DC = D.getDeclContext();
+ if (auto *CD = dyn_cast<CapturedDecl>(DC))
+ DC = cast<DeclContext>(CD->getNonClosureContext());
+ if (const auto *FD = dyn_cast<FunctionDecl>(DC))
+ ContextName = CGM.getMangledName(FD);
+ else if (const auto *BD = dyn_cast<BlockDecl>(DC))
+ ContextName = CGM.getBlockMangledName(GlobalDecl(), BD);
+ else if (const auto *OMD = dyn_cast<ObjCMethodDecl>(DC))
+ ContextName = OMD->getSelector().getAsString();
+ else
+ llvm_unreachable("Unknown context for static var decl");
+
+ ContextName += "." + D.getNameAsString();
+ return ContextName;
+}
+
+llvm::Constant *CodeGenModule::getOrCreateStaticVarDecl(
+ const VarDecl &D, llvm::GlobalValue::LinkageTypes Linkage) {
+ // In general, we don't always emit static var decls once before we reference
+ // them. It is possible to reference them before emitting the function that
+ // contains them, and it is possible to emit the containing function multiple
+ // times.
+ if (llvm::Constant *ExistingGV = StaticLocalDeclMap[&D])
+ return ExistingGV;
+
+ QualType Ty = D.getType();
+ assert(Ty->isConstantSizeType() && "VLAs can't be static");
+
+ // Use the label if the variable is renamed with the asm-label extension.
+ std::string Name;
+ if (D.hasAttr<AsmLabelAttr>())
+ Name = getMangledName(&D);
+ else
+ Name = getStaticDeclName(*this, D);
+
+ llvm::Type *LTy = getTypes().ConvertTypeForMem(Ty);
+ LangAS AS = GetGlobalVarAddressSpace(&D);
+ unsigned TargetAS = getContext().getTargetAddressSpace(AS);
+
+ // OpenCL variables in local address space and CUDA shared
+ // variables cannot have an initializer.
+ llvm::Constant *Init = nullptr;
+ if (Ty.getAddressSpace() == LangAS::opencl_local ||
+ D.hasAttr<CUDASharedAttr>())
+ Init = llvm::UndefValue::get(LTy);
+ else
+ Init = EmitNullConstant(Ty);
+
+ llvm::GlobalVariable *GV = new llvm::GlobalVariable(
+ getModule(), LTy, Ty.isConstant(getContext()), Linkage, Init, Name,
+ nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS);
+ GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
+
+ if (supportsCOMDAT() && GV->isWeakForLinker())
+ GV->setComdat(TheModule.getOrInsertComdat(GV->getName()));
+
+ if (D.getTLSKind())
+ setTLSMode(GV, D);
+
+ setGVProperties(GV, &D);
+
+ // Make sure the result is of the correct type.
+ LangAS ExpectedAS = Ty.getAddressSpace();
+ llvm::Constant *Addr = GV;
+ if (AS != ExpectedAS) {
+ Addr = getTargetCodeGenInfo().performAddrSpaceCast(
+ *this, GV, AS, ExpectedAS,
+ LTy->getPointerTo(getContext().getTargetAddressSpace(ExpectedAS)));
+ }
+
+ setStaticLocalDeclAddress(&D, Addr);
+
+ // Ensure that the static local gets initialized by making sure the parent
+ // function gets emitted eventually.
+ const Decl *DC = cast<Decl>(D.getDeclContext());
+
+ // We can't name blocks or captured statements directly, so try to emit their
+ // parents.
+ if (isa<BlockDecl>(DC) || isa<CapturedDecl>(DC)) {
+ DC = DC->getNonClosureContext();
+ // FIXME: Ensure that global blocks get emitted.
+ if (!DC)
+ return Addr;
+ }
+
+ GlobalDecl GD;
+ if (const auto *CD = dyn_cast<CXXConstructorDecl>(DC))
+ GD = GlobalDecl(CD, Ctor_Base);
+ else if (const auto *DD = dyn_cast<CXXDestructorDecl>(DC))
+ GD = GlobalDecl(DD, Dtor_Base);
+ else if (const auto *FD = dyn_cast<FunctionDecl>(DC))
+ GD = GlobalDecl(FD);
+ else {
+ // Don't do anything for Obj-C method decls or global closures. We should
+ // never defer them.
+ assert(isa<ObjCMethodDecl>(DC) && "unexpected parent code decl");
+ }
+ if (GD.getDecl()) {
+ // Disable emission of the parent function for the OpenMP device codegen.
+ CGOpenMPRuntime::DisableAutoDeclareTargetRAII NoDeclTarget(*this);
+ (void)GetAddrOfGlobal(GD);
+ }
+
+ return Addr;
+}
+
+/// hasNontrivialDestruction - Determine whether a type's destruction is
+/// non-trivial. If so, and the variable uses static initialization, we must
+/// register its destructor to run on exit.
+static bool hasNontrivialDestruction(QualType T) {
+ CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
+ return RD && !RD->hasTrivialDestructor();
+}
+
+/// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
+/// global variable that has already been created for it. If the initializer
+/// has a different type than GV does, this may free GV and return a different
+/// one. Otherwise it just returns GV.
+llvm::GlobalVariable *
+CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
+ llvm::GlobalVariable *GV) {
+ ConstantEmitter emitter(*this);
+ llvm::Constant *Init = emitter.tryEmitForInitializer(D);
+
+ // If constant emission failed, then this should be a C++ static
+ // initializer.
+ if (!Init) {
+ if (!getLangOpts().CPlusPlus)
+ CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
+ else if (HaveInsertPoint()) {
+ // Since we have a static initializer, this global variable can't
+ // be constant.
+ GV->setConstant(false);
+
+ EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
+ }
+ return GV;
+ }
+
+ // The initializer may differ in type from the global. Rewrite
+ // the global to match the initializer. (We have to do this
+ // because some types, like unions, can't be completely represented
+ // in the LLVM type system.)
+ if (GV->getType()->getElementType() != Init->getType()) {
+ llvm::GlobalVariable *OldGV = GV;
+
+ GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
+ OldGV->isConstant(),
+ OldGV->getLinkage(), Init, "",
+ /*InsertBefore*/ OldGV,
+ OldGV->getThreadLocalMode(),
+ CGM.getContext().getTargetAddressSpace(D.getType()));
+ GV->setVisibility(OldGV->getVisibility());
+ GV->setDSOLocal(OldGV->isDSOLocal());
+ GV->setComdat(OldGV->getComdat());
+
+ // Steal the name of the old global
+ GV->takeName(OldGV);
+
+ // Replace all uses of the old global with the new global
+ llvm::Constant *NewPtrForOldDecl =
+ llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
+ OldGV->replaceAllUsesWith(NewPtrForOldDecl);
+
+ // Erase the old global, since it is no longer used.
+ OldGV->eraseFromParent();
+ }
+
+ GV->setConstant(CGM.isTypeConstant(D.getType(), true));
+ GV->setInitializer(Init);
+
+ emitter.finalize(GV);
+
+ if (hasNontrivialDestruction(D.getType()) && HaveInsertPoint()) {
+ // We have a constant initializer, but a nontrivial destructor. We still
+ // need to perform a guarded "initialization" in order to register the
+ // destructor.
+ EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
+ }
+
+ return GV;
+}
+
+void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
+ llvm::GlobalValue::LinkageTypes Linkage) {
+ // Check to see if we already have a global variable for this
+ // declaration. This can happen when double-emitting function
+ // bodies, e.g. with complete and base constructors.
+ llvm::Constant *addr = CGM.getOrCreateStaticVarDecl(D, Linkage);
+ CharUnits alignment = getContext().getDeclAlign(&D);
+
+ // Store into LocalDeclMap before generating initializer to handle
+ // circular references.
+ setAddrOfLocalVar(&D, Address(addr, alignment));
+
+ // We can't have a VLA here, but we can have a pointer to a VLA,
+ // even though that doesn't really make any sense.
+ // Make sure to evaluate VLA bounds now so that we have them for later.
+ if (D.getType()->isVariablyModifiedType())
+ EmitVariablyModifiedType(D.getType());
+
+ // Save the type in case adding the initializer forces a type change.
+ llvm::Type *expectedType = addr->getType();
+
+ llvm::GlobalVariable *var =
+ cast<llvm::GlobalVariable>(addr->stripPointerCasts());
+
+ // CUDA's local and local static __shared__ variables should not
+ // have any non-empty initializers. This is ensured by Sema.
+ // Whatever initializer such variable may have when it gets here is
+ // a no-op and should not be emitted.
+ bool isCudaSharedVar = getLangOpts().CUDA && getLangOpts().CUDAIsDevice &&
+ D.hasAttr<CUDASharedAttr>();
+ // If this value has an initializer, emit it.
+ if (D.getInit() && !isCudaSharedVar)
+ var = AddInitializerToStaticVarDecl(D, var);
+
+ var->setAlignment(alignment.getQuantity());
+
+ if (D.hasAttr<AnnotateAttr>())
+ CGM.AddGlobalAnnotations(&D, var);
+
+ if (auto *SA = D.getAttr<PragmaClangBSSSectionAttr>())
+ var->addAttribute("bss-section", SA->getName());
+ if (auto *SA = D.getAttr<PragmaClangDataSectionAttr>())
+ var->addAttribute("data-section", SA->getName());
+ if (auto *SA = D.getAttr<PragmaClangRodataSectionAttr>())
+ var->addAttribute("rodata-section", SA->getName());
+
+ if (const SectionAttr *SA = D.getAttr<SectionAttr>())
+ var->setSection(SA->getName());
+
+ if (D.hasAttr<UsedAttr>())
+ CGM.addUsedGlobal(var);
+
+ // We may have to cast the constant because of the initializer
+ // mismatch above.
+ //
+ // FIXME: It is really dangerous to store this in the map; if anyone
+ // RAUW's the GV uses of this constant will be invalid.
+ llvm::Constant *castedAddr =
+ llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast(var, expectedType);
+ if (var != castedAddr)
+ LocalDeclMap.find(&D)->second = Address(castedAddr, alignment);
+ CGM.setStaticLocalDeclAddress(&D, castedAddr);
+
+ CGM.getSanitizerMetadata()->reportGlobalToASan(var, D);
+
+ // Emit global variable debug descriptor for static vars.
+ CGDebugInfo *DI = getDebugInfo();
+ if (DI &&
+ CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) {
+ DI->setLocation(D.getLocation());
+ DI->EmitGlobalVariable(var, &D);
+ }
+}
+
+namespace {
+ struct DestroyObject final : EHScopeStack::Cleanup {
+ DestroyObject(Address addr, QualType type,
+ CodeGenFunction::Destroyer *destroyer,
+ bool useEHCleanupForArray)
+ : addr(addr), type(type), destroyer(destroyer),
+ useEHCleanupForArray(useEHCleanupForArray) {}
+
+ Address addr;
+ QualType type;
+ CodeGenFunction::Destroyer *destroyer;
+ bool useEHCleanupForArray;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Don't use an EH cleanup recursively from an EH cleanup.
+ bool useEHCleanupForArray =
+ flags.isForNormalCleanup() && this->useEHCleanupForArray;
+
+ CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
+ }
+ };
+
+ template <class Derived>
+ struct DestroyNRVOVariable : EHScopeStack::Cleanup {
+ DestroyNRVOVariable(Address addr, llvm::Value *NRVOFlag)
+ : NRVOFlag(NRVOFlag), Loc(addr) {}
+
+ llvm::Value *NRVOFlag;
+ Address Loc;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Along the exceptions path we always execute the dtor.
+ bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
+
+ llvm::BasicBlock *SkipDtorBB = nullptr;
+ if (NRVO) {
+ // If we exited via NRVO, we skip the destructor call.
+ llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
+ SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
+ llvm::Value *DidNRVO =
+ CGF.Builder.CreateFlagLoad(NRVOFlag, "nrvo.val");
+ CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
+ CGF.EmitBlock(RunDtorBB);
+ }
+
+ static_cast<Derived *>(this)->emitDestructorCall(CGF);
+
+ if (NRVO) CGF.EmitBlock(SkipDtorBB);
+ }
+
+ virtual ~DestroyNRVOVariable() = default;
+ };
+
+ struct DestroyNRVOVariableCXX final
+ : DestroyNRVOVariable<DestroyNRVOVariableCXX> {
+ DestroyNRVOVariableCXX(Address addr, const CXXDestructorDecl *Dtor,
+ llvm::Value *NRVOFlag)
+ : DestroyNRVOVariable<DestroyNRVOVariableCXX>(addr, NRVOFlag),
+ Dtor(Dtor) {}
+
+ const CXXDestructorDecl *Dtor;
+
+ void emitDestructorCall(CodeGenFunction &CGF) {
+ CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
+ /*ForVirtualBase=*/false,
+ /*Delegating=*/false, Loc);
+ }
+ };
+
+ struct DestroyNRVOVariableC final
+ : DestroyNRVOVariable<DestroyNRVOVariableC> {
+ DestroyNRVOVariableC(Address addr, llvm::Value *NRVOFlag, QualType Ty)
+ : DestroyNRVOVariable<DestroyNRVOVariableC>(addr, NRVOFlag), Ty(Ty) {}
+
+ QualType Ty;
+
+ void emitDestructorCall(CodeGenFunction &CGF) {
+ CGF.destroyNonTrivialCStruct(CGF, Loc, Ty);
+ }
+ };
+
+ struct CallStackRestore final : EHScopeStack::Cleanup {
+ Address Stack;
+ CallStackRestore(Address Stack) : Stack(Stack) {}
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ llvm::Value *V = CGF.Builder.CreateLoad(Stack);
+ llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
+ CGF.Builder.CreateCall(F, V);
+ }
+ };
+
+ struct ExtendGCLifetime final : EHScopeStack::Cleanup {
+ const VarDecl &Var;
+ ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ // Compute the address of the local variable, in case it's a
+ // byref or something.
+ DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
+ Var.getType(), VK_LValue, SourceLocation());
+ llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE),
+ SourceLocation());
+ CGF.EmitExtendGCLifetime(value);
+ }
+ };
+
+ struct CallCleanupFunction final : EHScopeStack::Cleanup {
+ llvm::Constant *CleanupFn;
+ const CGFunctionInfo &FnInfo;
+ const VarDecl &Var;
+
+ CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
+ const VarDecl *Var)
+ : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ DeclRefExpr DRE(CGF.getContext(), const_cast<VarDecl *>(&Var), false,
+ Var.getType(), VK_LValue, SourceLocation());
+ // Compute the address of the local variable, in case it's a byref
+ // or something.
+ llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getPointer();
+
+ // In some cases, the type of the function argument will be different from
+ // the type of the pointer. An example of this is
+ // void f(void* arg);
+ // __attribute__((cleanup(f))) void *g;
+ //
+ // To fix this we insert a bitcast here.
+ QualType ArgTy = FnInfo.arg_begin()->type;
+ llvm::Value *Arg =
+ CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
+
+ CallArgList Args;
+ Args.add(RValue::get(Arg),
+ CGF.getContext().getPointerType(Var.getType()));
+ auto Callee = CGCallee::forDirect(CleanupFn);
+ CGF.EmitCall(FnInfo, Callee, ReturnValueSlot(), Args);
+ }
+ };
+} // end anonymous namespace
+
+/// EmitAutoVarWithLifetime - Does the setup required for an automatic
+/// variable with lifetime.
+static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
+ Address addr,
+ Qualifiers::ObjCLifetime lifetime) {
+ switch (lifetime) {
+ case Qualifiers::OCL_None:
+ llvm_unreachable("present but none");
+
+ case Qualifiers::OCL_ExplicitNone:
+ // nothing to do
+ break;
+
+ case Qualifiers::OCL_Strong: {
+ CodeGenFunction::Destroyer *destroyer =
+ (var.hasAttr<ObjCPreciseLifetimeAttr>()
+ ? CodeGenFunction::destroyARCStrongPrecise
+ : CodeGenFunction::destroyARCStrongImprecise);
+
+ CleanupKind cleanupKind = CGF.getARCCleanupKind();
+ CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
+ cleanupKind & EHCleanup);
+ break;
+ }
+ case Qualifiers::OCL_Autoreleasing:
+ // nothing to do
+ break;
+
+ case Qualifiers::OCL_Weak:
+ // __weak objects always get EH cleanups; otherwise, exceptions
+ // could cause really nasty crashes instead of mere leaks.
+ CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
+ CodeGenFunction::destroyARCWeak,
+ /*useEHCleanup*/ true);
+ break;
+ }
+}
+
+static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
+ if (const Expr *e = dyn_cast<Expr>(s)) {
+ // Skip the most common kinds of expressions that make
+ // hierarchy-walking expensive.
+ s = e = e->IgnoreParenCasts();
+
+ if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
+ return (ref->getDecl() == &var);
+ if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
+ const BlockDecl *block = be->getBlockDecl();
+ for (const auto &I : block->captures()) {
+ if (I.getVariable() == &var)
+ return true;
+ }
+ }
+ }
+
+ for (const Stmt *SubStmt : s->children())
+ // SubStmt might be null; as in missing decl or conditional of an if-stmt.
+ if (SubStmt && isAccessedBy(var, SubStmt))
+ return true;
+
+ return false;
+}
+
+static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
+ if (!decl) return false;
+ if (!isa<VarDecl>(decl)) return false;
+ const VarDecl *var = cast<VarDecl>(decl);
+ return isAccessedBy(*var, e);
+}
+
+static bool tryEmitARCCopyWeakInit(CodeGenFunction &CGF,
+ const LValue &destLV, const Expr *init) {
+ bool needsCast = false;
+
+ while (auto castExpr = dyn_cast<CastExpr>(init->IgnoreParens())) {
+ switch (castExpr->getCastKind()) {
+ // Look through casts that don't require representation changes.
+ case CK_NoOp:
+ case CK_BitCast:
+ case CK_BlockPointerToObjCPointerCast:
+ needsCast = true;
+ break;
+
+ // If we find an l-value to r-value cast from a __weak variable,
+ // emit this operation as a copy or move.
+ case CK_LValueToRValue: {
+ const Expr *srcExpr = castExpr->getSubExpr();
+ if (srcExpr->getType().getObjCLifetime() != Qualifiers::OCL_Weak)
+ return false;
+
+ // Emit the source l-value.
+ LValue srcLV = CGF.EmitLValue(srcExpr);
+
+ // Handle a formal type change to avoid asserting.
+ auto srcAddr = srcLV.getAddress();
+ if (needsCast) {
+ srcAddr = CGF.Builder.CreateElementBitCast(srcAddr,
+ destLV.getAddress().getElementType());
+ }
+
+ // If it was an l-value, use objc_copyWeak.
+ if (srcExpr->getValueKind() == VK_LValue) {
+ CGF.EmitARCCopyWeak(destLV.getAddress(), srcAddr);
+ } else {
+ assert(srcExpr->getValueKind() == VK_XValue);
+ CGF.EmitARCMoveWeak(destLV.getAddress(), srcAddr);
+ }
+ return true;
+ }
+
+ // Stop at anything else.
+ default:
+ return false;
+ }
+
+ init = castExpr->getSubExpr();
+ }
+ return false;
+}
+
+static void drillIntoBlockVariable(CodeGenFunction &CGF,
+ LValue &lvalue,
+ const VarDecl *var) {
+ lvalue.setAddress(CGF.emitBlockByrefAddress(lvalue.getAddress(), var));
+}
+
+void CodeGenFunction::EmitNullabilityCheck(LValue LHS, llvm::Value *RHS,
+ SourceLocation Loc) {
+ if (!SanOpts.has(SanitizerKind::NullabilityAssign))
+ return;
+
+ auto Nullability = LHS.getType()->getNullability(getContext());
+ if (!Nullability || *Nullability != NullabilityKind::NonNull)
+ return;
+
+ // Check if the right hand side of the assignment is nonnull, if the left
+ // hand side must be nonnull.
+ SanitizerScope SanScope(this);
+ llvm::Value *IsNotNull = Builder.CreateIsNotNull(RHS);
+ llvm::Constant *StaticData[] = {
+ EmitCheckSourceLocation(Loc), EmitCheckTypeDescriptor(LHS.getType()),
+ llvm::ConstantInt::get(Int8Ty, 0), // The LogAlignment info is unused.
+ llvm::ConstantInt::get(Int8Ty, TCK_NonnullAssign)};
+ EmitCheck({{IsNotNull, SanitizerKind::NullabilityAssign}},
+ SanitizerHandler::TypeMismatch, StaticData, RHS);
+}
+
+void CodeGenFunction::EmitScalarInit(const Expr *init, const ValueDecl *D,
+ LValue lvalue, bool capturedByInit) {
+ Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
+ if (!lifetime) {
+ llvm::Value *value = EmitScalarExpr(init);
+ if (capturedByInit)
+ drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
+ EmitNullabilityCheck(lvalue, value, init->getExprLoc());
+ EmitStoreThroughLValue(RValue::get(value), lvalue, true);
+ return;
+ }
+
+ if (const CXXDefaultInitExpr *DIE = dyn_cast<CXXDefaultInitExpr>(init))
+ init = DIE->getExpr();
+
+ // If we're emitting a value with lifetime, we have to do the
+ // initialization *before* we leave the cleanup scopes.
+ if (const FullExpr *fe = dyn_cast<FullExpr>(init)) {
+ enterFullExpression(fe);
+ init = fe->getSubExpr();
+ }
+ CodeGenFunction::RunCleanupsScope Scope(*this);
+
+ // We have to maintain the illusion that the variable is
+ // zero-initialized. If the variable might be accessed in its
+ // initializer, zero-initialize before running the initializer, then
+ // actually perform the initialization with an assign.
+ bool accessedByInit = false;
+ if (lifetime != Qualifiers::OCL_ExplicitNone)
+ accessedByInit = (capturedByInit || isAccessedBy(D, init));
+ if (accessedByInit) {
+ LValue tempLV = lvalue;
+ // Drill down to the __block object if necessary.
+ if (capturedByInit) {
+ // We can use a simple GEP for this because it can't have been
+ // moved yet.
+ tempLV.setAddress(emitBlockByrefAddress(tempLV.getAddress(),
+ cast<VarDecl>(D),
+ /*follow*/ false));
+ }
+
+ auto ty = cast<llvm::PointerType>(tempLV.getAddress().getElementType());
+ llvm::Value *zero = CGM.getNullPointer(ty, tempLV.getType());
+
+ // If __weak, we want to use a barrier under certain conditions.
+ if (lifetime == Qualifiers::OCL_Weak)
+ EmitARCInitWeak(tempLV.getAddress(), zero);
+
+ // Otherwise just do a simple store.
+ else
+ EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
+ }
+
+ // Emit the initializer.
+ llvm::Value *value = nullptr;
+
+ switch (lifetime) {
+ case Qualifiers::OCL_None:
+ llvm_unreachable("present but none");
+
+ case Qualifiers::OCL_Strong: {
+ if (!D || !isa<VarDecl>(D) || !cast<VarDecl>(D)->isARCPseudoStrong()) {
+ value = EmitARCRetainScalarExpr(init);
+ break;
+ }
+ // If D is pseudo-strong, treat it like __unsafe_unretained here. This means
+ // that we omit the retain, and causes non-autoreleased return values to be
+ // immediately released.
+ LLVM_FALLTHROUGH;
+ }
+
+ case Qualifiers::OCL_ExplicitNone:
+ value = EmitARCUnsafeUnretainedScalarExpr(init);
+ break;
+
+ case Qualifiers::OCL_Weak: {
+ // If it's not accessed by the initializer, try to emit the
+ // initialization with a copy or move.
+ if (!accessedByInit && tryEmitARCCopyWeakInit(*this, lvalue, init)) {
+ return;
+ }
+
+ // No way to optimize a producing initializer into this. It's not
+ // worth optimizing for, because the value will immediately
+ // disappear in the common case.
+ value = EmitScalarExpr(init);
+
+ if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
+ if (accessedByInit)
+ EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
+ else
+ EmitARCInitWeak(lvalue.getAddress(), value);
+ return;
+ }
+
+ case Qualifiers::OCL_Autoreleasing:
+ value = EmitARCRetainAutoreleaseScalarExpr(init);
+ break;
+ }
+
+ if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
+
+ EmitNullabilityCheck(lvalue, value, init->getExprLoc());
+
+ // If the variable might have been accessed by its initializer, we
+ // might have to initialize with a barrier. We have to do this for
+ // both __weak and __strong, but __weak got filtered out above.
+ if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
+ llvm::Value *oldValue = EmitLoadOfScalar(lvalue, init->getExprLoc());
+ EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
+ EmitARCRelease(oldValue, ARCImpreciseLifetime);
+ return;
+ }
+
+ EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
+}
+
+/// Decide whether we can emit the non-zero parts of the specified initializer
+/// with equal or fewer than NumStores scalar stores.
+static bool canEmitInitWithFewStoresAfterBZero(llvm::Constant *Init,
+ unsigned &NumStores) {
+ // Zero and Undef never requires any extra stores.
+ if (isa<llvm::ConstantAggregateZero>(Init) ||
+ isa<llvm::ConstantPointerNull>(Init) ||
+ isa<llvm::UndefValue>(Init))
+ return true;
+ if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
+ isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
+ isa<llvm::ConstantExpr>(Init))
+ return Init->isNullValue() || NumStores--;
+
+ // See if we can emit each element.
+ if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
+ for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
+ llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
+ if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
+ return false;
+ }
+ return true;
+ }
+
+ if (llvm::ConstantDataSequential *CDS =
+ dyn_cast<llvm::ConstantDataSequential>(Init)) {
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ llvm::Constant *Elt = CDS->getElementAsConstant(i);
+ if (!canEmitInitWithFewStoresAfterBZero(Elt, NumStores))
+ return false;
+ }
+ return true;
+ }
+
+ // Anything else is hard and scary.
+ return false;
+}
+
+/// For inits that canEmitInitWithFewStoresAfterBZero returned true for, emit
+/// the scalar stores that would be required.
+static void emitStoresForInitAfterBZero(CodeGenModule &CGM,
+ llvm::Constant *Init, Address Loc,
+ bool isVolatile, CGBuilderTy &Builder) {
+ assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
+ "called emitStoresForInitAfterBZero for zero or undef value.");
+
+ if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
+ isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
+ isa<llvm::ConstantExpr>(Init)) {
+ Builder.CreateStore(Init, Loc, isVolatile);
+ return;
+ }
+
+ if (llvm::ConstantDataSequential *CDS =
+ dyn_cast<llvm::ConstantDataSequential>(Init)) {
+ for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
+ llvm::Constant *Elt = CDS->getElementAsConstant(i);
+
+ // If necessary, get a pointer to the element and emit it.
+ if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
+ emitStoresForInitAfterBZero(
+ CGM, Elt,
+ Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
+ isVolatile, Builder);
+ }
+ return;
+ }
+
+ assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
+ "Unknown value type!");
+
+ for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
+ llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
+
+ // If necessary, get a pointer to the element and emit it.
+ if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
+ emitStoresForInitAfterBZero(
+ CGM, Elt,
+ Builder.CreateConstInBoundsGEP2_32(Loc, 0, i, CGM.getDataLayout()),
+ isVolatile, Builder);
+ }
+}
+
+/// Decide whether we should use bzero plus some stores to initialize a local
+/// variable instead of using a memcpy from a constant global. It is beneficial
+/// to use bzero if the global is all zeros, or mostly zeros and large.
+static bool shouldUseBZeroPlusStoresToInitialize(llvm::Constant *Init,
+ uint64_t GlobalSize) {
+ // If a global is all zeros, always use a bzero.
+ if (isa<llvm::ConstantAggregateZero>(Init)) return true;
+
+ // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
+ // do it if it will require 6 or fewer scalar stores.
+ // TODO: Should budget depends on the size? Avoiding a large global warrants
+ // plopping in more stores.
+ unsigned StoreBudget = 6;
+ uint64_t SizeLimit = 32;
+
+ return GlobalSize > SizeLimit &&
+ canEmitInitWithFewStoresAfterBZero(Init, StoreBudget);
+}
+
+/// Decide whether we should use memset to initialize a local variable instead
+/// of using a memcpy from a constant global. Assumes we've already decided to
+/// not user bzero.
+/// FIXME We could be more clever, as we are for bzero above, and generate
+/// memset followed by stores. It's unclear that's worth the effort.
+static llvm::Value *shouldUseMemSetToInitialize(llvm::Constant *Init,
+ uint64_t GlobalSize) {
+ uint64_t SizeLimit = 32;
+ if (GlobalSize <= SizeLimit)
+ return nullptr;
+ return llvm::isBytewiseValue(Init);
+}
+
+static llvm::Constant *patternFor(CodeGenModule &CGM, llvm::Type *Ty) {
+ // The following value is a guaranteed unmappable pointer value and has a
+ // repeated byte-pattern which makes it easier to synthesize. We use it for
+ // pointers as well as integers so that aggregates are likely to be
+ // initialized with this repeated value.
+ constexpr uint64_t LargeValue = 0xAAAAAAAAAAAAAAAAull;
+ // For 32-bit platforms it's a bit trickier because, across systems, only the
+ // zero page can reasonably be expected to be unmapped, and even then we need
+ // a very low address. We use a smaller value, and that value sadly doesn't
+ // have a repeated byte-pattern. We don't use it for integers.
+ constexpr uint32_t SmallValue = 0x000000AA;
+ // Floating-point values are initialized as NaNs because they propagate. Using
+ // a repeated byte pattern means that it will be easier to initialize
+ // all-floating-point aggregates and arrays with memset. Further, aggregates
+ // which mix integral and a few floats might also initialize with memset
+ // followed by a handful of stores for the floats. Using fairly unique NaNs
+ // also means they'll be easier to distinguish in a crash.
+ constexpr bool NegativeNaN = true;
+ constexpr uint64_t NaNPayload = 0xFFFFFFFFFFFFFFFFull;
+ if (Ty->isIntOrIntVectorTy()) {
+ unsigned BitWidth = cast<llvm::IntegerType>(
+ Ty->isVectorTy() ? Ty->getVectorElementType() : Ty)
+ ->getBitWidth();
+ if (BitWidth <= 64)
+ return llvm::ConstantInt::get(Ty, LargeValue);
+ return llvm::ConstantInt::get(
+ Ty, llvm::APInt::getSplat(BitWidth, llvm::APInt(64, LargeValue)));
+ }
+ if (Ty->isPtrOrPtrVectorTy()) {
+ auto *PtrTy = cast<llvm::PointerType>(
+ Ty->isVectorTy() ? Ty->getVectorElementType() : Ty);
+ unsigned PtrWidth = CGM.getContext().getTargetInfo().getPointerWidth(
+ PtrTy->getAddressSpace());
+ llvm::Type *IntTy = llvm::IntegerType::get(CGM.getLLVMContext(), PtrWidth);
+ uint64_t IntValue;
+ switch (PtrWidth) {
+ default:
+ llvm_unreachable("pattern initialization of unsupported pointer width");
+ case 64:
+ IntValue = LargeValue;
+ break;
+ case 32:
+ IntValue = SmallValue;
+ break;
+ }
+ auto *Int = llvm::ConstantInt::get(IntTy, IntValue);
+ return llvm::ConstantExpr::getIntToPtr(Int, PtrTy);
+ }
+ if (Ty->isFPOrFPVectorTy()) {
+ unsigned BitWidth = llvm::APFloat::semanticsSizeInBits(
+ (Ty->isVectorTy() ? Ty->getVectorElementType() : Ty)
+ ->getFltSemantics());
+ llvm::APInt Payload(64, NaNPayload);
+ if (BitWidth >= 64)
+ Payload = llvm::APInt::getSplat(BitWidth, Payload);
+ return llvm::ConstantFP::getQNaN(Ty, NegativeNaN, &Payload);
+ }
+ if (Ty->isArrayTy()) {
+ // Note: this doesn't touch tail padding (at the end of an object, before
+ // the next array object). It is instead handled by replaceUndef.
+ auto *ArrTy = cast<llvm::ArrayType>(Ty);
+ llvm::SmallVector<llvm::Constant *, 8> Element(
+ ArrTy->getNumElements(), patternFor(CGM, ArrTy->getElementType()));
+ return llvm::ConstantArray::get(ArrTy, Element);
+ }
+
+ // Note: this doesn't touch struct padding. It will initialize as much union
+ // padding as is required for the largest type in the union. Padding is
+ // instead handled by replaceUndef. Stores to structs with volatile members
+ // don't have a volatile qualifier when initialized according to C++. This is
+ // fine because stack-based volatiles don't really have volatile semantics
+ // anyways, and the initialization shouldn't be observable.
+ auto *StructTy = cast<llvm::StructType>(Ty);
+ llvm::SmallVector<llvm::Constant *, 8> Struct(StructTy->getNumElements());
+ for (unsigned El = 0; El != Struct.size(); ++El)
+ Struct[El] = patternFor(CGM, StructTy->getElementType(El));
+ return llvm::ConstantStruct::get(StructTy, Struct);
+}
+
+static Address createUnnamedGlobalFrom(CodeGenModule &CGM, const VarDecl &D,
+ CGBuilderTy &Builder,
+ llvm::Constant *Constant,
+ CharUnits Align) {
+ auto FunctionName = [&](const DeclContext *DC) -> std::string {
+ if (const auto *FD = dyn_cast<FunctionDecl>(DC)) {
+ if (const auto *CC = dyn_cast<CXXConstructorDecl>(FD))
+ return CC->getNameAsString();
+ if (const auto *CD = dyn_cast<CXXDestructorDecl>(FD))
+ return CD->getNameAsString();
+ return CGM.getMangledName(FD);
+ } else if (const auto *OM = dyn_cast<ObjCMethodDecl>(DC)) {
+ return OM->getNameAsString();
+ } else if (isa<BlockDecl>(DC)) {
+ return "<block>";
+ } else if (isa<CapturedDecl>(DC)) {
+ return "<captured>";
+ } else {
+ llvm::llvm_unreachable_internal("expected a function or method");
+ }
+ };
+
+ auto *Ty = Constant->getType();
+ bool isConstant = true;
+ llvm::GlobalVariable *InsertBefore = nullptr;
+ unsigned AS = CGM.getContext().getTargetAddressSpace(
+ CGM.getStringLiteralAddressSpace());
+ llvm::GlobalVariable *GV = new llvm::GlobalVariable(
+ CGM.getModule(), Ty, isConstant, llvm::GlobalValue::PrivateLinkage,
+ Constant,
+ "__const." + FunctionName(D.getParentFunctionOrMethod()) + "." +
+ D.getName(),
+ InsertBefore, llvm::GlobalValue::NotThreadLocal, AS);
+ GV->setAlignment(Align.getQuantity());
+ GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global);
+
+ Address SrcPtr = Address(GV, Align);
+ llvm::Type *BP = llvm::PointerType::getInt8PtrTy(CGM.getLLVMContext(), AS);
+ if (SrcPtr.getType() != BP)
+ SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
+ return SrcPtr;
+}
+
+static void emitStoresForConstant(CodeGenModule &CGM, const VarDecl &D,
+ Address Loc, bool isVolatile,
+ CGBuilderTy &Builder,
+ llvm::Constant *constant) {
+ auto *Ty = constant->getType();
+ bool isScalar = Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy() ||
+ Ty->isFPOrFPVectorTy();
+ if (isScalar) {
+ Builder.CreateStore(constant, Loc, isVolatile);
+ return;
+ }
+
+ auto *Int8Ty = llvm::IntegerType::getInt8Ty(CGM.getLLVMContext());
+ auto *IntPtrTy = CGM.getDataLayout().getIntPtrType(CGM.getLLVMContext());
+
+ // If the initializer is all or mostly the same, codegen with bzero / memset
+ // then do a few stores afterward.
+ uint64_t ConstantSize = CGM.getDataLayout().getTypeAllocSize(Ty);
+ auto *SizeVal = llvm::ConstantInt::get(IntPtrTy, ConstantSize);
+ if (shouldUseBZeroPlusStoresToInitialize(constant, ConstantSize)) {
+ Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
+ isVolatile);
+
+ bool valueAlreadyCorrect =
+ constant->isNullValue() || isa<llvm::UndefValue>(constant);
+ if (!valueAlreadyCorrect) {
+ Loc = Builder.CreateBitCast(Loc, Ty->getPointerTo(Loc.getAddressSpace()));
+ emitStoresForInitAfterBZero(CGM, constant, Loc, isVolatile, Builder);
+ }
+ return;
+ }
+
+ llvm::Value *Pattern = shouldUseMemSetToInitialize(constant, ConstantSize);
+ if (Pattern) {
+ uint64_t Value = 0x00;
+ if (!isa<llvm::UndefValue>(Pattern)) {
+ const llvm::APInt &AP = cast<llvm::ConstantInt>(Pattern)->getValue();
+ assert(AP.getBitWidth() <= 8);
+ Value = AP.getLimitedValue();
+ }
+ Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, Value), SizeVal,
+ isVolatile);
+ return;
+ }
+
+ Builder.CreateMemCpy(
+ Loc,
+ createUnnamedGlobalFrom(CGM, D, Builder, constant, Loc.getAlignment()),
+ SizeVal, isVolatile);
+}
+
+static void emitStoresForZeroInit(CodeGenModule &CGM, const VarDecl &D,
+ Address Loc, bool isVolatile,
+ CGBuilderTy &Builder) {
+ llvm::Type *ElTy = Loc.getElementType();
+ llvm::Constant *constant = llvm::Constant::getNullValue(ElTy);
+ emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
+}
+
+static void emitStoresForPatternInit(CodeGenModule &CGM, const VarDecl &D,
+ Address Loc, bool isVolatile,
+ CGBuilderTy &Builder) {
+ llvm::Type *ElTy = Loc.getElementType();
+ llvm::Constant *constant = patternFor(CGM, ElTy);
+ assert(!isa<llvm::UndefValue>(constant));
+ emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
+}
+
+static bool containsUndef(llvm::Constant *constant) {
+ auto *Ty = constant->getType();
+ if (isa<llvm::UndefValue>(constant))
+ return true;
+ if (Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy())
+ for (llvm::Use &Op : constant->operands())
+ if (containsUndef(cast<llvm::Constant>(Op)))
+ return true;
+ return false;
+}
+
+static llvm::Constant *replaceUndef(llvm::Constant *constant) {
+ // FIXME: when doing pattern initialization, replace undef with 0xAA instead.
+ // FIXME: also replace padding between values by creating a new struct type
+ // which has no padding.
+ auto *Ty = constant->getType();
+ if (isa<llvm::UndefValue>(constant))
+ return llvm::Constant::getNullValue(Ty);
+ if (!(Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()))
+ return constant;
+ if (!containsUndef(constant))
+ return constant;
+ llvm::SmallVector<llvm::Constant *, 8> Values(constant->getNumOperands());
+ for (unsigned Op = 0, NumOp = constant->getNumOperands(); Op != NumOp; ++Op) {
+ auto *OpValue = cast<llvm::Constant>(constant->getOperand(Op));
+ Values[Op] = replaceUndef(OpValue);
+ }
+ if (Ty->isStructTy())
+ return llvm::ConstantStruct::get(cast<llvm::StructType>(Ty), Values);
+ if (Ty->isArrayTy())
+ return llvm::ConstantArray::get(cast<llvm::ArrayType>(Ty), Values);
+ assert(Ty->isVectorTy());
+ return llvm::ConstantVector::get(Values);
+}
+
+/// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
+/// variable declaration with auto, register, or no storage class specifier.
+/// These turn into simple stack objects, or GlobalValues depending on target.
+void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
+ AutoVarEmission emission = EmitAutoVarAlloca(D);
+ EmitAutoVarInit(emission);
+ EmitAutoVarCleanups(emission);
+}
+
+/// Emit a lifetime.begin marker if some criteria are satisfied.
+/// \return a pointer to the temporary size Value if a marker was emitted, null
+/// otherwise
+llvm::Value *CodeGenFunction::EmitLifetimeStart(uint64_t Size,
+ llvm::Value *Addr) {
+ if (!ShouldEmitLifetimeMarkers)
+ return nullptr;
+
+ assert(Addr->getType()->getPointerAddressSpace() ==
+ CGM.getDataLayout().getAllocaAddrSpace() &&
+ "Pointer should be in alloca address space");
+ llvm::Value *SizeV = llvm::ConstantInt::get(Int64Ty, Size);
+ Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
+ llvm::CallInst *C =
+ Builder.CreateCall(CGM.getLLVMLifetimeStartFn(), {SizeV, Addr});
+ C->setDoesNotThrow();
+ return SizeV;
+}
+
+void CodeGenFunction::EmitLifetimeEnd(llvm::Value *Size, llvm::Value *Addr) {
+ assert(Addr->getType()->getPointerAddressSpace() ==
+ CGM.getDataLayout().getAllocaAddrSpace() &&
+ "Pointer should be in alloca address space");
+ Addr = Builder.CreateBitCast(Addr, AllocaInt8PtrTy);
+ llvm::CallInst *C =
+ Builder.CreateCall(CGM.getLLVMLifetimeEndFn(), {Size, Addr});
+ C->setDoesNotThrow();
+}
+
+void CodeGenFunction::EmitAndRegisterVariableArrayDimensions(
+ CGDebugInfo *DI, const VarDecl &D, bool EmitDebugInfo) {
+ // For each dimension stores its QualType and corresponding
+ // size-expression Value.
+ SmallVector<CodeGenFunction::VlaSizePair, 4> Dimensions;
+ SmallVector<IdentifierInfo *, 4> VLAExprNames;
+
+ // Break down the array into individual dimensions.
+ QualType Type1D = D.getType();
+ while (getContext().getAsVariableArrayType(Type1D)) {
+ auto VlaSize = getVLAElements1D(Type1D);
+ if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
+ Dimensions.emplace_back(C, Type1D.getUnqualifiedType());
+ else {
+ // Generate a locally unique name for the size expression.
+ Twine Name = Twine("__vla_expr") + Twine(VLAExprCounter++);
+ SmallString<12> Buffer;
+ StringRef NameRef = Name.toStringRef(Buffer);
+ auto &Ident = getContext().Idents.getOwn(NameRef);
+ VLAExprNames.push_back(&Ident);
+ auto SizeExprAddr =
+ CreateDefaultAlignTempAlloca(VlaSize.NumElts->getType(), NameRef);
+ Builder.CreateStore(VlaSize.NumElts, SizeExprAddr);
+ Dimensions.emplace_back(SizeExprAddr.getPointer(),
+ Type1D.getUnqualifiedType());
+ }
+ Type1D = VlaSize.Type;
+ }
+
+ if (!EmitDebugInfo)
+ return;
+
+ // Register each dimension's size-expression with a DILocalVariable,
+ // so that it can be used by CGDebugInfo when instantiating a DISubrange
+ // to describe this array.
+ unsigned NameIdx = 0;
+ for (auto &VlaSize : Dimensions) {
+ llvm::Metadata *MD;
+ if (auto *C = dyn_cast<llvm::ConstantInt>(VlaSize.NumElts))
+ MD = llvm::ConstantAsMetadata::get(C);
+ else {
+ // Create an artificial VarDecl to generate debug info for.
+ IdentifierInfo *NameIdent = VLAExprNames[NameIdx++];
+ auto VlaExprTy = VlaSize.NumElts->getType()->getPointerElementType();
+ auto QT = getContext().getIntTypeForBitwidth(
+ VlaExprTy->getScalarSizeInBits(), false);
+ auto *ArtificialDecl = VarDecl::Create(
+ getContext(), const_cast<DeclContext *>(D.getDeclContext()),
+ D.getLocation(), D.getLocation(), NameIdent, QT,
+ getContext().CreateTypeSourceInfo(QT), SC_Auto);
+ ArtificialDecl->setImplicit();
+
+ MD = DI->EmitDeclareOfAutoVariable(ArtificialDecl, VlaSize.NumElts,
+ Builder);
+ }
+ assert(MD && "No Size expression debug node created");
+ DI->registerVLASizeExpression(VlaSize.Type, MD);
+ }
+}
+
+/// EmitAutoVarAlloca - Emit the alloca and debug information for a
+/// local variable. Does not emit initialization or destruction.
+CodeGenFunction::AutoVarEmission
+CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
+ QualType Ty = D.getType();
+ assert(
+ Ty.getAddressSpace() == LangAS::Default ||
+ (Ty.getAddressSpace() == LangAS::opencl_private && getLangOpts().OpenCL));
+
+ AutoVarEmission emission(D);
+
+ bool isEscapingByRef = D.isEscapingByref();
+ emission.IsEscapingByRef = isEscapingByRef;
+
+ CharUnits alignment = getContext().getDeclAlign(&D);
+
+ // If the type is variably-modified, emit all the VLA sizes for it.
+ if (Ty->isVariablyModifiedType())
+ EmitVariablyModifiedType(Ty);
+
+ auto *DI = getDebugInfo();
+ bool EmitDebugInfo = DI && CGM.getCodeGenOpts().getDebugInfo() >=
+ codegenoptions::LimitedDebugInfo;
+
+ Address address = Address::invalid();
+ Address AllocaAddr = Address::invalid();
+ if (Ty->isConstantSizeType()) {
+ bool NRVO = getLangOpts().ElideConstructors &&
+ D.isNRVOVariable();
+
+ // If this value is an array or struct with a statically determinable
+ // constant initializer, there are optimizations we can do.
+ //
+ // TODO: We should constant-evaluate the initializer of any variable,
+ // as long as it is initialized by a constant expression. Currently,
+ // isConstantInitializer produces wrong answers for structs with
+ // reference or bitfield members, and a few other cases, and checking
+ // for POD-ness protects us from some of these.
+ if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
+ (D.isConstexpr() ||
+ ((Ty.isPODType(getContext()) ||
+ getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
+ D.getInit()->isConstantInitializer(getContext(), false)))) {
+
+ // If the variable's a const type, and it's neither an NRVO
+ // candidate nor a __block variable and has no mutable members,
+ // emit it as a global instead.
+ // Exception is if a variable is located in non-constant address space
+ // in OpenCL.
+ if ((!getLangOpts().OpenCL ||
+ Ty.getAddressSpace() == LangAS::opencl_constant) &&
+ (CGM.getCodeGenOpts().MergeAllConstants && !NRVO &&
+ !isEscapingByRef && CGM.isTypeConstant(Ty, true))) {
+ EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
+
+ // Signal this condition to later callbacks.
+ emission.Addr = Address::invalid();
+ assert(emission.wasEmittedAsGlobal());
+ return emission;
+ }
+
+ // Otherwise, tell the initialization code that we're in this case.
+ emission.IsConstantAggregate = true;
+ }
+
+ // A normal fixed sized variable becomes an alloca in the entry block,
+ // unless:
+ // - it's an NRVO variable.
+ // - we are compiling OpenMP and it's an OpenMP local variable.
+
+ Address OpenMPLocalAddr =
+ getLangOpts().OpenMP
+ ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
+ : Address::invalid();
+ if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
+ address = OpenMPLocalAddr;
+ } else if (NRVO) {
+ // The named return value optimization: allocate this variable in the
+ // return slot, so that we can elide the copy when returning this
+ // variable (C++0x [class.copy]p34).
+ address = ReturnValue;
+
+ if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
+ const auto *RD = RecordTy->getDecl();
+ const auto *CXXRD = dyn_cast<CXXRecordDecl>(RD);
+ if ((CXXRD && !CXXRD->hasTrivialDestructor()) ||
+ RD->isNonTrivialToPrimitiveDestroy()) {
+ // Create a flag that is used to indicate when the NRVO was applied
+ // to this variable. Set it to zero to indicate that NRVO was not
+ // applied.
+ llvm::Value *Zero = Builder.getFalse();
+ Address NRVOFlag =
+ CreateTempAlloca(Zero->getType(), CharUnits::One(), "nrvo");
+ EnsureInsertPoint();
+ Builder.CreateStore(Zero, NRVOFlag);
+
+ // Record the NRVO flag for this variable.
+ NRVOFlags[&D] = NRVOFlag.getPointer();
+ emission.NRVOFlag = NRVOFlag.getPointer();
+ }
+ }
+ } else {
+ CharUnits allocaAlignment;
+ llvm::Type *allocaTy;
+ if (isEscapingByRef) {
+ auto &byrefInfo = getBlockByrefInfo(&D);
+ allocaTy = byrefInfo.Type;
+ allocaAlignment = byrefInfo.ByrefAlignment;
+ } else {
+ allocaTy = ConvertTypeForMem(Ty);
+ allocaAlignment = alignment;
+ }
+
+ // Create the alloca. Note that we set the name separately from
+ // building the instruction so that it's there even in no-asserts
+ // builds.
+ address = CreateTempAlloca(allocaTy, allocaAlignment, D.getName(),
+ /*ArraySize=*/nullptr, &AllocaAddr);
+
+ // Don't emit lifetime markers for MSVC catch parameters. The lifetime of
+ // the catch parameter starts in the catchpad instruction, and we can't
+ // insert code in those basic blocks.
+ bool IsMSCatchParam =
+ D.isExceptionVariable() && getTarget().getCXXABI().isMicrosoft();
+
+ // Emit a lifetime intrinsic if meaningful. There's no point in doing this
+ // if we don't have a valid insertion point (?).
+ if (HaveInsertPoint() && !IsMSCatchParam) {
+ // If there's a jump into the lifetime of this variable, its lifetime
+ // gets broken up into several regions in IR, which requires more work
+ // to handle correctly. For now, just omit the intrinsics; this is a
+ // rare case, and it's better to just be conservatively correct.
+ // PR28267.
+ //
+ // We have to do this in all language modes if there's a jump past the
+ // declaration. We also have to do it in C if there's a jump to an
+ // earlier point in the current block because non-VLA lifetimes begin as
+ // soon as the containing block is entered, not when its variables
+ // actually come into scope; suppressing the lifetime annotations
+ // completely in this case is unnecessarily pessimistic, but again, this
+ // is rare.
+ if (!Bypasses.IsBypassed(&D) &&
+ !(!getLangOpts().CPlusPlus && hasLabelBeenSeenInCurrentScope())) {
+ uint64_t size = CGM.getDataLayout().getTypeAllocSize(allocaTy);
+ emission.SizeForLifetimeMarkers =
+ EmitLifetimeStart(size, AllocaAddr.getPointer());
+ }
+ } else {
+ assert(!emission.useLifetimeMarkers());
+ }
+ }
+ } else {
+ EnsureInsertPoint();
+
+ if (!DidCallStackSave) {
+ // Save the stack.
+ Address Stack =
+ CreateTempAlloca(Int8PtrTy, getPointerAlign(), "saved_stack");
+
+ llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
+ llvm::Value *V = Builder.CreateCall(F);
+ Builder.CreateStore(V, Stack);
+
+ DidCallStackSave = true;
+
+ // Push a cleanup block and restore the stack there.
+ // FIXME: in general circumstances, this should be an EH cleanup.
+ pushStackRestore(NormalCleanup, Stack);
+ }
+
+ auto VlaSize = getVLASize(Ty);
+ llvm::Type *llvmTy = ConvertTypeForMem(VlaSize.Type);
+
+ // Allocate memory for the array.
+ address = CreateTempAlloca(llvmTy, alignment, "vla", VlaSize.NumElts,
+ &AllocaAddr);
+
+ // If we have debug info enabled, properly describe the VLA dimensions for
+ // this type by registering the vla size expression for each of the
+ // dimensions.
+ EmitAndRegisterVariableArrayDimensions(DI, D, EmitDebugInfo);
+ }
+
+ setAddrOfLocalVar(&D, address);
+ emission.Addr = address;
+ emission.AllocaAddr = AllocaAddr;
+
+ // Emit debug info for local var declaration.
+ if (EmitDebugInfo && HaveInsertPoint()) {
+ DI->setLocation(D.getLocation());
+ (void)DI->EmitDeclareOfAutoVariable(&D, address.getPointer(), Builder);
+ }
+
+ if (D.hasAttr<AnnotateAttr>())
+ EmitVarAnnotations(&D, address.getPointer());
+
+ // Make sure we call @llvm.lifetime.end.
+ if (emission.useLifetimeMarkers())
+ EHStack.pushCleanup<CallLifetimeEnd>(NormalEHLifetimeMarker,
+ emission.getOriginalAllocatedAddress(),
+ emission.getSizeForLifetimeMarkers());
+
+ return emission;
+}
+
+static bool isCapturedBy(const VarDecl &, const Expr *);
+
+/// Determines whether the given __block variable is potentially
+/// captured by the given statement.
+static bool isCapturedBy(const VarDecl &Var, const Stmt *S) {
+ if (const Expr *E = dyn_cast<Expr>(S))
+ return isCapturedBy(Var, E);
+ for (const Stmt *SubStmt : S->children())
+ if (isCapturedBy(Var, SubStmt))
+ return true;
+ return false;
+}
+
+/// Determines whether the given __block variable is potentially
+/// captured by the given expression.
+static bool isCapturedBy(const VarDecl &Var, const Expr *E) {
+ // Skip the most common kinds of expressions that make
+ // hierarchy-walking expensive.
+ E = E->IgnoreParenCasts();
+
+ if (const BlockExpr *BE = dyn_cast<BlockExpr>(E)) {
+ const BlockDecl *Block = BE->getBlockDecl();
+ for (const auto &I : Block->captures()) {
+ if (I.getVariable() == &Var)
+ return true;
+ }
+
+ // No need to walk into the subexpressions.
+ return false;
+ }
+
+ if (const StmtExpr *SE = dyn_cast<StmtExpr>(E)) {
+ const CompoundStmt *CS = SE->getSubStmt();
+ for (const auto *BI : CS->body())
+ if (const auto *BIE = dyn_cast<Expr>(BI)) {
+ if (isCapturedBy(Var, BIE))
+ return true;
+ }
+ else if (const auto *DS = dyn_cast<DeclStmt>(BI)) {
+ // special case declarations
+ for (const auto *I : DS->decls()) {
+ if (const auto *VD = dyn_cast<VarDecl>((I))) {
+ const Expr *Init = VD->getInit();
+ if (Init && isCapturedBy(Var, Init))
+ return true;
+ }
+ }
+ }
+ else
+ // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
+ // Later, provide code to poke into statements for capture analysis.
+ return true;
+ return false;
+ }
+
+ for (const Stmt *SubStmt : E->children())
+ if (isCapturedBy(Var, SubStmt))
+ return true;
+
+ return false;
+}
+
+/// Determine whether the given initializer is trivial in the sense
+/// that it requires no code to be generated.
+bool CodeGenFunction::isTrivialInitializer(const Expr *Init) {
+ if (!Init)
+ return true;
+
+ if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
+ if (CXXConstructorDecl *Constructor = Construct->getConstructor())
+ if (Constructor->isTrivial() &&
+ Constructor->isDefaultConstructor() &&
+ !Construct->requiresZeroInitialization())
+ return true;
+
+ return false;
+}
+
+void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
+ assert(emission.Variable && "emission was not valid!");
+
+ // If this was emitted as a global constant, we're done.
+ if (emission.wasEmittedAsGlobal()) return;
+
+ const VarDecl &D = *emission.Variable;
+ auto DL = ApplyDebugLocation::CreateDefaultArtificial(*this, D.getLocation());
+ QualType type = D.getType();
+
+ bool isVolatile = type.isVolatileQualified();
+
+ // If this local has an initializer, emit it now.
+ const Expr *Init = D.getInit();
+
+ // If we are at an unreachable point, we don't need to emit the initializer
+ // unless it contains a label.
+ if (!HaveInsertPoint()) {
+ if (!Init || !ContainsLabel(Init)) return;
+ EnsureInsertPoint();
+ }
+
+ // Initialize the structure of a __block variable.
+ if (emission.IsEscapingByRef)
+ emitByrefStructureInit(emission);
+
+ // Initialize the variable here if it doesn't have a initializer and it is a
+ // C struct that is non-trivial to initialize or an array containing such a
+ // struct.
+ if (!Init &&
+ type.isNonTrivialToPrimitiveDefaultInitialize() ==
+ QualType::PDIK_Struct) {
+ LValue Dst = MakeAddrLValue(emission.getAllocatedAddress(), type);
+ if (emission.IsEscapingByRef)
+ drillIntoBlockVariable(*this, Dst, &D);
+ defaultInitNonTrivialCStructVar(Dst);
+ return;
+ }
+
+ // Check whether this is a byref variable that's potentially
+ // captured and moved by its own initializer. If so, we'll need to
+ // emit the initializer first, then copy into the variable.
+ bool capturedByInit =
+ Init && emission.IsEscapingByRef && isCapturedBy(D, Init);
+
+ Address Loc =
+ capturedByInit ? emission.Addr : emission.getObjectAddress(*this);
+
+ // Note: constexpr already initializes everything correctly.
+ LangOptions::TrivialAutoVarInitKind trivialAutoVarInit =
+ (D.isConstexpr()
+ ? LangOptions::TrivialAutoVarInitKind::Uninitialized
+ : (D.getAttr<UninitializedAttr>()
+ ? LangOptions::TrivialAutoVarInitKind::Uninitialized
+ : getContext().getLangOpts().getTrivialAutoVarInit()));
+
+ auto initializeWhatIsTechnicallyUninitialized = [&]() {
+ if (trivialAutoVarInit ==
+ LangOptions::TrivialAutoVarInitKind::Uninitialized)
+ return;
+
+ CharUnits Size = getContext().getTypeSizeInChars(type);
+ if (!Size.isZero()) {
+ switch (trivialAutoVarInit) {
+ case LangOptions::TrivialAutoVarInitKind::Uninitialized:
+ llvm_unreachable("Uninitialized handled above");
+ case LangOptions::TrivialAutoVarInitKind::Zero:
+ emitStoresForZeroInit(CGM, D, Loc, isVolatile, Builder);
+ break;
+ case LangOptions::TrivialAutoVarInitKind::Pattern:
+ emitStoresForPatternInit(CGM, D, Loc, isVolatile, Builder);
+ break;
+ }
+ return;
+ }
+
+ // VLAs look zero-sized to getTypeInfo. We can't emit constant stores to
+ // them, so emit a memcpy with the VLA size to initialize each element.
+ // Technically zero-sized or negative-sized VLAs are undefined, and UBSan
+ // will catch that code, but there exists code which generates zero-sized
+ // VLAs. Be nice and initialize whatever they requested.
+ const VariableArrayType *VlaType =
+ dyn_cast_or_null<VariableArrayType>(getContext().getAsArrayType(type));
+ if (!VlaType)
+ return;
+ auto VlaSize = getVLASize(VlaType);
+ auto SizeVal = VlaSize.NumElts;
+ CharUnits EltSize = getContext().getTypeSizeInChars(VlaSize.Type);
+ switch (trivialAutoVarInit) {
+ case LangOptions::TrivialAutoVarInitKind::Uninitialized:
+ llvm_unreachable("Uninitialized handled above");
+
+ case LangOptions::TrivialAutoVarInitKind::Zero:
+ if (!EltSize.isOne())
+ SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
+ Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
+ isVolatile);
+ break;
+
+ case LangOptions::TrivialAutoVarInitKind::Pattern: {
+ llvm::Type *ElTy = Loc.getElementType();
+ llvm::Constant *Constant = patternFor(CGM, ElTy);
+ CharUnits ConstantAlign = getContext().getTypeAlignInChars(VlaSize.Type);
+ llvm::BasicBlock *SetupBB = createBasicBlock("vla-setup.loop");
+ llvm::BasicBlock *LoopBB = createBasicBlock("vla-init.loop");
+ llvm::BasicBlock *ContBB = createBasicBlock("vla-init.cont");
+ llvm::Value *IsZeroSizedVLA = Builder.CreateICmpEQ(
+ SizeVal, llvm::ConstantInt::get(SizeVal->getType(), 0),
+ "vla.iszerosized");
+ Builder.CreateCondBr(IsZeroSizedVLA, ContBB, SetupBB);
+ EmitBlock(SetupBB);
+ if (!EltSize.isOne())
+ SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(EltSize));
+ llvm::Value *BaseSizeInChars =
+ llvm::ConstantInt::get(IntPtrTy, EltSize.getQuantity());
+ Address Begin = Builder.CreateElementBitCast(Loc, Int8Ty, "vla.begin");
+ llvm::Value *End =
+ Builder.CreateInBoundsGEP(Begin.getPointer(), SizeVal, "vla.end");
+ llvm::BasicBlock *OriginBB = Builder.GetInsertBlock();
+ EmitBlock(LoopBB);
+ llvm::PHINode *Cur = Builder.CreatePHI(Begin.getType(), 2, "vla.cur");
+ Cur->addIncoming(Begin.getPointer(), OriginBB);
+ CharUnits CurAlign = Loc.getAlignment().alignmentOfArrayElement(EltSize);
+ Builder.CreateMemCpy(
+ Address(Cur, CurAlign),
+ createUnnamedGlobalFrom(CGM, D, Builder, Constant, ConstantAlign),
+ BaseSizeInChars, isVolatile);
+ llvm::Value *Next =
+ Builder.CreateInBoundsGEP(Int8Ty, Cur, BaseSizeInChars, "vla.next");
+ llvm::Value *Done = Builder.CreateICmpEQ(Next, End, "vla-init.isdone");
+ Builder.CreateCondBr(Done, ContBB, LoopBB);
+ Cur->addIncoming(Next, LoopBB);
+ EmitBlock(ContBB);
+ } break;
+ }
+ };
+
+ if (isTrivialInitializer(Init)) {
+ initializeWhatIsTechnicallyUninitialized();
+ return;
+ }
+
+ llvm::Constant *constant = nullptr;
+ if (emission.IsConstantAggregate || D.isConstexpr()) {
+ assert(!capturedByInit && "constant init contains a capturing block?");
+ constant = ConstantEmitter(*this).tryEmitAbstractForInitializer(D);
+ if (constant && trivialAutoVarInit !=
+ LangOptions::TrivialAutoVarInitKind::Uninitialized)
+ constant = replaceUndef(constant);
+ }
+
+ if (!constant) {
+ initializeWhatIsTechnicallyUninitialized();
+ LValue lv = MakeAddrLValue(Loc, type);
+ lv.setNonGC(true);
+ return EmitExprAsInit(Init, &D, lv, capturedByInit);
+ }
+
+ if (!emission.IsConstantAggregate) {
+ // For simple scalar/complex initialization, store the value directly.
+ LValue lv = MakeAddrLValue(Loc, type);
+ lv.setNonGC(true);
+ return EmitStoreThroughLValue(RValue::get(constant), lv, true);
+ }
+
+ llvm::Type *BP = CGM.Int8Ty->getPointerTo(Loc.getAddressSpace());
+ if (Loc.getType() != BP)
+ Loc = Builder.CreateBitCast(Loc, BP);
+
+ emitStoresForConstant(CGM, D, Loc, isVolatile, Builder, constant);
+}
+
+/// Emit an expression as an initializer for an object (variable, field, etc.)
+/// at the given location. The expression is not necessarily the normal
+/// initializer for the object, and the address is not necessarily
+/// its normal location.
+///
+/// \param init the initializing expression
+/// \param D the object to act as if we're initializing
+/// \param loc the address to initialize; its type is a pointer
+/// to the LLVM mapping of the object's type
+/// \param alignment the alignment of the address
+/// \param capturedByInit true if \p D is a __block variable
+/// whose address is potentially changed by the initializer
+void CodeGenFunction::EmitExprAsInit(const Expr *init, const ValueDecl *D,
+ LValue lvalue, bool capturedByInit) {
+ QualType type = D->getType();
+
+ if (type->isReferenceType()) {
+ RValue rvalue = EmitReferenceBindingToExpr(init);
+ if (capturedByInit)
+ drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
+ EmitStoreThroughLValue(rvalue, lvalue, true);
+ return;
+ }
+ switch (getEvaluationKind(type)) {
+ case TEK_Scalar:
+ EmitScalarInit(init, D, lvalue, capturedByInit);
+ return;
+ case TEK_Complex: {
+ ComplexPairTy complex = EmitComplexExpr(init);
+ if (capturedByInit)
+ drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
+ EmitStoreOfComplex(complex, lvalue, /*init*/ true);
+ return;
+ }
+ case TEK_Aggregate:
+ if (type->isAtomicType()) {
+ EmitAtomicInit(const_cast<Expr*>(init), lvalue);
+ } else {
+ AggValueSlot::Overlap_t Overlap = AggValueSlot::MayOverlap;
+ if (isa<VarDecl>(D))
+ Overlap = AggValueSlot::DoesNotOverlap;
+ else if (auto *FD = dyn_cast<FieldDecl>(D))
+ Overlap = overlapForFieldInit(FD);
+ // TODO: how can we delay here if D is captured by its initializer?
+ EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
+ AggValueSlot::IsDestructed,
+ AggValueSlot::DoesNotNeedGCBarriers,
+ AggValueSlot::IsNotAliased,
+ Overlap));
+ }
+ return;
+ }
+ llvm_unreachable("bad evaluation kind");
+}
+
+/// Enter a destroy cleanup for the given local variable.
+void CodeGenFunction::emitAutoVarTypeCleanup(
+ const CodeGenFunction::AutoVarEmission &emission,
+ QualType::DestructionKind dtorKind) {
+ assert(dtorKind != QualType::DK_none);
+
+ // Note that for __block variables, we want to destroy the
+ // original stack object, not the possibly forwarded object.
+ Address addr = emission.getObjectAddress(*this);
+
+ const VarDecl *var = emission.Variable;
+ QualType type = var->getType();
+
+ CleanupKind cleanupKind = NormalAndEHCleanup;
+ CodeGenFunction::Destroyer *destroyer = nullptr;
+
+ switch (dtorKind) {
+ case QualType::DK_none:
+ llvm_unreachable("no cleanup for trivially-destructible variable");
+
+ case QualType::DK_cxx_destructor:
+ // If there's an NRVO flag on the emission, we need a different
+ // cleanup.
+ if (emission.NRVOFlag) {
+ assert(!type->isArrayType());
+ CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
+ EHStack.pushCleanup<DestroyNRVOVariableCXX>(cleanupKind, addr, dtor,
+ emission.NRVOFlag);
+ return;
+ }
+ break;
+
+ case QualType::DK_objc_strong_lifetime:
+ // Suppress cleanups for pseudo-strong variables.
+ if (var->isARCPseudoStrong()) return;
+
+ // Otherwise, consider whether to use an EH cleanup or not.
+ cleanupKind = getARCCleanupKind();
+
+ // Use the imprecise destroyer by default.
+ if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
+ destroyer = CodeGenFunction::destroyARCStrongImprecise;
+ break;
+
+ case QualType::DK_objc_weak_lifetime:
+ break;
+
+ case QualType::DK_nontrivial_c_struct:
+ destroyer = CodeGenFunction::destroyNonTrivialCStruct;
+ if (emission.NRVOFlag) {
+ assert(!type->isArrayType());
+ EHStack.pushCleanup<DestroyNRVOVariableC>(cleanupKind, addr,
+ emission.NRVOFlag, type);
+ return;
+ }
+ break;
+ }
+
+ // If we haven't chosen a more specific destroyer, use the default.
+ if (!destroyer) destroyer = getDestroyer(dtorKind);
+
+ // Use an EH cleanup in array destructors iff the destructor itself
+ // is being pushed as an EH cleanup.
+ bool useEHCleanup = (cleanupKind & EHCleanup);
+ EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
+ useEHCleanup);
+}
+
+void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
+ assert(emission.Variable && "emission was not valid!");
+
+ // If this was emitted as a global constant, we're done.
+ if (emission.wasEmittedAsGlobal()) return;
+
+ // If we don't have an insertion point, we're done. Sema prevents
+ // us from jumping into any of these scopes anyway.
+ if (!HaveInsertPoint()) return;
+
+ const VarDecl &D = *emission.Variable;
+
+ // Check the type for a cleanup.
+ if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
+ emitAutoVarTypeCleanup(emission, dtorKind);
+
+ // In GC mode, honor objc_precise_lifetime.
+ if (getLangOpts().getGC() != LangOptions::NonGC &&
+ D.hasAttr<ObjCPreciseLifetimeAttr>()) {
+ EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
+ }
+
+ // Handle the cleanup attribute.
+ if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
+ const FunctionDecl *FD = CA->getFunctionDecl();
+
+ llvm::Constant *F = CGM.GetAddrOfFunction(FD);
+ assert(F && "Could not find function!");
+
+ const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
+ EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
+ }
+
+ // If this is a block variable, call _Block_object_destroy
+ // (on the unforwarded address). Don't enter this cleanup if we're in pure-GC
+ // mode.
+ if (emission.IsEscapingByRef &&
+ CGM.getLangOpts().getGC() != LangOptions::GCOnly) {
+ BlockFieldFlags Flags = BLOCK_FIELD_IS_BYREF;
+ if (emission.Variable->getType().isObjCGCWeak())
+ Flags |= BLOCK_FIELD_IS_WEAK;
+ enterByrefCleanup(NormalAndEHCleanup, emission.Addr, Flags,
+ /*LoadBlockVarAddr*/ false,
+ cxxDestructorCanThrow(emission.Variable->getType()));
+ }
+}
+
+CodeGenFunction::Destroyer *
+CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
+ switch (kind) {
+ case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
+ case QualType::DK_cxx_destructor:
+ return destroyCXXObject;
+ case QualType::DK_objc_strong_lifetime:
+ return destroyARCStrongPrecise;
+ case QualType::DK_objc_weak_lifetime:
+ return destroyARCWeak;
+ case QualType::DK_nontrivial_c_struct:
+ return destroyNonTrivialCStruct;
+ }
+ llvm_unreachable("Unknown DestructionKind");
+}
+
+/// pushEHDestroy - Push the standard destructor for the given type as
+/// an EH-only cleanup.
+void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
+ Address addr, QualType type) {
+ assert(dtorKind && "cannot push destructor for trivial type");
+ assert(needsEHCleanup(dtorKind));
+
+ pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
+}
+
+/// pushDestroy - Push the standard destructor for the given type as
+/// at least a normal cleanup.
+void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
+ Address addr, QualType type) {
+ assert(dtorKind && "cannot push destructor for trivial type");
+
+ CleanupKind cleanupKind = getCleanupKind(dtorKind);
+ pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
+ cleanupKind & EHCleanup);
+}
+
+void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, Address addr,
+ QualType type, Destroyer *destroyer,
+ bool useEHCleanupForArray) {
+ pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
+ destroyer, useEHCleanupForArray);
+}
+
+void CodeGenFunction::pushStackRestore(CleanupKind Kind, Address SPMem) {
+ EHStack.pushCleanup<CallStackRestore>(Kind, SPMem);
+}
+
+void CodeGenFunction::pushLifetimeExtendedDestroy(
+ CleanupKind cleanupKind, Address addr, QualType type,
+ Destroyer *destroyer, bool useEHCleanupForArray) {
+ // Push an EH-only cleanup for the object now.
+ // FIXME: When popping normal cleanups, we need to keep this EH cleanup
+ // around in case a temporary's destructor throws an exception.
+ if (cleanupKind & EHCleanup)
+ EHStack.pushCleanup<DestroyObject>(
+ static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
+ destroyer, useEHCleanupForArray);
+
+ // Remember that we need to push a full cleanup for the object at the
+ // end of the full-expression.
+ pushCleanupAfterFullExpr<DestroyObject>(
+ cleanupKind, addr, type, destroyer, useEHCleanupForArray);
+}
+
+/// emitDestroy - Immediately perform the destruction of the given
+/// object.
+///
+/// \param addr - the address of the object; a type*
+/// \param type - the type of the object; if an array type, all
+/// objects are destroyed in reverse order
+/// \param destroyer - the function to call to destroy individual
+/// elements
+/// \param useEHCleanupForArray - whether an EH cleanup should be
+/// used when destroying array elements, in case one of the
+/// destructions throws an exception
+void CodeGenFunction::emitDestroy(Address addr, QualType type,
+ Destroyer *destroyer,
+ bool useEHCleanupForArray) {
+ const ArrayType *arrayType = getContext().getAsArrayType(type);
+ if (!arrayType)
+ return destroyer(*this, addr, type);
+
+ llvm::Value *length = emitArrayLength(arrayType, type, addr);
+
+ CharUnits elementAlign =
+ addr.getAlignment()
+ .alignmentOfArrayElement(getContext().getTypeSizeInChars(type));
+
+ // Normally we have to check whether the array is zero-length.
+ bool checkZeroLength = true;
+
+ // But if the array length is constant, we can suppress that.
+ if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
+ // ...and if it's constant zero, we can just skip the entire thing.
+ if (constLength->isZero()) return;
+ checkZeroLength = false;
+ }
+
+ llvm::Value *begin = addr.getPointer();
+ llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
+ emitArrayDestroy(begin, end, type, elementAlign, destroyer,
+ checkZeroLength, useEHCleanupForArray);
+}
+
+/// emitArrayDestroy - Destroys all the elements of the given array,
+/// beginning from last to first. The array cannot be zero-length.
+///
+/// \param begin - a type* denoting the first element of the array
+/// \param end - a type* denoting one past the end of the array
+/// \param elementType - the element type of the array
+/// \param destroyer - the function to call to destroy elements
+/// \param useEHCleanup - whether to push an EH cleanup to destroy
+/// the remaining elements in case the destruction of a single
+/// element throws
+void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
+ llvm::Value *end,
+ QualType elementType,
+ CharUnits elementAlign,
+ Destroyer *destroyer,
+ bool checkZeroLength,
+ bool useEHCleanup) {
+ assert(!elementType->isArrayType());
+
+ // The basic structure here is a do-while loop, because we don't
+ // need to check for the zero-element case.
+ llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
+ llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
+
+ if (checkZeroLength) {
+ llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
+ "arraydestroy.isempty");
+ Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
+ }
+
+ // Enter the loop body, making that address the current address.
+ llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
+ EmitBlock(bodyBB);
+ llvm::PHINode *elementPast =
+ Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
+ elementPast->addIncoming(end, entryBB);
+
+ // Shift the address back by one element.
+ llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
+ llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
+ "arraydestroy.element");
+
+ if (useEHCleanup)
+ pushRegularPartialArrayCleanup(begin, element, elementType, elementAlign,
+ destroyer);
+
+ // Perform the actual destruction there.
+ destroyer(*this, Address(element, elementAlign), elementType);
+
+ if (useEHCleanup)
+ PopCleanupBlock();
+
+ // Check whether we've reached the end.
+ llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
+ Builder.CreateCondBr(done, doneBB, bodyBB);
+ elementPast->addIncoming(element, Builder.GetInsertBlock());
+
+ // Done.
+ EmitBlock(doneBB);
+}
+
+/// Perform partial array destruction as if in an EH cleanup. Unlike
+/// emitArrayDestroy, the element type here may still be an array type.
+static void emitPartialArrayDestroy(CodeGenFunction &CGF,
+ llvm::Value *begin, llvm::Value *end,
+ QualType type, CharUnits elementAlign,
+ CodeGenFunction::Destroyer *destroyer) {
+ // If the element type is itself an array, drill down.
+ unsigned arrayDepth = 0;
+ while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
+ // VLAs don't require a GEP index to walk into.
+ if (!isa<VariableArrayType>(arrayType))
+ arrayDepth++;
+ type = arrayType->getElementType();
+ }
+
+ if (arrayDepth) {
+ llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, 0);
+
+ SmallVector<llvm::Value*,4> gepIndices(arrayDepth+1, zero);
+ begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
+ end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
+ }
+
+ // Destroy the array. We don't ever need an EH cleanup because we
+ // assume that we're in an EH cleanup ourselves, so a throwing
+ // destructor causes an immediate terminate.
+ CGF.emitArrayDestroy(begin, end, type, elementAlign, destroyer,
+ /*checkZeroLength*/ true, /*useEHCleanup*/ false);
+}
+
+namespace {
+ /// RegularPartialArrayDestroy - a cleanup which performs a partial
+ /// array destroy where the end pointer is regularly determined and
+ /// does not need to be loaded from a local.
+ class RegularPartialArrayDestroy final : public EHScopeStack::Cleanup {
+ llvm::Value *ArrayBegin;
+ llvm::Value *ArrayEnd;
+ QualType ElementType;
+ CodeGenFunction::Destroyer *Destroyer;
+ CharUnits ElementAlign;
+ public:
+ RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
+ QualType elementType, CharUnits elementAlign,
+ CodeGenFunction::Destroyer *destroyer)
+ : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
+ ElementType(elementType), Destroyer(destroyer),
+ ElementAlign(elementAlign) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
+ ElementType, ElementAlign, Destroyer);
+ }
+ };
+
+ /// IrregularPartialArrayDestroy - a cleanup which performs a
+ /// partial array destroy where the end pointer is irregularly
+ /// determined and must be loaded from a local.
+ class IrregularPartialArrayDestroy final : public EHScopeStack::Cleanup {
+ llvm::Value *ArrayBegin;
+ Address ArrayEndPointer;
+ QualType ElementType;
+ CodeGenFunction::Destroyer *Destroyer;
+ CharUnits ElementAlign;
+ public:
+ IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
+ Address arrayEndPointer,
+ QualType elementType,
+ CharUnits elementAlign,
+ CodeGenFunction::Destroyer *destroyer)
+ : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
+ ElementType(elementType), Destroyer(destroyer),
+ ElementAlign(elementAlign) {}
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
+ emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
+ ElementType, ElementAlign, Destroyer);
+ }
+ };
+} // end anonymous namespace
+
+/// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
+/// already-constructed elements of the given array. The cleanup
+/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
+///
+/// \param elementType - the immediate element type of the array;
+/// possibly still an array type
+void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
+ Address arrayEndPointer,
+ QualType elementType,
+ CharUnits elementAlign,
+ Destroyer *destroyer) {
+ pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
+ arrayBegin, arrayEndPointer,
+ elementType, elementAlign,
+ destroyer);
+}
+
+/// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
+/// already-constructed elements of the given array. The cleanup
+/// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
+///
+/// \param elementType - the immediate element type of the array;
+/// possibly still an array type
+void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
+ llvm::Value *arrayEnd,
+ QualType elementType,
+ CharUnits elementAlign,
+ Destroyer *destroyer) {
+ pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
+ arrayBegin, arrayEnd,
+ elementType, elementAlign,
+ destroyer);
+}
+
+/// Lazily declare the @llvm.lifetime.start intrinsic.
+llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
+ if (LifetimeStartFn)
+ return LifetimeStartFn;
+ LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
+ llvm::Intrinsic::lifetime_start, AllocaInt8PtrTy);
+ return LifetimeStartFn;
+}
+
+/// Lazily declare the @llvm.lifetime.end intrinsic.
+llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
+ if (LifetimeEndFn)
+ return LifetimeEndFn;
+ LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
+ llvm::Intrinsic::lifetime_end, AllocaInt8PtrTy);
+ return LifetimeEndFn;
+}
+
+namespace {
+ /// A cleanup to perform a release of an object at the end of a
+ /// function. This is used to balance out the incoming +1 of a
+ /// ns_consumed argument when we can't reasonably do that just by
+ /// not doing the initial retain for a __block argument.
+ struct ConsumeARCParameter final : EHScopeStack::Cleanup {
+ ConsumeARCParameter(llvm::Value *param,
+ ARCPreciseLifetime_t precise)
+ : Param(param), Precise(precise) {}
+
+ llvm::Value *Param;
+ ARCPreciseLifetime_t Precise;
+
+ void Emit(CodeGenFunction &CGF, Flags flags) override {
+ CGF.EmitARCRelease(Param, Precise);
+ }
+ };
+} // end anonymous namespace
+
+/// Emit an alloca (or GlobalValue depending on target)
+/// for the specified parameter and set up LocalDeclMap.
+void CodeGenFunction::EmitParmDecl(const VarDecl &D, ParamValue Arg,
+ unsigned ArgNo) {
+ // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
+ assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
+ "Invalid argument to EmitParmDecl");
+
+ Arg.getAnyValue()->setName(D.getName());
+
+ QualType Ty = D.getType();
+
+ // Use better IR generation for certain implicit parameters.
+ if (auto IPD = dyn_cast<ImplicitParamDecl>(&D)) {
+ // The only implicit argument a block has is its literal.
+ // This may be passed as an inalloca'ed value on Windows x86.
+ if (BlockInfo) {
+ llvm::Value *V = Arg.isIndirect()
+ ? Builder.CreateLoad(Arg.getIndirectAddress())
+ : Arg.getDirectValue();
+ setBlockContextParameter(IPD, ArgNo, V);
+ return;
+ }
+ }
+
+ Address DeclPtr = Address::invalid();
+ bool DoStore = false;
+ bool IsScalar = hasScalarEvaluationKind(Ty);
+ // If we already have a pointer to the argument, reuse the input pointer.
+ if (Arg.isIndirect()) {
+ DeclPtr = Arg.getIndirectAddress();
+ // If we have a prettier pointer type at this point, bitcast to that.
+ unsigned AS = DeclPtr.getType()->getAddressSpace();
+ llvm::Type *IRTy = ConvertTypeForMem(Ty)->getPointerTo(AS);
+ if (DeclPtr.getType() != IRTy)
+ DeclPtr = Builder.CreateBitCast(DeclPtr, IRTy, D.getName());
+ // Indirect argument is in alloca address space, which may be different
+ // from the default address space.
+ auto AllocaAS = CGM.getASTAllocaAddressSpace();
+ auto *V = DeclPtr.getPointer();
+ auto SrcLangAS = getLangOpts().OpenCL ? LangAS::opencl_private : AllocaAS;
+ auto DestLangAS =
+ getLangOpts().OpenCL ? LangAS::opencl_private : LangAS::Default;
+ if (SrcLangAS != DestLangAS) {
+ assert(getContext().getTargetAddressSpace(SrcLangAS) ==
+ CGM.getDataLayout().getAllocaAddrSpace());
+ auto DestAS = getContext().getTargetAddressSpace(DestLangAS);
+ auto *T = V->getType()->getPointerElementType()->getPointerTo(DestAS);
+ DeclPtr = Address(getTargetHooks().performAddrSpaceCast(
+ *this, V, SrcLangAS, DestLangAS, T, true),
+ DeclPtr.getAlignment());
+ }
+
+ // Push a destructor cleanup for this parameter if the ABI requires it.
+ // Don't push a cleanup in a thunk for a method that will also emit a
+ // cleanup.
+ if (hasAggregateEvaluationKind(Ty) && !CurFuncIsThunk &&
+ Ty->getAs<RecordType>()->getDecl()->isParamDestroyedInCallee()) {
+ if (QualType::DestructionKind DtorKind = Ty.isDestructedType()) {
+ assert((DtorKind == QualType::DK_cxx_destructor ||
+ DtorKind == QualType::DK_nontrivial_c_struct) &&
+ "unexpected destructor type");
+ pushDestroy(DtorKind, DeclPtr, Ty);
+ CalleeDestructedParamCleanups[cast<ParmVarDecl>(&D)] =
+ EHStack.stable_begin();
+ }
+ }
+ } else {
+ // Check if the parameter address is controlled by OpenMP runtime.
+ Address OpenMPLocalAddr =
+ getLangOpts().OpenMP
+ ? CGM.getOpenMPRuntime().getAddressOfLocalVariable(*this, &D)
+ : Address::invalid();
+ if (getLangOpts().OpenMP && OpenMPLocalAddr.isValid()) {
+ DeclPtr = OpenMPLocalAddr;
+ } else {
+ // Otherwise, create a temporary to hold the value.
+ DeclPtr = CreateMemTemp(Ty, getContext().getDeclAlign(&D),
+ D.getName() + ".addr");
+ }
+ DoStore = true;
+ }
+
+ llvm::Value *ArgVal = (DoStore ? Arg.getDirectValue() : nullptr);
+
+ LValue lv = MakeAddrLValue(DeclPtr, Ty);
+ if (IsScalar) {
+ Qualifiers qs = Ty.getQualifiers();
+ if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
+ // We honor __attribute__((ns_consumed)) for types with lifetime.
+ // For __strong, it's handled by just skipping the initial retain;
+ // otherwise we have to balance out the initial +1 with an extra
+ // cleanup to do the release at the end of the function.
+ bool isConsumed = D.hasAttr<NSConsumedAttr>();
+
+ // If a parameter is pseudo-strong then we can omit the implicit retain.
+ if (D.isARCPseudoStrong()) {
+ assert(lt == Qualifiers::OCL_Strong &&
+ "pseudo-strong variable isn't strong?");
+ assert(qs.hasConst() && "pseudo-strong variable should be const!");
+ lt = Qualifiers::OCL_ExplicitNone;
+ }
+
+ // Load objects passed indirectly.
+ if (Arg.isIndirect() && !ArgVal)
+ ArgVal = Builder.CreateLoad(DeclPtr);
+
+ if (lt == Qualifiers::OCL_Strong) {
+ if (!isConsumed) {
+ if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
+ // use objc_storeStrong(&dest, value) for retaining the
+ // object. But first, store a null into 'dest' because
+ // objc_storeStrong attempts to release its old value.
+ llvm::Value *Null = CGM.EmitNullConstant(D.getType());
+ EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
+ EmitARCStoreStrongCall(lv.getAddress(), ArgVal, true);
+ DoStore = false;
+ }
+ else
+ // Don't use objc_retainBlock for block pointers, because we
+ // don't want to Block_copy something just because we got it
+ // as a parameter.
+ ArgVal = EmitARCRetainNonBlock(ArgVal);
+ }
+ } else {
+ // Push the cleanup for a consumed parameter.
+ if (isConsumed) {
+ ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
+ ? ARCPreciseLifetime : ARCImpreciseLifetime);
+ EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), ArgVal,
+ precise);
+ }
+
+ if (lt == Qualifiers::OCL_Weak) {
+ EmitARCInitWeak(DeclPtr, ArgVal);
+ DoStore = false; // The weak init is a store, no need to do two.
+ }
+ }
+
+ // Enter the cleanup scope.
+ EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
+ }
+ }
+
+ // Store the initial value into the alloca.
+ if (DoStore)
+ EmitStoreOfScalar(ArgVal, lv, /* isInitialization */ true);
+
+ setAddrOfLocalVar(&D, DeclPtr);
+
+ // Emit debug info for param declaration.
+ if (CGDebugInfo *DI = getDebugInfo()) {
+ if (CGM.getCodeGenOpts().getDebugInfo() >=
+ codegenoptions::LimitedDebugInfo) {
+ DI->EmitDeclareOfArgVariable(&D, DeclPtr.getPointer(), ArgNo, Builder);
+ }
+ }
+
+ if (D.hasAttr<AnnotateAttr>())
+ EmitVarAnnotations(&D, DeclPtr.getPointer());
+
+ // We can only check return value nullability if all arguments to the
+ // function satisfy their nullability preconditions. This makes it necessary
+ // to emit null checks for args in the function body itself.
+ if (requiresReturnValueNullabilityCheck()) {
+ auto Nullability = Ty->getNullability(getContext());
+ if (Nullability && *Nullability == NullabilityKind::NonNull) {
+ SanitizerScope SanScope(this);
+ RetValNullabilityPrecondition =
+ Builder.CreateAnd(RetValNullabilityPrecondition,
+ Builder.CreateIsNotNull(Arg.getAnyValue()));
+ }
+ }
+}
+
+void CodeGenModule::EmitOMPDeclareReduction(const OMPDeclareReductionDecl *D,
+ CodeGenFunction *CGF) {
+ if (!LangOpts.OpenMP || (!LangOpts.EmitAllDecls && !D->isUsed()))
+ return;
+ getOpenMPRuntime().emitUserDefinedReduction(CGF, D);
+}
+
+void CodeGenModule::EmitOMPRequiresDecl(const OMPRequiresDecl *D) {
+ getOpenMPRuntime().checkArchForUnifiedAddressing(*this, D);
+}